Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Maskierte Erfassung und inpaintingbasierte Wiederherstellung von großen Datenvolumen in Systemen mit eingeschränkter Berechnungskapazität
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00106615-12

Maskierte Erfassung und inpaintingbasierte Wiederherstellung von großen Datenvolumen in Systemen mit eingeschränkter Berechnungskapazität

Veröffentlichungsdatum
2018-06-15
Autoren
Schmale, Sebastian  
Betreuer
Paul, Steffen  
Gutachter
Bunse-Gerstner, Angelika  
Zusammenfassung
The exponential growth of the generated data volume, due to the increasing number of participants in data traffic as well as networking, confronts many application-specific systems worldwide with new and future challenges. Based on the large amount, the high speed and the large variety of data, individual problems arise in the acquisition, transmission and processing. Managing such data volumes with traditional data processing approaches is often infeasible to resource-constrained applications, because of limitations of the computational capacity. This thesis focusses on solutions for the processing of high data volumes in systems with limited computational capacity. The key concept is based on a methodology for the asymmetric distribution of computational effort through the use of algorithmic tools in the field of multidimensional digital data restoration (inpainting). The combination of masking for data reduction and inpainting for data recovery opens up the potential to innovative solutions for currently unresolved problems and to improve existing approaches. From the field of medicine, space technology as well as imaging recording media, problems to evaluate the developed solutions of the innovative methodology in this thesis. Furthermore, the approaches are compared to different reference methods. Both, the degree of data reduction and the reconstruction quality of the inpainting-based recovery, serve as figures of merit to evaluate the developed approaches within simulated examinations of the application-specific scenarios.
Schlagwörter
Inpainting

; 

Design

; 

Methodology

; 

Big Data

; 

IoT

; 

Biomedical

; 

Neural Signals

; 

Brain Activity

; 

MRI

; 

Space

; 

Satellite

; 

OCO-2

; 

Image Processing

; 

Video Processing

; 

Data Compression
Institution
Universität Bremen  
Fachbereich
Fachbereich 01: Physik/Elektrotechnik (FB 01)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Deutsch
Dateien
Lade...
Vorschaubild
Name

00106615-1.pdf

Size

84.7 MB

Format

Adobe PDF

Checksum

(MD5):3b89f34c1e41579d7227f5546144d41c

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken