Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Statistical modeling of physical activity based on accelerometer data
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00105171-12

Statistical modeling of physical activity based on accelerometer data

Veröffentlichungsdatum
2016-03-21
Autoren
Wirsik, Norman  
Betreuer
Pigeot-Kübler, Iris  
Gutachter
Ahrens, Wolfgang  
Zusammenfassung
This thesis focuses on the objective measurement of physical activity (PA), recorded by accelerometers. Chapter 2 describes the objective measurement of PA using accelerometers in contrast to subjective measurements like PA questionnaires. Chapter 3 presents the basic assumption on PA. Contrary to the cutpoint method, it is more realistic to assume that human activity behavior consists of a sequence of non-overlapping, distinguishable activities that can be represented by a mean intensity level. The recorded accelerometer counts scatter around this mean level. In Chapter 4, two novel approaches to better capture PA are developed and implemented. The Hidden Markov models are stochastic models that allow fitting a Markov chain with a predefined number of activities to the data. Expectile regression utilizing the Whittaker smoother with an L0-penalty is introduced as a second innovative approach. Expectile regression is compared to HMMs and the cutpoint method in a simulation study. Chapter 5 presents the results of four studies on PA. Chapter 6 summarizes and discusses the findings of the previous chapters and ends with an outlook on future research.
Schlagwörter
Physical activity

; 

accelerometer data

; 

hidden Markov models

; 

expectile regression

; 

L0-penalty

; 

Whittaker smoother

; 

pattern recognition

; 

physical activity patterns

; 

bout detection

; 

GAMLSS

; 

energy prediction equation
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00105171-1.pdf

Size

5.79 MB

Format

Adobe PDF

Checksum

(MD5):9eae3f8f464eeca34da5c36b8cbff376

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken