Approximate Monotone Local Search for Weighted Problems
Veröffentlichungsdatum
2023
Autoren
Zusammenfassung
In a recent work, Esmer et al. describe a simple method - Approximate Monotone Local Search - to obtain exponential approximation algorithms from existing parameterized exact algorithms, polynomial-time approximation algorithms and, more generally, parameterized approximation algorithms. In this work, we generalize those results to the weighted setting.
More formally, we consider monotone subset minimization problems over a weighted universe of size n (e.g., Vertex Cover, d-Hitting Set and Feedback Vertex Set). We consider a model where the algorithm is only given access to a subroutine that finds a solution of weight at most α ⋅ W (and of arbitrary cardinality) in time c^k ⋅ n^{𝒪(1)} where W is the minimum weight of a solution of cardinality at most k. In the unweighted setting, Esmer et al. determine the smallest value d for which a β-approximation algorithm running in time dⁿ ⋅ n^{𝒪(1)} can be obtained in this model. We show that the same dependencies also hold in a weighted setting in this model: for every fixed ε > 0 we obtain a β-approximation algorithm running in time 𝒪((d+ε)ⁿ), for the same d as in the unweighted setting.
Similarly, we also extend a β-approximate brute-force search (in a model which only provides access to a membership oracle) to the weighted setting. Using existing approximation algorithms and exact parameterized algorithms for weighted problems, we obtain the first exponential-time β-approximation algorithms that are better than brute force for a variety of problems including Weighted Vertex Cover, Weighted d-Hitting Set, Weighted Feedback Vertex Set and Weighted Multicut.
More formally, we consider monotone subset minimization problems over a weighted universe of size n (e.g., Vertex Cover, d-Hitting Set and Feedback Vertex Set). We consider a model where the algorithm is only given access to a subroutine that finds a solution of weight at most α ⋅ W (and of arbitrary cardinality) in time c^k ⋅ n^{𝒪(1)} where W is the minimum weight of a solution of cardinality at most k. In the unweighted setting, Esmer et al. determine the smallest value d for which a β-approximation algorithm running in time dⁿ ⋅ n^{𝒪(1)} can be obtained in this model. We show that the same dependencies also hold in a weighted setting in this model: for every fixed ε > 0 we obtain a β-approximation algorithm running in time 𝒪((d+ε)ⁿ), for the same d as in the unweighted setting.
Similarly, we also extend a β-approximate brute-force search (in a model which only provides access to a membership oracle) to the weighted setting. Using existing approximation algorithms and exact parameterized algorithms for weighted problems, we obtain the first exponential-time β-approximation algorithms that are better than brute force for a variety of problems including Weighted Vertex Cover, Weighted d-Hitting Set, Weighted Feedback Vertex Set and Weighted Multicut.
Schlagwörter
parameterized approximations
;
exponential approximations
;
monotone local search
Verlag
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Institution
Fachbereich
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
18th International Symposium on Parameterized and Exact Computation (IPEC 2023) = Leibniz International Proceedings in Informatics (LIPIcs), Band 285
Startseite
17:1
Endseite
17:23
Zweitveröffentlichung
Ja
Dokumentversion
Published Version
Sprache
Englisch
Dateien![Vorschaubild]()
Lade...
Name
Esmer et al_Approximate Monotone Local Search for Weighted Problems_2023_published-version.pdf
Size
1.23 MB
Format
Adobe PDF
Checksum
(MD5):c1c624d8f0b868adfa89090ad5d4e037
