Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. Knowledge-enabled parameterization of whole-body control strategies for compliant service robots
 
Zitierlink DOI
10.26092/elib/2328
Verlagslink DOI
10.1007/s10514-015-9523-3

Knowledge-enabled parameterization of whole-body control strategies for compliant service robots

Veröffentlichungsdatum
2015
Autoren
Leidner, Daniel Sebastian  
Dietrich, Alexander  
Beetz, Michael  
Albu-Schäffer, Alin  
Zusammenfassung
Compliant manipulation is one of the grand challenges for autonomous robots. Many household chores in human environments, such as cleaning the floor or wiping windows, rely on this principle. At the same time these tasks often require whole-body motions to cover a larger workspace. The performance of the actual task itself is thereby dependent on a large number of parameters that have to be taken into account. To tackle this issue we propose to utilize low-level compliant whole-body control strategies parameterized by high-level hybrid reasoning mechanisms. We categorize compliant wiping actions in order to determine relevant control parameters. According to these parameters we set up process models for each identified wiping action and implement generalized control strategies based on human task knowledge. We evaluate our approach experimentally on three whole-body manipulation tasks, namely scrubbing a mug with a sponge, skimming a window with a window wiper and bi-manually collecting the shards of a broken mug with a broom.
Schlagwörter
Whole-Body Control

; 

AI Reasoning Methods

; 

Task Knowledge

; 

Humanoid Robots

; 

Mobile Manipulation
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Wissenschaftlicher Artikel
Zeitschrift/Sammelwerk
Autonomous robots  
Startseite
519
Endseite
536
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Alle Rechte vorbehalten
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Leidner_Knowledge-Enabled Parameterization of Whole-Body Control-Strategies_2016_AAM_PDF-A.pdf

Size

5.68 MB

Format

Adobe PDF

Checksum

(MD5):a05953f99fb1c33dd25fc90267b72e52

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken