Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Advanced Inverse Modeling of Sediment Thermal Diffusion Processes : Reconstructing Temporal Variant Boundary Conditions for the One-Dimensional Heat Equation
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00106636-14

Advanced Inverse Modeling of Sediment Thermal Diffusion Processes : Reconstructing Temporal Variant Boundary Conditions for the One-Dimensional Heat Equation

Veröffentlichungsdatum
2018-07-05
Autoren
Miesner, Frederieke  
Betreuer
Lechleiter, Armin  
Gutachter
Helin, Tapio  
Zusammenfassung
Temperatures in marine sediments are driven by the geothermal heat flow from the Earth's crust and the evolution of the bottom water temperature. Mathematically, the temperature field can be modeled with the heat equation, a Robin boundary condition at the sediment-water interface, and a Neumann condition at the lower boundary. Given the thermal properties of the sediment and a model for the bottom water temperature function the forward problem is well-posed. The inverse problem, i.e. reconstructing the bottom water temperature function from measurements of the sediment temperature, on the other hand is ill-posed; the parameterized model is non-linear but low-dimensional. Different Newton-linke methods, as well as a linear fitting approach with Tikhonov minimization, and a Markov Chain Monte Carlo method are shown and their performances for this problem are compared. The algorithms work differently well on this problem, and regularising methods are not necessarily better. The heuristic linear fitting has the best accuracy in reasonable computing time, while the Markov Chain Monte Carlo method has proven convergence for enlarging ensembles.
Schlagwörter
Inverse Problems

; 

Heat Equation

; 

Thermal Diffusion

; 

Boundary Value Problem

; 

Marine Sediments
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00106636-1.pdf

Size

2.35 MB

Format

Adobe PDF

Checksum

(MD5):1f815a1d5875c8e42182bef447bbe87d

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken