Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Using Multimodal MRI Techniques to Derive a Biomarker for Tracking the Pathological Changes Occurring at Different Stages of Cognitive Decline in Parkinson's Disease in a Cross-Sectional Study Design
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00106191-18

Using Multimodal MRI Techniques to Derive a Biomarker for Tracking the Pathological Changes Occurring at Different Stages of Cognitive Decline in Parkinson's Disease in a Cross-Sectional Study Design

Veröffentlichungsdatum
2017-09-20
Autoren
Erdogdu, Emel  
Betreuer
Basar-Eroglu, Canan  
Gutachter
Demiralp, Tamer  
Zusammenfassung
Cognitive impairment is common in Parkinson's disease (PD) and can range from mild cognitive impairment (PD-MCI) to dementia (PDD). The aim of this study was to derive a multi-modal MRI-based biomarker for the reliable discrimination of PD patients at different stages of cognitive decline and to identify pathologic patterns related with dementia risk. The resting-state functional MRI (rs-fMRI), diffusion tensor imaging (DTI), Arterial Spin Labeling and MR spectroscopic imaging data of 60 PD patients (PD-N, PD-MCI, PDD) were collected. The rs-fMRI data revealed a combination of resting-state networks with significant discriminative power based on the expression scores of the resting-state networks. In combination with the DTI data we obtained a successful model for the discrimination of PDD patients and were able to identify progressive pathological changes that can be used as biomarker for PDD and could be established as clinical diagnostic tool for PD patients with high dementia risk.
Schlagwörter
Biomarker

; 

Parkinson's disease

; 

Dementia

; 

PDD

; 

PD-MCI

; 

Neurodegenerative disease

; 

MRI

; 

rs-fMRI

; 

DTI

; 

MRSI

; 

ASL
Institution
Universität Bremen  
Fachbereich
Fachbereich 11: Human- und Gesundheitswissenschaften (FB 11)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00106191-1.pdf

Size

5.59 MB

Format

Adobe PDF

Checksum

(MD5):4ea27b97620d5ed8065a6709eecada6f

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken