Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Papierfalten
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-diss000105747

Papierfalten

Veröffentlichungsdatum
2006-12-13
Autoren
Albers, Reimund  
Betreuer
Peitgen, Heinz-Otto  
Gutachter
Weth, Thomas  
Zusammenfassung
In this thesis the properties of the paperfolding sequence are investigated with an emphasis on the application in mathematical education.In ten chapters the sequence is examined in different ways: first and foremost as a sequence of symbols produced by folding a strip of paper repeatedly in halves. The geometric point of view gives a curve that is space-filling and a fractal, known as the Dragon-curve or the Heighway-dragon. This is connected to iterated function-systems (IFS). If the unfolding angle is slightly larger than 90 degrees intersections of the curve occur. This is investigated in detail in chapter 9. The sequence can also be seen as the binary representation of a number of the unit interval. Then the problem of an easy calculation arises. The paperfolding sequence is one of the foremost examples for an automatic sequence, which is looked at in chapter 7. In the last chapter some classic curves are investigated if they can be generated by paperfolding.
Schlagwörter
paperfolding sequence

; 

Heighway-dragon

; 

iterated function-systems (IFS)

; 

fractal

; 

automatic sequence
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Deutsch
Dateien
Lade...
Vorschaubild
Name

00010574.pdf

Size

26.93 MB

Format

Adobe PDF

Checksum

(MD5):63906c0e7048b6c21bf4d018fd1f20cf

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken