Tropicalizing abelian covers of algebraic curves
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
00106622-1.pdf | 1.44 MB | Adobe PDF | Anzeigen |
Sonstige Titel: | Tropikalisierende abelsche Abdeckungen algebraischer Kurven | Autor/Autorin: | Helminck, Paul Alexander ![]() |
BetreuerIn: | Feichtner, Eva-Maria | 1. GutachterIn: | Feichtner, Eva-Maria | Weitere Gutachter:innen: | Rabinoff, Joseph, Assistant | Zusammenfassung: | In this thesis, we study the Berkovich skeleton of an algebraic curve over a discretely valued field K. We do this using coverings C - P1 of the projective line. To study these coverings, we take the Galois closure of the corresponding injection of function fields K(P1) - K(C), giving a Galois morphism overline C - P1. A theorem by Liu and Lorenzini tells us how to associate to this morphism a Galois morphism of semistable models C - D. That is, we make the branch locus disjoint in the special fiber of D and remove any vertical ramification on the components of Ds. This morphism C - D then gives rise to a morphism of intersection graphs Sigma(C) - Sigma(D). Our goal is to reconstruct Sigma(C) from Sigma(D) and we will do this by giving a set of covering and twisting data. These then give algorithms for finding the Berkovich skeleton of a curve C whenever that curve has a morphism C - P1 with a solvable Galois group. In particular, this gives an algorithm for finding the Berkovich skeleton of any genus three curve. These coverings also give a new proof of a classical result on the semistable reduction type of an elliptic curve, saying that an elliptic curve has potential good reduction if and only if the valuation of the j-invariant is positive. |
Schlagwort: | Berkovich skeleton; semistable curves; intersection graphs; tropicalization; Laplacian operator; Slope formula; Galois covers; tame covers; abelian covers; Jacobians; superelliptic curves; genus 3 curves; moduli spaces; tropical moduli spaces | Veröffentlichungsdatum: | 11-Jul-2018 | Dokumenttyp: | Dissertation | Zweitveröffentlichung: | no | URN: | urn:nbn:de:gbv:46-00106622-10 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Dissertationen |
Seitenansichten
361
checked on 02.04.2025
Download(s)
137
checked on 02.04.2025
Google ScholarTM
Prüfe
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.