Improved Approximation Algorithms for the Expanding Search Problem
Veröffentlichungsdatum
2023
Autoren
Zusammenfassung
A searcher faces a graph with edge lengths and vertex weights, initially having explored only a given starting vertex. In each step, the searcher adds an edge to the solution that connects an unexplored vertex to an explored vertex. This requires an amount of time equal to the edge length. The goal is to minimize the weighted sum of the exploration times over all vertices. We show that this problem is hard to approximate and provide algorithms with improved approximation guarantees. For the general case, we give a (2e+ε)-approximation for any ε > 0. For the case that all vertices have unit weight, we provide a 2e-approximation. Finally, we provide a PTAS for the case of a Euclidean graph. Previously, for all cases only an 8-approximation was known.
Schlagwörter
Approximation Algorithm
;
Expanding Search
;
Search Problem
;
Graph Exploration
;
Traveling Repairperson Problem
Verlag
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Institution
Fachbereich
Dokumenttyp
Konferenzbeitrag
Zeitschrift/Sammelwerk
31st Annual European Symposium on Algorithms (ESA 2023) = Leibniz International Proceedings in Informatics (LIPIcs), Band 274
Startseite
54:1
Endseite
54:15
Zweitveröffentlichung
Ja
Dokumentversion
Published Version
Sprache
Englisch
Dateien![Vorschaubild]()
Lade...
Name
Griesbach et al_Improved Approximation Algorithms for the Expanding Search Problem_2023_published-version.pdf
Size
744.51 KB
Format
Adobe PDF
Checksum
(MD5):9dabc274ecbc9e934d2e92c9e31cf326
