Abstract Homotopy Theory and the Thomason Model structure
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
00105527-1.pdf | 1.07 MB | Adobe PDF | Anzeigen |
Sonstige Titel: | Abstrakte Homotopie Theorie und die Thomason Modellstruktur | Autor/Autorin: | Bruckner, Roman | BetreuerIn: | Feichtner-Kozlov, Dmitry | 1. GutachterIn: | Feichtner-Kozlov, Dmitry | Weitere Gutachter:innen: | Meier, Lennart | Zusammenfassung: | There is a closed model structure on the category of small categories, called Thomason model structure, that is Quillen equivalent to the standard model structure on the category of topological spaces. We will give an introduction to the concepts necessary to understand the definition, as well as the purpose of the Thomason model structure. These concepts include category theory, classical homotopy theory on topological spaces, simplicial homotopy theory on simplicial sets and abstract homotopy theory via the use of model categories. We will show, that there is a model structure on the category of small acyclic categories, that is Quillen equivalent to the Thomason model structure. Both of these model structures share the same cofibrant objects, and we will show that these include finite semilattices, countable trees, finite zigzags and posets with five or less elements. |
Schlagwort: | Mathematics; Homotopy Theory; Category Theory; Model Categories | Veröffentlichungsdatum: | 19-Sep-2016 | Dokumenttyp: | Dissertation | Zweitveröffentlichung: | no | URN: | urn:nbn:de:gbv:46-00105527-15 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Dissertationen |
Seitenansichten
403
checked on 30.10.2024
Download(s)
231
checked on 30.10.2024
Google ScholarTM
Prüfe
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.