Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Learning and Using Multimodal Stochastic Models : A Unified Approach
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00105528-16

Learning and Using Multimodal Stochastic Models : A Unified Approach

Veröffentlichungsdatum
2016-09-09
Autoren
Edgington, Mark  
Betreuer
Kirchner, Frank  
Gutachter
Beetz, Michael  
Zusammenfassung
This dissertation presents a principled approach to representing and using instance-based knowledge. Perceptions and actions are probabilistically modelled in a unified structure which allows for simultaneous perception modelling and reasoning about desired actions. In particular, a new method for online instance-based learning of such models is presented and analyzed. This method, called Dynamic Gaussian Mixture Estimation (DGME), adapts a model's complexity to the process being modelled. The models produced by DGME are evaluated on several classification, prediction, and control applications, and its characteristics are compared with other state-of-the-art methods. In the context of control applications, an additional novel method, Gaussian Mixture Control (GMC), is introduced for precisely controlling systems that exhibit multimodality.
Schlagwörter
Density Estimation

; 

Online Learning

; 

Bayesian Learning

; 

Probabilistic Inference

; 

Mixture Model

; 

Cognitive Modeling

; 

Robot Behavior and Control
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00105528-1.pdf

Size

3.52 MB

Format

Adobe PDF

Checksum

(MD5):54568da5d5febf71429b05059f4e6233

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken