Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Bibliographie HS Bremen
  4. Predicting Returns with Machine Learning across Horizons, Firm Size, and Time
 
Verlagslink DOI
10.3905/jfds.2023.1.139

Predicting Returns with Machine Learning across Horizons, Firm Size, and Time

Veröffentlichungsdatum
2023
Autoren
Cakici, Nusret  
Fieberg, Christian  
Metko, Daniel  
Zaremba, Adam  
Zusammenfassung
Researchers and practitioners hope that machine learning strategies will deliver better performance than traditional methods. But do they? This study documents that stock return predictability with machine learning depends critically on three dimensions: forecast horizon, firm size, and time. It works well for short-term returns, small firms, and early historical data; however, it disappoints in opposite cases. Consequently, annual return forecasts have failed to produce substantial economic gains within most of the US market in the past two decades. These findings challenge the practical utility of predicting returns with machine learning models.
Verlag
Pageant Media
Institution
Hochschule Bremen  
Fachbereich
Hochschule Bremen - Fakultät 1: Wirtschaftswissenschaften - School of International Business (SiB)  
Dokumenttyp
Artikel/Aufsatz
Zeitschrift/Sammelwerk
The Journal of Financial Data Science  
Band
5
Heft
4
Startseite
119
Endseite
144
Sprache
Englisch

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken