Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. The Effect of Population and Structural Biases on Social Media-based Algorithms - A Case Study in Geolocation Inference Across the Urban-Rural Spectrum
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00106430-18

The Effect of Population and Structural Biases on Social Media-based Algorithms - A Case Study in Geolocation Inference Across the Urban-Rural Spectrum

Veröffentlichungsdatum
2017
Autoren
Schöning, Johannes  
Zusammenfassung
Much research has shown that social media platforms have substantial population biases. However, very little is known about how these population biases affect the many algorithms that rely on social media data. Focusing on the case study of geolocation inference algorithms and their performance across the urban-rural spectrum, we establish that these algorithms exhibit significantly worse performance for underrepresented populations (i.e. rural users). We further establish that this finding is robust across both text- and network-based algorithm designs. However, we also show that some of this bias can be attributed to the design of algorithms themselves rather than population biases in the underlying data sources. For instance, in some cases, algorithms perform badly for rural users even when we substantially overcorrect for population biases by training exclusively on rural data. We discuss the implications of our findings for the design and study of social media-based algorithms.
Schlagwörter
Algorithmic accountability

; 

geolocation inference

; 

population bias

; 

social media
Verlag
ACM
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Institute
HCI  
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
CHI '17 Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems  
Startseite
1167
Endseite
1178
Seitenzahl
12
Zweitveröffentlichung
Nein
Sprache
Deutsch
Dateien
Lade...
Vorschaubild
Name

00106430-1.pdf

Size

1.65 MB

Format

Adobe PDF

Checksum

(MD5):83ec5d620252e6a25a149c5a942044c8

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken