Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. Learning-Augmented Query Policies for Minimum Spanning Tree with Uncertainty
 
Zitierlink DOI
10.26092/elib/4264
Verlagslink DOI
10.4230/LIPIcs.ESA.2022.49

Learning-Augmented Query Policies for Minimum Spanning Tree with Uncertainty

Veröffentlichungsdatum
2022
Autoren
Erlebach, Thomas  
de Lima, Murilo Santos
Megow, Nicole  
Schlöter, Jens  
Zusammenfassung
We study how to utilize (possibly erroneous) predictions in a model for computing under uncertainty in which an algorithm can query unknown data. Our aim is to minimize the number of queries needed to solve the minimum spanning tree problem, a fundamental combinatorial optimization problem that has been central also to the research area of explorable uncertainty. For all integral γ ≥ 2, we present algorithms that are γ-robust and (1+1/γ)-consistent, meaning that they use at most γOPT queries if the predictions are arbitrarily wrong and at most (1+1/γ)OPT queries if the predictions are correct, where OPT is the optimal number of queries for the given instance. Moreover, we show that this trade-off is best possible. Furthermore, we argue that a suitably defined hop distance is a useful measure for the amount of prediction error and design algorithms with performance guarantees that degrade smoothly with the hop distance. We also show that the predictions are PAC-learnable in our model. Our results demonstrate that untrusted predictions can circumvent the known lower bound of 2, without any degradation of the worst-case ratio. To obtain our results, we provide new structural insights for the minimum spanning tree problem that might be useful in the context of query-based algorithms regardless of predictions. In particular, we generalize the concept of witness sets - the key to lower-bounding the optimum - by proposing novel global witness set structures and completely new ways of adaptively using those.
Schlagwörter
explorable uncertainty

; 

queries

; 

untrusted predictions
Verlag
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
30th Annual European Symposium on Algorithms (ESA 2022) = Leibniz International Proceedings in Informatics (LIPIcs), Band 244
Startseite
49:1
Endseite
49:18
Zweitveröffentlichung
Ja
Dokumentversion
Published Version
Lizenz
https://creativecommons.org/licenses/by/4.0/
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Erlebach et al_Learning-Augmented Query Policies for Minimum Spanning Tree with Uncertainty_2022_published-version.pdf

Size

799.63 KB

Format

Adobe PDF

Checksum

(MD5):b691d84396ef7ad85b49cb3485239887

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken