Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Finite and Infinite Rotation Sequences and Beyond
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00107102-18

Finite and Infinite Rotation Sequences and Beyond

Veröffentlichungsdatum
2019-01-24
Autoren
Mosbach, Arne  
Betreuer
Keßeböhmer, Marc  
Gutachter
Lenz, Daniel  
Zusammenfassung
The encoding of orbits attained from rigid rotations are investigated from different perspectives. In the first part of the thesis regularity conditions for irrational rotations will be studied in terms of their continued fraction expansions and a categorisation is achieved for continued fraction expansions which do not grow too fast. The second part focuses on the spectral properties of beta-transformations for beta sqrt(2). Here an explicit representation for the Bochner transform of autocorrelations stemming from Dirac combs derived from beta-transformations is achieved, which consists of a Lebesgue absolutely continuous part and a discrete part. The last part focuses on vague limits of these autocorrelations where beta tends to 1. Here a link to subshifts derived from rigid rotations will be established. The Bochner transform of these vague limits can be given explicitly in some cases and is shown to be either discrete, non-discrete singular to Lebesgue, or a mixture of both.
Schlagwörter
Combinatorics

; 

Lattices

; 

Number theory

; 

Dynamical Systems
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00107102-1.pdf

Size

2.4 MB

Format

Adobe PDF

Checksum

(MD5):b48d03ae491f44d10df0152f04e841ce

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken