Effiziente Ableitungsbestimmung bei hochdimensionaler nichtlinearer Optimierung
Veröffentlichungsdatum
2011-06-17
Autoren
Betreuer
Gutachter
Zusammenfassung
Calculating or approximating derivative information in an efficient way is one of the major tasks when high dimensional nonlinear optimization problems are to be solved. The thesis shows various new ways both in the area of finite differences and in the area of update formalae to tackle this problem. One of the results in this thesis is the development of a sparse BFGS-similar method for which superlinear convergence properties are shown.
Schlagwörter
sparse BFGS
;
sparse derivatives
;
graph coloring
;
nonlinear optimization
;
WORHP
Institution
Fachbereich
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Deutsch
Dateien![Vorschaubild]()
Lade...
Name
00102087-1.pdf
Size
2.11 MB
Format
Adobe PDF
Checksum
(MD5):4396b6aaf5648f2d461a26c205c82918