Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Belief Functions: Theory and Algorithms
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00103727-16

Belief Functions: Theory and Algorithms

Veröffentlichungsdatum
2014-03-24
Autoren
Reineking, Thomas  
Betreuer
Schill, Kerstin  
Gutachter
Palm, Günther  
Zusammenfassung
The subject of this thesis is belief function theory and its application in different contexts. Belief function theory can be interpreted as a generalization of Bayesian probability theory and makes it possible to distinguish between different types of uncertainty. In this thesis, applications of belief function theory are explored both on a theoretical and on an algorithmic level. The problem of exponential complexity associated with belief function inference is addressed in this thesis by showing how efficient algorithms can be developed based on Monte-Carlo approximations and exploitation of independence. The effectiveness of these algorithms is demonstrated in applications to particle filtering, simultaneous localization and mapping, and active classification.
Schlagwörter
belief function theory

; 

Dempster-Shafer theory

; 

particle filtering

; 

SLAM

; 

classification

; 

information gain
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00103727-1.pdf

Size

3.62 MB

Format

Adobe PDF

Checksum

(MD5):b34d9261e016f4dce79385b8b9d48758

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken