Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. Fault-Tolerant Edge-Disjoint s-t Paths - Beyond Uniform Faults
 
Zitierlink DOI
10.26092/elib/4266
Verlagslink DOI
10.4230/LIPIcs.SWAT.2022.5

Fault-Tolerant Edge-Disjoint s-t Paths - Beyond Uniform Faults

Veröffentlichungsdatum
2022
Autoren
Adjiashvili, David
Hommelsheim, Felix  
Mühlenthaler, Moritz
Schaudt, Oliver
Zusammenfassung
The Edge-disjoint s-t Paths Problem (s-t EDP) is a classical network design problem whose goal is to connect for some k ≥ 1 two given vertices of a graph under the condition that any k-1 edges of the graph may fail. We extend the simple uniform failure model of the s-t EDP as follows: the edge set of the graph is partitioned into vulnerable, and safe edges, and a set of at most k vulnerable edges may fail, while safe edges do not fail. In particular we study the Fault-Tolerant Path (FTP) problem, the counterpart of the Shortest s-t Path problem in this non-uniform failure model as well as the Fault-Tolerant Flow (FTF) problem, the counterpart of s-t EDP. We present complexity results alongside exact and approximation algorithms for both problems. We emphasize the vast increase in complexity of the problems compared to s-t EDP.
Schlagwörter
graph algorithms

; 

network design

; 

fault tolerance

; 

approximation algorithms
Verlag
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022) = Leibniz International Proceedings in Informatics (LIPIcs), Band 227
Startseite
5:1
Endseite
5:19
Zweitveröffentlichung
Ja
Dokumentversion
Published Version
Lizenz
https://creativecommons.org/licenses/by/4.0/
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Adjiashvili et al_Fault-Tolerant Edge-Disjoint s-t Paths_2022_published-version.pdf

Size

775.53 KB

Format

Adobe PDF

Checksum

(MD5):f5eff526fae43897714ec6994c4eecd0

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken