Robustness of Eye Movement Biometrics Against Varying Stimuli and Varying Trajectory Length
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Schroeder-AlZaidawi-Prinzler-Maneth-Zachmann_Robustness-of-Eye-Movement-Biometrics_2020_Accepted-version_PDF-A.pdf | 1.25 MB | Adobe PDF | Anzeigen |
Autor/Autorin: | Schröder, Christoph Al-Zaidawi, Sahar ![]() Prinzler, Martin ![]() Maneth, Sebastian ![]() Zachmann, Gabriel ![]() |
Zusammenfassung: | Recent results suggest that biometric identification based on human's eye movement characteristics can be used for authentication. In this paper, we present three new methods and benchmark them against the state-of-the-art. The best of our new methods improves the state-of-the-art performance by 5.2 percentage points. Furthermore, we investigate some of the factors that affect the robustness of the recognition rate of different classifiers on gaze trajectories, such as the type of stimulus and the tracking trajectory length. We find that the state-of-the-art method only works well when using the same stimulus for testing that was used for training. By contrast, our novel method more than doubles the identification accuracy for these transfer cases. Furthermore, we find that with only 90 seconds of eye tracking data, 86.7% accuracy can be achieved. |
Schlagwort: | Computing methodologies; Artificial Intelligence; Computer Vision; Computer vision tasks; Biometrics; Machine Learning; Machine learning algorithms | Veröffentlichungsdatum: | 2020 | Zeitschrift/Sammelwerk: | Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems | Seiten: | 7 | Dokumenttyp: | Konferenzbeitrag | Konferenz: | 2020 CHI Conference on Human Factors in Computing Systems | Zweitveröffentlichung: | yes | Dokumentversion: | Postprint | DOI: | 10.26092/elib/2344 | URN: | urn:nbn:de:gbv:46-elib70236 | Institution: | Universität Bremen | Fachbereich: | Fachbereich 03: Mathematik/Informatik (FB 03) |
Enthalten in den Sammlungen: | Forschungsdokumente |
Seitenansichten
98
checked on 02.04.2025
Download(s)
76
checked on 02.04.2025
Google ScholarTM
Prüfe
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.