Skip navigation
SuUB logo
DSpace logo

  • Home
  • Institutions
    • University of Bremen
    • City University of Applied Sciences
    • Bremerhaven University of Applied Sciences
  • Sign on to:
    • My Media
    • Receive email
      updates
    • Edit Account details

Citation link: https://nbn-resolving.de/urn:nbn:de:gbv:46-00107105-11
00107105-1.pdf
OpenAccess
 
copyright

Theoretical investigations of wide-bandgap semiconductor nanowires for optoelectronic applications


File Description SizeFormat
00107105-1.pdf6.23 MBAdobe PDFView/Open
Other Titles: Theoretische Untersuchungen von Halbleiter-basierten Nanodrähten mit breiter Bandlücke für optoelektronische Anwendungen
Authors: Franke, Dennis  
Supervisor: Frauenheim, Thomas  
1. Expert: Frauenheim, Thomas  
Experts: Jahnke, Frank  
Abstract: 
Improving existing optoelectronic devices is a crucial step in satisfying humanity's increasing demand for electricity. This work explores different ways to achieve this goal. First density functional theory (DFT) calculations are performed on functionalized ZnO and GaN surface structures to investigate possible changes to their structural, electronic, and optical properties due to the attached functional groups. For both materials, attaching thiol groups leads to intra-gap states, which are found to be optically active for ZnO. Aiming at bigger GaN model sizes in future works compared to standard DFT approaches, a DFTB model was developed for GaN surface nanostructures. The interatomic interaction parameters were validated against standard DFT, achieving acceptable performances on bulk Ga, bulk GaN, and surface GaN systems. Another possible route to modify the electronic properties of semiconductor nanostructures is doping. ZnO bulk was doped with cobalt atoms to model different intrinsic defect complexes. Many-body GW calculations were employed to investigate their electronic structures. One defect complex is identified to be responsible for the experimentally observed photoluminescence. Due to the continuing decrease in size of electronic devices, the standard gate oxide SiO2 needs to be replaced, since today's required film thicknesses expose a crucial weakness of SiO2, a high tunneling leakage current. Possible candidates to be used as a replacement are hafnium silicate nanostructures, that avoid the described weakness. In a first step a density functional-based tight binding (DFTB) model for HfO2 was developed and validated against standard DFT calculations, achieving a very good performance for Hf bulk and HfO2 bulk. The obtained parameters were then used in a MD study on amorphous HfO2 systems to discuss their structural and electronic properties. In a second step this model was extended by silicon and applied to amorphous hafnium silicate structures to evaluate the influence of different Hf:Si ratios.
Keywords: DFT; DFTB; GW; Nanostructures; Amorphous; Surfaces; Functionalization; ZnO; GaN; HfO2
Issue Date: 19-Feb-2019
Type: Dissertation
Secondary publication: no
URN: urn:nbn:de:gbv:46-00107105-11
Institution: Universität Bremen 
Faculty: Fachbereich 01: Physik/Elektrotechnik (FB 01) 
Appears in Collections:Dissertationen

  

Page view(s)

375
checked on May 8, 2025

Download(s)

163
checked on May 8, 2025

Google ScholarTM

Check


Items in Media are protected by copyright, with all rights reserved, unless otherwise indicated.

Legal notice -Feedback -Data privacy
Media - Extension maintained and optimized by Logo 4SCIENCE