Knowledge-enabled parameterization of whole-body control strategies for compliant service robots
Veröffentlichungsdatum
2015
Zusammenfassung
Compliant manipulation is one of the grand challenges for autonomous robots. Many household chores in human environments, such as cleaning the floor or wiping windows, rely on this principle. At the same time these tasks often require whole-body motions to cover a larger workspace. The performance of the actual task itself is thereby dependent on a large number of parameters that have to be taken into account. To tackle this issue we propose to utilize low-level compliant whole-body control strategies parameterized by high-level hybrid reasoning mechanisms. We categorize compliant wiping actions in order to determine relevant control parameters. According to these parameters we set up process models for each identified wiping action and implement generalized control strategies based on human task knowledge. We evaluate our approach experimentally on three whole-body manipulation tasks, namely scrubbing a mug with a sponge, skimming a window with a window wiper and bi-manually collecting the shards of a broken mug with a broom.
Schlagwörter
Whole-Body Control
;
AI Reasoning Methods
;
Task Knowledge
;
Humanoid Robots
;
Mobile Manipulation
Fachbereich
Dokumenttyp
Wissenschaftlicher Artikel
Zeitschrift/Sammelwerk
Startseite
519
Endseite
536
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Sprache
Englisch
Dateien![Vorschaubild]()
Lade...
Name
Leidner_Knowledge-Enabled Parameterization of Whole-Body Control-Strategies_2016_AAM_PDF-A.pdf
Size
5.68 MB
Format
Adobe PDF
Checksum
(MD5):a05953f99fb1c33dd25fc90267b72e52
