
 
 

 
 
 
 
 

New strategy for mechanistic studies of 

Chemical Vapor Deposition processes  

under UHV conditions 
 
 
 
 
 
 
 
 
 
 
 

Dissertation 
zur Erlangung des Doktorgrades 

der Naturwissenschaften 
- Dr. rer. nat. - 

 
vorgelegt dem Promotionsausschuss 
des Fachbereichs 2 (Biologie/Chemie) 

der Universität Bremen 
 

von 
Theodor Weiss 

 
Bremen 2015 

 
 
 



 
 

 
 
 
 
Die hier vorliegende Arbeit wurde im Zeitraum zwischen April 2011 und November 2015 am 

Institut für Angewandte und Physikalische Chemie (IAPC) der Universität Bremen in der 

Arbeitsgruppe von Prof. Dr. Marcus Bäumer durchgeführt. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Erstgutachter:    Prof. Dr. Marcus Bäumer (Universität Bremen) 

Zweitgutachter:   Prof. Dr. Katharina Kohse-Höinghaus (Universität Bielefeld) 

 
Disputation:   15. Januar 2016  



 
 

 
 
 
 
Selbstständigkeitserklärung 

 

 

Hiermit erkläre ich, Theodor Weiss, dass ich die vorliegende Arbeit selbständig angefertigt und 

keine außer den angegebenen Hilfsmitteln verwendet habe. Diese Arbeit wurde  nicht vorher 

an anderer Stelle eingereicht. 

 

Bremen, den 13. November 2015 

 

 

 

 

(Theodor Weiss) 

 

 

 

 

 

  



 
 

  



 
 

Einen herzlichen Dank möchte ich richten an... 

Prof. Dr. Marcus Bäumer für deine gute Betreung und konstruktiven Fachgespräche. Deine 

Unterstützung und Anleitung in all den Jahren meiner Doktorandenzeit am IAPC war sehr 

hilfreich und vor allem lehrreich. 

Priv.-Doz. Dr. Volkmar Zielasek für die vielen Fachgespräche und dafür, dass du immer als 

Ansprechpartner da warst. Darüber hinaus danke ich dir für deine gründliche und engagierte 

Durchsicht und Korrektur aller Manuskripte. 

Prof. Dr. Katharina Kohse-Höinghaus für der Bereitstellung eines Laborplatzes und die 

Einführung in die CVD Welt. Darüber hinaus bedanke ich mich für die Bereitschaft diese Arbeit 

als Zweitgutachter zu lesen und zu beurteilen. 

Dr. Andreas Schaefer für die Unterstützung bei den Experimenten in UHV Labor und die 

geduldige Beantwortung vieler lästiger Fragen. 

Jin-Hao Jhang für das gute Büroklima und die grosse Hilfsbereitschaft wärend meiner 

gesamten Arbeit am IAPC. 

Dr. Lyudmila Moskaleva für den hilfreichen Erfahrungsaustausch und viele fundierte 

Fachdiskussionen. 

Dr. Jonas Warneke für den Ideenaustauch und nützliche Ratschläge in Organischen Chemie. 

Udo Mundloch für die herzliche Gastfreundlichkeit und die Hilfe mit den CVD Experimenten. 

Dr. Patrick Tchoua Ngamou für die nützliche Diskussionen über die Beschichtungsverfahren. 

Martin Nowak und Bogdan Tuschik für die technische Unterstützung, durch die das Projekt 

schnell zum Erfolg gebracht wurde. 

Petra Witte aus der AG Willems für die Messungen am Rasterelektronenmikroskop. 

Alle übrigen Mitglieder der AG Bäumer: Simona Keil, Miriam Schubert, Imke Schrader, 

Anastasia Lackmann, Ingo Bardenhagen, Eva Morsbach, Andre Wichmann, Darius Arndt, 

Lena Altmann, Willian G. Menezes, Melanie Minnermann, Björn Neumann, Dr. Sebastian 

Kunz, Dr. Arne Wittstock, Jun-Jie Shi, Sarah Röhe, Ute Melville, Vera Suling, Brigitte 

Neimeier, Cornelia Rybarsch-Steinke und Dr. Günter Schnurpfeil für das angenehme 

Arbeitsumfeld. 



 
 

 

 

 

 

  



 
 

 
 
 
 
  



 
 

 

 

 

  



 
 

This cumulative doctoral thesis is based on the following publications (chronological order) 

focusing on investigation under UHV condition of metal thin films obtained via novel PSE-

CVD technique. My work includes the apparatus construction, experiments performing, 

characterization and data analysis. 

 

I Th. Weiss, M. Nowak, U. Mundloch, V. Zielasek, K. Kohse-Höinghaus, M. Bäumer 

Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical 

vapor deposition processes 

 Rev. Sci. Instrum., 2014, 85(10), 104104, doi: 10.1063/1.4897620 

 

II P. H. T. Ngamoua, A.E. Kasmi, Th. Weiss, H. Vieker, A. Beyer, A. Gölzhäuser, V. Zielasek, 

K. Kohse-Höinghaus, M. Bäumer 

Investigation of the growth behaviour of cobalt thin films from chemical vapour 

deposition, using directly coupled X-ray photoelectron spectroscopy 

 Z. Phys. Chem., 2015, 1-19, doi: 10.1515/zpch-2015-0602 

 

III Th. Weiss, V. Zielasek, M. Bäumer 

Influence of Water on Chemical Vapor Deposition of Ni and Co thin films from ethanol 

solutions of acetylacetonate precursors 

 Sci. Rep., 2015, 5, 18194, doi: 10.1038/srep18194 

 

IV Th. Weiss, J. Warneke, V. Zielasek, P. Swiderek, M. Bäumer  

XPS study of thermal and electron-induced decomposition of Ni and Co acetylacetonate 

thin films for metal deposition 

 Surface Science, 2015 (submitted) 

 

 

In addition to my own PhD project, I was involved in additional research activities at the 

University of Bremen focusing on the theoretical investigation of Oxygen behavior in contact 

with Gold-Silver alloy. 

 

V L. V. Moskaleva, Th. Weiss, Th. Klüner, M. Bäumer 

Chemisorbed Oxygen on the Au(321) Surface Alloyed with Silver: A First-Principles 

Investigation 

J. Phys. Chem. C, 2015, 119 (17), pp 9215–9226 DOI: 10.1021/jp511884k 



 
 

Conference contributions 

 

F. Strigunov (Th. Weiss), V. Zielasek, M. Bäumer  

Pulsed spray evaporation CVD of metal thin films: Role of reactor and precursor conditions 

Deutsche Physikalische Gesellschaft, 2013, Regensburg, Deutschland 

 

F. Strigunov (Th. Weiss), V. Zielasek, M. Bäumer  

UHV-compatible setup for alcohol-assisted chemical vapor deposition of metals  

Deutsche Physikalische Gesellschaft, 2012, Berlin, Deutschland 

 

 

  



 
 

Statement regarding my contribution to the publications: 

 

All stated publications are based on the collaboration of several researchers. My specific 

contributions are described in the following: 

 

I   I was responsible for the design, development, and construction of the UHV 

compatible PSE-CVD reactor. Furthermore, I was in charge of the samples 

preparation and their characterization (except for SEM measurements which were 

performed by Petra Witte at the Geosciences Department of the University of 

Bremen) and was responsible for the preparation of the figures and manuscript.  

 

II I prepared and characterized the samples (except SEM measurements, were 

performed by Petra Witte at the Geosciences Department of the University of 

Bremen) and was responsible for the data analysis, figures preparation, and writing 

the manuscript text. 

 

III  I partly prepared and characterized the samples (another part of the data was 

collected at the University of Bielefeld under the supervision of Prof. Dr. Katharina 

Kohse-Höinghaus) and contributed to the discussion of the data as well as to the 

writing the part of the manuscript and approving the final text. 

 

IV   I performed all experiments and data analysis, prepared all figures and was 

responsible for the writing of the manuscript. 

 

V  I was involved in the discussion of the data and their presentation, especially in the 

preparation of the figures. I also read and approved the final manuscript. 

 

 

 

 

 

 

 

 

 



 
 

Zusammenfasung 

 

Diese Arbeit widmet sich neuen Strategien für mechanistische Studien zu Prozessen der 

Chemischen Gasphasenabscheidung (CVD) unter Ultrahochvakuum (UHV). Das Ziel der 

vorliegenden Dissertation ist das mechanistische Verständnis der Wachstumsbedingungen von 

Metallfilmen, die mit der Technik der gepulsten Sprühverdampfung bei der Chemischen 

Gasphasenabscheidung (PSE-CVD) synthetisiert wurden. Die Metalle Nickel und Kobalt wurden 

als Beispiel ausgewählt, um die Verbindung zwischen den makroskopischen 

Abscheidungsbedingungen und den mikroskopischen Prozessen unter Einbeziehung eines 

Precursors, der Oberflächeneigenschaften und dem Wachstum eines dünnen Filmes 

aufzuzeigen.  

Um die makroskopischen und mikroskopischen Ansätze zu kombinieren, wurde eine neue 

Anlage konzipiert und konstruiert. Dabei wurden die Material- und Abscheidungseigenschaften 

unter Wachstumsbedingungen berücksichtigt. Ein neuer, kompakter und modularer 

Beschichtungsreaktor wurde erfolgreich gebaut, der es insbesondere erlaubt, die 

Oberflächendiagnose quasi in situ, also während des laufenden PSE-CVD, durchzuführen. 

Neben Kompaktheit, Schnelligkeit und Einfachheit erlaubt die Anlage außerdem einen 

sauberen Probentransfer zwischen dem Reaktor und UHV, der eines der wichtigsten Ziele war. 

Der Reaktor mit einem Transfermechanismus wurde direkt an eine UHV-Kammer angebracht, 

sodass eine zuverlässige und systematische Untersuchung in jeder Phase des Filmwachstums 

möglich ist. Dies erlaubt eine detaillierte Charakterisierung der einflussnehmenden Parameter 

bei der PSE-CVD durchzuführen. 

Die vorliegende Arbeit behandelt wichtige Eigenschaften des Wachstumsprozesses 

einschließlich des Einflusses verschiedener Parameter auf die CVD Wachstumskinetik, solche 

wie die Beschaffenheit des Metallzentrums, die Temperaturempfindlichkeit der 

Kohlenstoffverunreinigungen, die Funktion von Ethanol, sowohl als Lösungsmittel als auch als 

Katalysator, den Einfluss von Nickel als Keimschicht für verschiedene Kombinationen von 

Rahmenbedingungen und die Rolle des Wassers aus der Ethanol-Lösung während des PSE-CVD 

von Ni und Co-Dünnschichten. Ferner wird eine detaillierte Untersuchung der Mechanismen 

bei der PSE-CVD mit Acetylacetonat-Precursoren in Ethanol vorgestellt, sowie ein Vergleich 

von thermischer und elektronenstrahlinduzierter Zersetzung von lösemittelfreien Schichten 

vom intaktem Ni(acac)2 und Co(acac)2. 
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Abbreviations 

ALD  - atomic layer deposition 

CVD  - chemical vapor deposition 

PECVD  - plasma-enhanced chemical vapor deposition 

PSE  - pulsed spray evaporation 

EBID  - electron beam-induced deposition 

MO   - metal-organic (precursor) 

OM  - organometallic (precursor) 

UHV  - ultrahigh vacuum 

XPS  - X-ray photoelectron spectroscopy 

SEM  - scanning electron microscope 

LEED  - low energy electron diffraction 

acac  - acetylacetone  
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1. Introduction 

Thin metal and metal-oxide films are multifunctional key for technological progress in many 

areas, including catalysis, optics and microelectronics. To date, especially vacuum-based 

techniques are widely used for producing active materials for catalysis and sensors, protective 

and decorative coatings, optical and magnetic elements, or electrical conductors in 

microelectronic devices [1-4]. Besides physical thin film deposition techniques such as, for 

example, evaporation or sputter deposition, the chemical vapor deposition (CVD) can be used 

to produce monoliths, fibers, foams, and powders of pure metals or alloys with free variation 

of the composition, excellent reproducibility, and conformal coverage of three-dimensional 

structures [2,3,5]. Currently, a variety of the CVD techniques are consistently used in industry, 

because they fit production requirements in terms of demonstrated reliability and ease of use 

[4]. Generally, in the CVD processes a solid film is deposited from the gas phase of precursor 

molecules by chemical reactions taking place on or in the neighborhood of a substrate surface, 

which is usually preheated to thermally initiate the reaction. Therefore in industry most often 

employed are thermal CVD where deposition is activated by heating, plasma-enhanced CVD 

(PECVD) with plasma-initiated reaction, and, as CVD-derivative, atomic layer deposition (ALD) 

which produces films in sequential, self-limiting layer-by-layer manner, using various reaction 

activation methods. 

The deposition process development is not standing still and new deposition techniques with 

innovative approaches are proposed regularly. For instance a recently developed hydrogen-

free approach to thin film CVD is based on pulsed spray evaporation delivery (PSE-CVD) of 

commercially available metal-organic (MO) precursors, in particular metal β-diketonates such 

as acetylacetonates [6-9]. It is a low vacuum deposition technique that uses alcohols as both, 

solvent and reducing agent, and permits deposition of metal films without employing gaseous 

hydrogen for precursor reduction. Compared to standard gas phase CVD, PSE-CVD poses less 

demand on the precursor in terms of volatility and thermal stability. The metal-containing 

precursors can be spray-evaporated from liquid solution at room temperature and do not need 

to be heated [6,10-13]. Another good example of a recently developed deposition approach is 

electron beam-induced deposition (EBID) where a focused electron beam is used to produce 

three-dimensional micro- and nanometer sized deposits by decomposing precursor molecules 

(also the volatile metal acetylacetonate) from a feedstock gas adsorbed on the substrate 

surface [14-18]. 
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The metal-containing precursors used in CVD can be divided in three classes. The first class is 

inorganic precursors represented mainly by halides [3]. Unfortunately, when these precursors 

are used, the pure metallic films can be obtained only for a narrow range of metals. Very 

often, halide contaminations are present or technical and security problems have to be faced, 

such as a tendency towards particle formation or corrosive byproducts. As second and major 

class of precursors, the organometallic (OM) precursors cover a wider range of metals. OM 

precursors represent molecules with metal-carbon bonds with such ligands as 

cyclopentadienyl or carbonyl, as well as methyl derivatives [3,19,20]. Metal centers in these 

precursors are mostly in their elemental oxidation state, assisting the formation of a metallic 

film without strong reducing agents. However, the strong metal-carbon bonds may lead to the 

co-deposition of metal carbides and graphitic carbon. Furthermore, OM precursors are usually 

expensive, very toxic, and highly sensitive to air, moisture, or temperature which requires 

handling and deposition in dry inert gases and glove boxes [19-21]. Mentioned above MO 

precursors, as a third class, are represented, e.g. by the family of β-diketones [3]. They avoid 

many major disadvantages of OM precursors but also have their own. For instance, the metal 

center is bound to O, N, or S in a high-valence state so that strong reducing agents, such as a 

H2 flow or electron irradiation (plasma), are required which, in turn, pose safety or technology 

problems. Here the film contamination by carbon impurities may be observed as well. 

Nevertheless, using MO precursors is generally seen as promising CVD method if reducing 

agent safety and technology as well as carbon contamination problems can be solved. 

Shedding light upon the CVD reaction mechanisms for the metal containing precursors in the 

full scale and in detail is essential requirement for the deposition process optimization and 

beneficial for the selection and synthesis of new precursors. In this respect, the boundary 

conditions of the deposition parameters may play important roles as well. For thin film analysis 

in order to understand the mechanisms and the resulting film properties, to characterize the 

film quality and for optimizing process parameters, the surface-sensitive analytical tools in 

ultrahigh vacuum (UHV) are optimally suited [22-30]. Unfortunately, only a narrow range of 

CVD processes can be used for operation directly in an UHV chamber. For example, in high 

temperature (500 - 950 °C) deposition of the Si, SiGe or SiC films from disilane Si2H6, germane 

GeH4, or methylsilane CH3SiH3 is not only the variety of precursors, but also the choice of 

deposition parameters applicable in an UHV setup that is limited and typically different from 

industrially profitable [31-35]. The employment of the organic precursors in the UHV setup is 

also known to cause chamber contaminations [36-38]. Therefore, in general, CVD, ALD, and 

EBID with large organic precursor molecules and, moreover, PSE-CVD with precursors in liquid 

solution are incompatible with UHV conditions where gaseous precursors and reaction 
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residues are required that can be easily pumped. Consequently, sample transfer between a 

CVD reactor and an UHV chamber for thin film analysis can usually not be avoided. But there 

are no commercially available solutions for CVD reactors directly linked to UHV chambers via 

gate valves that are opened only for sample transfer [39-41]. This approach is most promising 

for clean, fast and effortless transfer if UHV chamber contaminations due to precursor 

adsorption on the sample holder, transfer rods or gate valves can be avoided and if restrictions 

due to limited space can be met. Therefore, in this work, such a homebuilt CVD reactor was 

designed, successfully constructed and directly attached to a commercial UHV system used for 

thin film analysis. The next chapters of this framework article will present the design of the 

developed transfer system and thereby direct coupling of the CVD reactor to the UHV chamber 

for mechanistic studies and deposition process optimization. Furthermore, my own 

contributions to the studies of CVD processes via analytical tools under UHV conditions will be 

discussed.  

In general: 

- basic design ideas, construction details, highlights and capabilities of the PSE-CVD Reactor,  

- investigation of the growth behavior of cobalt thin films from PSE-CVD, 

- systematical study of the water influence on the composition and growth kinetic of PSE-CVD 

nickel and cobalt metal films, 

- preparation of undecomposed Ni(acac)2 and Co(acac)2 layers via PSE, and 

- comparison of thermally initiated and electron-induced precursor decomposition with CVD, 

will be summarized and discussed as product of my PhD work. 

Ongoing experiments are focused on systematic studies of the influence of various CVD 

parameters on the growth kinetics of transition metal films and aimed at a fundamental 

understanding of the reaction mechanisms of the metal deposition process. Elucidating the 

CVD reaction mechanisms comprehensively and in detail is prerequisite for process 

optimization and beneficial for the selection and synthesis of new precursors. In this respect, 

also boundary conditions may play important roles but often they lack systematic studies. The 

compact and modular reactor for quasi in situ UHV surface science studies is adaptable to 

most UHV systems, its versatility makes it a valuable and promising tool for any fundamental 

studies of CVD-based techniques such as, e.g. ALD. The design for the direct coupling of the 

thin film deposition process with the surface analysis and facile transfer under UHV conditions 

will facilitate the systematic study of such experiments and enable a more reliable, detailed 

characterization of the pertinent parameters of influence that are a prerequisite for progress 

in deposition engineering. 
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2. Experimental Part 

2.1. PSE-CVD Reactor and its place in UHV System 

The CVD reactor presented in this work was designed [PI] to be directly attached to the load-

locks of any of the two Multiprobe UHV systems by Omicron Nanotechnology available in the 

IAPC laboratory for thin film analysis. The UHV systems contain temperature-programmed 

desorption (TPD) spectroscopy, low-energy electron diffraction (LEED), scanning tunneling 

microscopy (STM), Fourier-transform infrared spectroscopy (FTIR), and x-ray photoelectron 

spectroscopy (XPS) as surface science tools. For XPS, non-monochromatized Al Kα radiation 

was used for photoelectron generation and a Leybold EA 10 Plus hemispherical energy 

analyzer with single-channeltron detector was employed. The obtained XP spectra were 

normalized and then fitted using Igor Pro (from Wave Metrics) and FITT (Seoul National 

University) software. For the fit a Shirley-type background was taken into account. The 

morphology of the deposited films was assessed ex situ using a Carl Zeiss Ultra Plus Field 

Emission scanning electron microscope operated at 15.0 keV electron energy.  

The reactor design is multifunctional – easy to use in PSE-CVD as well as in classical thermal 

CVD or ALD regimes. While some parts and geometry of the reactor are based on previous 

developments [6,7], the design of sample holder, deposition area, and transfer mechanism are 

completely new, resulting in thin film deposition reactor setup of very compact size which is 

based on many commercially available components, is relatively easy to assemble, and may be 

used with widespread UHV-compatible Omicron-type sample holders. The CVD setup 

accomplishes short pathways for transfer but maintains well separated individual pressure 

regimes of CVD reactor and UHV chamber. After any stage of a CVD or ALD growth process in 

the reactor, samples can be transferred easily, quickly and cleanly without contaminating the 

sample surface or compromising UHV conditions to the UHV chamber for thin film analysis, 

allowing us to perform systematic studies on the influence of various CVD parameters on the 

growth kinetics. Thereby, a fundamental understanding of the reaction mechanisms of the 

chemical vapor deposition process gets within reach.  

A drawing to scale of the fully assembled CVD reactor is shown in Figure 1. The reactor, 

connected to the load lock of the UHV chamber via a CF 38 gate valve, has a small lateral 

footprint, i.e., there are no protruding parts which could complicate positioning and 

connection to the Omicron Multiprobe system. The deposition area of the reactor is designed 

close to previous developments [6,7] and comprises a carrier gas supply and preheating zone 
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(I), and a spray injection, evaporation and delivery zone (II) (see Figure 1). Carrier gas 

preheating in zone (I) avoids spray condensation in zone (II) where the precursor is injected by 

a piezo-driven spray nozzle, operated by low-voltage direct current pulses. The tube size 

(diameter 40 mm, length 250 mm) of the evaporation and delivery zone (II) provides 

homogeneous distribution of precursor spray in the carrier gas and uniformity of the precursor 

mixture in case of multicomponent systems. Preheating of this zone as well as the vacuum line 

(III) prevents precursor adsorption on the walls of reactor or vacuum line. Almost all 

components of the deposition area are commercially available. More technical details can be 

found in PI. 

 
Fig.1. Drawing to scale of the assembled CVD reactor attached to the UHV chamber. I – Carrier 
gas preheating zone, II – Spray evaporation zone, III – Vacuum line, IV – Sample manipulation 
area with parts for sample transfer and gate valve to the UHV chamber load lock. 

The homebuilt sample manipulation area (IV) (see Figure 1) which is described in detail in the 

PI as well, comprises the sample holder, the transfer mechanism, and the shutter between 

deposition and sample manipulation area, all placed inside the CF 38 six-way cross. The sample 

is mounted on an Omicron-type sample holder which slides into a mobile platform for transfer 

(shuttle) with heater and thermocouple contacts. The reactor is completed by a support 

system including gas supply, pressure control, temperature control, and precursor delivery 
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systems [PI]. Overall, the designed reactor has a very compact size, is relatively easy to 

assemble, and should be attachable to any UHV chamber after manageable adaptations. 

As it was mentioned before the direct connection allows for quick and contamination-free 

sample transfer without interrupting vacuum between the CVD reactor and XPS. For the 

explanation of the transfer procedure the Figure 2 could be used.  

 
Fig.2. Scheme illustrating major parts of the vacuum system. 1) Scroll pump, 2) Turbo pump, 3) 
Ion getter pump, 4) Gate valves, 5) Linear-rotary drives.  

After finishing a deposition or any stage of the deposition process, the reactor is pumped by an 

oil-free scroll pump attached to the vacuum line of the deposition area, reaching a lowest 

pressure in the range 10-1 Pa. Then the sample is transferred from the CVD reactor to the load 

lock of the UHV chamber. Being now pumped by the turbo molecular pump of the load lock, 

the reactor pressure typically drops to ∼10-4 Pa. In the load lock, the sample is then picked up, 

and the gate valve between CVD reactor and load lock is closed. After further pumping of the 

load lock, the sample is transferred into UHV chamber which has a base pressure of ∼10-9 Pa 

maintained by a turbomolecular pump and an ion getter pump. During this last transfer step 

the pressure in the UHV chamber typically remains below 10-6 Pa even without bake-out of the 

load lock. The pressure conditions have been well maintained over more than hundred PSE-

CVD and transfer cycles, meanwhile, providing evidence for the cleanness of the entire 

procedure. 
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The UHV chamber contamination problem was solved in the way that the CVD reactor is 

separated in two areas. The first is “deposition area” (Figure 3 (1)), where the precursors spray 

is produced and carried by a carrier gas to the sample surface. In the second “sample 

manipulation area” (Figure 3 (2)) the sample temperature is controlled and all parts for sample 

transfer into the UHV load lock are located. In order to avoid MO precursor adsorption on the 

reactor walls preheating of all parts is required. In fact any contamination of the sample 

manipulation area can potentially reach the UHV chamber. Therefore, both deposition and 

sample manipulation areas must be well isolated from each other during deposition so that 

only the sample surface but not the sample holder or any part of the transfer mechanism is 

exposed to the CVD precursors. Making the sample quickly and easily movable for transfer and 

provide isolation of the sample surface from all transfer parts during deposition is the major 

technical challenge. It was solved by a uniquely designed movable shutter (Figure 3 (3)) for 

separation of the deposition area from the sample manipulation area. 

 
Fig.3. Schematic diagram of the CVD reactor depicting (1) deposition area (carrier gas 
preheating, spray evaporation, vacuum line), (2) sample manipulation area, and (3) movable 
shutter during (a) sample transfer (gate valve to load lock (not shown) on the left is open) and 
(b) deposition (gate valve to load lock closed, deposition and sample manipulation areas 
purged independently); (c) shows a cross-sectional drawing of the shutter. 

A short overview of the movable shutter function can be given at this point as well. The shutter 

(Figure 3 c) consists of a stationary nozzle fixed between flanges on top of the six-ways cross 

and a similarly shaped part acting as movable mask which is suspended below the nozzle. The 

stationary nozzle centers and holds the mask which has an aperture in the size of the sample 

surface area to be exposed to the CVD precursor. The motion of the mask is driven by magnets 

from the outside. For that purpose, all shutter components are made of nonmagnetic stainless 

steel except for two magnetic steel parts mounted on top of the mask. It can be lifted upwards 

and rotated by 55° into a locked position (transfer regime), or rotated back and moved 
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downwards to rest on the sample holder (deposition regime). In deposition regime leaks 

between sample manipulation and deposition areas are as small as possible, sample surface 

directly underneath the mask’s aperture. For further details on the shutter design see in the PI.  

The principle of CVD reactor operation using the movable shutter is as follows. In transfer 

regime (Figure 3 a) the shutter is fixed in upper position and the gate valve to the load lock is 

open. With the shutter in upper position, there is enough space available to move the sample 

holder (mounted on a transport shuttle) out of the CVD position into the load lock and vice 

versa. The pressure in the CVD reactor, being now additionally pumped via the load lock, is 

typically as low as 10-4 Pa during transfer. In deposition regime (Figure 3 b) the shutter is kept 

in a lower position so that its aperture is slightly pressed to the sample surface and openings 

between (1) and (2) are as small as possible. The deposition area and the sample manipulation 

area (the gate valve to the UHV load lock being closed) are pressurized individually by N2 in 

such way that the pressure in (2) is somewhat higher than in (1) in order to prevent gas flow 

from the deposition to the sample manipulation zone through rest leaks. Then the precursor 

mixture passes the deposition area - where pressure is kept in the range required for CVD - 

and reaches through the aperture of the shutter the sample surface which is kept at the 

required deposition temperature. Residue of precursor, solvent, and reaction byproducts are 

pumped off via outlets of the deposition area to a vacuum line. Overall it was found that the 

shutter maintains the sample manipulation area clean and contamination of load lock or UHV 

chamber during transfer is negligible. The design of the sample manipulation area combines 

small size and modularity, allowing for quick repair with contamination-free operation. Details 

on the design of the rector parts for sample manipulation area as well as construction of a 

modified Omicron-type sample holder can be found in the PI.  

The pressure conditions have been well maintained over more than hundred PSE-CVD and 

transfer cycles, meanwhile, providing evidence for the cleanness of the entire procedure. It 

should be noted that separation of deposition and sample manipulation areas within the CVD 

reactor by means of the movable shutter, as described above, is crucial for the cleanness of 

sample transfer. Without the shutter the creeping contamination such as, e.g., precursor 

condensation at the gate valve or metal deposition on all insulating parts have been observed. 
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2.2. Sample Preparation 

The deposition experiments were performed in a home-built CVD reactor employing a pulsed-

spray evaporation unit for delivery of the precursor liquid feedstock. The experimental 

deposition parameters, like deposition area pressure, carrier N2 gas flow rate, spray pulse 

width and frequency, substrate temperature, and total depositions duration were optimized 

and discussed in the published articles [PI-PIV],[6,7,13,25]. Commercially available anhydrous 

Ni(acac)2 and Co(acac)2 were dissolved in absolute ethanol at a concentration of 2.5, 5.0, and 

7.5 mM. The solution was ultrasonically shaken to achieve complete dissolution. All feedstock 

solutions were freshly prepared directly before PSE deposition. The purity of the absolute 

ethanol (>99.9 vol%) was confirmed by an analytical hydrometer. For a systematic study of the 

water influence on the PSE-CVD process [PII], distilled water was added to the precursor 

solution to adjust the H2O concentration from 0.0 to 15.0 vol% (where 1.0 vol% corresponds to 

0.555 mol/l). 

A 1.5 x 0.5 cm piece of a Si(100) wafer was cut as substrate, cleaned with isopropanol in an 

ultrasonic bath, and dried in air, so that Ni or Co films were deposited on top of the native or 

thermal silicon oxide layer. For Co deposition [PIII] also Si substrates with Ni interlayer were 

used. In case of the Ni and Co precursor adsorption experiments [PIV], the silicon substrates 

annealed under UHV conditions at 700 °C and transferred in vacuo into CVD reactor. In general 

the photoelectron spectroscopy analysis showed that the mild cleaning procedure left very 

reproducibly, a level of 9 atom% (∼5 atom% after in vacuo thermal treatments) residual carbon 

contaminations on the substrate surface. The thickness of the films obtained by PSE-CVD was 

varied from few nm to several hundred nm by varying deposition time and precursor 

concentration in the liquid feedstock. The thermal and electron-induced decomposition 

experiments [PIV] of the PSE deposited, undecomposed, thin precursor films were performed 

in the UHV chamber. For electron-induced precursor decomposition experiments the electron 

gun of a conventional electron diffraction system was used. 

For some further details concerning sample preparation and deposition system handling, as 

well as sample analysis see the attached publication [PI–PIV].  
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2.3. Benefit of the direct sample transfer 

The importance of sample transfer from the CVD reactor to surface analysis tools without 

interrupting vacuum, in order to obtain reliable results on the CVD process can be 

demonstrated with the following example. A thin Ni film was freshly prepared by PSE-CVD on 

the Si substrate and transferred into the UHV chamber for XPS analysis under high vacuum 

conditions directly afterwards. The obtained XP spectrum within the region of Ni 2p emissions 

is shown in the upper panel of Figure 4.  

 
Fig.4. Ni 2p XPS signal of a thin Ni film deposited on SiOx/Si(100) substrate. Upper panel: freshly 
prepared film directly transferred into UHV; Bottom panel: after resting in ambient conditions 
(in air) for 1 hour.  

The red and green curves in Figure 4 represent emissions from reduced Ni (Ni0) with binding 

energies 852.0 and 859.2 eV. The blue and purple curves represent emission from oxidized Ni 

(Ni2+) (binding energies 855.6 and 861.0 eV). Obviously, the freshly prepared Ni film was 

almost completely reduced as it comprises more than 95 % metallic Ni. Thereafter the sample 

was transferred out of the UHV chamber, let rest in the air atmosphere for one hour, and 

transferred back into UHV. A subsequent XP spectrum (bottom panel in Figure 4) revealed that 

only 60 % of the surface Ni had remained metallic after this treatment. It can be concluded 

that even short sample transfers within minutes through air would significantly deteriorate the 

CVD-grown Ni film surface and that contamination-free transfer is a prerequisite for reliably 

estimating the influence of deposition parameters in the CVD reactor. 
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3. Summary of the results 

Recent works [13,25,26,42] have demonstrated the new approach to deposition of some 

metals (Ru, Pt, Ag, Cu, Ni, Co) and their alloys using ethanol as unique reducing agent. This CVD 

technique is characterized by the liquid delivery of commercial MO precursors into the CVD 

reactor via a pulsed-spray evaporation system. Bahlawane et al. [13,26] studied the reaction 

mechanisms involved in the PSE-CVD of nickel and copper thin films from an ethanol solution 

of Cu(acac)2 and Ni(acac)2. The catalytic chemical reduction of the acetylacetonate precursor 

by ethanol, as shown in Equation 1, was identified as the summarized reaction pathway that 

enables the deposition of high quality films of transition metals: 

2 M(acac)n + n C2H5OH → 2 M + 2n Hacac + n CH3CHO  (1) 

Where the first step, the metal acetylacetonate precursor adsorption on silica substrates can 

be suggested to proceed via ligand exchange reactions: 

M(acac)2 + OH-silica → (acac)-M-O-silica + Hacac  (2) 

While the metal (Ni or Co) catalyzed dehydrogenation of ethanol to acetaldehyde, i.e. 

C2H5OH → C2H5O + ½ H2    (3) 

can be proposed as promoter for the decomposition of the adsorbed precursor and reduction 

of metal: 

(acac)-M-O-silica + H2 → M + OH-silica + Hacac     (4) 

There it has been reported several studies on the interaction of water vapor with Ni surfaces 

[43-47]. Oxidation of the Ni surface in presence of water vapor was observed at temperatures 

as low as 300 °C and even in UHV environment with the oxidation rate increasing as the 

temperature or the H2O dose are increased [43,48]. Therefore, as the most probable 

explanation for the metal oxidation at water presence can be suggested as the second 

decomposition channel of the precursor (where water serves as an oxygen source) [49], 

initiated by excessive amounts of water: 

(acac)-M-O-silica + H2O → MO + OH-silica + Hacac     (5) 
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This pathway leads to the formation of metal oxide and will compete with the precursor 

decomposition by hydrogen which, as previously shown [13,50], is produced by 

dehydrogenation of ethanol to acetaldehyde and leads to reduction of metal.  

In order to obtain more information on precursor decomposition on the substrate surface and 

stimulated by the current interest in the electron-beam induced deposition processes, the 

preparation of solvent-free layers of intact Co(acac)2 and Ni(acac)2 can be achieved by PSE of 

the precursor onto SiOx/Si substrates at 115 °C. In UHV, these films were than heated to the 

typical temperature for PSE-CVD or irradiated by electrons in order to induce precursor 

decomposition.  

 

3.1. CVD process optimization (Paper I) 

Successful deposition of thin metal films by CVD needs control over a number of physical and 

chemical parameters, such as precursor and substrate selection, delivery, flow, pressure and 

temperature conditions. Using the unique UHV-compatible CVD reactor directly attached to an 

XPS containing UHV chamber gives us opportunity to identify an optimal deposition 

temperature and hoped to thereby better understand the influence of temperature on the 

deposition process [PI]. Previous work with β-diketonates [6,7,13] found 230 - 310 °C as 

deposition temperature range for growing Ni metal films of good quality, i.e., with metallic 

conductivity and a low degree of contaminations.  

In the present study the Ni films were deposited on SiOx/Si(100) substrate samples as 

described before at various sample temperatures in the range 230 to 310 °C (at steps of 20 °) 

and transferred under high vacuum conditions into the UHV chamber for XPS analysis. The 

Ni2+/Ni0 intensities ratio determined from the integral Ni 2p peak intensities is shown in the left 

panel of Figure 5 as a function of the sample temperature during deposition.  

Obviously, the highest concentration of Ni2+ is observed at the lowest deposition temperature. 

With increasing deposition temperature, the content of reduced Ni0 increases, until at 270 °C 

and above the film contains almost only metallic Ni. The right panel of Figure 5 provides 

information on the amount of carbon contamination at the surface and in the film. It shows 

the ratio of the integral C 1s and Ni 2p peak intensities (CSUMM/NiSUMM ). While CSUMM/NiSUMM 

varies only in the range ∼1.0 - 1.3 within the deposition temperature range 230 - 310 °C, the 

XPS analysis indicates the lowest carbon concentration for 270 °C. 
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Fig.5. Changing the intensities ratio of the Ni 2p XPS signals for Ni2+/Ni0 (left) and CSUMM/NiSUMM 
(right) at various deposition temperatures. 

These results can be interpreted as follows: Below 270 °C, precursor decomposition is probably 

incomplete, i.e., undecomposed precursor remains at the surface and contributes to the 

detected amount of carbon contamination and oxidized Ni. The increase of the carbon signal 

at sample temperatures above 270 °C during deposition may indicate that the precursor is 

already overheated, i.e., the residues from its decomposition do not completely desorb but are 

fragmented, producing carbon black in the film. Overall, within the range 230 to 310 °C 

proposed before [6,7] the 270 °C was identified as optimal temperature for PSE-CVD with 

Ni(acac)2 precursor on SiOx/Si(100) surfaces. 

 
Fig.6. SEM of SiOx/Si(100) substrate coated with Ni films at 230, 270, and 310 °C. Upper row: 
plane view on the Ni-covered substrate surface (scale bar 1 µm); bottom row: enlarged view 
(scale bar 200 nm, viewing angle ∼60° with respect to surface normal) of cleaved sample edge 
showing substrate (bottom) and Ni deposits on top. 
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The morphology of the deposited films was assessed as well. The samples prepared at 230, 

270, and 310 °C were selected for SEM analysis, the results are shown in Figure 6. The nickel 

films deposited at 230 or 270 °C appear to be closed and composed of grains with diameters 

on the order of some ten nanometers (The surface of the film deposited at 270 °C appears to 

be somewhat smoother than of that deposited at 230 °C). Films obtained at 310 °C present a 

coarser morphology with smaller, more heterogeneously sized grains. Furthermore, SEM of 

the film deposited at 310 °C reveals pronounced defects (see upper panel of Figure 6) which 

may represent gaps in the metal film. 

 

3.2. Cobalt films growth on SiOx and Ni/SiOx (Paper II, Own contribution) 

In contrast to Cu and Ni acetylacetonates, the PSE-CVD of cobalt films from Co(acac)2 was 

found to be highly sensitive to the nature of the underlying substrate and the deposition 

temperature. For example, a transition from cobalt carbide to metallic cobalt was observed 

upon increasing the substrate temperature from 240 to 280 °C, while an improvement of the 

growth rate and a decrease of the required deposition temperature were observed when 

coating a 5 nm thick nickel interlayer on bare glass [25]. Despite these observations, the role of 

the nickel sub layer during the film growth is not well understood. 

In the presented work [PII], to monitor the effect of the nickel interlayer on the resulting films, 

both SiOx/Si(100) and Ni-deposited substrates, with a nickel film thickness of ∼5 nm, were used 

for ultrathin Co0 films (of thickness 2 - 6 nm, representing an early stage of the nucleation) 

deposition in the UHV-compatible PSE-CVD reactor directly attached to an UHV system. 

Therefore any post-deposition contamination or metal oxidation during sample transfer from 

the reactor to XPS can be neglected. The Co films deposited on SiOx/Si(100) substrate at 

various temperatures in the range 250 - 370 °C and characterized by XPS are shown in Figure 7 

(left). Where at sample temperatures up to 270 °C during deposition, the film surface is 

composed of carbon, oxygen and oxidized Co2+, represented, probably, by Co oxide or Co(OH)2. 

For deposition temperatures of 310 °C and higher, metallic Co0 was also found, where the ratio 

of metallic and oxidised Co increased with temperature. Only at the highest deposition 

temperature of 370 °C, the Co signal was found to be entirely metallic. At this deposition 

temperature, however, carbon contamination, which increased with deposition temperature, 

has a highest level. Probably due to fragments of decomposed precursor or alcohol, which 

result from pyrolysis of the precursor solution at the hot sample surface. Below 270 °C 
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deposition temperature, presence of carbon may be attributed to undecomposed precursor at 

the surface. Compared to the XPS data obtained from 250 nm-thick films deposited from 

Co(acac)2 precursor at 250 °C,  where only metallic Co and some Co carbide were detected, 

these findings indicate that the growth mode changes as more and more Co is deposited. 

Probably, the initially deposited cobalt oxide acts as a seed layer and promotes the catalytic 

decomposition of the precursor at later stages of film growth. 

 
Fig.7. Co 2p XPS signal of a thin PSE-CVD cobalt films deposited at various temperatures on SiOx 
(left) and Ni/SiOx (right) substrates using ethanol solution of Co(acac)2.  

When a nickel interlayer was deposited on the SiOx/Si(100) substrates before depositing Co in 

the UHV-compatible PSE-CVD reactor, the XPS revealed (Figure 7 (right)) that thin films were 

composed of entirely metallic cobalt even at temperatures as low as 270 °C. It seems that, 

nickel, as more efficient catalyst for dehydrogenation of ethanol to acetaldehyde and thus, via 

hydrogen, the decomposition of the adsorbed precursor, promotes the reduction of Co(acac)2 

during the initial stage of deposition.  

In general using the nickel interlayer for Co(acac)2 precursor decreases the deposition 

temperature window and improves the growth rate until a critical temperature of 360 °C. 

Enhancement of the growth when using a nickel seed layer can be ascribed to the improved 

dehydrogenation of ethanol to acetaldehyde, a process that enables the reduction of the 

acetylacetonate precursor. However, this effect was limited to temperatures below 360 °C, 

above which the thermal decomposition of the precursor is predominant. With and without Ni 

interlayer, carbon contamination at the film surface appears to be inherently connected to the 

formation of metallic Co and increases with deposition temperature as a consequence of the 

thermal decomposition of the precursor. 
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3.3. Influence of Water on deposition process (Paper III) 

One of the big problems with solid organic precursors in metal CVD is their sensitivity to air 

and moisture [19-21]. Commonly, the hygroscopic nature of many OM and MO precursors 

promotes the formation of hydrates which leads to significant configuration changes within 

the precursor depending on the water content [19,51-53]. These changes may induce strong 

dependencies of the precursor volatility and thermal stability on the water concentration 

[19,49,53]. Additionally, water may influence the precursor adsorption selectivity by formation 

of OH groups on the substrate surface and affect reaction mechanisms thereon [3,52,54-56]. 

Overall, the sensitivity of the precursor to moisture may render the control of parameters such 

as nucleation rate, growth rate, or precursor fragmentation difficult and thus affect quality 

(morphology) and purity (carbon incorporation) of the CV deposits. However, water may even 

have beneficial effects on the composition or growth rate of the deposit [57-63]. In practice, 

controlling water contamination in the entire CVD process is harder than just to care for pure 

precursor feedstock. As pointed out by Pierson [2], a pure reactant can become contaminated 

in the distribution system to the reactor by, amongst others, moisture even if gas-tight metal 

lines are used. Therefore, in order to limit costs it is essential to know what grades of purity of 

precursors, feed gases and reactor lines have to be maintained for good results. Consequently, 

in order to make use of these effects purposefully and reach optimal growth conditions with 

reasonable efforts, systematic studies on the influence of water on CVD processes are, as also 

noted by others [64], a prerequisite. 

In the current work [PIII] a comprehensive study of the influence of water on metal film 

formation exemplarily in a special field of CVD - the pulsed-spray evaporation CVD will be 

presented [PI],[6]. By varying systematically and in a broad range the water content in Ni and 

Co acetylacetonate precursors for PSE-CVD of Ni and Co, it was found both, beneficial and 

detrimental effects of water on the metal film growth, strongly depending on the 

concentration of water and the β-diketonate in the precursor solution. The first part of this 

section will discuss a full account of the observed effects of water concentration variation in 

the precursor solution on composition and morphology of the deposited Ni films. The second 

part of this section will demonstrate the influence of water on films deposited from 7.5 mM 

Co(acac)2 precursor solution. In contrast to PSE-CVD of Cu or Ni, finding parameters for 

deposition of pure metal Co films from Co(acac)2 has been reported as difficult because cobalt 

precipitates mainly unreduced as carbide or oxide [42]. Moisture may play a key role here. 
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Figure 7 provides selected SEM data of films deposited from 2.5 mM Ni(acac)2 with 0.0, 0.5, 

5.0, and 10.0 vol% water in the precursor feedstock, respectively. Within the SEM resolution, 

all films appear to be continuous or percolated but composed of grains with diameters on the 

order of some nanometers in the case of 0.0 and 0.5 vol%. Films obtained from precursor 

solution with 5.0 vol% water show somewhat bigger grains and those deposited from Ni(acac)2 

solution with 10.0 vol% water show an even coarser morphology with more heterogeneously 

sized grains in the diameter range of some 10 nanometers. The measured thickness values of 

the deposited films are 30, 40, 40, and 50 nm (± 5 nm), for films deposited from solutions with 

0.0, 0.5, 5.0, and 10.0 vol% water, respectively. 

 
Fig.7. SEM of films deposited on a SiOx/Si(100) substrate from 2.5 mM Ni(acac)2 in ethanol with 
0.0, 0.5, 5.0, and 10.0 vol% water, respectively. First row: plane view on the substrate surface 
(scale bar 1 µm); second row: enlarged plane view on substrate surface (scale bar 200 nm); 
third row: enlarged view (scale bar 200 nm) at a viewing angle of ∼60° with respect to surface 
normal, showing a cleaved sample edge with the substrate (bottom) and deposits on top. Film 
thicknesses estimated by SEM: 30, 40, 40, and 50 nm for films obtained from solutions with 0.0, 
0.5, 5.0, and 10.0 vol% of water, respectively. 

Figure 8 shows a comprehensive overview of the XPS data in the binding energy regions of a) 

Ni 2p, b) O 1s, and c) C 1s obtained for films deposited from 2.5 mM Ni(acac)2 for various water 

concentrations in the liquid precursor feedstock mixture. Results of a quantitative analysis of 

these spectra based on the standard fitting routine are compiled in panels d), e), and f). They 

are show the intensities of major signal contributions depending on the water concentration 

and allow us to pinpoint trends for the composition of the deposited films. 
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Fig.8. Top panels: XPS spectra in the binding energy range of a) Ni 2p, b) O 1s, and c) C 1s 
emissions obtained from the SiOx/Si(100) substrate (dotted curves) and from Ni/NiOx films 
(thickness 30-50 nm) grown ontop by PSE-CVD from 2.5 mM precursor solution with various 
water concentrations (from 0.0 to 10.0 vol%) at a substrate temperature of 270 °C (solid lines). 
Bottom panels: Integral peak intensities determined from fits to the XPS data. 

For water concentrations in the range 0.0 - 1.0 vol% the following trends were observed: water 

in the liquid precursor feedstock promotes the growth of metallic Ni and reduces carbon 

contamination of the deposited films. Ni oxide starts to grow only at water concentrations 

above 0.5 vol%, so that 0.5 vol% water is optimal for the deposition of fully reduced Ni films, 

i.e., water at that concentration has a positive influence on PSE-CVD of Ni films from 2.5 mM 

Ni(acac)2 precursor dissolved in ethanol. While more than 1.0 vol% water in the liquid 2.5 mM 

Ni(acac)2/ethanol feedstock is detrimental for the deposition of Ni films, as it leads to oxidation 

of the deposited metal, small amounts of water (between 0.0 and 1.0 vol%) have positive 

effects, such as a lower level of carbon contamination and, apparently, an denser and 

smoother morphology. An improved growth rate may be linked to a promotion of precursor 

adsorption on the substrate surface by OH-groups forming at the surface upon adsorption of 

water, as previously reported for various precursors deposited on alumina, soda-lime glass, 

and SiO2 substrates [52,54,56,65]. On SiO2, surface hydroxyl groups have been demonstrated 

to be stable up to 800 °C and above [54,66-68]. At the first nucleation steps of the deposited Ni 

film, OH-groups on the substrate surface may serve as preferable bonding sites for the 

precursor [54-56]. Enhancing the initial precursor adsorption rate may be very important in the 

case of relatively low (2.5 mM) precursor concentrations in the liquid feedstock. 
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Several studies on the interaction of water vapor with Ni surfaces have been reported [43-47]. 

Oxidation of the Ni surface in presence of water vapor was observed at temperatures as low as 

300 °C, and even in UHV environment, with the oxidation rate increasing as the temperature 

or the H2O dose are increased [43,48]. Therefore, as the most probable explanation for the 

onset of Ni oxidation at water concentrations of 1.0 vol% and above, can be suggested the 

second decomposition channel of the precursor (where water serves as an oxygen source) 

[49], initiated by excessive amounts of water (>3 mol% H2O in ∼97 mol% C2H5OH with only 0.01 

mol% Ni(acac)2 present). This pathway (Equation 5) leads to the formation of Ni oxide and will 

compete with the precursor decomposition by hydrogen which, as previously shown [13,50], is 

produced by dehydrogenation of ethanol to acetaldehyde (Equation 3) and leads to metallic Ni 

(Equation 4).  In summary, there are no positive effects of water on the growth rate or carbon 

impurity levels of metallic Ni films for 5.0 and 7.5 mM Ni(acac)2 feedstock, in contrast to 

deposition from 2.5 mM precursor solutions that were observed. Very likely that any 

promotional effect of surface OH-groups for the precursor adsorption should be most efficient 

at the lowest precursor concentrations whereas at for 5.0 and 7.5 mM precursor concentration 

in the deposited gas phase (spray) the precursor molecule density on the surface may be so 

high that there is no need to promote adsorption.  

Overall, the results show that by tuning the concentrations of Ni(acac)2 and water in the 

precursor solution, the fraction of Ni metal and Ni oxide in the film or the film morphology can 

be adjusted. At low (2.5 mM) precursor concentration in the feedstock smoothest 

morphologies (with grains from 5 to 10 nm) are obtained and the fraction of Ni oxide in the 

deposit is adjustable from 0 to 100 % by varying the water concentration. At high Ni(acac)2 

concentrations (5.0 and 7.5 mM) excessive amounts of water strongly affect the film 

morphology and grain sizes can be varied from 10 to 150 nm. The carbon contamination in 

deposited films can be minimized to less than 10 % when the precursor solution is adjusted to 

2.5 mM Ni(acac)2 concentration and 0.5 % - 1.0 vol% water content. 

 

In contrast to nickel, the deposits from Co(acac)2 contained mainly CoOx, even when waterless  

precursor solutions were used. With increasing precursor concentration from 2.5 mM (data 

not shown) to 7.5 mM the Co metal fraction significantly increased, but accounted for only 42 

% of the Co 2p signal (Figure 9 d). Thus, in contrast to PSE-CVD from Ni(acac)2 even small 

amounts (1.0 vol%) of water in the 7.5 mM CO(acac)2 precursor feedstock lead to complete 

oxidation of the deposited Co. A significant fraction of metallic Co0 can be detected in the Co 
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2p signal only in deposits obtained without water. As well known from recent reports, cobalt is 

not as good catalyst for ethanol dehydrogenation as nickel is [25,50]. Therefore, even small 

amounts of water in the feedstock probably lead to a high water/hydrogen ratio at the 

substrate surface, rendering the precursor decomposition and CoOx formation according to 

Equation 5 as dominant pathway [49] because Co reduction by hydrogen is expected to be 

much slower. In accordance with observations made for Ni deposition, it was found the water-

induced oxidation of carbon impurities when the reaction mechanism changed from M to MOx 

formation. A significant metallic fraction of deposited Co is observed only for the waterless 

precursor solution, the observed maximum ratio of Co:CoOx is ∼40:60. 

 
Fig.9. Top panels: XPS spectra in the binding energy range of a) Co 2p, b) O 1s, and c) C 1s 
emissions obtained from the SiOx/Si(100) substrate (dotted curves) and from Co/CoOx films 
(thickness 100 - 150 nm) grown ontop by PSE-CVD from 7.5 mM precursor solution with various 
water concentrations (from 0.0 to 6.0 vol%) at a substrate temperature of 310 °C (solid lines). 
Bottom panels: Integral peak intensities determined from fits to the XPS data. 

Because previous studies demonstrated that a Ni interlayer on the SiOx/Si substrate may 

drastically improve the quality of films deposited from Co(acac)2 on top (almost completely 

metallic Co, only small amount of CoOx) [25,50], the PSE-CVD from 7.5 mM Co(acac)2 on a 40 

nm thick Ni layer on SiOx/Si(100) was also included in actual study. It was suggested [25,50] 

that the benefit of a Ni seed layer is catalysis of ethanol dehydrogenation for the formation of 

hydrogen as reducing agent. Co and in particular CoOx are worse catalysts in this respect. 

Consequently, while a Ni layer helps to catalyse the formation of an initial metallic Co layer 

which then may sustain the Co0 formation on top by catalyzing ethanol dehydrogenation, the 
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balance quickly shifts to the precursor decomposition pathway depicted in Equation 5 as soon 

as water is present because water oxidizes deposited Co which, in turn, is not available to 

catalyze ethanol dehydrogenation.  

 

In summary, both, beneficial and detrimental effects of water on the growth of metallic films, 

strongly depending on the concentration of water and the β-diketonate in the precursor 

solution, were observed. The smoothest morphologies (with grains from 5 to 10 nm) were 

obtained for metallic Ni films grown from 2.5 mM Ni(acac)2 precursor solution. The film growth 

could be optimized and the carbon contamination of the deposited Ni films minimized to less 

than 10 % when the water concentration in the precursor solution was adjusted to 0.5 vol%. 

Only at concentrations of 1.0 vol% and higher water induced significant oxidation of the Ni 

deposit. From precursor solutions with higher Ni(acac)2 concentrations (5.0 and 7.5 mM), 

purely metallic films were only obtained when any water in the feedstock was eliminated. 

Here, the film morphology strongly depended on the water concentration, indicating inhibition 

of nucleation on the Si/SiOx substrate by excessive amounts of water which lead to the growth 

of relatively large grains and a coarse film morphology. Overall, the gathered detailed overview 

over water-induced effects on the PSE-CVD with Ni acetylacetonate precursors dissolved in 

ethanol shows that by carefully tuning the precursor and water concentration in the feedstock, 

e.g., the degree of Ni oxidation can be adjusted from 0 to 100 % or the size of the films grains 

can be varied from less than 10 to 150 nm. 

Compared to Ni(acac)2, an even higher sensitivity for water in the feedstock was observed in 

the case of Co(acac)2 as precursor. Significant metallic Co fractions within the deposited films 

on SiOx/Si(100) as well as on Ni/SiOx/Si(100) were obtained only from waterless solutions. The 

relative sensitivities of Ni- and Co-based precursor solutions on water indicate a strong 

competition between two precursor decomposition pathways, one probably involving the Ni- 

or Co-catalyzed dehydrogenation of ethanol and H2-induced reduction of the precursor metal 

center, the other involving H2O-induced Ni or Co(acac)2 decomposition which leads to Ni or Co 

oxidation.  
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3.4. Comparison of thermal and electron-induced decomposition of 

metal acetylacetonate thin films (Paper IV) 

Having available PSE-CVD reactor directly connected to UHV system with surface science tools 

such as XPS and LEED, the solvent-free layers of undecomposed Ni or Co(acac)2 precursor were 

generated for fundamental surface science studies of the EBID process in UHV. The precursor 

layers obtained by this approach were used for a qualitative comparison of thermally initiated 

and electron-induced precursor decomposition and metal reduction, based on XPS data. 

Thermal treatments in connection with EBID are particularly interesting because they have 

demonstrated the ability to improve the EBID purity [69,70]. The focus on Ni and Co precursors 

was concentrated, taking into account wide applicability and permanent industrial interest in 

deposits of Ni, Co and their alloys [3,71-74], as well as previous experience with PSE-CVD of Ni 

and Co [PI-PIII]. 

To obtain a solvent-free layer of undecomposed Ni or Co acetylacetonate precursor molecules 

via PSE of the liquid feedstock, the substrate temperature should be kept higher than the 

ethanol desorption temperature from silica surfaces (peak at ∼90 °C) [75] and below the 

desorption temperature of M(acac)2 (thermogravimetric studies[49] indicated that M(acac)2 

precursors volatilized completely between 150 and 200 °C). To test that concept, the first pure 

solvent was spray-evaporated on the surface at three different temperatures (Figure 10): at 30 

°C for reference, at 115 °C, i.e., somewhat above the reported desorption temperature of 

ethanol, and at 270 °C, i.e., at that temperature at which the CVD process is initiated. 

Figure 10 a) reveals reduction of the level of carbon contamination as the benefit of annealing 

the freshly prepared SiOx/Si substrate to 700 °C in vacuum. While clear indication of ethanol 

adsorption was observed only at 30 °C. Overall, any residues from ethanol at 115 and 270 °C 

substrate temperature are negligibly small, i.e., a deposition temperature of 115 °C is high 

enough to safely get rid of the solvent.  When Ni(acac)2 precursor solution is injected at 270 °C 

sample temperature (Figure 10 b), the acetylacetonate decomposes and a film containing only 

metallic Ni (100 % Ni0) and some carbon inclusions are formed (CVD process [PIII],[6]). In 

contrast, during injection of Ni(acac)2 precursor solution at 115 °C substrate temperature 

adsorption of intact Ni(acac)2 molecules predominates. There is only Ni2+ present on the 

sample surface, similar to deposition at 30 °C. Overall, it could be concluded that a solvent-free 

layer of intact Ni(acac)2 precursor molecules forms during deposition at 115 °C. After injection 

of Ni(acac)2 precursor solution at 30 °C, the joint adsorption of ethanol and Ni(acac)2 was 

found. 
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Fig.10. XP spectra obtained from the SiOx/Si(100) substrate before and after precursors 
deposition by PSE. 
a) (top row): XP spectra in the binding energy range of Si 2p (left) and C 1s (right) emissions 
obtained from the native SiOx/Si(100) substrate (●), annealed at ∼700 °C (○), and after ethanol 
deposition on the substrate at 30 (I), 115 (II), and 270 (III). b) (center row): XP spectra in the 
binding energy range of Ni 2p (left) and C 1s (right) emissions obtained after deposition of 
Ni(acac)2/ethanol by PSE on annealed SiOx/Si(100) substrate from 5.0 mM precursor at a 
substrate temperature of 30 (I), 115 (II), and 270 °C (III). c) (bottom row): XP spectra in the 
binding energy range of Co 2p (left) and C 1s (right) emissions obtained after deposition of 
Co(acac)2/ethanol by PSE on annealed SiOx/Si(100) substrate from 5.0 mM precursor at a 
substrate temperatures of 30 (I), 115 (II), and 310 °C (III). 

Similar to nickel, injection of Co(acac)2 precursor solution at 30 °C leads to joint adsorption of 

ethanol and Co(acac)2, while at 310 °C substrate temperature the Co precursor decomposes on 
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the surface and forms a deposit of Co oxide and metallic Co, with some carbon inclusions (CVD 

process [PIII]). Notably, in contrast to CVD from Ni(acac)2, the acetylacetonate ligands are not 

fragmented during precursor decomposition. Also the smaller amount of carbon impurities as 

compared to the Ni PSE-CVD indicates that, during Co-PSE CVD, the Co precursor decomposes 

more easily into the metal center and volatile acetylacetone, which is in accordance with the 

observation that Co(acac)2 is less stable than Ni(acac)2 [76-78]. After injection of Co(acac)2 

dissolved in ethanol at 115 °C substrate temperature the XPS data indicate that, similar to 

Ni(acac)2 injection at that temperature, adsorption of intact Co(acac)2 precursor molecules are 

predominated. Thus the selected substrate temperature of 115 °C during PSE of metal 

acetylacetonate precursors is well suited for the preparation of solvent-free layers of 

undecomposed  M(acac)x precursor. 

Precursor layers produced by PSE onto an annealed SiOx/Si substrate at 115 °C and then either 

irradiated by electrons at room temperature or heated up to 270 or 310 °C. The data obtained 

after electron irradiation of Ni(acac)2 layers are shown that irradiation in the low-energy 

electron exposure regime (at E0=25 eV) for 15 min and 375 min did not lead to any significant 

changes. Only after switching to the high-energy electron exposure regime (at E0=500 eV) 

electron induced reduction of the metal from Ni2+ to Ni0 can be observed after 15 min. After 90 

min irradiation the final film contained 59 % of Ni0 (Table 1) with some carbon inclusions 

shown in Table 2. Table 1 also shows that after a Ni precursor layer was heated up to 270 °C 

for 1 min, the 86 % of the metal ions reduced to Ni0. The level of residual carbon 

contamination (Table 2) was even ∼30 % lower than after ethanol-assisted CVD. 

Tab. 1. Percentage amount of metallic Ni or Co (of all deposited Ni or Co) in treated films. 
The Data were obtained by PSE-CVD or by thermal treatment or electron irradiation of Ni and 
Co acetylacetonate precursor layers. 

 Ni precursor Co precursor 

Ethanol assisted CVD 100 25 

Thermal decomposition 86 41 

Electron beam-induced decomposition 59 21 

 

Similar to the Ni(acac)2, also Co(acac)2 layers did not show significant changes in XPS after 

electron irradiation at room temperature in the low-energy electron exposure regime (E0=25 

eV) for 15 min and 375 min. Unlike Ni(acac)2, however, even the high-energy electron 

exposure regime (E0=500 eV) for 15 min, 90 min, and 210 min did only reduce minor amounts 

of Co2+ precursor ions to Co0. Only 21 % of Co was metallic after irradiation (Table 1). Also 
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heating a Co(acac)2 film to 310 °C leads to precursor decomposition and fragmentation. 

Compared to electron irradiation and, in particular, the ethanol assisted CVD at 310 °C, after 

heating it was found  an unexpectedly high fraction of metallic Co0 (41 % of the entire Co) and 

preferably CoOx (Table 1) with some carbon inclusions (Table 2).  

 
Tab. 2. Atomic ratio C to M in the films. 
The Data were obtained by various ways from Ni and Co acetylacetonate precursors. 

 Ni precursor Co precursor 

Ethanol assisted CVD 0.19 0.07 

Thermal decomposition 0.13 0.11 

Electron beam-induced decomposition 0.13 0.08 

 

In the presented work, the level of carbon impurities (Table 2) compared to reports for 

continuous EBID processes is relatively low (for some MO precursors it may reach even 80 - 90 

atom%) [14,18,27]. The relatively low level of carbon impurities may be explained as follows: 

In discussed experiments, post-deposition electron beam-induced decomposition of the 

precursor is performed in good vacuum conditions while usually in EBID electron irradiation is 

performed during exposure of the substrate to the precursor gas. Therefore, any accumulation 

of carbonaceous species from electron beam-induced decomposition of precursor in the gas 

phase and adsorption of the produced fragments is avoided, in contrast to “real” EBID. The 

temperature range of EBID is often so low that dissociation fragments remain adsorbed and 

immobile on the substrate [14] while classical CVD operates at temperatures above the 

precursor decomposition temperature in order to increase the probability of rapid desorption 

of ligands or other undesired precursor fragments. 

 

The temperature difference results in different ways in which adsorbed metal-ligand species 

are processed by either electrons or thermal reactions. Under EBID deposition conditions, 

experimental evidence suggests that ligand decomposition rather than desorption dominates. 

In the CVD reaction pathway thermal reactions are often characterized by ligand desorption as 

opposed to ligand decomposition [17]. A comparison of the metal contents in the PSE-CVD 

films of Ni or Co(acac)2 is achieved by thermal or electron-induced post-deposition 

decomposition of solvent-free Ni or Co(acac)2 layers that is summarized in Table 1. As pointed 

out before, ethanol-assisted CVD of Co(acac)2 leads to a lower amount of metallic Co in the 

deposit than plain thermal treatment of a Co(acac)2 layer at the same temperature. Possibly, 

the high sensitivity of cobalt to oxidizing agents plays a major role here. Ethanol is added for 
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the CVD process because hydrogen is formed upon the decomposition of ethanol (Equation 3) 

and acts as a reducing agent. However, also water is a product of EtOH decomposition (and 

may be also be present as contamination in the precursor solution) and acts as oxidizing agent 

[PIII],[49,52]. The observation that thermal decomposition of the ethanol-free precursor layer 

produces higher metal contents than obtained during CVD indicates that oxidation reactions 

by the presence of water (Equation 5) dominate over the reduction of Co2+ by protons 

(Equation 4) delivered by catalytic ethanol decomposition at Co (Equation 3) [PIII]. On SiOx, 

reaction between surface OH-groups could lead to the formation of siloxane bonds and 

molecular water [79]:  

H2O + silica → HOH-silica    (6) 

However, according to the study of L.T. Zhuravlev [79] there is neither physisorbed nor 

chemisorbed H2O on top of SiOx in vacuum at temperatures above 190 °C and only a low 

density of free single or geminal OH-groups is stable at and above 400 °C. Therefore, it could 

be assumed that in presented experiments at the temperature regime of precursor layer 

deposition (115 °C) and in particular when the substrate is heated to 310 °C in UHV for the 

thermal decomposition of the precursor film, the amount of water on the substrate surface is 

reduced to such low levels that oxidation of precursor metal centers is negligible. 

In summary, the injection of liquid precursors using pulsed spray was successfully applied for 

preparation of solvent-free layers of undecomposed M(acac)2 precursor. This method opens 

up acetylacetonates layers to qualitative and quantitative analysis by a variety of UHV-based 

surface science tools. A qualitative comparison of thermally initiated and electron beam-

induced precursor decomposition and metal center reduction was carried out and shows that 

the level of carbon impurities in experiments of post-deposition electron-induced precursor 

decomposition was notably low compared to reports for continuous EBID processes. 

Therefore, it could be suggested that at least in the laboratory the metal acetylacetonate 

deposition followed by post-deposition irradiation with a focused electron beam and 

subsequent removal of intact precursor by dissolution in ethanol or by heating may constitute 

an interesting electron beam lithography technique for the production of the metal 

nanostructures. 
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Concluding remarks 

This PhD thesis based on the joint project between Universities Bremen and Bielefeld was 

aimed at contributing to the mechanistic understanding of the growth conditions of metallic 

films synthesized by the previously established technique of pulsed spray evaporation 

chemical vapor deposition (PSE-CVD). Nickel and cobalt were selected as an example to study 

links between the macroscopic deposition conditions and the microscopic processes involving 

the precursor, surface properties and the growing thin film. 

To combine macroscopic and microscopic approaches, here it was a need to design and build 

up new apparatus, as a consequence of the joint studies, combining deposition and material 

characterization under growth conditions. In particular, novel, compact and modular 

deposition reactor was successfully constructed that permitted in situ surface diagnostics 

while performing PSE-CVD. This reactor was directly attached to a UHV chamber with a 

transfer mechanism that allowed to systematic study of the film growth at any stage of the 

deposition process without contamination, and enabled more reliable, detailed 

characterization of the pertinent parameters of influence. With this novel reactor established 

in Bremen, systematic investigations using surface analysis were conducted under growth 

conditions that had been identified in Bielefeld. Therefore I am particularly grateful to all 

collaborators providing this project. 

The present work addressed important features of the growth process including the influence 

of various CVD parameters on the growth kinetics, such as the nature of the metal centre, the 

temperature sensitivity of carbon contamination, the function of ethanol, both as a solvent as 

well as a catalytic agent, influence of nickel as a seed layer for different combinations of 

boundary conditions, the role of water on CVD of Ni and Co thin films from ethanol solutions. 

Furthermore, investigation of the mechanisms of PSE-CVD from acetylacetonate metal 

precursors in ethanol, as well as thermal and electron beam-induced decomposition of 

solvent-free layers of intact Co(acac)2 and Ni(acac)2 was performed. 
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