Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Rapid Uncertainty Quantification for Nonlinear Inverse Problems
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-00103519-10

Rapid Uncertainty Quantification for Nonlinear Inverse Problems

Veröffentlichungsdatum
2013-12-17
Autoren
Gehre, Matthias  
Betreuer
Maaß, Peter  
Gutachter
Jin, Bangti  
Zusammenfassung
In this thesis, we study a fast approximate inference method based on a technique called "Expectation Propagation" for exploring the posterior probability distribution arising from the Bayesian formulation of nonlinear inverse problems. It is capable of efficiently delivering reliable posterior mean and covariance estimates, thereby providing a solution to the inverse problem together with quantified uncertainties. Some theoretical properties of the iterative algorithm are discussed, and an efficient implementation for an important class of problems of projection type is described. The method is illustrated with two typical nonlinear inverse problems, electrical impedance tomography with complete electrode model and inverse scattering, under sparsity constraints. Numerical results for both with experimental data are presented, and compared with those by a Markov chain Monte Carlo method. The results indicate that the method is accurate and computationally highly efficient.
Schlagwörter
Expectation Propagation

; 

nonlinear inverse problem

; 

uncertainty quantification

; 

sparsity constraints

; 

electrical impedance tomography

; 

inverse scattering
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00103519-1.pdf

Size

14.64 MB

Format

Adobe PDF

Checksum

(MD5):9e941e0cba4201dfebef9adf5a1d94fc

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken