Logo des Repositoriums
Zur Startseite
  • English
  • Deutsch
Anmelden
  1. Startseite
  2. SuUB
  3. Forschungsdokumente
  4. Robustness of Eye Movement Biometrics Against Varying Stimuli and Varying Trajectory Length
 
Zitierlink DOI
10.26092/elib/2344
Verlagslink DOI
10.1145/3313831.3376534

Robustness of Eye Movement Biometrics Against Varying Stimuli and Varying Trajectory Length

Veröffentlichungsdatum
2020
Autoren
Schröder, Christoph  
Al-Zaidawi, Sahar  
Prinzler, Martin  
Maneth, Sebastian  
Zachmann, Gabriel  
Zusammenfassung
Recent results suggest that biometric identification based on human's eye movement characteristics can be used for authentication. In this paper, we present three new methods and benchmark them against the state-of-the-art. The best of our new methods improves the state-of-the-art performance by 5.2 percentage points. Furthermore, we investigate some of the factors that affect the robustness of the recognition rate of different classifiers on gaze trajectories, such as the type of stimulus and the tracking trajectory length. We find that the state-of-the-art method only works well when using the same stimulus for testing that was used for training. By contrast, our novel method more than doubles the identification accuracy for these transfer cases. Furthermore, we find that with only 90 seconds of eye tracking data, 86.7% accuracy can be achieved.
Schlagwörter
Computing methodologies

; 

Artificial Intelligence

; 

Computer Vision

; 

Computer vision tasks

; 

Biometrics

; 

Machine Learning

; 

Machine learning algorithms
Institution
Universität Bremen  
Fachbereich
Fachbereich 03: Mathematik/Informatik (FB 03)  
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems  
Seitenzahl
7
Zweitveröffentlichung
Ja
Dokumentversion
Postprint
Lizenz
Alle Rechte vorbehalten
Sprache
Englisch
Dateien
Lade...
Vorschaubild
Name

Schroeder-AlZaidawi-Prinzler-Maneth-Zachmann_Robustness-of-Eye-Movement-Biometrics_2020_Accepted-version_PDF-A.pdf

Size

1.22 MB

Format

Adobe PDF

Checksum

(MD5):453c760aec0ce2b3624c2a7e347f9af6

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Datenschutzbestimmungen
  • Endnutzervereinbarung
  • Feedback schicken