Skip navigation
SuUB logo
DSpace logo

  • Home
  • Institutions
    • University of Bremen
    • City University of Applied Sciences
    • Bremerhaven University of Applied Sciences
  • Sign on to:
    • My Media
    • Receive email
      updates
    • Edit Account details

Citation link: https://media.suub.uni-bremen.de/handle/elib/5681

Publisher DOI: https://doi.org/10.1088/1748-3190/aad061
 
copyright

Investigating the efficiency of a bio-inspired insect repellent surface structure


Authors: Graf, Christopher  
Kesel, Antonia B 
Gorb, Elena  
Gorb, Stanislav  
Dirks, Jan-Henning  
Abstract: 
Most insects with smooth or hairy adhesive pads have very little problems in attaching to smooth substrates. A careful selection of surface roughness, however, can effectively limit the contact area of the adhesive organs with the surface. In comparison to conventional toxin-based insect repelling methods, biologically inspired micro- and nanostructured insect repellent surface structures, thus, offer a great potential to effective and environmentally-friendly control insect pests. We here present a simple experimental approach to qualitatively and quantitatively analyse the efficiency of a micro- and nanorough surface structure. Nauphoeta cinerea and Gastrophysa viridula as model organisms for insects with smooth and hairy adhesive pads, respectively, were placed in an enclosed environment. The escape movements of freely running insects over either the repellent or a control surfaces were counted and analyzed in detail. The tested surface structures were able to significantly reduce the escape of cockroaches with smooth adhesive pads by 44.1%. Interestingly, the data indicates that N. cinerea might use mechanical cues from the antenna to discriminate between surfaces before making contact with the adhesive pads. G. viridula with hairy adhesive pads were not significantly affected by the surface structure. By carefully adjusting 'critical' surface topography parameters relevant for insect adhesion, more efficient and selective repellent surfaces might be achieved. Such nanostructure-based insect repellent surfaces could also help to utilize recruitment behavior of certain insect species and might present a novel approach to effectively control insect pests.
Issue Date: 2018
Publisher: Institut of Physics
Journal/Edited collection: Bioinspiration & biomimetics 
Start page: 056010
Note: 5
Band: 13
Type: Artikel/Aufsatz
ISSN: 1748-3190
Institution: Hochschule Bremen 
Faculty: Hochschule Bremen - Fakultät 5: Natur und Technik 
Appears in Collections:Bibliographie HS Bremen

  

Page view(s)

20
checked on Jul 6, 2022

Google ScholarTM

Check


Items in Media are protected by copyright, with all rights reserved, unless otherwise indicated.

Legal notice -Feedback -Data privacy
Media - Extension maintained and optimized by Logo 4SCIENCE