Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Automated Detection of Canola/Rapeseed Cultivation from Space: Application of new Algorithms for the Identi cation of Agricultural Plants with Multispectral Satellite Data on the Example of Canola Cultivation
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-diss000010933

Automated Detection of Canola/Rapeseed Cultivation from Space: Application of new Algorithms for the Identi cation of Agricultural Plants with Multispectral Satellite Data on the Example of Canola Cultivation

Veröffentlichungsdatum
2004-10-25
Autoren
Laue, Hendrik Oliver Arp  
Betreuer
Künzi, Klaus  
Gutachter
Breckling, Broder  
Zusammenfassung
The dispersal of new genes resulting from the cultivation of genetically modified plants holds risks that are difficult to assess. In this context the situation of cultivation is of particular interest since fields are potential sources of the transfer of new genes to non-modified or related plants. The aim of this work is the identification of canola cultivation areas in northern Germany in the studied period from 1995 to 2002. The sizes of the fields and the investigation area pose requirements on the satellite data best met the LANDSAT Thematic Mapper and Enhanced Thematic Mapper and the Indian Remote Sensing Satellite Linear Imaging Scanning Spectrometer/3.The first processing step, the georectification is done by a passpoint correlation which is improved by an additional correction step, based on the correlation of image clips.The next processing step is the identification of clouds and their shadows. Opaque clouds can be identified by their brightness and low top temperature. Thin clouds are identified based on the Haze Optimized Transform method. The third processing step, the classification, is performed by the Mahalanobis Distance Clasifier (MDC) because it only requires training data for one single surface type. The accuracy of the MDC is enhanced by a segmentation of the MDC result used to identify single wrongly identified pixels and to perform region growing to include pixels missed by the MDC.The results are approximated by rectangles of equal orientation and area which allows a simple evaluation of the field distances and other parameters of interest. The results are used to produce statistics to investigate these parameters for the cultivation of canola in northern Germany. The results of the classification are compared to validation data, i.e., edges and positions of known canola fields and agricultural statistics for 1995 and 1999. This validation showed that the total acreage of canola is identified with 70 to 90% accuracy.
Schlagwörter
classification

; 

agricultural plants

; 

multispectral

; 

LANDSAT

; 

genetically modified organisms

; 

georectification

; 

cloud identification

; 

haze detection
Institution
Universität Bremen  
Fachbereich
Fachbereich 01: Physik/Elektrotechnik (FB 01)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

E-Diss1093_laue.pdf

Size

14.69 MB

Format

Adobe PDF

Checksum

(MD5):842ceef5edbab2e800bdfc79802047ce

Lade...
Vorschaubild
Name

E-Diss1093_rapeseedcultivation_space.pdf

Size

14.69 MB

Format

Adobe PDF

Checksum

(MD5):9b0999d57c81a6dd1207e06c6b782c32

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken