Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Thermodynamic Formalism for Group-Extended Markov Systems with Applications to Fuchsian Groups
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00101965-11

Thermodynamic Formalism for Group-Extended Markov Systems with Applications to Fuchsian Groups

Veröffentlichungsdatum
2011-04-15
Autoren
Jaerisch, Johannes  
Betreuer
Keßeböhmer, Marc  
Gutachter
Stratmann, Bernd  
Zusammenfassung
In this thesis we develop a thermodynamic formalism for group-extended Markov systems. We show that previous results of Kesten, Grigorchuk, Cohen and Brooks, which relate amenability with probabilistic, combinatorial and geometric quantities in different settings, find a common framework within this thermodynamic formalism. We partially recover these results and extend them in various directions for group-extended Markov systems. In this way we obtain generalisations of certain deep results of Brooks, which relate amenability of Fuchsian groups with the Hausdorff dimension of certain associated limit sets, to the setting of graph directed Markov systems. We introduce the new notion of induced topological pressure, which is suitable for giving a thermodynamic description of arbitrary subsystems of a dynamical system. Moreover, it enables us to study exhaustion principles for induced topological pressure, which are strongly linked with amenability in the context of group-extended Markov systems. A further main result of this thesis is to obtain a new multifractal formalism for infinite conformal iterated function systems.
Schlagwörter
dynamical systems

; 

ergodic theory

; 

thermodynamic formalism

; 

Fuchsian groups

; 

group extensions

; 

amenability

; 

fractal geometry

; 

dimension theory

; 

multifractal analysis

; 

convex analysis
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00101965-1.pdf

Size

5.02 MB

Format

Adobe PDF

Checksum

(MD5):5b5dc13d59505738504ec34d5bef661f

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken