Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Geometry and dynamics of infinitely generated Kleinian groups: Geometric Schottky groups
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00104579-13

Geometry and dynamics of infinitely generated Kleinian groups: Geometric Schottky groups

Veröffentlichungsdatum
2015-05-29
Autoren
Zielicz, Anna  
Betreuer
Stratmann, Bernd O.  
Gutachter
Zdunik, Anna  
Zusammenfassung
We introduce and study the class of geometric Schottky groups which includes many infinitely generated groups. We define a natural coding of the limit set and characterise in terms of this coding important subsets of the limit set. Further, we study a certain notion of entropy for the geodesic flow on the quotient manifold. We show that for geometric Schottky groups it is equal to the convex core entropy of the group, which for finitely generated groups agrees with the Poincar'e exponent. Subsequently, we discuss a subclass of the geometric Schottky groups called the P-class. For groups in this class, the geodesic flow is ergodic with respect to the Liouville-Patterson measure and the Liouville-Patterson measure is finite. We present proofs of these facts and deduce some consequences. Lastly, we provide methods of constructing groups in the P-class and then show that an infinite-index normal subgroup of a finitely generated geometric Schottky group cannot belong to the P-class.
Schlagwörter
hyperbolic geometry

; 

geometic Schottky group

; 

Fuchsian group

; 

Kleinian group

; 

Schottky group

; 

limit set

; 

geodesic flow

; 

entropy

; 

Bowen-Dinaburg entropy

; 

Poincar'e exponent

; 

exponent of convergence

; 

convex core entropy

; 

Liouville-Patterson measure

; 

Patterson measure

; 

Sullivan

; 

shadow lemma

; 

ergodic

; 

P-class

; 

reverse triangle inequality
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00104579-1.pdf

Size

2.67 MB

Format

Adobe PDF

Checksum

(MD5):5462af7dc352c04373a59f45fc710cae

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken