Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. How to make a wheelchair understand spoken commands
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00107390-16

How to make a wheelchair understand spoken commands

Veröffentlichungsdatum
2019-05-06
Autoren
Couto-Vale, Daniel  
Betreuer
Bateman, John  
Gutachter
Cimiano, Philipp  
Zusammenfassung
In this thesis, I aimed at recognising a wheelchair user' s intent when making commands to an intelligent wheelchair, relying on what the user meant by the words chosen, the situation the interactants are in, and the ongoing discourse of interaction, making use of only symbolic processing. For this purpose, I created a language-based taxonomy of simple things, locations and processes that could be integrated into a rule-based understanding module, composed of a speech recogniser, a CCG-based text analyser, trackers of states and changes in the environment and four mechanisms to integrate contextual features: a material thing integrator for identifying referents in the surroundings, a figure integrator for ascertaining the participant roles referents should take in described events, a nexus integrator for relating represented events back to the current states in the situation and forward to potential desired states, and a dialogue move integrator for recognising how an utterance moves the dialogue forwards. With this integration mechanism, I achieved 95% task success rate in an evaluation experiment conducted within a simulated apartment and wheelchair viewed from above.
Schlagwörter
Systemic Functional Linguistics (SFL)

; 

Combinatory Categorial Grammar (CCG)

; 

embodied assistant

; 

intelligent wheelchair

; 

human adult language

; 

spoken commands

; 

understanding
Institution
Universität Bremen  
Fachbereich
Fachbereich 10: Sprach- und Literaturwissenschaften (FB 10)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00107390-1.pdf

Size

2.34 MB

Format

Adobe PDF

Checksum

(MD5):72c25189487ab1494f0ff57839f19f3f

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken