Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. SIMDop: SIMD optimized Bounding Volume Hierarchies for Collision Detection
 
Zitierlink DOI
10.26092/elib/2350
Verlagslink DOI
10.1109/IROS40897.2019.8968492

SIMDop: SIMD optimized Bounding Volume Hierarchies for Collision Detection

Veröffentlichungsdatum
2019
Autoren
Tan, Toni  
Weller, René  
Zachmann, Gabriel  
Zusammenfassung
We present a novel data structure for SIMD optimized simultaneous bounding volume hierarchy (BVH) traversals like they appear for instance in collision detection tasks. In contrast to all previous approaches, we consider both the traversal algorithm and the construction of the BVH. The main idea is to increase the branching factor of the BVH according to the available SIMD registers and parallelize the simultaneous BVH traversal using SIMD operations. This requires a novel BVH construction method because traditional BVHs for collision detection usually are simple binary trees. To do that, we present a new BVH construction method based on a clustering algorithm, Batch Neural Gas, that is able to build efficient n-ary tree structures along with SIMD optimized simultaneous BVH traversal. Our results show that our new data structure outperforms binary trees significantly.
Schlagwörter
Computational geometry

; 

parallel processing

; 

pattern clustering

; 

ray tracing method

; 

tree data structures

; 

trees (mathematics)
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)  
Startseite
7256
Endseite
7263
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Alle Rechte vorbehalten
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Tan-Weller-Zachmann_SIMD Optimized Bounding Volume Hierarchies for Collision Detection_2019_accepted-version_PDF-A.pdf

Size

2.6 MB

Format

Adobe PDF

Checksum

(MD5):6c2048b0e7b6f159895fbe8f9aa20b7a

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken