Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Dissertationen
  4. Monotone dynamical systems, graphs, and stability of large-scale interconnected systems
 
Zitierlink URN
https://nbn-resolving.de/urn:nbn:de:gbv:46-diss000109058

Monotone dynamical systems, graphs, and stability of large-scale interconnected systems

Veröffentlichungsdatum
2007-09-19
Autoren
Rüffer, Björn S.  
Betreuer
Wirth, Fabian  
Gutachter
Grüne, Lars  
Zusammenfassung
For a class of monotone operators T on the positive orthant of n-dimensional Euclidean space we introduce the concept of decay sets. These consist of points x satisfying T(x)<x. Considering the induced dynamical system x(k 1)=T(x(k)), we establish results relating stability properties of the origin, order conditions on T, and topological properties of decay sets. In particular, we construct paths in the decay sets and derive a quasi-invertibility result of the operator (Id-T).These results are applied to derive generalized small-gain type conditions for the input-to-state stability(ISS) of large-scale interconnections of (individually input-to-state stable) control systems: The interconnection topology together with the ISS gains yields a monotone operator with an inherent graph structure. We provide trajectory estimate based small-gain theorems and also construct ISS Lyapunov functions for the composite system. It is also shown how an algorithm due to Eaves can be used to numerically verify the small-gain condition.
Schlagwörter
input-to-state stability

; 

large-scale systems

; 

monotone systems

; 

graphs

; 

dynamical systems

; 

small-gain theorem

; 

decay sets
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Dissertation
Zweitveröffentlichung
Nein
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

00010905.pdf

Size

1.23 MB

Format

Adobe PDF

Checksum

(MD5):f96da0d9bbf3993ca3ff26c8a547b27f

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken