Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Generalizing, Decoding, and Optimizing Support Vector Machine Classification
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00104380-12

Generalizing, Decoding, and Optimizing Support Vector Machine Classification

Veröffentlichungsdatum
2015-03-26
Autoren
Krell, Mario Michael  
Betreuer
Kirchner, Frank  
Gutachter
Büskens, Christof  
Zusammenfassung
The classification of complex data usually requires the composition of processing steps. Here, a major challenge is the selection of optimal algorithms for preprocessing and classification. Nowadays, parts of the optimization process are automized but expert knowledge and manual work are still required. We present three steps to face this process and ease the optimization. Namely, we take a theoretical view on classical classifiers, provide an approach to interpret the classifier together with the preprocessing, and integrate both into one framework which enables a semiautomatic optimization of the processing chain and which interfaces numerous algorithms.
Schlagwörter
pySPACE

; 

backtransformation

; 

single iteration

; 

relative margin

; 

origin separation
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00104380-1.pdf

Size

8.35 MB

Format

Adobe PDF

Checksum

(MD5):8b45e9f7345fe16bf9aa56225ab5137d

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken