Improving an optimal estimation algorithm for surface and atmospheric parameter retrieval using passive microwave data in the Arctic
Veröffentlichungsdatum
2018-08-23
Autoren
Betreuer
Gutachter
Zusammenfassung
In this study we present improvements on an integrated retrieval method for atmospheric and surface parameters in the Arctic. The instrument used is the Advanced Microwave Scanning Radiometer - Earth Observing System (EOS) (AMSR-E) radiometer on board NASAa s Aqua satellite. The core of the method is a forward model which can ingest bulk data for seven geophysical parameters to reproduce the brightness temperatures observed by a passive microwave radiometer. The method inverts the forward model and produces ensembles of the seven parameters: wind speed, integrated water vapor, liquid water path, sea and ice temperature, sea ice concentration and multi-year ice fraction. The method is constrained using numerical weather prediction data in order to retrieve a set of geophysical parameters that best fit the measurements. An iterative method minimizes the cost function and finds the optimal ensemble of the seven parameters that best match the observed brightness temperatures.
Schlagwörter
Arctic
;
optimal estimation
;
satellite remote sensing
;
sea ice
;
radiative transfer model
;
information content analysis
Institution
Fachbereich
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien![Vorschaubild]()
Lade...
Name
00106738-1.pdf
Size
9.68 MB
Format
Adobe PDF
Checksum
(MD5):f2b97e81af9958774669f86e12ae25f3