SIMDop: SIMD optimized Bounding Volume Hierarchies for Collision Detection
Veröffentlichungsdatum
2019
Autoren
Zusammenfassung
We present a novel data structure for SIMD optimized simultaneous bounding volume hierarchy (BVH) traversals like they appear for instance in collision detection tasks. In contrast to all previous approaches, we consider both the traversal algorithm and the construction of the BVH. The main idea is to increase the branching factor of the BVH according to the available SIMD registers and parallelize the simultaneous BVH traversal using SIMD operations. This requires a novel BVH construction method because traditional BVHs for collision detection usually are simple binary trees. To do that, we present a new BVH construction method based on a clustering algorithm, Batch Neural Gas, that is able to build efficient n-ary tree structures along with SIMD optimized simultaneous BVH traversal. Our results show that our new data structure outperforms binary trees significantly.
Schlagwörter
Computational geometry
;
parallel processing
;
pattern clustering
;
ray tracing method
;
tree data structures
;
trees (mathematics)
Institution
Fachbereich
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
Startseite
7256
Endseite
7263
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Sprache
Englisch
Dateien![Vorschaubild]()
Lade...
Name
Tan-Weller-Zachmann_SIMD Optimized Bounding Volume Hierarchies for Collision Detection_2019_accepted-version_PDF-A.pdf
Size
2.6 MB
Format
Adobe PDF
Checksum
(MD5):6c2048b0e7b6f159895fbe8f9aa20b7a