Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Evolutionary Legged Robotics
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00107139-19

Evolutionary Legged Robotics

Veröffentlichungsdatum
2019-02-14
Autoren
Langosz, Malte  
Betreuer
Kirchner, Frank  
Gutachter
Hertzberg, Joachim  
Kirchner, Frank  
Zusammenfassung
Due to the technological advance, robotic systems become more and more interesting for industrial and home applications. Popular examples are given by robotic lawn mower, robot vacuum cleaner, and package drones. Beside the toy industry, legged robots are not as popular, although they have some clear advantages compared to wheeled systems. With their flexibility concerning the locomotion, they are able to adapt their walking pattern to different environments. For instance they can walk over obstacles and gaps or climb over rubble and stairs. Another possible advantage could be a redundancy for locomotion. A faulty motor in one limb could be compensated by other motors in the kinematic chain. As well, multiple failing legs can be compensated by an adapted walking pattern. Compared to this, the more complex mechatronic systems represent a major challenge to the construction and the control. This thesis is dedicated to the control of complex walking robots. Genetic algorithms are applied to generate walking patterns for different robots. The evolutionary development of walking patterns is done in a simulation software. Results of various approaches are transferred and tested on existing systems which have been developed at RIC/DFKI. Different robotic systems are used to evaluate the generality of the applied methods. Eventually, a method is developed that can be utilized, with a few system specific modifications, for a variety of legged robots. As basis for the development and investigation of several methods, software tools are designed to generalize the application of applying genetic algorithms to legged locomotion. These tools include a simulation environment, a behavior representation, a genetic algorithm and a learning and benchmark framework. The simulation environment is adapted to the behavior of real robotic systems via reference experiments. In addition, the simulation is extended by a foot contact model for loose surfaces. The evaluation of the genetic algorithm is done on several benchmark problems and compared to three existing algorithms. This thesis contributes to the state of the art in many areas. The developed methodology can easily be applied to several complex robotic systems due to its transferability. The genetic algorithm and the hierarchical behavior representation provide a new opportunity to control the generation of the offspring in an evolutionary process. In addition, the developed software tools are an important contribution for their respective research fields.
Schlagwörter
evolution

; 

robots

; 

walking

; 

simulation
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00107139-1.pdf

Size

14.05 MB

Format

Adobe PDF

Checksum

(MD5):be58ceb47e9aee174d1773b2a80b8003

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken