Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Model Selection in Approximate and Dynamic Factor Models
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00107681-11

Model Selection in Approximate and Dynamic Factor Models

Veröffentlichungsdatum
2019-09-17
Autoren
Sirotko-Sibirskaya, Natalia  
Betreuer
Dickhaus, Thorsten  
Gutachter
Bodnar, Taras  
Zusammenfassung
The variety in factor modelling for multivariate time series implies the necessity to develop the model selection methodology as the 'optimally' chosen model is not only important for understanding the underlying nature of a certain data generating process, but can also be useful in constructing more efficient forecasts. The majority of the methods developed in the literature on factor models consider their time domain representation, meanwhile the frequency domain representation of factor models for multivariate time series offers a number of attractive Features which can be exploited in developing more efficient estimation and/or model selection methods. The present dissertation presents two novel approaches for model selection for dynamic and/or approximate factor models, DFMs and AFMs, respectively, formulated and estimated in the frequency domain. The first approach combines theoretical findings in simultaneous statistical inference with testing common and idiosyncratic factors for autocorrelation. The second approach is based on the recent theoretical findings in the random matrix theory and presents a cross-validatory method of selecting the a optimala number of common factors.
Schlagwörter
Factor models

; 

discrete Fourier transforms

; 

multiplicity adjustment

; 

cross-validation
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00107681-1.pdf

Size

1 MB

Format

Adobe PDF

Checksum

(MD5):91ab5f83f3d9a09408dc2ab618995c7f

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken