Orienting (Hyper)graphs Under Explorable Stochastic Uncertainty
Veröffentlichungsdatum
2021
Autoren
Bampis, Evripidis
de Lima, Murilo Santos
Zusammenfassung
Given a hypergraph with uncertain node weights following known probability distributions, we study the problem of querying as few nodes as possible until the identity of a node with minimum weight can be determined for each hyperedge. Querying a node has a cost and reveals the precise weight of the node, drawn from the given probability distribution. Using competitive analysis, we compare the expected query cost of an algorithm with the expected cost of an optimal query set for the given instance. For the general case, we give a polynomial-time f(α)-competitive algorithm, where f(α) ∈ [1.618+ε,2] depends on the approximation ratio α for an underlying vertex cover problem. We also show that no algorithm using a similar approach can be better than 1.5-competitive. Furthermore, we give polynomial-time 4/3-competitive algorithms for bipartite graphs with arbitrary query costs and for hypergraphs with a single hyperedge and uniform query costs, with matching lower bounds.
Schlagwörter
Explorable uncertainty
;
queries
;
stochastic optimization
;
graph orientation
;
selection problems
Verlag
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Institution
Fachbereich
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
29th Annual European Symposium on Algorithms (ESA 2021) = Leibniz International Proceedings in Informatics (LIPIcs), Band 204
Startseite
10:1
Endseite
10:18
Zweitveröffentlichung
Ja
Dokumentversion
Published Version
Sprache
Englisch
Dateien![Vorschaubild]()
Lade...
Name
Bampis et al_Orienting (hyper)graphs under explorable stochastic uncertainty_2021_published-version.pdf
Size
797.96 KB
Format
Adobe PDF
Checksum
(MD5):e4d6b54043e588434e9544870b402aa4
