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Abstract

Many autonomous robots are currently designed based on the system architect’s
individual experience and knowledge, taking into account given factors such as
application and environment. The complexity of robots, but also the diversity of
systems, applications and fields of use, make it difficult to compare these individual
solutions and to transfer architectural approaches to new system designs.
This thesis answers the research question of how the knowledge about robot archi-
tecture contained in existing systems can be made accessible. The developed process
enables the systematic capturing of the architecture of autonomous robot systems.
The resulting structured architecture descriptions make it possible to identify similar-
ities and differences in the architectures of different systems despite the complexity
and heterogeneity of robots.

The methodology chosen is an extension of the Architecture Framework concept.
This approach, which originates from the field of software development, is used to
capture the architectures of distributed software systems. This work transfers and
extends the approach to the domain of robotics by defining a Robot Architecture
Framework. The architecture description process based on this framework enables
the architecture of existing robotic systems to be identified.
The applicability of the process is demonstrated using three very different robotic
systems. It is shown that compact architecture descriptions can be generated despite
the complexity and heterogeneity of the systems. In addition, the broad applicability
of the defined process is also conceptually validated.





Zusammenfassung

Viele autonome Roboter werden derzeit auf Grundlage der individuellen Erfahrung
und des Wissens des Systemarchitekten unter Berücksichtigung gegebener Faktoren
wie Anwendung und Umgebung entworfen. Die Komplexität von Robotern, aber
auch die Vielfalt von Systemen, Anwendungen und Einsatzgebieten erschweren den
Vergleich dieser individuellen Lösungen und die Übertragbarkeit von Architekturan-
sätzen auf neue Systemdesigns.
In dieser Arbeit wird die Forschungsfrage beantwortet, wie aus bestehenden Systemen
das darin enthaltene Wissen über die Roboterarchitektur zugänglich gemacht werden
kann. Der entwickelte Prozess ermöglicht die systematische Erfassung der Architektur
autonomer Robotersysteme. Die resultierenden strukturierten Architekturbeschrei-
bungen erlauben es, trotz der Komplexität und Heterogenität von Robotern, Gemein-
samkeiten aber auch Unterschiede in den Architekturen der verschiedenen Systeme
zu identifizieren.

Die gewählte Methodik ist eine Erweiterung des Architecture Framework Konzepts.
Dieser aus dem Bereich der Softwareentwicklung stammende Ansatz dient der Er-
fassung von Architekturen verteilter Softwaresysteme. Diese Arbeit überträgt und
erweitert den Ansatz auf die Domäne der Robotik durch die Definition eines Robot
Architecture Frameworks. Der darauf aufbauende Architekturbeschreibungsprozess
ermöglicht die Erfassung der Architektur existierender Robotersysteme.
Die Anwendbarkeit des Prozesses wird exemplarisch an drei sehr unterschiedlichen
Robotersystemen demonstriert. Es wird gezeigt, dass trotz der Komplexität und
Heterogenität der Systeme kompakte Architekturbeschreibungen erzeugt werden
können. Darüber hinaus wird die breite Anwendbarkeit des definierten Prozesses
auch konzeptionell nachgewiesen.
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Chapterone

Introduction

Humanoid robots that can perform tasks in industry as well as in everyday life are a
great dream of mankind. Several large companies and start-ups are currently working
on the development of such robots. New videos showing the impressive progress
of these systems are released on a regular basis. Despite the efforts being put into
the development of these systems, there is still a long way to go before humanoid
robots can be a real help. At the moment, considerable efforts have to be made in
order to show individual demonstrations with these systems, where the tasks and
environments are simplified in comparison to the real application. So far, it has not
been possible to give humanoid robots the ability to master the complexity of their
own hardware and software and thus to solve tasks in real applications.

Parallel to this development, humans have succeeded in developing machines that
make their work easier. However, these are not modeled on humans. It was with the
industrialization that changed the nature of work. Instead of unique handcrafted
items, it became possible to manufacture standardized products in large quantities.
The necessary work steps could be distributed to different people and gradually
also to machines. This classic automation, in which each work step is carried out
by a machine specialized in precisely this task, further increased productivity, but
was usually only financially worthwhile for very large quantities. Even quantities
of several hundred products per day, such as in large automobile factories, do not
justify this expense and are therefore still heavily based on human labor today.

The early 1960s saw a new development, the first industrial robots. These machines
can carry out any movement within their workspace, taking kinematic restrictions into
account. The same machine could therefore be used for many different tasks, which
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could then be programmed according to the application. Whether intentionally or
implicitly dictated by the requirements, these machines often resemble an arm, which
brings us closer to the idea of an artificial human being, at least from a mechanical
point of view. The requirement for these robots is to achieve high positioning accuracy
for a large payload at the highest possible speed. These high requirements from a
mechanical point of view have led to control technology taking on a central role
in robotics at an early stage. It is no longer just the stiffness of the mechanics that
determines the positioning accuracy, but the superimposed control system can correct
position deviations on the basis of sensor measurements. This closed feedback loop
is the first step towards an autonomous robot, as the system is able to correct its
position by itself. However, classic industrial robots are not considered autonomous
robots, as the actual tasks, such as transporting or processing workpieces, must be
specifically programmed. If a parameter such as the environment, the workpiece, etc.
changes, the program must be revised or recreated by a human.

International competition is accelerating product cycles. In addition, digitalization
allows for increased configuration and individualization of products. High quantities
of identical products are becoming rarer as a result. In future, the industry will need
more flexible production that meets these requirements. Initial approaches include
the expansion of robot systems with additional sensors. This incremental integration
leads to an increase in system complexity, which is no longer manageable in a highly
flexible production. In practice, human workers are therefore still predominantly
used for such tasks.
The old dream of mankind to build a machine that also resembles human labor in
its flexibility is thus clearly gaining ground again. In addition, this development is
reinforced by other factors such as the aging of society in industrialized countries or
the exploration of space. The motivation to develop autonomous robotic systems with
human-like flexibility for certain tasks is thus emerging from completely different
areas.
However, there is currently no commercially available system that even comes close
to meeting these requirements. Autonomous robots in real applications can only
perform less complex and very specialized tasks so far. The flexibility of these
systems is limited to being able to perform their tasks under different environmental
conditions. For example, these systems can vacuum, clean homes or mow the lawn
autonomously without the support of robotics experts. Autonomous driving of
cars is also conceivable in the near future. The focus in the development of these
systems is on being able to perform specific tasks reliably despite a partially unknown
environment. More complex tasks, such as the targeted manipulation of the physical
environment, cannot yet be solved by autonomous systems.
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1.1 Problem Statement

The development of robots that are able to solve more complex tasks autonomously
has therefore been a central research area in robotics for a long time. Various
approaches are being pursued to achieve this goal. Particularly in the hardware
sector, but also in parts of AI research, attempts are being made to use humans as
a model. The idea behind this is that if you imitate humans closely enough, you
can create a machine that is capable of performing human-like tasks. So far, this
approach has failed, at least from a practical application perspective, due to the
enormous complexity of humans.
Another approach is to consider the required functions separately. In robotics research,
methods of mechanics, control engineering, perception, motion planning, etc. are
being further developed for this purpose. Great progress has been made here in
recent years, which has also been supported by the development of computing power.
The great advantage of this approach is that the problem can be broken down into
individual, manageable sub-problems. This separation of the problem also makes
it easier to present, compare and document the solutions. Much of the scientific
work in robotics therefore deals with subproblems and the development of methods
for special problem classes. This approach is correct and important, as the overall
problem cannot be solved without an existing solution for sub-problems. However,
the reverse conclusion, that if the identified sub-problems are solved, the overall
problem is solved, is wrong and there are several reasons for this, which are listed
here in a very abbreviated form:

1. Unknown subproblems:
Some subproblems are easy to identify and are also investigated in other areas
such as classical automation technology. However, there is no approach to
prove the completeness of this subdivision. It is therefore likely that important
subtopics will not be identified. Small gaps between the various sub-areas in
particular can be difficult to identify.

2. Unrealistic or irrelevant goals, prerequisites and conditions:
In order to be able to consider a subproblem, assumptions must be made about
the interfaces. This applies to the prerequisites and conditions as well as the
goals to be achieved. For example, perception methods are often tested on data
sets. These typically consist of images and ground truth positions of the objects
depicted. However, the advantage of being able to test different methods
in a standardized way bears the risk that methods are optimized or even
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developed for the test. Other methods that may be better suited to the overall
system and are more robust against sensor errors, occlusions and changing
lighting conditions, for example, are not identified and further developed. The
objectives of the sub-topics can also drift apart due to the separation. For
example, in path planning, proving the probabilistic completeness of a planner
is an academic goal. For the application of the planner on a robot, however, it
is irrelevant whether the planner finds a solution after an infinitely long time
or not.

3. Dependence between components:
Even if the conditions have been chosen realistically, this does not mean that
the combination of components will work. Often, trade-offs have to be made
between different goals, e.g. accuracy vs. speed. Since one component often
provides the input for another component, there are dependencies that must
be considered in their entirety.

4. Non-disjoint problems:
Some sub-problems overlap with others and therefore cannot be considered
separately. For example, viewpoint planning depends on perception, kinematics
and the environment. These sub-problems become more complex the more
different sub-problems have to be integrated or combined.

The conceptual analysis of the overall system, i.e. the robot architecture, is therefore
a central aspect of research in the field of autonomous systems. The first approaches
to this are the classic robot architectures, which form the basis for early autonomous
systems such as Shakey the Robot [90]. Later, different approaches were combined
in various architectures in so-called layers, e.g. 3T architecture [13]. To counter
the increasing complexity of the software of autonomous systems, approaches from
software engineering were also increasingly used in robotics. For example, software
frameworks support the development of modern robot systems by providing tools
and structural standards. Model-based approaches separate the design and imple-
mentation of robot software and robotics ecosystems are intended to enable different
stakeholders to contribute to robot solutions without solving the overall problem.
In summary, however, it can be stated that there is currently no generally accepted
standard architecture for autonomous robotic systems. The most widespread are
currently software frameworks such as ROS, which explicitly leave the majority of
architectural decisions to the respective developer.

There are many reasons for this, including the complexity and diversity of robot
systems. In addition, robots are used in a wide variety of environments for a wide
variety of tasks. A Mars rover has different requirements in terms of reliability and
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speed than a service robot in a restaurant. It is therefore obvious that the architecture
of the two systems should also differ.

Autonomous robot systems are therefore developed and built individually for the
respective application. The current state of the art can be summarized well with a
quote from the current edition of the Springer Handbook of Robotics:

“Designing a robot architecture is much more of an art than a science . . . the de-

cisions made by a developer of a robot architecture are influenced by their own

prior experiences, their robot and its environment, and the tasks that need to be

performed.” — Kortenkamp, Simmons, and Brugali [62]

The development and design of an autonomous robot is essentially based on the
developer’s experience. This makes it possible to build a system that fulfills its tasks
under the given conditions. For example, there are robots that clean [72], help
around the house [61], make coffee [41] or assist with construction work [14].
These impressive demonstrations push the boundaries of what is possible and show
that robots are, in principle, capable of solving these tasks. All of these systems are
based on the latest technologies in the various subcategories (perception, knowledge
representation, control technology, etc.). The individual components of these systems
are partly described in scientific publications and can be used, compared and further
developed by others.

However, knowledge about the architecture of these systems is difficult to access.
Videos and demonstrations of the systems show the results achieved. Yet the system
architecture and its contribution to the result are difficult to deduce. Publications
provide a deeper insight into the system, whereby the focus here is on new contribu-
tions to the state of research. A complete description of the architecture cannot be
found in publications either. The software of some systems is completely open source.
Insight here is naturally limited to the software components and their architecture.
In addition, these software frameworks are often very extensive. Basic concepts that
are transferable to other systems are therefore difficult to identify. A more detailed
look at related work can be found in Chapter 2.
In summary, it can be said that it is currently difficult to learn about architecture
from existing robotic systems due to the lack of accessible information. This applies
both to the development of new systems and to the evolution of existing systems.
This leads also to a lack of comparability of system concepts.
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1.2 Contributions

The main contribution of this work is a process for describing the architecture of
robots in a structured way, in order to make the architectural knowledge contained
in existing robotic systems accessible. These explicit architecture descriptions serve
several purposes:

When developing a new system, it is possible to consider which aspects have been
taken into account by other systems. This helps to consider all important aspects
already in the design phase. If the requirements are compatible, existing concepts
can be adopted, adapted or extended. If no solutions are available in existing systems,
it becomes explicitly clear for which aspects new concepts have to be developed.

Explicit architecture descriptions are also useful for existing systems. On the one
hand, new findings from other systems can be integrated, provided they are suitable
for the respective robot. But the architecture description is also helpful for the
evolution of a system. For example, if the tasks of a robot change, the architecture
description can be used to systematically check which concepts are still valid and
where conceptual changes are necessary.

In addition to the development of robot systems, architecture descriptions also help
to compare systems at a conceptual level. The explicit description allows to identify
and compare different approaches to similar problems. Conversely, the general
applicability of sub-concepts across very different systems can also be demonstrated.
The structured description also makes it possible to focus on relevant aspects of the
system solution without having to consider the entire system in each case.

To achieve this, the following requirements apply to the architecture description:

1. It must be compact enough that complex systems can be described.

2. It must be possible to describe very different systems.

3. It must be possible to describe the system in sub-aspects.

This work therefore aims to develop a process that makes it possible to capture the
architectures of complex robots in such a way that the resulting descriptions fulfill
these requirements.

To achieve this goal, several individual steps were taken. First, a suitable methodology
for the process definition was identified. This is based on the Architecture Framework
approach, which was developed for distributed software systems and standardized
in ISO 42010. In a second step, this approach was transferred to the field of
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robotics by defining a Robot Architecture Framework (RoAF). With the help of this
framework, a process was then developed that can be applied to a wide variety of
robot systems and makes it possible to generate structured architecture descriptions
of these robots. Finally, the process is verified both exemplarily on the basis of three
created architecture descriptions and conceptually on the basis of the methodology
used with regard to the fulfillment of the requirements. In addition, validation is
carried out with the goal of making the architectural knowledge contained in the
systems utilizable.

1.3 Thesis Outline

The structure of the work is based on the described approach and is organized into
the following chapters.

Chapter 1: Introduction contains an introduction to the topic, describes the prob-
lem and the contributions of this work

Chapter 2: Related Work gives an overview of various works that deal with the
topic of the architecture of robotic systems.

Chapter 3: Foundations of the Robot Architecture Framework presents the method-
ological and conceptual foundations of this work. This is the concept of the
architecture framework on the one hand and the explicit definition of the
robotics domain on the other.

Chapter 4: The Robot Architecture Framework describes the full RoAF and its
components. These are the domain-specific stakeholders and concerns as well
as the architecture viewpoints and architecture model abstraction types used.

Chapter 5: Robot Architecture Description Process defines the architecture de-
scription process based on the RoAF.

Chapter 6: Verification and Validation verifies the RoAF with regard to the identi-
fied requirements for architecture descriptions and validates it with regard to
the goal of making knowledge from existing robot systems accessible.

Chapter 7: Discussion & Future Work discusses the decisions made for the RoAF.
In addition, possible next steps for the further development of the RoAF but
also for the general topic of robot architecture are given.
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Appendix: Architecture Descriptions contains the architecture descriptions cre-
ated for the evaluation of the RoAF. These are a complete architecture de-
scription of the industrial, mobile manipulator AIMM, the mission view of the
exploration rover LRU2, and the hardware view of the drone ARDEA.

Glossary: All technical terms used in this work are listed and defined in the glossary.
In the text, the technical terms are in italics and in Camel Case and provided
with a link to the corresponding glossary entry.
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Chaptertwo

Related Work

The systematic description of architectural concepts of existing systems has so far
received little attention in robotics. However, the topic of robotics architecture
itself has been discussed in robotics from the very beginning. The focus is on how
architectural concepts can be used to develop systems. In contrast, RoAF defines
a process for deriving architectural concepts from existing systems. Despite this
opposed approach, the connecting element is the architectural concept itself. Hence,
this work can be used to identify relevant aspects for robot architectures, as these form
the basis for the description process. Therefore, this chapter provides an overview
of the various works on robot architectures. Firstly, the classic robot architectures
are presented, each of which defines how the components of a robot should interact.
Then, different types of software frameworks are presented that specify robotic
architectural decisions to varying degrees.

In addition to the works that explicitly deal with robot architectures, there are a
large number of publications that describe the systems themselves. These often
also contain sections that describe the architecture of the respective system. For a
variety of reasons, the approach of creating architecture descriptions based on these
publications was not chosen for the RoAF. Therefore, in this chapter the problems
of extracting architectural knowledge from system publications are discussed using
various systems and their publications.

Since no suitable methodology for describing the architectures of existing systems
could be found in robotics, an approach from another domain was chosen. This is the
concept of the architecture framework, described in ISO 42010, which was developed
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for distributed software systems. One of the advantages of this concept is that it has
already been applied to a variety of domains. In this thesis, the concept is applied
to the domain of robotics in order to develop a systematic architecture description
process. This chapter therefore gives some examples of how system architectures
outside robotics are described using architecture frameworks.

2.1 Classical Architectures of Autonomous Robots

In the early days of the development of autonomous robotic systems, the architecture
of the system was an important topic and the subject of numerous publications and
discussions. The architecture issue was closely linked to the question of how artificial
systems could achieve intelligent behavior. The classical approach according to the
sense-reason-act paradigm was used, for example, in Shakey the Robot [90] depicted
in Figure 2.1. The robot architecture consists of dividing the system into a module
for perceiving the environment, a module for planning behavior and a module for
executing actions (Nilsson [89]). The perception module integrates information into
a world model. Based on this world model, a logical planner such as STRIPS [42]
creates a plan. This plan is then executed by the action module. With this approach,
systems can perform tasks in a targeted manner, but this approach also has some
weaknesses and open questions that have not been answered to date, e.g. there is
the problem of symbol grounding (Harnad [52]), incomplete knowledge is difficult
to represent and dynamic environments lead to permanent replanning.

To address some of these problems, Brooks developed the subsumption architecture
[17]. Sensor data is used directly to trigger actions. By superimposing different
modules of different abstraction levels, which are executed in parallel, systems can
also solve tasks, such as navigation in an office environment. The intelligent behavior
of the system is achieved without an abstract representation of the environment or the
capabilities [19]. A planning component is also not required [18]. The architecture
thus solves some of the problems of the classical approach, e.g. the symbol grounding
problem. However, the architecture shows weaknesses when it comes to solving more
complex tasks such as manipulation tasks. The behavior becomes unmanageable due
to the lack of subdivisibility (Hartley and Pipitone [53]).

This complementarity of the two architectures formed the basis for research in the
1990s. Numerous architectures were presented that attempt to combine the advan-

1source: https://images.computerhistory.org/revonline/images/x279.83p-03-01.jpg?w=600
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Figure 2.1: Shakey1was one of the first autonomous robotic systems developed by the
Stanford Research Institute in the late 1960s (Nilsson [89]). It already consisted of many
components that still define complex autonomous systems today. The robot had a mobile
base, various sensors and interfaces that enabled text-based task assignment. The interac-
tion of various software components such as image processing, logic planner and world
model enabled the robot to move boxes in an office environment in a targeted manner. The
resulting complexity was addressed by a first robot architecture based on the sense-plan-
act paradigm.

tages of the respective approaches. To achieve this, the system is often divided into
different layers. The lower layers implement the reactive behavior, the upper layers
the planned actions. For example, the Atlantis architecture ([47],[45]) introduces
three layers: controller, sequencer and deliberator. The SSS architecture [29] intro-
duces three layers that divide the system behavior into the Servo, Subsumption and
Symbolic levels. The Task Control Architecture [118] divides the tasks into hierar-
chical subtasks, which are also executed in parallel, and thus achieves a connection
between the symbolic level and the reactive behavior. Other architectures divide
the system into two layers, e.g. Firby and Slack [43] into the planning level of the
Reactive Action Packages and an underlying level of the Reactive Skill Networks.
Probably the best-known representative of these architectures is the 3T architecture
[13], which defines the Reactive Skills, Sequencing and Deliberation levels. The
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LAAS architecture [3] also belongs to this category of architectures and divides the
system into a functional level, an execution control level and a decision level. A good
overview of these different architectures can be found in Gat [46].

At the beginning of the 2000s, there was a clear change of direction in the develop-
ment of robot architectures. This is well described in the publication “Architecture,
the backbone of robotic systems” [30]. On the one hand, it describes the great
importance of architecture for the development of autonomous systems. On the other
hand, it also highlights the difficulties involved in architecture development. From
the large number of architectures presented, it becomes clear that there is no one
single correct architecture, but that different combinations of concepts are required
depending on the system and application. Coste-Maniere and Simmons [30] propose
a framework that makes it possible to combine different concepts. At the same time,
the complexity of robotic systems has become increasingly important and expands
the requirements to architectures to include the ability to master software complexity.

A later representative of these architectures is the CLARAty architecture [139], which
is also one of the first robotic software frameworks. Purely architectural publications
have been very sparse in the last two decades. Contributions on robotics architecture
are mostly integrated into software frameworks or system papers.
More recent architectural descriptions are the Interaction-oriented Cognitive Ar-
chitecture [92],[93], which is aimed at systems with human-robot interaction. A
derivative of CLARAty is the Intelligent Robot System Architecture (IRSA) [5], which
has been implemented on some NASA JPL robotic systems, e.g. by Karumanchi et al.
[60]. Another example is the FLEXHRC+ architecture [33], which is suitable for
human-robot collaboration, e.g. in furniture assembly. All of these architectural
descriptions are individual solutions in a specific context. Comparability or even
approaches for systematically developing architectures are not yet available. The
current state of research is summarized by Kortenkamp, Simmons, and Brugali [62]
as follows:

“Designing a robot architecture is much more of an art than a science . . . the de-

cisions made by a developer of a robot architecture are influenced by their own

prior experiences, their robot and its environment, and the tasks that need to be

performed.” — Kortenkamp, Simmons, and Brugali [62]

Based on the findings of classical architectures, the RoAF does not define the universal
architecture for autonomous robots, but enables the description and comparison of
different architectures and their respective contexts.
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2.2 Robotic Software Frameworks

Classical architectures define which components are used to implement robotic
behaviors. In addition, there are usually structures such as layers for different
aspects, e.g. a deliberative layer for symbolic representations. This defines the
architecture of a robot in an abstract way. Technical aspects such as how to implement
communication between modules are not considered.

Over the decades, autonomous robot systems have become increasingly complex.
This applies to the hardware, which has evolved from simple mobile robots to walking
humanoids. Above all, however, the robotics software has developed from simple
systems with a manageable number of interconnected components to distributed
software systems with often more than 100 flexibly interacting modules, which poses
new challenges for robotics.

The complexity of these systems must be mastered both in operation and during
development, modification or expansion. Individual components and partial so-
lutions should be reusable and solutions from others should be easy to integrate.
Furthermore, autonomous robots today are the result of teamwork. It must therefore
be possible to distribute development among several people.

Software frameworks are used in software development for this purpose. They enable
the implementation of specific applications, but provide a framework in the form of
design patterns or structures. This facilitates the exchange of individual system parts
and enables the definition of roles with responsibilities. This led to the introduction
of software frameworks for developing robot software in the early 2000s.

Unfortunately, individual terms such as “framework” and “architecture” are in some
cases used for different things in the literature. According to ISO 42010, an Architec-
ture Framework is the methodology for harmonizing different Architecture Descriptions
of systems in a domain. A software framework, on the other hand, is used to make
software development more efficient by providing structures, tools or even partial
solutions. These are initially two very different things that only share the term
framework.

This work applies the concept of the Architecture Framework to the domain of robotics
and thus defines a Robot Architecture Framework. Software frameworks that have
been developed for the development of software for robot systems are accordingly
referred to as robot software frameworks. One framework is used to describe
robot architectures, the other to develop software for robots. However, software
frameworks usually define structures that determine the software architecture of
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the software developed with them, for example to enable the interchangeability of
components.

A software framework that is used on a robot thus defines the software architecture
of the robot to a certain extent. This extent differs significantly between the various
robotic software frameworks and is used in this section to categorize the software
frameworks into three different categories.

If the architecture refers to the technical implementation of the software on the
system, such as communication patterns or package management of the individual
components, then this is largely orthogonal to classic robot architectures. In the
following, these software frameworks are presented as architecture-agnostic software
frameworks.

Other software frameworks define in detail which components exist on the system
and how they are linked. In doing so, they define to a large extent the aspects
addressed by the classical architectures, partly explicitly but often also implicitly
through the implementation of the software framework itself. In the following, these
software frameworks will be referred to as robot architecture software frameworks.

The third category of software frameworks are the model-based software frameworks.
These separate the conception of a system and the implementation itself. The robot
architecture is therefore not fully defined by the software framework but can differ
from system to system. However, the conception is governed by rules and structures
and thus defines a part of each system architecture.

In the following, various works from each of these three software framework cate-
gories are presented.

2.2.1 Architecture-agnostic software frameworks

This category of robotics software frameworks focuses strongly on the interchange-
ability of components and the cross-institutional development of robotics software
solutions. Here, the framework primarily serves to ensure interchangeability and com-
patibility between different solutions and thus increases the reusability of solutions.
The robot architecture itself takes a secondary role.

The idea of OROCOS [25] was to create an open source platform that enables
software components to be integrated into the framework in a reusable manner. This
should enable various stakeholders, such as industry and research, to make their
contributions available. These modules are then combined in components. Instead of
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specifying a robotic architecture, the idea was to create patterns similar to software
patterns that support the design of a system.
YARA [28] is another example of a software framework that hardly specifies a robotic
architecture, but instead focuses on the interchangeability of components and a
communication solution.
The best-known and most widespread representatives of these software frameworks
are ROS [32], [31] and ROS2 [76]. ROS is primarily a middleware and does not
define much architectural specifications. This means that ROS components can be
easily integrated into systems. However, reusability is limited to individual modules.
Even at the middleware level, ROS itself defines only few architectural concepts. For
this reason, Malavolta et al. [77] has examined a large number of ROS software
repositories and presented guidelines for the development of ROS-based systems.
Non-robotics-specific software frameworks that focus on the middleware of a system,
e.g. based on the DDS or OPC-UA standards, are also used in robotics.

2.2.2 Robot architecture software frameworks

The fundamental idea of this category is that software frameworks can be used in
robotics not only to solve software engineering problems, but also to apply constraints
of a robot architecture to systems. This variant of software frameworks therefore
defines the robot architecture of the respective target system. CLARAty [139] is
an early representative of these software frameworks and at the same time a late
representative of classical robotics architectures. The framework allowed to use the
CLARIty architecture on various rovers (Nesnas et al. [88]).
The “Software Architecture framework for service robots (SAFSR)” [73] is used in
the ASORO lab for various service robots with different tasks. The framework divides
the software into different layers (Device, Modality, Execution & Control, Cognitive).
In addition, various modules are defined within the layers, e.g. Attention Directed
Dialog Modules.
Another robotic architecture software framework consisting of KnowRob [127], [6]
and CRAM [7] is used on the robots of the Institute for Artificial Intelligence at the
University of Bremen. One focus of these frameworks is on ontology-based knowledge
representation. The main area of application of the frameworks are robots that are
intended to perform household tasks.
A framework for autonomous robot systems in an industrial context is SkiRos [97]
and the subsequent development SkiRos2 [80]. This framework also uses an ontology-
based knowledge representation. SkiRos2 has been used on various robot systems in
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an industrial context that perform logistics tasks and simple assembly tasks.
The ARMAR-X framework [136] developed and used at KIT’s H2T also defines the
architecture in layers (middleware, robot framework, application). This framework is
also used on various robots at the H2T lab. The focus here is on humanoid robots. An
important component of the robot architecture software framework is the memory of
the robot MemoryX [91].
The common characteristic of all these frameworks is that they are very complex
software systems. Therefore, these types of frameworks, even if they are open source,
are mainly used by their developers. A broad community or even a widespread
standard solution has not been established yet. However, due to the complexity of
these systems and the close integration of architecture and implementation, it is
very difficult to evaluate, compare or learn from the influence of the architecture
solution of the respective framework separately. In industry, the approach of robot
architecture software frameworks, although for less complex systems, is already
being used by various providers, e.g. Artimind2, Instrinsic3, to offer more efficient
solutions for a wide range of robot systems.

2.2.3 Model-based software frameworks

Another category of robotics software frameworks are model-based approaches.
Model-based approaches also focus on the interchangeability and reusability of com-
ponents or entire partial solutions. However, this is not achieved directly through
the implementation of the software framework, but through an implementation-
independent modeling of the system. The implementation is then carried out on the
basis of the model and is supported by the tools of the framework.

The SmartSoft project [103] implements this approach by developing the software on
the basis of models rather than code. To create the software for a system, models are
first created at various levels of abstraction. The components and their connections
are derived from these models. The code is then created or generated from this
description. All these steps are supported by a software tool chain. Thanks to
implementation-independent modeling, devices and middleware can be connected
and exchanged at a later stage. In order to ensure the combinability of the various
components, structures and thus the robot architecture are partially predefined
compared to the architecture agnostic frameworks (Lutz et al. [74]).

2https://www.artiminds.com/
3https://www.intrinsic.ai/
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RobMoSys is continuing to develop these ideas with the aim of creating a software
ecosystem that can be used to put together individual system solutions for different
areas of application (Schlegel et al. [102]). The different roles make it possible to
contribute the respective expertise without having to know the overall solution. The
robot architecture is defined in so-called architectural patterns.

Another example of a model-based software framework was developed in the BRICS
project [8]. The aim of the project was to formalize the development process of
robot systems and to support it with software tools. The BRICS Component Model
[26] was developed for this purpose. The robot’s software is modeled using models
of different levels of abstraction. The software itself is then generated using the
BRIDE software tools. The component model itself was extended in later work by
composition patterns (Vanthienen, Klotzbuecher, and Bruyninckx [137]). With these,
it is also possible to model the interaction of components.

More recent examples of model-based approaches are Architecture Description Lan-
guages, e.g. Adam et al. [1], Monthe, Nana, and Kouamou [81].

2.2.4 Robotic Software Frameworks in general

The studies by Brugali et al. [22] and Ahmad and Babar [2] provide an overview of the
numerous robotic software frameworks. However, all robotic software frameworks
have some limitations from the perspective of a robot architect.

Software focus Software frameworks have a strong focus on the robot’s software.
However, the software and its architecture are only one part of a robotic system.
Important architectural decisions are therefore not covered by the software
frameworks.

General applicability The goal of most software frameworks is to cover a wide
range of applications, i.e. to provide solutions for different domains and robotic
systems. Since the architecture is defined at the framework level, individual
adaptations of the architecture to system requirements are difficult. Therefore,
the architecture of software frameworks must be designed more generically
than for individual systems, and system-specific design decisions cannot be
represented in the software framework itself.

Unclear limitations Robotic software frameworks have limitations. Every structure
comes with advantages and disadvantages. However, these considerations are
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usually not documented for software frameworks. The applicability of the
vast majority of software frameworks is also only proven by a relatively small
number of systems.

Incompleteness Software frameworks do not completely define the architecture of
a system. There is currently no software framework that allows a complete
robot and its architecture to be designed. Some gaps, e.g. the missing hardware
aspect, are obvious. Other aspects e.g. resource requirements or real-time
capability are less obvious. Although some software frameworks consider
these aspects, others do not. As the gaps are not documented it is difficult to
categorize a software framework.

In summary, it can be said that software frameworks have made today’s complexity
of robot systems and thus progress in applied robotics possible. However, a standard
solution for the development of robot systems has not yet emerged. Due to the
complexity, it is also difficult to assess the contribution of different aspects of a
framework to the system solution. The most widely used software framework
in research, ROS, specifies very few architectural decisions. The success of this
framework therefore lies more in its ease of use, a large community, useful tools and
a high degree of freedom for the respective system developer. However, it is hardly
possible to derive any insights into what makes a good system architecture.

RoAF focuses on describing the architecture of existing systems. The development
of architectures and robots based on them is not the subject of this work. For this
reason the RoAF itself is not a software framework but contains aspects which are
addressed also by robotic software frameworks. Furthermore, the RoAF uses many
insights from the field of software engineering, from the concept of the Architecture
Framework to the various Software Concerns.

2.3 Robotic System Description

Another way to learn about the architecture of robots is to analyze existing robots.
According to ISO 42010, every realized system has an architecture. By looking at
current systems, it should therefore also be possible to derive the current state of
research on robot architectures. This has the advantage that it becomes clear for
which systems and applications the architecture was designed. In addition, the
completeness of the architecture is inherently given for a functioning overall system.

18



2.3. Robotic System Description

Title Category Reference

Integration and Assessment of Multiple Mobile Manipulators in a Real-World Industrial Production Facility system Bogh et al. [12]

Autonomous pick and place operations in industrial production system Dömel et al. [34]

Toward fully autonomous mobile manipulation for industrial environments system Dömel et al. [35]

Sequential scene parsing using range and intensity information method Brucker et al. [21]

Combining object modeling and recognition for active scene exploration method Kriegel et al. [63]

RAFCON: A graphical tool for engineering complex, robotic tasks method Brunner et al. [23]

Efficient next-best-scan planning for autonomous 3D surface reconstruction of unknown objects method Kriegel et al. [64]

Repetition sampling for efficiently planning similar constrained manipulation tasks method Lehner and Albu-Schäffer [67]

Experience-based optimization of robotic perception method Durner et al. [38]

Automated Benchmarks and Optimization of Perception Tasks method Durner et al. [39]

Implicit 3D Orientation Learning for 6D Object Detection from RGB Images method Sundermeyer et al. [123]

The Repetition Roadmap for Repetitive Constrained Motion Planning method Lehner and Albu-Schäffer [68]

Autonomous Parallelization of Resource-Aware Robotic Task Nodes method Brunner et al. [24]

Visual Repetition Sampling for Robot Manipulation Planning method Puang et al. [95]

6DoF Pose Estimation for Industrial Manipulation Based on Synthetic Data method Brucker et al. [20]

Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection method Sundermeyer et al. [124]

Unknown Object Segmentation from Stereo Images method Durner et al. [37]

Hybrid Planning System for In-Space Robotic Assembly of Telescopes using Segmented Mirror Tiles method Martínez-Moritz et al. [78]

Kinematic Transfer Learning of Sampling Distributions for Manipulator Motion Planning method Lehner, Roa, and Albu-Schäffer [70]

Robotic world models—conceptualization, review, and engineering best practices method Sakagami et al. [101]

CollisionGP: Gaussian Process-Based Collision Checking for Robot Motion Planning method Muñoz et al. [87]

Task-Level Programming by Demonstration for Mobile Robotic Manipulators through Human Demonstrations
based on Semantic Skill Recognition

method Mayershofer et al. [79]

Table 2.1: Publications related to the AIMM system

Robot systems are therefore potentially a very valuable source of advances in the
field of robot architecture. The main problem, however, is that this knowledge is
difficult to access. The reasons are elaborated in the rest of this section.
Robotic systems are mainly known to the outside world through their application.
For almost every robotic system, there are videos showing how tasks are solved by
the robot. But these demonstrations are not sufficient for more detailed insights into
the system. Therefore, at least for the systems that come from the research area,
there are one or more system papers for every more complex robotic system. In
addition, there are usually a large number of method papers that use the system itself
to evaluate a method or component.
Since a complete overview of system papers and, in particular, method papers is not
feasible, the publications of the systems considered in this work, AIMM, LRU2 and
ARDEA, are presented as examples:

Table 2.1 lists the publications of the AIMM system. A total of 22 system related
publications were found. Of these, 3 publications focus on the system and its
application. 19 publications focus on individual components or methods. For the
LRU2 system, see Table 2.2, 40 publications were identified. Of these, 12 concern
the system and its application. Individual components or methods are presented
in 28 publications. As shown in Table 2.3, the ARDEA drone can be found in 31
publications, 9 of which focus on the system and 22 describe methods and individual
components.
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Title Category Reference

Stereo-vision based obstacle mapping for indoor/outdoor SLAM system Brand et al. [15]

LRU – Lightweight Rover Unit system Wedler et al. [143]

The LRU Rover for Autonomous Planetary Exploration and Its Success in the SpaceBotCamp Challenge system Schuster et al. [113]

First Results of the ROBEX Analogue Mission Campaign: Robotic Deployment of Seismic Networks for Future
Lunar Missions

system Wedler et al. [145]

From single autonomous robots toward cooperative robotic interactions for future planetary exploration
missions

system Wedler et al. [146]

Mobile manipulation for planetary exploration system Lehner et al. [69]

Towards Heterogeneous Robotic Teams for Collaborative Scientific Sampling in Lunar and Planetary Environ-
ments

system Schuster et al. [114]

German Aerospace Center’s advanced robotic technologyfor future lunar scientific missions system Wedler et al. [144]

Preliminary Results for the Multi-Robot, Multi-Partner, Multi-Mission, Planetary Exploration Analogue Cam-
paign on Mount

system Wedler et al. [141]

Finally! Insights into the ARCHES Lunar Planetary Exploration Analogue Campaign on Etna in summer 2022 system Wedler et al. [142]

Mobile Manipulation of a Laser-induced Breakdown Spectrometer for Planetary Exploration system Lehner et al. [71]

Enabling Distributed Low Radio Frequency Arrays - Results of an Analog Campaign on Mt. Etna system Staudinger et al. [120]

ROBEX – COMPONENTS AND METHODS FOR THE PLANETARY EXPLORATION DEMONSTRATION MISSION method Wedler et al. [140]

Reachability and Dexterity: Analysis and Applications for Space Robotics method Porges et al. [94]

Multi-robot 6D graph SLAM connecting decoupled local reference filters method Schuster et al. [113]

Submap matching for stereo-vision based indoor/outdoor SLAM method Brand et al. [16]

RAFCON: A graphical tool for engineering complex, robotic tasks method Brunner et al. [23]

Software-in-the-Loop Simulation of a Planetary Rover method Hellerer, Schuster, and Lichtenheldt [55]

Experience-based optimization of robotic perception method Durner et al. [38]

Exploration with active loop closing: A trade-off between exploration efficiency and map quality method Lehner et al. [66]

Datasets of Long Range Navigation Experiments in a Moon Analogue Environment on Mount Etna method Vayugundla et al. [138]

Slip Modeling and Estimation for a Planetary Exploration Rover: Experimental Results from Mt. Etna method Bussmann et al. [27]

Distributed stereo vision-based 6D localization and mapping for multi-robot teams method Schuster et al. [116]

Relocalization With Submaps: Multi-Session Mapping for Planetary Rovers Equipped With Stereo Cameras method Giubilato et al. [50]

Rock Instance Segmentation from Synthetic Images for Planetary Exploration Missions method Boerdijk et al. [11]

A Photorealistic Terrain Simulation Pipeline for Unstructured Outdoor Environments method Müller et al. [86]

Design and Implementation of a Modular Mechatronics Infrastructure for Robotic Planetary Exploration Assets method Fonseca Prince et al. [44]

Multi-Modal Loop Closing in Unstructured Planetary Environments with Visually Enriched Submaps method Giubilato et al. [51]

Towards Robust Perception of Unknown Objects in the Wild method Boerdijk et al. [9]

URSim - A Versatile Robot Simulator for Extra-Terrestrial Exploration method Sewtz et al. [117]

Interactive OAISYS: A photorealistic terrain simulation for robotics research method Müller et al. [86]

GPGM-SLAM: a Robust SLAM System for Unstructured Planetary Environments with Gaussian Process Gradient
Maps

method Giubilato et al. [49]

ROSMC: A High-Level Mission Operation Framework for Heterogeneous Robotic Teams method Sakagami et al. [99]

Robotic world models—conceptualization, review, and engineering best practices method Sakagami et al. [101]

Terrain-aware communication coverage prediction for cooperative networked robots in unstructured environ-
ments

method Staudinger et al. [119]

Autonomous Rock Instance Segmentation for Extra-Terrestrial Robotic Missions method Durner et al. [36]

ReSyRIS - A Real-Synthetic Rock Instance Segmentation Dataset for Training and Benchmarking method Boerdijk et al. [10]

Uncertainty Estimation for Planetary Robotic Terrain Segmentation method Müller et al. [84]

A Laser-Induced Breakdown Spectroscopy (LIBS) Instrument for In-Situ Exploration with the DLR Lightweight
Rover Unit (LRU)

method Schröder et al. [111]

Table 2.2: Publications related to the LRU2 system
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Title Category Reference

Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue system Tomic et al. [129]

Towards Autonomous MAV Exploration in Cluttered Indoor and Outdoor Environments system Schmid, Suppa, and Burschka [108]

From single autonomous robots toward cooperative robotic interactions for future planetary exploration
missions

system Wedler et al. [146]

Integration of an Automated Valet Parking Service into an Internet of Things Platform system Tcheumadjeu et al. [126]

Towards Heterogeneous Robotic Teams for Collaborative Scientific Sampling in Lunar and Planetary Environ-
ments

system Schuster et al. [114]

ARDEA — An MAV with skills for future planetary missions system Lutz et al. [75]

The ARCHES Space-Analogue Demonstration Mission: Towards Heterogeneous Teams of Autonomous Robots
for Collaborative Scientific Sampling in Planetary Exploration

system Schuster et al. [115]

Preliminary Results for the Multi-Robot, Multi-Partner, Multi-Mission, Planetary Exploration Analogue Cam-
paign on Mount Etna

system Wedler et al. [141]

Finally! Insights into the ARCHES Lunar Planetary Exploration Analogue Campaign on Etna in summer 2022 system Wedler et al. [142]

View Planning for Multi-View Stereo 3D Reconstruction Using an Autonomous Multicopter method Schmid et al. [104]

State estimation for highly dynamic flying systems using key frame odometry with varying time delays method Schmid et al. [107]

Stereo vision based indoor/outdoor navigation for flying robots method Schmid et al. [109]

Autonomous Vision-based Micro Air Vehicle for Indoor and Outdoor Navigation method Schmid et al. [105]

A unified framework for external wrench estimation, interaction control and collision reflexes for flying robots method Tomic and Haddadin [128]

Learning quadrotor maneuvers from optimal control and generalizing in real-time method Tomić, Maier, and Haddadin [133]

Evaluation of acceleration-based disturbance observation for multicopter control method Tomić [130]

Local reference filter for life-long vision aided inertial navigation method Schmid, Ruess, and Burschka [106]

Simultaneous estimation of aerodynamic and contact forces in flying robots: Applications to metric wind
estimation and collision detection

method Tomić and Haddadin [131]

The flying anemometer: Unified estimation of wind velocity from aerodynamic power and wrenches method Tomić et al. [135]

External Wrench Estimation, Collision Detection, and Reflex Reaction for Flying Robots method Tomić, Ott, and Haddadin [134]

Robust Visual-Inertial State Estimation with Multiple Odometries and Efficient Mapping on an MAV with
Ultra-Wide FOV Stereo Vision

method Müller et al. [83]

Distributed stereo vision-based 6D localization and mapping for multi-robot teams method Schuster et al. [116]

Simultaneous contact and aerodynamic force estimation (s-CAFE) for aerial robots method Tomić et al. [132]

Efficient Terrain Following for a Micro Aerial Vehicle with Ultra-Wide Stereo Cameras method Müller et al. [85]

A Photorealistic Terrain Simulation Pipeline for Unstructured Outdoor Environments method Müller et al. [82]

URSim - A Versatile Robot Simulator for Extra-Terrestrial Exploration method Sewtz et al. [117]

Interactive OAISYS: A photorealistic terrain simulation for robotics research method Müller et al. [86]

ROSMC: A High-Level Mission Operation Framework for Heterogeneous Robotic Teams method Sakagami et al. [99]

Robotic world models—conceptualization, review, and engineering best practices method Sakagami et al. [101]

Terrain-aware communication coverage prediction for cooperative networked robots in unstructured environ-
ments

method Staudinger et al. [119]

Uncertainty Estimation for Planetary Robotic Terrain Segmentation method Müller et al. [84]

Table 2.3: Publications related to the ARDEA system
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Even if the analysis can only be carried out as an example, some problems can be
identified in extracting the architecture of robotic systems from the publications.

Amount of publications As shown as an example, there are a large number of
publications on large robotic systems. These contain widely varying amounts
of information regarding the architecture of the system. The effort involved in
finding and reviewing all these publications, extracting the relevant information
from the various publications and deriving an architecture from it is enormous.
And for many systems in particular, this is practically impossible.

Extent of the individual publication While the overall literature on a system has a
very large extent, the individual publications are limited by the specifications
of the conferences and journals. This limited extent makes it difficult to present
the entire architecture of a system in one publication. Ultimately, therefore,
the overall system is usually presented at a very abstract level in order to
then describe individual aspects of the system. Each individual publication
provides therefore only an incomplete description of the system. Therefore, the
architecture of the system cannot be derived from a single publication.

Publication period Complex robotic systems are often used and evolved over many
years. Accordingly, the publications are distributed over a longer period of
time. However, it is very difficult for external parties to recognize which
information from the publications reflects the current state of the system
and which information is outdated because newer concepts have replaced
it. Deriving the current architecture of a robot from a collection of literature
spanning 10 or more years is therefore very complex.

Publication focus Scientific publications must provide new insights that go beyond
what is currently known. This novelty must be proven, which is difficult with a
pure system description, as there are no generally accepted concepts for system
comparisons. Therefore, scientific publications often focus on which new tasks
can be solved with the system or which new methods have been used. The
system and its architecture take a secondary role, which in turn makes the
publication of system comparisons more difficult.

These principal problems lead to a very limited exchange of information on the
architecture of robot systems via scientific publications. The complete architecture
of complex robotic systems is usually only known to the direct developers of these
systems.

Even in robotics challenges such as the Amazon Picking Challenge or the Darpa
Subterranean Challenge, in which similar robot systems have to solve predefined,
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identical tasks and are evaluated on this basis, little can be learned about the
architecture of these systems despite extensive publications. Comparative work, e.g.
Eppner et al. [40], use individual aspects to categorize the systems, but a systematic
analysis with regard to the selected architectural approaches is not possible because
this knowledge is not accessible. The following quote illustrates this problem for the
Darpa Robotics Challenge (DRC) and the available publications:

“The descriptions of the DRC robotics software systems generally provide

implementation-specific solutions without reference to a general robotics system

architecture.” — Backes et al. [5]

The RoAF is based on the systematic description of the architecture of specific systems.
For the reasons mentioned above, however, this description is not based on existing
publications. Instead a process is defined that enables the robot architect himself to
create a systematic architecture description.

2.4 Architecture Frameworks according to ISO 42010

In the software community, especially for distributed systems, the challenges are very
similar to those in robotics. The systems here are also complex, exhibit a high degree
of heterogeneity and are often subject to continuous development.

In order to enable the comparability and systematic development of these systems, the
concept of Architecture Description was developed. This allows systems to be described
in terms of their Architecture. In order to harmonize Architecture Descriptions within a
domain, the concept of the Architecture Framework was introduced. Both approaches
have been standardized and are defined in ISO 42010. There is a large number of
Architecture Frameworks that apply this standard. A current overview can be found on
the following website: http://www.iso-architecture.org/ieee-1471/afs/frameworks-
table.html

Some of these Architecture Frameworks, such as the 4+1 View Model [65] or the
Siemens 4 Views [57] refer to software architectures. However, the concept of
Architecture Frameworks has also been transferred to other domains. The Zachmann
Framework [147] for example is applied to enterprises and their structures.

The concept of Architecture Frameworks has also been transferred to the field of
technical systems. The ESA Architecture Framework [48] is used to describe the Ar-
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chitecture of ESA space missions, e.g. the Galileo navigation system. The Architecture
Framework was also applied to IoT concepts with IEEE Std 2413 [58].

For robotics, no Architecture Framework has yet been defined. However, the objectives
of an Architecture Framework largely cover the requirements of robotics. The RoAF
therefore defines an ISO42010-compliant Architecture Framework for the robotics
domain, which is described in detail in Chapter 4.

2.5 Chapter Summary

In this chapter, related work on the RoAF was presented. This was divided into
several directions. In the first section, the classical robot architectures were presented.
Subsequently, the different variants of robotic software frameworks were presented.
Three systems were then used to illustrate the problems of extracting architectural
knowledge from system publications. Finally, work outside the robotics community
was presented that uses the ISO42010 Architecture Framework tool to capture the
Architecture of a wide variety of systems.
The RoAF transfers this tool to the robotics domain. The following chapter therefore
presents the foundations of the RoAF, the approach of the Architecture Framework
and the explicit description of the robotics domain.
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Foundations of the Robot
Architecture Framework

In order to design a process for the systematic description of Robot Architectures, two
fundamental questions must be clarified.

The first question is what is meant by the term Architecture. As described in the
previous chapter, there is some work in robotics that deals with the Architecture of
Robots. However, depending on the category of work, different aspects are considered.
Classic architectures deal with the question of which concepts control the behavior
of a Robot and how these concepts are combined. Software frameworks expand
the term to include approaches for organizing software components, and for many
system papers, the system architecture is simply a block diagram with important
high-level components and their relationships. It is therefore difficult to find an
all-encompassing definition for the Architecture of Robots. Therefore, other fields
were searched for appropriate approaches. In the field of software engineering, the
ISO 42010 standard “Systems and software engineering – Architecture description”
defines both a general architecture concept and the elements necessary for describing
an architecture. The questions regarding the architecture term and the methodology
for describing an architecture are therefore answered in this thesis with the definition
from ISO 42010. Hence, this chapter introduces the concept of the ISO 42010 and
its components and terminology.

The second question to be answered is what constitutes a Robot. The aim of this work
is not to draw a sharp distinction between Robots and other complex systems, but to
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find a definition that represents the commonality of all Robot systems. This serves as
a basis for using the RoAF to describe a wide range of different Robot Architectures.
This chapter therefore introduces an inclusive definition for Robots. Furthermore, the
terminology used and the commonalities of robotic systems are presented.

3.1 Architecture Frameworks

In software engineering, it is generally recognized that the design of complex systems
requires architectural concepts. Especially for distributed systems, approaches have
been developed to systematically describe the Architecture of complex software sys-
tems. This enables the comparison of software systems, but also supports the design
of new systems and the further development of existing systems. The approaches
developed for this purpose have been standardized and are described in ISO standard
42010 [59].

Since the properties of an Architecture Description are also suitable for the require-
ments of robotics and since autonomous Robots also partly consist of distributed
software systems, an Architecture Framework for the domain of robotics is developed
in this thesis.

The concept of the Architecture Framework and its terminology are therefore intro-
duced below. A central term here is the concept of Architecture, which is defined in
ISO42010 as follows:

Def. 3.1 Architecture:
fundamental concepts or properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and evolution. [59]

According to this definition, every system implicitly has an Architecture. In order
to compare systems and approaches, an explicit description of this Architecture is
required.

Architecture Description For this reason, the ISO 42010 standard deals with the way
system Architectures can be expressed, which is referred to as Architecture Description.

In Figure 3.1 the elements of an Architecture Description according to ISO42010 [59]
and their relationships to each other are shown. The first element in the description
of an Architecture is the identification of the Stakeholders of the system. A Stakeholder
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Figure 3.1: As shown in this figure from ISO42010 [59], an Architecture Description consists
of different elements that have defined relationships to each other. The Architecture
Description describes the Architecture of a System-of-Interest. It identifies Stakeholders
and Concerns. Based on the Architecture Viewpoints Views describing the Architecture are
created. (source: ISO42010 [59])
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is any party that has an interest in the system, e.g. developer, user, architect. These
Stakeholders each have Concerns that describe the Stakeholder’s interest in the system,
e.g. security, maintainability. Each Concern in relation to the system must be assigned
to at least one Stakeholder.

To subdivide the Architecture Description, IS042010 introduces the concept of the
Architecture Viewpoint. This Architecture Viewpoint is used to describe systems in
relation to a specific set of Concerns. To formalize this description process, so-called
Model Kinds can be defined for Architecture Viewpoints. These specify how the system’s
Architecture is to be described.

To obtain an Architecture Description, the Architecture Viewpoint and the Model Kinds
it contains are applied to a system. This creates Architecture Models, which together
result in the Architecture View. An Architecture Description therefore essentially
consists of a collection of Architecture Views. In addition, so-called Correspondences
and Correspondence Rules can also be described in an Architecture Description. These
are used to explicitly describe the relationships between the Architecture Views.

Architecture Framework There is a one-to-one relationship between the Architecture
Description and the system. Therefore, each system has its own Architecture De-
scription. To harmonize different Architecture Descriptions, ISO42010 introduces the
concept of the Architecture Framework for systems within a domain. In Figure 3.2 the
components of an Architecture Framework are depicted according to ISO42010.

Domain-specific Stakeholders, Concerns, Architecture Viewpoints and the associated
Model Kinds are identified. Correspondence rules can also be defined. An Architecture
Description adheres to an Architecture Framework if all Architecture elements of the
Architecture Framework are contained in the Architecture Description.

Relation of Architecture Description and Architecture Framework In Figure 3.3 the
different levels of abstraction that connect a robotic system with the RoAF are shown.

First of all, every system has an Architecture according to Definition 3.1. This consists
of the fundamental design decisions and concepts that define the system. In order
to make the Architecture accessible, it must be described. ISO42010 defines the
Architecture Description approach for this purpose. As these descriptions can be
created individually for each Architecture and therefore for each system, there is
a risk that the same architectural approaches will be described in different ways.
The extent and the aspects considered can also vary at arbitrary levels. This makes
it difficult to systematically describe and compare system Architectures. ISO42010
therefore defines the concept of the Architecture Framework, which makes it possible
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to harmonize Architecture Descriptions for a domain. The RoAF is an Architecture
Framework according to ISO42010 for the domain of robotics. A more detailed
consideration of Architecture Description and Architecture Framework can be found in
the referenced standard ISO42010 [59].

3.2 Robotic Domain Definition

The RoAF is intended to cover the robotics domain, therefore a definition of robot
is needed. ISO 8373 defines a robot as follows: “programmed actuated mechanism
with a degree of autonomy to perform locomotion, manipulation or positioning". The
robot is defined by using the term autonomy. In ISO 8373, autonomy is defined as
“ability to perform intended tasks based on current state and sensing, without human
intervention”.

This is a complex definition as it is difficult to distinguish robots from other complex
machines. Due to the heterogeneity of robots, it is usually still possible to find
counterexamples that do not fit the definition, and vice versa, machines that fit the
definition without being perceived as robots.

For the formulation of RoAF, a definition of the robot is necessary to define the
domain. All robot systems should be included in this definition, but it is not a
problem if other machines also fall under this definition. Therefore, the definition is
simplified to determine the domain of robotics:

Def. 3.2 Robot:
A robot is a machine which is designed to solve various tasks in physical environ-
ments.

Based on this definition, the Robot domain is discussed in the following sections.
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3.2.1 System boundaries: Fulfilling tasks in the physical world

According to the definition of Robot, these systems solve Tasks in the physical world.
The mandatory relationship between Task and the physical world results in a twofold
division. The Task either consists of observing the state of the world or changing the
state of the physical world. A Task can therefore be defined as follows for the robotic
domain:

Def. 3.3 Task:
A defined modification of the physical world or a determination of information
about the physical world.

All Tasks can be abstracted either as a modification of the physical world or as a
determination of information about the physical world. It should be noted that the
Robot itself is part of the physical world, so that a desired change to the Robot can
also define a Task. Determining information usually requires an action by the Robot,
which corresponds to a change in the physical world. Changing the physical world
without current information about it is also not possible in a targeted manner. Tasks
therefore usually require a combination of action and perception to be solved.

Robots are built to solve various Tasks in physical environments. The term Mission is
introduced to describe the entirety of the Tasks that a Robot should perform during
an application.

Def. 3.4 Mission:
The collection of all tasks a robot has to solve.

There are therefore two system boundaries for every Robot. There is a boundary
between the Mission and the Robot through which all Tasks are assigned. For accom-
plishing the Mission the Robot has to solve all these Tasks. And there is a boundary
between the system and the physical world. From a conceptual point of view, it
is very important to separate the Mission and the physical world. Although Tasks
include the physical world in their definition, a Task itself is not a physical object and
therefore not part of the physical world. Hence, a Mission is also not a physical object.
Many Missions aim to change the state of the physical world, for example, to tidy up
a room or to assemble a device. However, this is not the case for all Missions. The
Mission of a soccer Robot, for example, is to win the game. To do this, many Tasks are
necessary to perceive the physical world, where is the ball, where is the opponent or
to change the world, e.g. to shoot the ball into the goal. However, the Mission as a
whole does not aim to change the physical world. Whether the game was won or lost
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that belongs to the Robot and an external part called the Mission Environment. The
Mission Environment and the Robot Mission can be closely linked, e.g. in cooperative
assembly Tasks, but there are also systems in which the Mission Environment is limited
to sending a command to the Robot. Many Robots receive a Task description with a
certain level of detail from the Mission Environment while the Robot Mission is the
detailing or planning based on this description.

3.2.2 Domain requirements: flexibility, dependability, and usability as
concerns of the user

In the last section, the two system boundaries that all Robots exhibit were identified,
thus forming an important structure for the domain of robotics. In this section,
general requirements for the properties of Robots will be identified, which forms a
further characteristic of the domain.

Although Robots are generally less efficient and more expensive than other machines,
they are considered for various applications:

• No other machines are available

• The development of a special machine does not pay off

• A machine should fulfill different tasks

• Other machines cannot solve the application due to the Task and/or the envi-
ronmental characteristics

The common reason for using Robots in these cases is their flexibility. Therefore,
flexibility is the main requirement for all Robots. This flexibility is already included in
the definition: A Robot is a machine designed to perform various Tasks in physical en-
vironments. Both system boundaries at the Mission and the physical world, therefore
require flexibility. The degree of flexibility varies between the different categories of
Robots, but for a Robot system as a universal machine, a higher degree of flexibility
usually increases the benefit of the system.

The second main requirement for Robots is their dependability. In principle, this
requirement applies to any machine, but it is much more complex for Robots than
for other machines due to the flexibility of Robots. Standard machines or automatic
machines have a Task to perform in a clearly defined environment. The machine
is always able to perform this Task in the same way, which is the basic concept of
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these machines. If something does not work, the machine is broken and needs to
be repaired. To increase dependability, every step is optimized. With Robots, the
situation is different because the Task and the physical environment are usually
not fixed. Depending on the Task or state of the physical world, the Robot must
adapt its approach. It is often not possible to define the best execution procedure
in general. During execution, the Robot must decide what to do, how to react to
events and how to recognize errors. If the same approach to machine dependability
is applied to Robots, the complexity will be unmanageable as the combination of
possible approaches is enormous. Nevertheless, a dependable system is crucial, and
therefore strategies to cope with this complexity are a key requirement for Robots in
general.

The third main requirement for Robots is usability. Similar to dependability, this is a
general requirement for machines, but the flexibility of Robots leads to a complexity
that requires special attention to strategies to ensure usability. As shown in Figure 3.5,
the complexity of systems increases with increasing flexibility. The most flexible
Robots are humanoids, but their use requires a lot of effort and a team of robotics
experts. This leads to the interesting problem that highly complex systems are
theoretically very flexible, but practically difficult to handle even for experts. As a
result, most of these systems are only used in a small number of demonstrations that
do not even begin to cover the potential of a human scale flexibility. Theoretically
flexible systems are therefore not flexible today because they are difficult to operate.
On the other hand, special Robots such as the Roomba are easy to operate, but their
flexibility is very limited. A contradiction between two main requirements: Flexibility
and usability is one of the main problems in robotics.

In summary, it can be said that three main requirements for the robotic domain can
be identified for the system properties: flexibility, dependability and usability. This
applies to every Robot and is therefore an important part of the characteristics of the
robotic domain.

3.2.3 System components: the parts robotic systems consist of

After the general requirements for Robots were discussed in the last section, this
section will look at the similarities between the systems themselves. There are very
different Robots, but groups of components can be identified that are relevant for
every Robot.

The components of every robotic system can be divided into two groups, the hardware
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mechanical structure determine the kinematics and dynamics of the system.
They therefore represent an upper limit for the Robot’s abilities. The use of
modular concepts makes it easier to adapt the system to Tasks or environments,
e.g. by replacing the gripper. However, changes to the actuators have a
major impact on the overall system, which is why these components should
be designed to cover the entire spectrum of intended Tasks and expected
environments.

Sensors Sensor components enable a Robot to adapt reactively to external and inter-
nal influences. This increases the flexibility of the Robot and therefore sensors
are fundamental components of any robotic system. There are different types
of sensors. Some sensors are tightly coupled to the actuators, such as joint
sensors, and measure the current state of these devices, which is part of the
internal state of the Robot. Other sensors, such as cameras, primarily detect
the state of the environment, which is an external state. Some sensors are also
actively operated, e.g. an optical zoom or a pan/tilt unit. Similar to actuators,
sensors define an upper limit of the Robot’s abilities and must therefore be
selected according to the intended Tasks and the expected environment.

Data processors Sensors and actuators are the direct link to the environment. In or-
der to process the information obtained and calculate actions to solve the Task,
each Robot requires computing resources and therefore contains computing
components such as computers, FPGAs and GPUs. The amount of computing
resources required varies depending on the complexity of the Task, the environ-
ment and the degree of autonomy, but autonomous Robots in particular usually
contain multiple computers to provide the required computing power. Some
Robots utilize external computing resources such as GPU clusters.

Data transmitters In addition to the hardware components required to data pro-
cessing, a Robot must transmit data. A distinction is made between internal
communication, which connects the modules of a Robot with each other, and
external communication, which extends beyond the system boundaries.
Internal data transmission is usually realized via an IT infrastructure such as
ethernet or bus systems, which is why components such as ethernet cables,
adapters and switches must be integrated. The main requirement for this
infrastructure is the ability to transmit the data recorded by the sensors and
the subsequent processing steps.
External transmitters can be realized with different devices depending on the
modality used. One approach is to use the sensors and actuators as input and
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display devices, e.g. for teach-in or for gesture-based commands. Additionally
Robots usually provide dedicated hardware devices for external data transmis-
sion. These are often buttons, displays, status lights and acoustic signals. For
more detailed information, an IT interface such as an ethernet connection or a
wireless access point is often integrated.

Software

Today’s Robots, especially those with a high degree of autonomy, are software-
intensive systems. Software is the most important tool for achieving the flexibility
required by Robots. In recent decades, the modularization of robotic software has
been one of the main drivers of progress in robotics. Systems with the complexity of
the mobile manipulator AIMM [35] typically have more than 100 software processes
running in parallel to implement the system behavior. This section provides an
overview of the most important general software components that constitute robotic
systems.

Interfaces to sensors and actuators These software modules are the interfaces to
the hardware components of the Robot. The sensor modules provide the sensor
data and the functions for configuring the sensor. The actuator modules enable
access to the actions of the hardware and the information provided by the
hardware.

Perception Sensor data processing takes place in this module class. Low-level sensor
data processing modules, such as stereo processing, work directly with the
sensor data stream and require only a few parameters for their work. As a rule,
they deliver the processed data as a stream. Other important modules of the
perception class are modelers and object detectors. These higher-level modules
provide various data at a higher level of abstraction, e.g. object positions or
geometric representations of the environment.

Knowledge representations Perception of the environment is not enough to be able
to act independently. Additional information is required to solve Tasks. This
is why modules store information about the state of the world, objects and
processes, for example, and make it available to the system.

Sequence, task and mission control These modules combine various other soft-
ware modules to perform a Task. By employing hierarchies, the complexity of
the system becomes manageable.
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Planner The solution of complex problems using the knowledge of the Robot is
performed by planner components. Typical representatives of this module class
are global path planners or view point planners for exploration.

Human-robot interfaces These modules are used for communication with humans.
The basic interface is a status display that shows the status of the Robot. An
interactive interface is required to teach the system, which can be implemented
using a GUI. More complex interactions between Robots and humans to solve
a Task cooperatively require more sophisticated interfaces, such as intention
recognition.

Middleware Communication between different software modules is usually solved
through the use of middleware. Depending on the requirements, there are
different solutions for large data streams, real-time communication or more
flexible communication.

Development tools In order to build a complex system, tools are required that are
not necessary for the use of the Robot, but for its development. For example,
viewers are used to visualize the internal state of the robot.

3.3 Chapter Summary

The foundations of RoAF were presented in this chapter. These are divided into two
aspects.
First, the concept of the Architecture Framework was presented and the associated
terminology introduced. The Architecture Framework defines the methodology chosen
for the RoAF to create a systematic Architecture Description. In addition, the concept
of the Architecture Framework makes it possible to harmonize the Architecture Descrip-
tions of a domain. The RoAF is therefore an Architecture Framework for the domain
of robotics.
The second aspect of this chapter was therefore the description of the robotics domain.
For this purpose, definitions and terminologies were introduced in order to precisely
formulate the scope of the RoAF.
Building on this, the next chapter develops the RoAF and its components.
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Robot Architecture Framework

This chapter defines an Architecture Framework according to ISO 42010 for the field
of robotics. An Architecture Framework is a structure that harmonizes the process
of an Architecture Description for a domain. The defined Architecture Description
Elements support the description of the individual Architecture, as a defined structure
can be used. In addition, an Architecture Framework facilitates the comparison of
different Architectures, as the description styles are similar. An important aspect of an
Architecture Framework is that it should be applicable to all systems in the domain. A
RoAF must therefore be suitable for the Architecture Description of all Robots.

The ISO standard specifies the elements of an Architecture Framework with Stake-
holders, Concerns, Architecture Viewpoints and Correspondences. To describe any
Robot Architecture these Architecture Framework Elements (AFE) itself are Architecture
agnostic.

In this chapter, these elements and their relations are defined for the domain of
robotics. Every Architecture Framework Element is referenced with an identifier when
introduced. First, the robotic Stakeholders, i.e. people who have an interest in Robots,
are identified. Based on this, the central Concerns of the robotic domain are deter-
mined. Based on these elements, the Architecture Viewpoints of the robotic domain
are derived. Finally, the connection between the various Architecture Viewpoints is
shown in the Correspondence Rules.
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4.1 Stakeholder

Stakeholders (AFE 1) are mandatory elements of any Architecture Framework. There
are two categories of Stakeholders in robotics: the group of Stakeholders who are
interested in the system because of its application, and the group of Stakeholders who
are interested in the development of the system. In the following, these groups are
referred to as User and Developer.

User The User (AFE 1.1) is interested in using a Robot. The system itself is not modi-
fied by the User, but the User uses the system’s interfaces to make the Robot do the
intended Tasks. There are different members in the User group. The responsibilities
of the roles vary depending on the Robot type. However, the different parties are
present in almost all Robots.

Operator (AFE 1.1.1) Person who switches the Robot on and off, acknowledges
emergency exits and starts programs.

Coworker (AFE 1.1.2) The human worker shares the environment with the Robot.
In more complex scenarios, the human worker also shares Tasks with the Robot,
resulting in collaboration between human and robot.

Maintainer (AFE 1.1.3) Personnel responsible for maintaining the Robot, including
e.g. calibration procedures and recovery from faults.

System Integrator (AFE 1.1.4) Persons who configure the Robot to perform the
intended Tasks in the desired environment.

(Factory) Planner (AFE 1.1.5) Those who plan the use of the Robot (e.g. in an
industrial production facility) taking into account the abilities of the system.

Owner (AFE 1.1.6) People who purchased the Robot.

A human worker can take on several of these roles, e.g. operator, coworker and
maintainer. The User is usually not interested in the internal structure of the Robot,
but in its application. Depending on the Robot Architecture, however, the User must
understand the internal structure of a Robot in order to be able to program a Task,
for example. This is not practical for complex Robot systems, as a large amount of
expert knowledge is required to understand such systems.
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Developer The development of such usable systems is the task of the Stakeholder
group Developer (AFE 1.2). The Developer must be able to deal with the complexity
of the system. One approach to this is the separation and distribution of concerns
to different experts. The following specialists can be identified for an autonomous
Robot, who are therefore part of the Stakeholders of the RoAF.

Mechanical Developer (AFE 1.2.1) Person interested in the mechanical design of
the Robot.

Electronics Developer (AFE 1.2.2) Person who develops and integrates the elec-
tronic components.

Software Module Developer (AFE 1.2.3)) Person who develops software modules
for the system.

Software Infrastructure Developer (AFE 1.2.4) Software developer who provides
the software infrastructure.

Software Integrator (AFE 1.2.5) Person who integrates software modules into the
system.

Skill Developer (AFE 1.2.6) Person who uses the Capabilities of the system to imple-
ment Skills.

Application Developer (AFE 1.2.7) Person who develops generic applications for
the system.

Robotic System Developer (AFE 1.2.8) Person who coordinates the various special-
ists for a Robot.

Robot Architect (AFE 1.2.9) Person who creates and analyzes concepts for Robots.

As with the User, one person can also take on several roles in the Developer group. As
already mentioned, the common interest of the Developer is to develop a Robot that
meets the needs of the User. Therefore, the User’s Concerns are also the Developer’s
Concerns, as these determine the development process. In addition, the internal
structure of the system is of fundamental interest to the Developer, which leads to
further Concerns.
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4.2 Concerns

In this section, the Concerns (AFE 2) of the RoAF are identified. The Concerns of an
Architecture Framework are linked to Stakeholders, as shown in Figure 3.2. Different
Stakeholders may have different Concerns of a domain. They are also linked to the
Viewpoints. A Viewpoint addresses a set of Concerns, whereby a Concern can also
be addressed by several Viewpoints. In the following, the Concerns of the RoAF are
identified and then the relationships to the Stakeholders are listed. The relationship
to the Viewpoints is established later in this chapter in the definition of the individual
Viewpoint.

4.2.1 Concern Identification

As the standard defines neither the granularity nor the type of Concerns, these can
be freely selected according to the requirements. The first Concerns result directly
from the general requirements to a Robot and are introduced as Robotic Concerns
(AFE 2.1). As identified in Subsection 3.2.2, there are three main requirements for a
Robot from the perspective of the User. Every Architecture must therefore address the
following three aspects.

Flexibility (AFE 2.1.1) Robots solve different Tasks by definition. How this flexibility
can be implemented is a universal Concern.

Usability (AFE 2.1.2) Robots should solve Tasks. Which Tasks these are is determined
externally. Every Robot must therefore have usability, which makes it a universal
Concern.

Dependability (AFE 2.1.3) Robots must perform their Tasks reliably and safely despite
the wide range of possible applications. This also applies to every Robot, which
makes it a universal Concern.

As already mentioned in Chapter 3, a higher flexibility of a system usually leads
to a higher complexity. As depicted in Figure 4.1, the complexity of a system can
affect the dependability and usability of a system. While this is not an inevitable
consequence of complexity, considerable effort is required to ensure the usability and
dependability of a complex system. One of the most important strategies in robotics
is the use of autonomy to create complex but usable and dependable systems.
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all these Concerns are relevant for every component of the system. Therefore, each
Stakeholder can and should only have a subset of these Concerns. This separation of
concerns, which reduces the complexity for each Stakeholder, is a core idea of the
Architecture Framework according to ISO 42010.

In addition to these Robotic Concerns, relevant Concerns from the field of software
engineering can be identified and are introduced as Software Concerns (AFE 2.2). For
some years now, modularization through component-based design has been used
in robotics to control system complexity, increase flexibility and simplify the reuse
of components. As a result, today’s Robots are highly distributed software systems.
Therefore, the Concerns of this category of software systems can be transferred to
robotics. The 4C introduced by Radestock and Eisenbach [96] are a well-known
approach for distributed software systems and have already been applied to robots,
e.g. in [26]. They identify relevant aspects from the perspective of the Robot as a
complex software system:

Coordination (AFE 2.2.1) is concerned with the interaction of the various system
components. [96]

Configuration (AFE 2.2.2) determines which system components should exist, and
how they are inter-connected, and is based on principles of software architec-
ture. [96]

Communication (AFE 2.2.3) deals with the exchange of data, with a foundation
of communication paradigms such as request-reply, synchronous and asyn-
chronous. [96]

Computation (AFE 2.2.4) is concerned with the data processing algorithms required
by an application, with a foundation in traditional paradigms such as functional
programming and object-oriented programming. [96]

Therefore, the 4C, Computation, Communication, Configuration and Coordination are
added as Software Concerns to the five Robotic Concerns of the RoAF, see Figure 4.2.

These Concerns are central elements of the RoAF. As they were derived from the
general requirements on Robots and from known approaches to software architecture,
they can be applied to all Robots.

44





Chapter 4. Robot Architecture Framework

system based on data. The main Concern is therefore Computation. Since these
components themselves can be very extensive, Complexity is also a relevant
Concern.

Software Infrastructure Developer → Communication, Complexity A software in-
frastructure is created to link the modules together, with the focus on Commu-
nication between the individual modules. The overall design of an autonomous
Robot usually consists of more than a hundred modules, which together form a
complex structure.

Software Integrator → Configuration, Complexity The integration of the software
modules into the Robot is essentially a Configuration process in which the Robot-
specific parameter sets are defined. Due to the complexity of the systems and
modules and the existing dependencies, Complexity is also a relevant topic here.

Skill Developer → Configuration, Coordination,
Dependability, Autonomy, Complexity

Coordination and Configuration at runtime are the main Concerns of the Skill
developer. In addition, the Skill developer strives for reliable system behavior
and implements Autonomy by combining system functionalities. All system
components come together here, which leads to a high level of Complexity.

Application Developer → Usability, Flexibility, Autonomy, Complexity The task
of the application developer is to develop an interface to the environment
that offers the required Flexibility without compromising the Usability of the
system. The Complexity of the system should remain hidden from the User.

Robot Developer → Flexibility, Usability, Dependability, Complexity As a system
engineer, the Robot developer primarily has the requirements of the Users in
mind, which concern the Flexibility, Usability and Dependability of the Robot. It
is the task of the Robot developer to transfer these general requirements to the
various Stakeholders. This involves evaluating assumptions to find a suitable
compromise between generality and specialization.

Robot Architect → Autonomy, Complexity The architect develops concepts for re-
alizing the Autonomy of Robots and for mastering the inherent Complexity.
For this purpose, general structures and approaches are identified and formu-
lated in Architecture Descriptions and Architecture Frameworks. These general
concepts guide the Robot developer in the pursuit of his goals.

This assignment of Concerns to different Stakeholders shows the potential for sim-
plifying the Architecture Description. Certain Concerns are not relevant for certain
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Stakeholders and therefore do not need to be addressed. This achieves a separation
of concerns, which is the basis of every Architecture Framework.

The Concern Complexity in contrast plays a special role. Each Stakeholder of the
Developer group has this Concern. As shown in Figure 4.1, it plays a central role
and is linked to all other Concerns. This poses a challenge for the formulation of
an Architecture Framework, because if everything is connected, it is not possible to
describe it separately. The Complexity of Robots is the central challenge and the
concepts for dealing with it are a very important element of any Robot Architecture.
Therefore, the RoAF has been extended with the concept of Model Abstraction Type,
which is introduced in the next section.

4.3 Structure of the Viewpoints

In the previous sections of this chapter, the Stakeholders and Concerns of the RoAF
were identified, along with their relationships to one another. Identifying Stakeholders
and Concerns is an important step in any Architecture Description, since they have a
great influence on the Architecture of a system. However, both AFEs are outside the
architect’s sphere of influence. The architect can identify Concerns and Stakeholders,
but cannot decide for or against them. In the following, this, including the Robot
itself, is referred to as Architecture Context.

The actual Architecture of the Robot is described by using Viewpoints. Every Viewpoint
views the entire system from a defined perspective. This means that the Viewpoint
are independent of each other. For example, Viewpoints can be added or removed
without affecting other Viewpoints. Four Viewpoints have been defined for the RoAF,
which will be presented in detail in the following sections.

This section discusses the general structure within the Viewpoints of the RoAF. The ISO
42010 specifies that an Architecture Viewpoint uses Model Kinds to further subdivide
the Architecture Description. These Model Kinds are then used in the description
process to create Architecture Models, see Chapter 5.
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As shown in Table 4.1, the Model Kinds of the RoAF therefore form a matrix. The
dimensions are the introduced AFEs Viewpoint Aspect and Model Abstraction Type. As
can be seen from Figure 4.3, the Viewpoint Aspects are specific to each Viewpoint and
are therefore introduced in the respective Viewpoints sections. The Model Abstraction
Types, on the other hand, are independent from the Viewpoints and are presented in
the following sections.

4.3.1 Model Abstraction Types

To address the Concern Complexity the RoAF introduces the element of the Model
Abstraction Type (AFE 3). As described in the previous section, the Concern Complexity
is relevant for every Stakeholder and thus for every Viewpoint. This makes it difficult to
address this Concern in the Viewpoints without creating a high degree of dependency.
For this reason an approach that is orthogonal to the subdivision into Viewpoints
is developed. The key point is to use abstraction in order to address the Concern
Complexity. Model Abstraction Types define three different abstraction levels in the
RoAF on which the Robot’s Architecture is described. In addition, the RoAF defines
how these abstraction levels are connected to each other. By dividing the Architecture
Description in multiple levels of abstraction, different types of relationships can be
considered and described separately. The three Model Abstraction Types of the RoAF
are presented below.

Model Abstraction Type - Guideline

The highest level of abstraction in the RoAF is realized by the Model Abstraction Type
Guideline (AFE 3.1). At this level, the Robot’s Architecture is seen as a collection of
general Architecture Decisions. Each individual Guideline stands alone and therefore
has no dependencies or connections to other Guidelines. A Guideline refers to at least
one Viewpoint Aspect. Guidelines formulate desired system properties or solution
concepts of the Robot without taking feasibility into account. These can therefore
also contradict each other.

The advantage of this abstraction level is the high degree of subdivisibility of the
system. Regardless of the complexity of the system, objectives can be set with regard
to specific Viewpoint Aspects. This also allows easy transferability to other systems.
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In this way, similarities and difference s can be identified at a level of abstraction
relevant to the architect.

Example: “The safety of the system is achieved by a safety operator.” At the Guideline
level, only the goal is defined. How the safety operator achieves safety and what
is necessary for this and whether it is possible at all does not play a role for the
Guideline.

At the level of the Guidelines, it is not possible to evaluate whether the Architecture
works, as contradictions are ignored. Therefore, if the RoAF is used to support
modification or creation of Robots the Guideline level is not sufficient.

Model Abstraction Type - Approach

Below the Guideline level is the Approaches (AFE 3.2) level. This level deals with
concrete concepts of how the goals of the Guidelines are achieved on the system.
Approach concepts are therefore often more system-specific as they include the basic
feasibility. Each Approach refers to at least one Guideline. Often a Approach also
refers to several Guidelines, which can also contradict each other. The technical
implementation of the Approach does not play a role at this level of abstraction. The
complexity of the Architecture is therefore limited to the relationships between the
various Viewpoint Aspects of the respective Architecture Viewpoint. Approaches have
no connection to each other. However, different Approaches can refer to the same
Guidelines.

Example: “Stopping the motors via a wireless emergency stop” This Approach defines
how the Guideline “Safety is achieved by a safety operator” can be approached. In
other words, the Robot should stop as soon as a wireless emergency stop is pressed.
This takes into account properties of the system, e.g. mobility, as well as the stopping
leading to a safe state. This Approach is not suitable for a drone, for example.

At the Approach level, concepts are formulated on how to apply the Guidelines. In
addition, different Guidelines can be connected here via a common Approach. This is
particularly interesting for comparing Architectures that have identical Guidelines but
define different Approaches. Alternative Approaches for identical system requirements
are described here. The complexity of the Architecture Description is reduced by not
linking the Approaches between each other. But for the realization of a system, techni-
cal constraints and these dependencies between the Approaches must be formulated,
which is covered by the last Model Abstraction Type Implementation presented in next
section.
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Model Abstraction Type - Implementation

The most concrete abstraction level of the RoAF is the Implementation (AFE 3.3)
Model Abstraction Type. This is about the technical architectural decisions that enable
the realization of the Approaches. However, this should not be confused with the
description of the implementation, i.e. a system description. The Implementation
Model Abstraction Type describes the Architecture, i.e. the important concepts of a
system and not the system itself. A Implementation can refer to several Approaches
and thus formulate the technical dependencies.

Example: “ Wireless emergency stop must be connected via secure communication.”
The Approach for using a wireless emergency stop is implemented via this Implemen-
tation. In contrast to a system description, the specific hardware is not described, but
rather an aspect that the hardware must fulfill.

The Architecture Decisions of the Implementation Model Abstraction Type are of a
technical nature. A Implementation always refers to at least one Approach, but can
also refer to several Approaches. The concepts and decisions for implementing the
hardware and software are documented here. Even at the lowest level of abstraction,
the RoAF does not describe a system, but the Architecture of a system.

Relations between Model Abstraction Types

The different Model Abstraction Types and their restrictions create relationships
between the Models of a View.

As shown in Figure 4.4 on the left, the result is that for each Model Kind of Model
Abstraction Type Implementation at least one relationship to a Model Kind of Model
Abstraction Type Approach exists. Similarly, for each Model Kind of Model Abstraction
Type Approach there is at least one relationship to a Model Kind of Model Abstraction
Type Guideline. Since Model Abstraction Types does not allow relationships on the
same abstraction level, there are no cross-relationships.

In the process of describing an Architecture on a Robot, see Chapter 5, the Model
Kinds from the Architecture Framework are used to create Architecture Models which
constitute the Architecture Description. These Models inherit therefore the abstraction
level of their Model Kind. The relationships of the Model Abstraction Types result in
corresponding relationships of the Models derived from them. Consequently, a Model
of a certain Model Abstraction Type never has a relationship to a Model of the same
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4.3.2 Viewpoint Selection

The Viewpoints(AFE 4) subdivide the Architecture Description into subtopics, which
are further detailed by the Model Kinds. The selection of the Viewpoints is a very
important step in the definition of an Architecture Framework.

According to its definition, a Viewpoint must enable a complete description of the
system’s Architecture with regard to the perspective. If the perspective is chosen very
narrow, the Viewpoint only describes a very small part of the system. A large number
of Viewpoints is then required to fully describe the system’s Architecture. This poses
the risk of similar or competing concepts being assigned to different Viewpoints. This
impairs clarity and makes it difficult to compare systems.

A very coarse subdivision with wide perspectives, on the other hand, jeopardizes
the separation of concerns approach. For complex systems, it is then difficult to
define the problem context with sufficient precision. The Architecture Description
then remains at a very general level. However, concretization can be achieved via
the assigned Model Kinds.

Ultimately, a compromise must be found between comparability and accuracy. Since
a Architecture Framework is developed for all Robots in this work, the number of
Viewpoints was chosen to be low with four. However, each of these Viewpoints defines
a large number of Model Kinds, which brings the granularity of the Architecture
Description to a level that is relevant for the Developer.

The foundation for the selection of the Viewpoints is the general system identification
from Section 3.2. As shown in Figure 3.4, each Robot connects the Mission with the
physical world. Two of the Viewpoints can be derived directly from this, which are
therefore relevant for all Robots: The Robot is part of the physical world. This aspect
of the system is considered under the Viewpoint Physical. Since every Robot contains
hardware according to Definition 3.2, this Viewpoint is relevant for all Robots. The
Robot is also part of the Mission. The Robot Mission, which is realized by the Robot, is
considered by the Viewpoint Mission. This is also part of the Robot’s definition and
therefore generally applicable to Robots. These two Viewpoints also cover the two
system boundaries of Robots.

The remaining two Viewpoints, Capabilities and Skills, are derived from the 4C. As
described in Section 4.2, these can be generally applied to Robots. The Concerns Com-
putation and Communication are addressed in the Viewpoint Capabilities. The modules
and their data flows can be viewed from this Viewpoint. The Concerns Configuration
and Coordination are dealt with in the Viewpoint Skills. This perspective focuses on
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4.4 Viewpoint Physical

The Physical Robot is considered under this Viewpoint. This includes all mechani-
cal and electronic parts of the Robot. In addition, the physical properties such as
workspace, dynamic restrictions and payloads are visible from the Viewpoint Phys-
ical(AFE 4.1). Of course, the system boundary to the physical environment is also
visible from this Viewpoint.

Framed Concerns Typical Stakeholder

Flexibility mechanical developer

Usability electronic developer

Dependability Robot developer

Complexity Robot architect

Table 4.2: Concerns and Stakeholders of the Viewpoint Physical

As shown in table 4.2, in addition to the Stakeholders of the overall system, the
Robot system developer and the Robot architect, the hardware developers are the
Stakeholders of the Viewpoint Physical and correlate with the corresponding Robotic
Concerns. The Software Concerns of the software domain do not apply here.

4.4.1 Viewpoint Aspects

As shown in Figure 4.1, all these Concerns are directly linked to each other. In
Viewpoint Physical, however, the possibility of compensating for complexity through
autonomy is missing. More flexibility usually leads to more system complexity, which
impairs the usability and reliability of the system. The aim of the Viewpoint is
therefore to describe the compromise found between the opposing Concerns. These
Concerns are therefore only of limited use for a subdivision into Model Kinds. However,
in order to achieve an effective subdivision, Viewpoint Aspects are defined based on
the general system components in Subsection 3.2.3. These six Viewpoint Aspects of
the Viewpoint Physical are presented below.

Structure (AFE 4.1.1) The Viewpoint Aspect Structure deals with all Architecture
Decisions that affect the physical structure of the Robot. This includes decisions about
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the kinematics, the actuators, but also higher-level aspects such as the choice of
material or the system weight.

Sensors (AFE 4.1.2) The Viewpoint Aspect Sensors addresses the Architecture Decisions
regarding the selection of sensors. In addition to the actual sensor hardware, this also
includes the arrangement of these components and the resulting perception areas.

IT (AFE 4.1.3) The Viewpoint Aspect IT addresses the Architecture Decisions regarding
the IT components of a Robot. This includes decisions on which and how many
computers are used. A second important aspect is how these are connected to each
other. Other components such as FPGA units or graphics cards also fall under this
Concern.

Power (AFE 4.1.4) The Viewpoint Aspect Power addresses the Architecture Decisions
regarding the power supply of the system. This includes battery selection and
concepts for power supply units and power circuits of the Robot. Also general
Architecture Decisions, e.g. low energy consumption, are also described here.

Safety (AFE 4.1.5) The Viewpoint Aspect Safety addresses the Architecture Decisions
regarding the safety of the system. These can be dedicated components or concepts
such as emergency stop systems. However, it can also be implicit concepts such as
low system weight.

Interface (AFE 4.1.6) The Viewpoint Aspect Interface addresses Architecture Decisions
regarding the interface to the environment. These can be displays or status indicators
such as LEDs. However, concepts such as the use of the manipulator itself as an input
device can also be documented.

The RoAF therefore defines the Viewpoint Aspects (VP-A) for the Viewpoint Physical:

VP-A1 Structure

VP-A2 Sensors

VP-A3 IT

VP-A4 Power

VP-A5 Safety

VP-A6 Interface
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Guideline Approach Implementation

VP-A1 Structure VP-M1G VP-M1A VP-M1I

VP-A2 Sensor VP-M2G VP-M2A VP-M2I

VP-A3 IT VP-M3G VP-M3A VP-M3I

VP-A4 Power VP-M4G VP-M4A VP-M4I

VP-A5 Safety VP-M5G VP-M5A VP-M5I

VP-A6 Interface VP-M6G VP-M6A VP-M6I

Table 4.3: Matrix of Viewpoint Physical Model Kinds

4.4.2 Model Kinds

The Model Kinds then result from the Viewpoint Aspects and the Model Abstraction
Types. As shown in Table 4.3, the RoAF contains 18 Model Kinds for the Viewpoint
Physical. Each Model Kind has a defined Model Abstraction Type and a defined
Viewpoint Aspect from the Viewpoint.

4.4.3 Viewpoint Summary

From the Viewpoint Physical, the Robot is viewed as a physical system. The Viewpoint
Aspects Structure, Sensors, IT and Power are derived directly from the hardware
classes identified in Chapter 3. The Viewpoint Aspect Safety addresses the Concern
Dependability. The system boundary to the Physical Environment is covered by the
Viewpoint Aspect Interface. The 18 Model Kinds of the Viewpoint Physical then result
from the combination with the Model Abstraction Types.

4.5 Viewpoint Capabilities

Autonomous Robots are software intense systems, which means that software is a
important aspect for Robots. The Viewpoint Capabilities(AFE 4.2) therefore deals with
the Architecture with regard to the software of the system. Since the software of
autonomous Robots is complex, a further specialization must be made by choosing
a perspective that only considers partial aspects of the software. Two of the Soft-
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ware Concerns, Communication and Computation, are chosen for this separation of
concerns.

Capabilities are software functionalities that have similarities with the functionalities
of hardware components. Every hardware component has at least one functionality
that solves a specific problem, such as the battery that supplies the Robot with power
through chemical reactions. The same applies to software components that provide
functions. For example, a stereo processing component is able to generate depth
information from two camera images using a correlation-based method.

The Capabilities of a system and their relationships to each other define the Robot
on the software side, similar to how the functionalities of the hardware components
characterize the Physical Robot. In contrast to hardware modifications, software
modifications are very cost-effective. In addition, there are fewer restrictions such
as installation space etc., as the memory capacity of today’s IT components offers
sufficient capacity. A complex Robot therefore usually has significantly more software
components than hardware components. This potentially large number of Capabilities
increases the flexibility of the Robot.

The following table provides an overview of the Concerns and the typical Stakeholders
of the Viewpoint Capabilities:

Framed Concern Typical Stakeholder

Flexibility software module developer

Complexity software infrastructure developer

Computation software integrator

Communication Robot developer

robot architect

Table 4.4: Concerns and Stakeholders of the Viewpoint Capabilities

In this section, the term Capability is first defined. Then the general structure of
Capabilities is examined and its types and relationships are presented. Then the
Viewpoint Aspects and the Model Kinds of the Viewpoint are introduced.
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4.5.1 Definition of Capability

Since, in contrast to the term Physical, there is no uniform understanding of the term
Capability, the term is defined as follows for the RoAF:

Def. 4.1 Capability:
A capability is the generation of specific information through computations based
on specific data to solve a specific problem.

Several properties can be derived from this definition. A Capability is implemented by
a software module that has a clearly defined interface in terms of input and output.
The goal of a Capability, the solution of a specific problem, is clearly defined so that
the result of a calculation can be evaluated.
A Capability is created, for example, through the use of stereo processing. An algo-
rithm calculates the corresponding depth image based on the incoming image data
and parameters. The quality of the depth image can be evaluated using various crite-
ria such as density. Another data-driven Capability is, for example, a controller that
calculates a control command based on the current joint state to achieve a specific
configuration. These sensor data-driven Capabilities are often used in sequence to
close the action perception loop.
However, there are also Capabilities that are not directly related to sensor data. For
example, a path planning module calculates a collision-free path based on the Robot
kinematics, the environment model, the start and goal configuration and various
other parameters.

Capabilities create a strong separation of concerns by providing specific solutions.
A Capability is not intended to solve a problem category completely, but to provide
specific information based on specific data using a specific method. For example, the
method of correlation-based depth data calculation will not work well if the images
are not textured. Nevertheless, the Capability will perform a depth calculation with
its method based on the provided images. Of course, the Capability can provide a
quality measure that can be evaluated. The decision on how to react to this situation
must be made with further information, see 4.6. The battery does not know why it is
supplying energy, nor does the stereo algorithm know for what the depth information
is needed.
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For example, stereo processing requires the geometric transformation between the
two cameras in order to process depth values. For stereo processing, this model is
usually constant. Other Capabilities have more complex models. For example, a path
planner needs a geometric model of the environment to calculate a collision-free
path. If the real environment changes, this internal model must be updated. The
models of Capabilities often refer to the physical robot and its environment, so there
is often an implicit relationship between different Capabilities. Internal states can be
used to link data at different points in time. For example, a window median filter
stores the last values in its internal state to calculate the current median.

Sometimes Capabilities are implemented as separate software components, but often,
especially for complex modules, different Capabilities are provided by the same
software module, e.g. sharing a common model. For example, a path planner usually
has the Capability to plan a collision-free path, but additionally the path planner
provides the Capability to check a configuration for collisions. On the one hand this
increases the performance of the component, on the other hand it reduces the degree
of modularity. For example, it is more difficult to replace the collision checker if all
components are in one process.

4.5.3 Capability types

Although they have a common structure, different Capability types can be identified,
which can be distinguished by their purpose and use.

Hardware interfaces

Where exactly the interface between hardware and software is located depends very
much on the perspective. An electronics developer might argue that we are still
in the software domain as long as the signals are digital. From the perspective
of the Robot architect, the hardware components are abstracted by including their
internal components. The Hardware Interfaces thus communicate with the physical
components of the Robot, possibly in both directions, and make the functions and
data of the hardware available to the middleware of the Robot.
For example, sensor signals are received by a Hardware Interface and movement
commands are sent to the actuators. Communication with the hardware components
usually takes place via a standardized communication interface such as CAN, Ethernet
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or RS-232, which uses a hardware-specific protocol. Therefore, the data inputs and
outputs of the Hardware Interfaces are only partially visible to the middleware of
the Robot. Hardware Interfaces can provide a standardized middleware interface for
different hardware components by encapsulating the hardware-specific functionalities
in standardized Capabilities. This makes Hardware Interfaces crucial for the flexibility
of the Robot hardware and for the reusability of software components.

Data triggered capabilities

Low-level components are often data-driven, i.e. the Capability is always activated
when new data is available. An rectification function, for example, rectifies every
incoming image. Another common data-driven Capability are controllers. A command
is calculated on the basis of each new status measurement. Data-triggered Capabilities
usually have static parameters so that the resulting data is only dependent on the data
received. Often, data-triggered Capabilities are less computationally intensive, as they
should usually deliver the result before the next measurement arrives. The interface
of data-triggered Capabilities is often based on publish-subscribe mechanisms. The
Capability is subscribed to data streams that provide the required data. Each time
information is received, the method is used to calculate the result and provide the
data in a result stream. This allows multiple data-triggered Capabilities to build a
data processing pipeline.

Event triggered capabilities

High-level components are often event-triggered, i.e. they are explicitly activated
by another component, e.g. the flow control. Examples of event-driven Capabilities
are many path planning Capabilities, but also movement commands. This type of
Capabilities is used for different reasons. Very computationally intensive Capabilities
are only triggered when the result is really needed. Another reason for this type of
Capability is if the Capability causes a change in the physical world. For example,
motion commands are typically provided by event-driven Capabilities. A complex and
dynamic parameter interface is also a reason for choosing this type. Event-driven
Capabilities usually use the remote procedure call mechanism. The Capability is
called by a request. The request contains data, usually the parameters and the data
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for the method. Finally, the Capability returns its result in a response that contains
the result data.

4.5.4 Relations of Capabilities – Concern of communication

Over the last 20 years, the robotics community has turned to component-based design
for various reasons. One of the main reasons is the flexibility of the system and
the reusability of its components. This simplifies collaboration between institutions
and speeds up the development of complex Robots, as mature building blocks are
available and can be easily integrated. From the architect’s point of view, this was
a clear advantage of the “separation of concerns” approach, which separates Com-
putation and Communication. In principle, this development was possible because
middleware frameworks such as ROS, DDS, Ice etc. were available to solve the com-
munication problem. However, depending on the Robot and its components, different
communication requirements have to be met. None of the available middlewares can
fulfill all requirements, as the requirements are sometimes contradictory. Therefore,
several middlewares are often used in one Robot. Some general requirements for
communication solutions are listed below.

Real-time Requirements Communication in Robots is often subject to time require-
ments. Depending on the application, these time requirements are more or less
strict. Especially for low-level control loops, hard timing requirements must
be met to ensure the stability and safety of the system. These hard require-
ments, which set fixed limits for delay and jitter, are referred to as real-time
communication in the field of robotics.

Limitations on bandwidth Autonomous Robots are equipped with many sensors
that generate large amounts of data. This data must be forwarded to various
components, which leads to enormous data traffic in the system. The efficient
handling of this data traffic on the hardware used is an important requirement
for communication within a Robot.

Runtime Flexibility Communication within a Robot changes at runtime. A robotics
middleware must be able to handle changes in the communication structure,
e.g. new components that require data. In addition, components can generate
different data depending on their configuration. Therefore, the data streams
must also be flexible in terms of data types.
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Debugging and Logging Tools Especially for autonomous, reliable systems, the
tools of the middleware to examine and analyze the communication between
the components are of great importance. The detection of errors in the commu-
nication and the logging of the communicated data should be provided by the
middleware.

4.5.5 Viewpoint Aspects

The Viewpoint Capabilities describes the Architecture from the perspective of the
software modules and their connection. The relevant Stakeholders are therefore the
developers of the software modules, the developers of the software infrastructure and
the software integrators. The central Concerns of these Stakeholders are Computation
and Communication. These two Concerns are therefore adopted as Viewpoint Aspects.

However, since Robots are not purely software systems, two Concerns relevant to
robotics are added. Firstly, the Concern of world modeling is a central aspect of
robotics. Every Robot works in the physical world. Therefore, software components
solve problems based on the physical world. In order to solve these with software,
the relevant aspects must be modeled. How the Architecture of the Robot solves these
problems is dealt with in the Viewpoint Aspect World Model.
The second robotic aspect is the sense-act loop. Every Robot perceives its environment
via sensors and derives the necessary actions from this, which are executed via
actuators. This changes the physical world, which in turn can be perceived via the
sensors. This closed loop can be observed in every Robot but the approaches to
implementation are very diverse. The Concern Sense-Act Loop serves to document
the Architecture Decisions in this regard.

Therefore the four Viewpoint Aspects of the Viewpoint Capabilities are presented below.

Sense-Act Loop Closure (AFE 4.2.1) The Viewpoint Aspect Sense-Act Loop addresses
all Architecture Decisions regarding the closure of the Sense-Act Loop. This can be
implemented at very low levels of abstraction, e.g. control. However, complex loop
closures, e.g. via a knowledge representation, also fall within the scope of the loop
closure Aspect.

World Model (AFE 4.2.2) The Viewpoint Aspect World Model addresses the Archi-
tecture Decisions regarding the modeling of the physical world. It documents how
data relevant to the software modules can be recorded, stored and retrieved. In
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Guideline Approach Implementation

VC-A1 Sense-Act Loop Closure VC-M1G VC-M1A VC-M1I

VC-A2 World Model VC-M2G VC-M2A VC-M2I

VC-A3 Communication VC-M3G VC-M3A VC-M3I

VC-A4 Computation VC-M4G VC-M4A VC-M4I

Table 4.5: Matrix of Viewpoint Capabilities Model Kinds

the simplest case, this can be parameters and measured values, but also complex
knowledge representations such as ontologies can be used.

Communication (AFE 4.2.3) The Viewpoint Aspect Communication addresses the
Architecture Decisions regarding communication between software modules. In
addition to the often distributed computer architecture, special challenges in robotics
arise in other aspects such as heterogeneity of data, flexibility of data streams and
real-time requirements.

Computation (AFE 4.2.4) The Viewpoint Aspect Computation addresses the Architec-
ture Decisions regarding the software methods used in the system. In addition to the
basic selection of methods, this Concern also addresses the technical interaction of
the individual methods or software modules.

The RoAF therefore defines the Viewpoint Aspects (VC-A) for the Viewpoint Capabilities:

VC-A1 Sense-Act Loop Closure

VC-A2 World Model

VC-A3 Communication

VC-A4 Computation

4.5.6 Model Kinds

The Model Kinds then result from the VC-A and the Model Abstraction Types. As
shown in Table 4.5, the RoAF contains 12 Model Kinds for the Viewpoint Capabilities.
Each Model Kind has a defined Model Abstraction Type and a defined Aspect from the
Viewpoint Aspects.
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4.5.7 Viewpoint Summary

From the Viewpoint Capabilities, the Robot is viewed as a system of communicating
software components. First, the Capability term was defined and introduced. A gen-
eral structure of this central element in the Viewpoint Capabilities was then identified.
Various classes of Capabilities were then introduced. The linking of Capabilities via
communication solutions was also described.
The Viewpoint Aspects of the Viewpoint Capabilities were then identified as Communi-
cation and Computation from the 4C. These Software Concerns were then extended
by the domain-specific Viewpoint Aspects Sense-Act Loop Closure and World Model.
The 12 Model Kinds of the Viewpoint Capabilities then result from the combination
with the Model Abstraction Types.

4.6 Viewpoint Skills

This section introduces the Viewpoint Skills (AFE 4.3). To solve a Task, a transition
from the declarative to the procedural level is necessary (Volpe et al. [139]). The
“what” to do must be translated into a “how” to do it. From the perspective of
the declarative level, this is the problem of symbol grounding [52]. Classical logic
planners such as Strips [42] are based on the idea that there are actions that deter-
ministically transform the state of the world. The idea is obvious that the Capabilities
of the system can be used as implementations of these actions, but in a practice a
Capability will not cause a deterministic change in the state of the world. The effect
of executing a Capability depends on the context, which is also part of the world state.
For this reason, Capabilities cannot be used for symbol grounding. However, even
with less strict requirements that allow dependencies on the context, the successful
execution of a Capability does not guarantee that the Task has been solved.
An example: The Task is to examine an object. To accomplish this Task, a movement
is performed with a pan/tilt unit equipped with sensors. The movement may be
successful, but the object is still not visible because it could be occluded. Continuing
the Mission would lead to problems because the subsequent steps require the object
to be visible. In the worst case, many subsequent steps are executed without the
underlying problem being recognized, which makes error detection more difficult. A
better approach would be to use a different Capability to check whether the Task has
been successfully resolved. So is it a question of granularity? Can the problem be
solved by replacing the Task with two more fine-grained Tasks, the making visible
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itself and then the validation of the visibility?
In practice, this approach is better because the error is detected earlier and error
propagation can be avoided. From a conceptual point of view, the procedural layer
was forced into the declarative layer, which leads to various difficulties. The biggest
problem is that the two Tasks together do not result in the Task but specify the
procedure how the Task could be solved. If this procedure does not work, it is difficult
to use other ways to solve the problem because the information about the actual goal
is no longer available in the description.
Another problem, especially for planners, is that only the sequence of Tasks define the
state of the world. After the attempt has been executed to make the object visible, the
state of the world becomes unknown. The state of the world can only be resolved by
executing the next task. The individual steps can therefore no longer be interpreted
as the actions of a classical planner. There is therefore a gap between the declarative
(Task) and procedural (Capability) levels. Bridging this gap is the goal of Skills. A
Skill attempts to solve a Task by utilizing the Capabilities of the system. For example,
the Skill “Look at object” could call the Capability “Move pan tilt”, check the visibility
with the Capability “Viewpoint analytic” and return the result of the Task to the
declarative layer on this basis. This could be a sufficient Skill for a simple system.
Complex Robots usually offer the possibility of solving a Task with many different
approaches. For example, the Skill of looking at an object could modify the position
of the Robot to solve the Task.

The following table provides an overview of the Concerns and the typical Stakeholders
of the Viewpoint Skills:

Framed Concerns Typical Stakeholders

Dependability Skill developer

Autonomy Robot developer

Flexibility Robot architect

Complexity

Configuration

Coordination

Table 4.6: Concerns and Stakeholders of the Viewpoint Skills

In this section, the term Skill is first defined. The general structure of Skills is then
examined and their types presented. Subsequently, the Viewpoint Aspects and Model
Kinds of the Viewpoint are presented.
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4.6.1 Definition of Skills

The term Skill is widely used in robotics, but there is no generally accepted definition.
For RoAF we define a Skill as follows:

Def. 4.2 Skill:
A skill is the ability to solve a specific task effectively by a combination of knowl-
edge, capabilities and experience.

This is an abstract definition of the term Skill, which refers to the use of the term
Skill in early work on artificial intelligence, e.g. Sussman [125]. The RoAF defines
the Viewpoint Skills as a perspective in which these task-solving abilities and their
implementation are visible. Since each Robot has to solve Tasks, this Viewpoint is
generally relevant. The term effective implies that a Skill can handle errors through
recovery strategies. Many Robots have a pick-Skill. The Task consists of picking up an
object. Depending on the Architecture and the environment, this Skill can be simple,
e.g. a pick-and-place unit in a production line picks up the same type of object from a
well-defined location. The pick-Skill is therefore a hard-coded sequence of movement
commands. However, error detection and correction can also be integrated into such
systems by triggering a new gripping process if the suction gripper was unable to
hold the part on the first attempt.
In more complex systems and in less constrained environments, a Skill for grasping
objects can be enormously complex. Here, many Capabilities such as path planners,
object detectors, reachability analysis, often need to be orchestrated in a dynamic
environment using domain-specific knowledge and accumulated experience.

4.6.2 Generalized structure of Skills

Often Skills are described from a high-level perspective and it is explained how a Skill
Type can be used, but not how to create a Skill or how it is structured. However, the
internal structure is at least as important as the interface when creating Skills. The
structure of a Skill depends on its Skill Type (see Subsection 4.6.3) and its function.
Nevertheless, all Skill Types have general elements and structures that constitute
them. In Figure 4.7, such an abstracted, generic Skill is shown with its components,
relationships and interfaces.

From the perspective of the Mission (blue boxes), a Skill is used to solve a Task. The
Skill can be activated. As long as the Skill is active, the Task is being solved. Once
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this process is complete, the Skill returns, optionally with a declarative result.
The Viewpoint Skills shows the strategy of how a Skill solves Tasks. Generally, a Skill
consists of several components that are used to solve the Task. These components
can be divided into three different classes: Subskills, Decisions & Interpretations and
Capabilities. In addition, the components are related to each other on three different
levels: the logic level, the data level and the resource level.

Relations between Skill components

The components of a Skill are connected to each other by various relationships:

Logic flow All components within a Skill are connected to each other by logical
links (black links). The logical links encode which components are activated
depending on the logical results of the previously activated components, e.g. a
successfully solved Subskill. The logical links contain no further information
than the link between results and activations. The logical flow therefore
addresses the Concern Coordination. The logical flow can create loops by
repeatedly activating components. Parallel activation of multiple components is
also possible. The connections are therefore 𝑛 : 𝑛 connections. A logical result
can activate several components and a component can be activated by several
results. The activation of a Skill leads to the activation of one or more internal
components according to the logical links. A Skill must implement a logical
flow structure that ensures that the overall Task is solved by orchestrating its
subcomponents.

Data flow In addition to the logical flow, a Skill contains data flows between the
components and the interfaces of the Skill. This data can vary depending on the
component and Skill. The most common data in Skill data flows is configuration
data. Therefore, the data flow implements the parameterization of the Skill
components, which corresponds to Concern Configuration. The data flow also
contains results of the components, which can be used to interpret information
and derive logical results. In addition, the data flow can be used to implement
a data processing chain by passing data from one subcomponent to the next.
Data flows are 𝑛 : 𝑛 connections. A component can receive data from multiple
components and deliver data to multiple components. These relationships
are often similar to logical relationships, but are generally independent of
each other. A Skill must implement a data flow structure that ensures that all
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subcomponents are correctly parameterized and that all subcomponents are
supplied with the required data.

Resource management The third level of connection within a Skill is referred to
as Resources. In contrast to pure software projects, robotics components are
often interdependent to a certain degree, as the Physical Robot and the Physical
Environment influences the result of the components. Therefore, a component
that is independent from a pure software perspective is indirectly dependent
on other components, as their effects change the state of the world. These
implicit relationships between components make the development of depend-
able autonomous Robots extremely complex. Therefore, these relationships are
formalized via abstract Resources to deal with this problem explicitly. For the
development of Skills it is important to be aware of this additional level, as most
components within a Skill strongly depend on this concept. The relationships
at the Resource level differ from the other two relationship types as there is
no flow between the Skill and its components, but the Skills and components
interact directly with the Resources. A Skill must manage the required and
produced Resources for the Skill and its components. Especially with high-level
Skills, the avoidance of Resources conflicts with Subskills is an important issue.

Interfaces of a Skill

A Skill has four different interface layers (logic, data, Resources, Capabilities) in three
successive phases:

Activation A Skill has an input in the logic layer that activates the execution of the
Skill. In the data layer, any data, often parameters, can be transferred to the
Skill. In the resource layer, the Resources required for the execution of the Skill
are transferred.

Execution During execution, the Skill has a logic input that can be used to stop the
Skill during execution. There is no interface at the data level during execution,
but new data can be accessed and returned with the help of Capabilities. These
Capabilities form the fourth layer of the interface. The Capability interface is
only used during the execution phase of a Skill. Resources can be created, used,
blocked or consumed during execution.

Result A Skill can have several logical outcomes. One of these outcomes is active in
the result phase. Any data structures can be returned in the data layer. In the
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result phase, Resources can be created or released.

Components of a skill

Each Skill consists of several components that interact via relationships to solve
the Task. Three types of components can be distinguished within a Skill. Each
component type can occur multiple times. Depending on various factors such as
Task, available Capabilities, world knowledge, etc., the design of a Skill can vary
significantly. Nevertheless, all Skills are based on the component types: Subskill,
Capability and Decision & Interpretation, which are presented below:

Subskill In particular, high-level Skills consist to a large extent of Subskills to solve
their Task. Subskills are Skills that are integrated as a component into another
Skill. This component thus enables modularization and the resulting hierarchy
helps to create complex Skills. With Subskills, a Task can be broken down into
several Subtasks, as each Subskill also solves its own Task.
Another use case of Subskills is the creation of Resources. The Task of the
Subskill may not be necessary for the higher-level Task of the calling Skill, but
the Subskill creates Resources that are needed for other components within the
Skill. The Subskill can also be used to generate required data. Furthermore,
a Subskill can also be used to decide on the further logical flow of the Skill
based on the logical outcome of the Subskill. It is not necessarily the successful
solution of the Subskill that is of interest, but the information as to whether the
Subskills could be solved.
For example, a Skill for detecting the position of a person in the workspace could
return the logical result “failed” because no person was detected. However, this
result is desirable for the calling Skill, as further steps are dangerous for people
in the workspace.

Capability Skills have the task of building a bridge between the declarative, Task-
related level and the procedural level. This goal is achieved by using Capabilities
as components within a Skill. A Capability has a different interface than the
other Skill components, as there is only a very limited logical interface and no
resource interface. The logical interface consists of an input and an output.
The input activates the Capability and the output signals that the Capability
has returned. As a Capability has no Task, no additional logical results can
be delivered. The data interface is similar to the Skill interface. Normally,
parameters are given as input and results are returned as output. Since a
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Capability does not have a Resource interface, the calling Skill must ensure
that the required conditions are met. The Capability component is the only
connection to the Physical Robot. For example, all perceived data is only
accessible via Capability components.

Decision & Interpretation The last category of Skill components are the Decision &
Interpretation (D&I). These components can generate logical decisions, data
and Resources based on their input data. The interfaces of the D&I components
are similar to the interface of a Skill. A D&I component has a logic input for
activation, data inputs and a connection to the Resources. The output of a
D&I component can have several logic outcomes, data outputs and Resources.
In contrast to Capabilities and Subskills, D&I components are not active over
a longer period of time, but decide or interpret their output based on the
input. Therefore, no complex calculations take place in these components. The
decision can be rule-based, mathematical or based on learned correlations. A
typical application of a D&I component is the interpretation of the results of a
Capability component.

4.6.3 Skill Types

Several types of Skills can be distinguished, each representing specializations of the
general Skill. All Skill Types therefore have the structure described in the previous
sections, but their purpose differs. In this section, various Skill Types are presented as
examples.

Skill Primitives

The design goal of a Skill Primitive is to link a Capability with a Task to be solved. As
shown in Figure 4.8, the Task is usually very simple, such as the Skill “move-to-touch”
introduced by Hasegawa, Suehiro, and Takase [54]. This Skill is solving the Task
"get-into-contact-with-object" by a Capability commanding cartesian moments with
force sensitivity. Depending on the Task and the Capability, the result of the Skill
can be determined by interpreting the result of a Capability, e.g. the final position,
or based on additional information or tests, e.g. whether an external force was
measured.
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Figure 4.8: Example of a Skill Primitive: "Move-to-touch" Skill from Hasegawa, Suehiro, and
Takase [54]. To solve the Task to get into contact with an object a cartesian movement
Capability is used. If a contact force in movement direction is detected the Task is solved.
(source: Hasegawa, Suehiro, and Takase [54], © 1992, IEEE)

The interface of Skill Primitives is closely linked to the parameters of the Capability
used. A Skill Primitive cannot provide complex troubleshooting strategies. Precon-
ditions are usually not checked in a Skill Primitive, but the context is expected to
provide the preconditions. Nevertheless, Skill Primitives are very important for de-
pendability as they detect and interpret errors at a fine granularity to avoid error
propagation. The Skill Primitive is the most basic Skill Type and is usually used as a
building block for higher level Skill Types. In the literature, this Skill Type is often not
introduced as Skill, but as a motion primitive, for example. According to the Skill
Definition 4.2 of RoAF, however, the Skill Primitive is a Skill Type that bridges the gap
between the declarative and procedural levels.

Process Skills

Solving Tasks often requires mastering similar processes. For example, many assembly
Tasks are "peg-in-hole" problems. The design goal of a Process Skill is to encapsulate
the strategy for solving such a category of problems so that the Skill is applicable
to any "peg-in-hole" problem. The interface of a Process Skill is reduced to the
process-related parameters that allow the Skill to be adapted to the different problem
variants. The other parameters, such as Robot-related ones required within the Skill,

74



4.6. Viewpoint Skills

Figure 4.9: Example of a Process Skill: "Peg-in-hole" Skill with process parameters pen-
etration depth and tilting angle from Stemmer and Bøgh [122]. The Task, which can be
solved with this Skill are "Assemble-object-into-hole". Based on these parameters the Skill
can be adapted to process variations. The Skill itself then parameterize a set of motion
Capabilities used to execute the process and solve the Task. (source: Stemmer and Bøgh
[122])

are either expert knowledge that is integrated during the development of the Skill
or must be determined using the Capabilities of the Robot. In Figure 4.9 a Process
Skill “peg-in-hole” for assembly developed as part of the EU project TAPAS is shown.
The parameterization of this assembly process is reduced to two process-related
parameters, the penetration depth and the tilt angle, which are necessary to adapt
the Skill to the Task to be solved. All other parameters of the underlying Skill
Primitives are configured internally.

Process Skills have preconditions, but analogous to the Skill Primitives, these precon-
ditions are expected to be fulfilled and are not explicitly checked. One reason for this
is that the success of a Process Skill strongly depends on the parameterization of the
Skill. Therefore, the preconditions are of less importance from a high-level perspec-
tive, as Process Skills does not show deterministic behavior between preconditions
and postconditions as long as the parameterization is not appropriate. Therefore,
a Process Skill cannot be used directly in a symbolic planner. During integration,
an adaptation step must be performed to specialize the Process Skill to a problem
instance.
The parameters of a Process Skill are process-dependent, so that finding a parame-
terization for a defined process solves the same process in different situations. The
Process Skill “peg-in-hole” becomes a specialized Skill “place object of type A in hole
of type B”. The Skill Type thus transfers the expert knowledge to the system itself:
Generic approaches to solving Task categories using the Robot’s Capabilities with
a focus on the process-relevant parameters. The Process Skills thus helps to cope
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Figure 4.10: Example of a Task Programming Skill from Steinmetz and Weitschat [121]. The
purpose of this Skill Type is to allow intuitive programming of Robots. To achieve this, a
Task Programming Skill has only a few parameters that need to be defined. Most of the
parameters required for internal Capability parameterization are automatically deduced
from the current state. Additional pre- and postcondition checks help the operator to avoid
errors. (source: Steinmetz and Weitschat [121], © 2016, IEEE)

with complexity and increases the dependability of the system by reusing generic,
tried-and-tested Skills.

Task Programming Skills

A widespread paradigm of future programming concepts for Robot applications is
programming at Task level. This Skill Type can be used to implement such an interface.
The Task Programming Skills represent the abilities of the system and can be easily
parameterized by the user to fulfill specific Tasks. The aim is to create a user-friendly
interface. To achieve this, the parameter set is reduced, interactive methods for
parameter specification are used and pre- and postconditional checks are employed
to support the user in the development of a functional robot application.

As shown in Figure 4.10, a Task Programming Skill is divided into three subcom-
ponents that support the programmer. In the precondition check, the Skill checks
whether all preconditions are met before execution and helps the user to identify
problems. For example, a screwer Skill can check whether the screwing tool is
mounted. In the second block, the execution, the state-changing operation is carried
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Figure 4.11: Example of a Task Abstraction Skill from Rovida and Kruger [98] (© 2015, IEEE).
This Skill is used to abstract the programming problem to a symbolic level. The execution of
the Skill therefore results in a predictable world state change. The goal is to be independent
of the current state to allow flexible sequencing of the Skills, e.g. by a symbolic scheduler.
Remaining state dependencies are modeled by preconditions. (source: Rovida and Kruger
[98], © 2015, IEEE)

out. During task programming, the human user can help the Robot to make decisions
and handle errors. The third block is the post-check, which ensures that the Skill has
completed its Task and informs the user if something has gone wrong. Skills for Task
programming represent a direct interface to the user. The user therefore transfers
the Tasks to the Robot by linking the configured Skills.

Task Abstraction Skills

Another strategy to create Robot applications without programming the Robot is to use
planners such as SkiRos [97]. These planners are based on a simplified representation
of the world, often a state vector, and a set of symbols that can change the state of
the world. A major challenge in applying symbolic planners to Robots is the problem
of symbol grounding, i.e. how this state change is implemented. Skills can be used
to generate these symbols. The design goal of Task Abstraction Skills is therefore
to ensure a defined change of world state. The interface of a Task Abstraction Skill
must correspond to the abstraction level of the planner working at the Task level.
Therefore, all preconditions of this Skill Type must be Task-dependent. In addition,
the state change of a Task Abstraction Skill must be deterministic.
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The structure of a Task Abstraction Skill is shown in Figure 4.11. The interface
are Task-related parameters that configure the Skill to effect a change in the world
state. The formal structure is similar to the Task Programming Skill with three
subcomponents during execution. The precondition check, the execution step and
the verification step. In addition, two blocks are required for the planning interface.
A precondition block that the planner tries to fulfill and a prediction block that
can be used to predict the resulting change in the world state when the Skill is
applied. Task Abstraction Skills usually close the gap between the declarative and
procedural levels at a high level of abstraction, otherwise the world state of the
planner becomes too complex and the Skills becomes less deterministic. In contrast to
the Task Programming Skills, it is not necessary to reduce the number of preconditions
or parameters for these Skill Type as long as they are at the planner’s abstraction
level. On the one hand, this makes the planner-generated Robot application more
efficient for complex sequencing problems; on the other hand, all problems below
the abstraction level of the planner must be solved by the Skill itself.

4.6.4 Viewpoint Aspects

The Viewpoint Skills describes the Architecture in regard to the aspect of how the
available Capabilities can be used to solve Tasks effectively. In the software com-
munity, this aspect is represented by Concerns Coordination and Configuration. In
robotics, these two Concerns are strongly intertwined due to the strong coupling of the
components through the physical world. For the Viewpoint Skills, these two Software
Concerns are therefore addressed by four Viewpoint Aspects, each of which represents
a sub-aspect. The identified, generic structure of the Skill is used to identify these
Concerns. In addition to the Software Concerns, reliability and error handling are of
central importance in robotics. Since Skills by definition imply robustness against
uncertainties and errors, Dependability is a Viewpoint Aspect.

The five Viewpoint Aspects of the Viewpoint Skills are presented below.

Hierarchy (AFE 4.3.1) Skills already form hierarchies at a structural level via the
Subskill component. The Viewpoint Aspect Hierarchy therefore addresses how coordi-
nation and configuration can be achieved through hierarchical approaches. Decisions
are documented here as to which hierarchy levels are used in the Skills of the
Architecture and what tasks they have.

78



4.6. Viewpoint Skills

Type (AFE 4.3.2) The Viewpoint Aspect Type addresses the Architecture Decisions
regarding the selection of the Skill Types. All Skill Types have different properties and
functions. This Concern documents why which Skill Types is used in a Architecture
and what the relationship between them is.

Composition (AFE 4.3.3) The Viewpoint Aspect Composition addresses Architecture
Decisions regarding the composition of Skill components. This includes which Skill
components are used and how these are linked within a Skills.

Resources (AFE 4.3.4) The Viewpoint Aspect Resources is used to document Archi-
tecture Decisions regarding relationships between Skills and its components at the
Resource level. The dependencies induced by the physical conditions are modeled
here.

Dependability (AFE 4.3.5) The Viewpoint Aspect Dependability addresses the Archi-
tecture Decision regarding the reliability of Skills. In Viewpoint Skills, this refers to
the fact that activation of the Skill leads to a successful solution of the corresponding
Task. It also includes concepts of how problems can be recognized and handled.

The RoAF therefore defines the Viewpoint Aspects (VS-A) for the Viewpoint Skills:

VS-A1 Hierarchy

VS-A2 Type

VS-A3 Composition

VS-A4 Resources

VS-A5 Dependability

4.6.5 Model Kinds

The Model Kinds then result from the VS-A and the Model Abstraction Types. As shown
in Table 4.7, the RoAF contains 15 Model Kinds for the Viewpoint Skills . Each Model
Kind has a defined Model Abstraction Type and a defined Aspect from the Viewpoint
Aspects.
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Guideline Approach Implementation

VS-A1 Hierarchy VS-M1G VS-M1A VS-M1I

VS-A2 Type VS-M2G VS-M2A VS-M2I

VS-A3 Composition VS-M3G VS-M3A VS-M3I

VS-A4 Resources VS-M4G VS-M4A VS-M4I

VS-A5 Dependability VS-M5G VS-M5A VS-M5I

Table 4.7: Matrix of Viewpoint Skills Model Kinds

4.6.6 Viewpoint Summary

In the Viewpoint Skills, the Robot is regarded as a system that configures and coordi-
nates software components to solve Tasks. Therefore, the term Skill was first defined
and introduced. A general Skill and its components were then identified. As there
are different classes of Skills, Skill Types were introduced. The Viewpoint Aspects
Hierarchy, Composition and Resources were then derived from the general structure
of a Skill. The various Skill Types are addressed via the Viewpoint Aspect Type. That
Skill serve to solve Tasks effectively, even when problems occur, is represented in the
Viewpoint Aspect Dependability. The 15 Model Kinds of the Viewpoint Skills then result
from the combination with the Model Abstraction Types.

4.7 Viewpoint Mission

In this section the Viewpoint Mission (AFE 4.4) is introduced. A Robot has to solve,
according to its Definition 3.2, Tasks. Often this includes several Tasks that are
dependent on each other. This collection of Tasks is referred to as Mission according
to Definition 3.4.

This collection of Tasks can be seen from the Viewpoint Mission. The relationship
between the various Tasks is also visible. In order to fulfill complex Missions, the
Tasks must often be divided into smaller Tasks. Another aspect that is visible from the
Viewpoint Mission is the distinction from the Mission Environment.
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With finely granular Mission descriptions, the Robot Mission can be very simple, e.g.
the execution of a sequence of Tasks in a fixed order. The Robot Mission can become
very complex, especially with underspecified Missions and collaborative Missions. A
Mission such as “tidying the room” in the field of service robotics requires a lot of
additional information that must be derived from knowledge databases in order to
identify specific Tasks that can be performed by a Robot. For collaborative Tasks, the
Task is shared between the Robot Mission and the Mission Environment. Therefore,
the Robot must know what the complete Task looks like and which part of the Task is
to be executed by the system.

Robotic Tasks must be completed in the physical world. They are therefore indepen-
dent of the Robot itself. The dependency exists in the opposite direction; A Robot
can only fulfill certain Tasks, but the Tasks can also be completed without the Robot.
The Software Concerns are therefore not relevant for the Viewpoint Mission, only the
Robotic Concerns are.

The following table provides an overview of the addressed Concerns and the Stake-
holders of the Viewpoint Mission:

Framed Concerns Typical Stakeholders

Dependability Application developer

Usability Robot developer

Flexibility Robot architect

Complexity

Autonomy

Table 4.8: Concerns and Stakeholders of the Viewpoint Mission

This section first describes the general structure of Robot Missions. As these are closely
related to the Tasks, they are subsequently discussed. Finally, the system boundary
between Robot Mission and Mission Environment is addressed and the Viewpoint
Aspects and Model Kinds identified are introduced.
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The first is located within the Mission Control Task. It divides this component into
the Mission Control Robot component, which is inside the system boundary, and
the Mission Control Environment component, which is outside the system boundary.
These components are connected to each other via the Mission Control Interface. As
each Robot is controlled from the outside, each system has a Mission Control Interface.

Another aspect shown in Figure 4.12 on the right is the relationship between Tasks
within a Mission. For example, there are Tasks that must be completed in a certain
order, or that are triggered by an event such as an operator command. Often the
Mission Control Task manages these dependencies.

For collaborative systems, further system boundaries in Mission View may exist. These
are defined by the collaborative Tasks. For each collaborative Task, there is one part
of the Task that lies within the system boundary and one part that lies outside. The
Task Interface lies between these two parts and defines the interface between the
systems.

The Mission Environment can be structured in very different ways. For example, the
Mission Control Environment can be realized by a human operator or by a higher-
level planning instance and can itself be highly complex. For the Viewpoint Mission,
however, only the components within the system boundaries are relevant. These are:
Tasks, Task Interfaces, Mission Control Robot and the Mission Control Interface which
are presented in the following sections.

4.7.2 Tasks

According to the Definition 3.3, a Task is a specific modification of the physical world
or a gain of information about the physical world. The Task itself is therefore initially
independent of the Robot but can also be performed by a human or a device, for
example. The Task itself also has no dependencies but stands alone.

General Structure of Tasks

As shown in Figure 4.13, the execution of a Task is triggered. This can be triggered
via the Mission Control Interface or internally via dependencies between Tasks. In this
case, there must be a higher-level Task that contains the dependency.
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chronological dependency between Tasks. This means that a Task should be executed
as soon as another Task has been successfully completed.

The solution of all Subtask always leads to the solution of the parent Task, taking
into account the dependencies. The sum of all Subtasks including the dependencies
thus corresponds to the parent Task. This distinguishes the Subtask from the Subskill.
With Skills, it is not guaranteed that successful execution of all Subskills means that
the Skill is successful.

𝑇 =
⋃

𝑇𝑠𝑢𝑏𝐴 =
⋃

𝑇𝑠𝑢𝑏𝐵

𝑆 ⊃
⋃

𝑆𝑠𝑢𝑏

There are usually various ways to split a Task into Subtask. Each Subtask set cor-
responds to the parent Task. This Task decomposition can also be applied to the
Subtasks, creating a Task hierarchy. However, it should be noted that there is a depen-
dency between the Subtasks to solve the higher-level Task. Accordingly, the Subtask
decomposition must also take the other Subtasks into account. A real division into
sub-problems can therefore generally not be solved using the hierarchical approach.

Task States

A Task can be in certain states. As shown in Figure 4.14, the initial state of a Task
is the todo state. Further, there are two final states: solved, which represents that
Task has been solved and failed, which represents that Task cannot be solved. From
the initial state exists a direct connection to the state failed. This transition can be
triggered for example by external events resulting in a not solvable Task. Otherwise,
an action must be performed to solve the Task. In this case, the state of the Task is
active. The Task can be solved from this state, which results in the state solved, but
it can also become unsolvable, which results in the state failed. Furthermore it is
possible to return from the state active to the state todo. This happens for example
when a action is preempted before solving the Task.

Task Interfaces

If a Task is not exclusively inside or outside the system boundary of the Robot, a Task
Interface is created. Even if the Task is not bound to the system boundary, it is always
possible to decide which parts of the Task are executed on the Robot and which are
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tion is created that leads to the solution of the overall problem. In this case,
too, there are no dependencies between the two Subtasks from the perspective
of the Mission. Both Task and the two Subtasks are identical and therefore also
solved at the same time.

3. Dependencies Collaborative Tasks can be decomposed into Subtasks that have
cross-system dependencies. Causal and chronological dependencies between
Subtasks can thus cross the system boundary.
Example: In a heterogeneous team of rovers, there is a rover “Scout” that is
supposed to geometrically model the environment and a rover “Scientist” that
is supposed to collect scientific data about the environment. If the Task is to
explore the environment scientifically, this can only be done collaboratively, as
none of the rovers can solve all Subtasks. First, the scout must explore a path to
the scientifically relevant areas, then the scientist can drive to these locations
and take measurements.
From the perspective of the Mission, there are causal dependencies here that
connect the Subtasks distributed across the various systems.

4. Commands A collaborative Task can be split by transferring Subtasks across the
system boundary via the Task Interface. This assigns new Tasks to the system.
This often also involves cross-border dependencies. Example: A rover and a
drone explore an area together. As the drone flies faster but only has a limited
flight time, the rover carries the drone most of the time. Each time the rover
wants to head for a new destination, it sends the drone ahead to optimize its
own path planning. Only when the drone has landed on the rover again are
the previously explored points navigated to. The rover therefore determines
the Tasks of the drone during the Mission.
From the point of view of the Mission, the rover hands over Tasks to the
drone depending on its own Mission progress. These Tasks then have causal
dependencies on the Tasks of the rover. This means that Tasks are transferred
via the interface and cross-border dependencies are created. The superordinate
Task lies with the commanding rover, the drone only executes Subtasks without
knowing the superordinate Task.

5. Negotiating The most complex form of the Task Interface is when the distri-
bution of the Tasks is negotiated between the Robots. This means that there
is no fixed hierarchy that defines how the Tasks are exchanged between the
systems, but based on the Mission, the progress and the individual Skills, the
systems assign the Tasks to each other. Example: Exploration with two rovers
exchanging exploration strategies. First, the rovers divide up the area. As the
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Mission progresses, one rover is faster than the other. This rover then takes
over further areas from the other rover.
From a Mission perspective, Tasks are transferred here via the Task Interface. In
addition to the assigned Tasks, however, all systems have a representation of
the higher-level Task. Based on this information, the allocation of the Task can
be renegotiated during execution.

4.7.3 Mission Control Robot

Based on the definition of the Robot 3.2 and the definition of Mission 3.4, it can
generally be said that every Robot has a Mission Control Task. This Mission Control Task
addresses all Tasks that the Robot should execute, as well as all dependencies between
them. This Task also establishes the connection between the Mission Environment and
the Robot Mission. In abstract terms, the Mission Control Task is a collaborative Task.
The interface to the system is therefore the Task Interface of the Mission Control Task.
The Mission Control Task controls and monitors the specification and execution of the
Mission. Depending on the system, both the Mission itself and the associated Mission
Control Interface can differ considerably. Three dimensions are therefore presented
below, which can be used to systematically classify the various Missions.

Mission Dynamic

Missions can be classified according to their dynamics. This is a spectrum with fluid
transitions. For better understanding, three different reference Mission dynamics are
introduced as examples, which cover the range of dynamics.

Static Mission The Mission is static, i.e. no changes to the Tasks to be solved occur
during runtime. The dependencies between the individual Tasks are also static.
These can often be mapped as a simple sequence.
Example of “industrial assembly processes”: The steps and the sequence of the
individual steps are precisely defined. If all steps are carried out in the defined
sequence, the Mission is successfully completed. There are very few, if any,
variants for solving the Task.

Adaptive Mission An adaptive Mission is a Mission that solves one or more Tasks.
The way in which these Tasks can be solved can change during execution due
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to internal and external events. It is also possible to change the Tasks during
execution.
Example “Clear a table”: A service robot that has the Task to clear a table has
an adaptive Mission. The Task and thus the target state are clearly defined.
However, how this Task can be solved depends heavily on the start state.
Based on this state, it is possible to plan what needs to be done. As a rule,
the implementation of the plan leads to the solution of the Task. However,
unforeseen events, such as emptying the dishwasher, can lead to a necessary
adjustment of the Mission.

Reactive Mission A reactive Mission also has Tasks that need to be completed. How-
ever, the Tasks are dynamic and depend heavily on the current situation. There-
fore, the system must react to the current situation in order to fulfill the Mission.
Global planning of the Tasks is usually not possible.
Example “soccer robot”: A soccer robot has the Task to win the game. However,
which Subtasks must be fulfilled and when depends almost exclusively on the
specific situation (e.g. which team is in possession of the ball, current position,
position of the opponents, etc.). It is therefore not possible to plan in advance
when which Task is to be fulfilled. However, strategies can be developed as to
how to react in which situation or how certain situations may be created.

Mission Abstraction Level

Missions can be defined at very different levels of abstraction. Here, as well, there is a
continuous spectrum of Mission abstractions illustrated by three reference abstraction
levels: Low-level mission, intermediate-level mission, high-level mission. The ab-
straction level of the Mission depends only partially on the Task. This means that the
same Task can be mapped at different Mission abstraction levels. The three reference
levels are illustrated below using the example of assembling a piece of furniture.

Low-Level Mission In the low-level Mission, the Tasks are specified in a very specific
and fine-grained way. The higher-level Task, why a Subtask must be fulfilled, is
usually not included in the low-level Mission.
Example “Assembly in industrial production”: The piece of furniture is assem-
bled by programmed movements of automatic machines. The individual Tasks
of the machines do not contain the higher-level Task, but a sequence of move-
ments to be executed. The piece of furniture itself is no longer part of the Task,
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but only the execution of the trajectories. Due to the lack of information about
the higher-level Task, no deviation from the sequence is possible.

Intermediate-Level Mission The intermediate-level Mission specifies how the higher-
level Task can be divided into smaller steps. However, how these steps are
solved is determined by the system, which can solve them in different ways.
The system can also adapt the instructions.
Example “Building furniture with instructions”: When building an IKEA piece
of furniture using the instructions provided, individual work steps are defined.
However, the specific execution, e.g. how a screw is inserted into a hole, is not
defined. If the work steps are carried out according to the instructions, the
overall assembly is successful. Nevertheless, it is possible to deviate from the
instructions, as these only represent one solution for successful installation and
the relevant information is available to the system.

High-Level Mission In a high-level Mission, the Tasks are defined at a very high level.
The system must therefore find a way to solve the Tasks itself. The high-level
Mission often only defines the target state, but not the way to get there. Since
the Task is not specified in more detail, there are usually very different ways to
solve the Task. Another challenge of the high-level Mission is that the Task is
often heavily underspecified and therefore the system has to supplement the
missing information from various sources.
Example “Assemble the furniture”: The high-level task in the IKEA example
would be the task “Build the furniture”. No instructions or more detailed
instructions are provided. The system must therefore independently examine
the components and deduce how a piece of furniture can be built.

Missions Phases

Missions can often be divided into different phases. These phases can either run in a
fixed order or alternate flexibly. The following phases can be distinguished:

Idle phase In this phase, the Robot waits for Tasks. For example, all Tasks that have
been passed to the system may already have been solved. In this phase, the
Robot also does not perform any monitoring tasks that belong in the execution
phase. However, the system is in operation and can receive Tasks via the Mission
Control Interface.
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Setup phase In the setup phase, the system is prepared for solving the Mission.
These can be system-specific Tasks, such as the calibration of the sensors.
Creating a map or modeling the current environment can also be part of the
setup phase. In addition, Mission-specific information can also be transmitted
to the system, such as the teach-in of configurations.

Execution phase The Mission is solved in the execution phase. This applies to both
the action-controlled and the perception-controlled Tasks. The Robot therefore
does not have to move continuously during the execution phase, but can also
perform observation Tasks with static hardware.

In contrast to the other dimensions of the Mission classification (dynamics, abstrac-
tion), the phases do not form a continuous spectrum, but can be combined largely
at will. With the exception of the execution phase, phases can also be completely
absent.

4.7.4 Mission Control Interfaces

The Mission Control Interface forms the system boundary of the Mission Control Task.
It connects the Mission Control Environment and the Mission Control Robot. Tech-
nically speaking, this is the Task Interface of the Mission Control Task, which is a
collaborative Task between Robot and Mission Environment. This allows dependencies
to be mapped and states to be monitored via the interface. The dependencies can be
used to control the Tasks. The interface is not always one-directional from Mission En-
vironment to Mission Control Robot, but rather both directional; some Mission Control
Interfaces enable the Mission Control Robot to modify Tasks in the Mission Environment.

The Mission Control Interface is the interface between Mission Control Robot and
Mission Control Environment. Therefore, the Mission Control Interface is strongly
influenced by the properties of the Robot Mission. For example, the Mission Control
Interface can be reduced to start and stop for a static Mission. Adaptive Mission often
require a more complex Mission Control Interface as even monitoring the process
is significantly more complex. If Tasks are passed via the Mission Control Interface,
the degree of abstraction of the Mission determines what they look like. In addition,
the Mission Control Interface can differ in the various phases of the Mission. For
example, the Mission Control Interface can transmit Tasks in the setup phase, while in
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the execution phase it is limited to monitoring the Task states.

The second important factor is the type of Mission Control Interface. Since every
Robot can be controlled from the outside to a certain extent, types 1 (Disjunct Tasks)
and 2 (Implicit Collaboration) are not applicable as they do not allow control. In
the simplest case, the Mission Control Interface is therefore an interface of type 3
(Dependencies), which can implement dependencies across the system boundary. For
example, the Mission Environment can start the execution of Tasks.
The next more complex interface type 4 (Commands) also allows new Tasks to be
transferred via the Mission Control Interface. The recipient of the Tasks is always the
Robot. The Mission Control Interface therefore allows the Robot to transfer new Tasks
or change existing Tasks. However, this does not exclude the possibility that the Robot
can also change the Tasks transferred to it.
An interface of type 5 (Negotiating) has the highest capability. Here, the Robot is
also able to transfer Tasks to the Mission Environment. This means that the Robot also
determines how the Mission is solved outside its system boundaries.

4.7.5 Viewpoint Aspects

The Viewpoint Mission describes the Architecture of the system with regard to the
aspect of the Tasks and Missions that the Robot can solve. This also includes the
interface to the Mission Environment. As the Tasks and Missions are purely in the
physical world, the Software Concerns are not relevant for the Viewpoint Mission. The
Viewpoint Aspects are therefore derived from the Robotic Concerns. The Usability of
a system, but also the Flexibility are strongly linked to the system interface. The
Viewpoint Mission addresses this via the Viewpoint Aspect Interface.
All Robotic Concerns play a role for the Robot Mission in a strongly interwoven form.
The Viewpoint Mission therefore uses the general aspects of the Mission: Abstraction,
Phases and Dynamic to achieve a separation of concerns.

The four Viewpoint Aspects of the Viewpoint Mission are presented below.

Abstraction (AFE 4.4.1) The Viewpoint Aspect Abstraction addresses Architecture
Decisions regarding the choice of abstraction level. If different abstraction levels have
been selected, the relationship between them is documented here.
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Phases (AFE 4.4.2) The Viewpoint Aspect Phases addresses the Architecture Decisions
regarding the Mission phases of an Architecture. This documents which phases are
used and how they are related.

Dynamic (AFE 4.4.3) The Viewpoint Aspect Dynamic addresses the Architecture Deci-
sions regarding the flexibility of the Mission. This is limited to the internal Mission of
the Robot, but is strongly influenced by the Mission Environment. These considerations
are also part of this Viewpoint Aspect.

Interface (AFE 4.4.4) The Viewpoint Aspect Interface is used to document Architecture
Decisions regarding the interface to the Mission Environment. This includes both the
Mission Control Interface and the optional Task Interfaces.

The RoAF therefore defines the Viewpoint Aspects (VM-A) for the Viewpoint Mission:

VM-A1 Abstraction

VM-A2 Phases

VM-A3 Dynamic

VM-A4 Interface

4.7.6 Model Kinds

The Model Kinds then result from the VM-A and the Model Abstraction Types. As
shown in Table 4.9, the RoAF contains 12 Model Kinds for the Viewpoint Mission.
Each Model Kind has a defined Model Abstraction Type and a defined Aspect from the
Viewpoint Aspects.

Guideline Approach Implementation

VM-A1 Abstraction VM-M1G VM-M1A VM-M1I

VM-A2 Phases VM-M2G VM-M2A VM-M2I

VM-A3 Dynamic VM-M3G VM-M3A VM-M3I

VM-A4 Interfaces VM-M4G VM-M4A VM-M4I

Table 4.9: Matrix of Viewpoint Mission Model Kinds
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4.7.7 Viewpoint Summary

The Viewpoint Mission is used to view the Architecture of a Robot as a Tasks solving
agent. In order to work out the relevant aspects, this section analyzes what constitutes
a Mission in general. As this is closely related to the Task concept, this was also
described in this section. With the description of the Mission Control Robot and the
Mission Control Interface, the most important elements of a Robot from the perspective
of the Mission were then identified. The three classification dimensions of the Mission
Control Robot were therefore selected for the Viewpoint Aspects. The Mission Control
Interface is addressed separately via the Viewpoint Aspect Interface.
The 12 Model Kinds of the Viewpoint Mission then result from the combination with
the Model Abstraction Types.

4.8 Correspondence Rules

The Viewpoints define perspectives in order to view the entire system with respect
to defined aspects. The Views are therefore self-contained. There are therefore
no classic interfaces, such as between modules or layers. Nevertheless, there are
correspondences between the various Views and their elements if entities are visible
from more than one Viewpoint. To document this an Architecture Framework defines
so called Correspondence Rules(AFE 5). The Correspondence Rules identified by the
RoAF are shown in Figure 4.15.

Hardware abstraction (AFE 5.1) The hardware components of the Robot can be
seen from the Viewpoint Physical. These components are accessible via soft-
ware. From the perspective of the physical world, there are therefore software
interfaces. These software interfaces correspond to the hardware interfaces of
the Viewpoint Capabilities. This is a 1 : 1 relationship.

Capability trigger (AFE 5.2) Skills have Capabilities as components. These corre-
spond to the Capabilities of the Viewpoint Capabilities. A Skill can contain many
Capabilities as components; conversely, Capabilities can be used in various
Skills.

Task solving (AFE 5.3) Skills solve Tasks: Since each Skill is designed to solve Tasks,
a Correspondence can be established between the Viewpoint Mission and the
Viewpoint Skills for Tasks that are solved by Skills. Skills are designed in such a
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4.9 Chapter Summary

In this chapter, the RoAF, an Architecture Framework for the domain of robotics, was
developed and its components presented. In Figure 4.16 an overview of the identified
components is depicted. This included the identification of the Stakeholders, which
classifies the RoAF into the groups User and Developer. The general Concerns of
the domain and their relationships to each other were then described. They are
subdivided in the Robotic Concerns and the Software Concerns.
Since the Concern Complexity is of great importance in robotics and has relationships
to all other Concerns, the RoAF was extended by the construct of the Model Abstraction
Types, depicted in Figure 4.16 as purple circles. These make it possible to view the
Architecture at different levels of abstraction.
Despite this extension, the RoAF remains an ISO 42010-compatible Architecture
Framework.
Based on this, the four Viewpoints were presented, which form the core of the RoAF.
These divide the Architecture Description into the perspectives Physical, Capabilities,
Skills and Mission. Finally, the relationships between the Viewpoints are described
via the Correspondence Rules. Including the Model Kinds of the RoAF a total of 121
Architecture Framework Elements are defined.

All these AFEs are Architecture agnostic but define the conventions how to describe
a Robot Architecture. In the next chapter, an explicit process to create Architecture
Descriptions on the basis of the RoAF is presented.
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5.2. View Description Process

Subsection 3.2.1, each Robot has two types of system boundaries. This results in
two environments: the Physical Environment and the Mission Environment. Both are
therefore captured by the process in the Architecture Context.
The next element is the identification and description of the Stakeholders of a system.
As described in Section 4.1, Stakeholder are people who have an interest in the
system. On the one hand, these are the Users of the system that use the Robot to solve
Tasks with it, but also the Developer of the system that design and implement the
Robot. Even though the Stakeholder do not explicitly affect the Architecture of a Robot
it helps to understand the context of an Architecture. A Robot designed by mechanical
engineers has usually a different focus than a Robot designed by AI researcher.
The last element is the description of the system’s Concerns. These are derived from
the Concerns of the RoAF, but have system-specific weightings. For example a space
rover will have a higher focus on Dependability than a soccer robot. It is therefore
important context information how the Concerns are prioritized.

5.2 View Description Process

The creation of Views is the central element of the RoAF. All Architecture Decisions
made are documented here. For a complete Architecture Description, a system must
be described from all Viewpoints specified in the RoAF. This process runs analogously
for each Viewpoint and is therefore described generically in this section.

As shown in Figure 5.5, the process of View creation generally consists of four different
modeling processes. These processes are arranged sequentially but also allow iterative
modeling through feedback. The three Architecture Description Processes can in turn
be generalized and are presented in detail in the next section 5.3. The initial process
when creating an Architecture View is the modeling of the Guideline Models on the
basis of the Viewpoint. Once this process is complete, the Approach Models of the
Viewpoint are generated. Since Approach Models are linked to the Guideline Models,
these are referenced. It may be the situation that Guidelines are identified that have
not yet been modeled. If this is the case, the Guideline process is restarted. After
modeling the Approaches, the process of modelling the Implementation Models is
started. These in turn refer to the Approach Models, which means that any gaps
can also be uncovered here. The process therefore allows feedback on the Approach
modeling. Finally, the Relations Model is created. This documents the dependencies
between the Models of the View, but does not contain any new information itself, as
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As can be seen in the figure, the respective Viewpoint Aspects are considered in parallel
and also define the Model Kind of the created Models. However, a single Model can
address additional Viewpoint Aspects, as explained in the next section.

5.4 Model Creation Processes

A Model Creation Process creates a Architecture Model based on a specified Model
Kind. Since there are deviations in the modeling process depending on the Model
Abstraction Type of the Model Kinds a separate Model creation process is presented for
each abstraction level.

106











5.5. Full Process of Creating an Architecture Description

5.5 Full Process of Creating an Architecture Description

The creation of a complete Architecture Description based on the RoAF is composed
of the parameterized processes presented in the previous sections. The RoAF thus
defines a overall process based on the Viewpoints and Viewpoint Aspects contained
in it and the processes defined in this chapter. As shown in 5.11, this consists of the
description of the Architecture Context and the description of the four Views.

If this process is applied to a Robot, the result is a systematic description of the
Architecture. The parallelization and generalization of the process and the individual
sub-processes result in several advantages. For example, it is possible to reduce the
Architecture Description to individual Viewpoints. The resulting description then only
contains the selected Views. Aspects that are not covered by these are not documented.
However, due to the independence of the individual Views, they describe the system’s
Architecture completely with regard to the respective perspective.

Another advantage of generalization is the simple expandability of the process. If it
is necessary to add further Viewpoints to the RoAF, this is possible directly. Existing
Architecture Descriptions are not invalidated by this, but must be extended by the
corresponding View for a complete Architecture Description.
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5.6 Chapter Summary

In this chapter, an explicit process was defined on the basis of the RoAF, which gener-
ates a Architecture Description when applied to a Robot. When creating the process,
attention was paid to a modular structure. A complete Architecture Description results
from the creation of the Architecture Context and the four Views. These sub-processes
have no dependencies on each other, so that the Architecture Description can be
reduced to a subset of Views.
First, the process for describing the Architecture Context was described. The process
for describing a View was then presented. As this runs analogously for each Viewpoint,
it was described in generic form. In this process, the sub-processes for the different
levels of abstraction run analogously. This sub-process was therefore also described
generically. The creation of a Model then represents the finest granularity of the
process. As this differs for the various Model Abstraction Types, these were described
separately. Finally, the overall process that results for the RoAF from the combination
of the various process modules was described. In the next chapter, the RoAF is verified
and validated exemplary but also conceptually.
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Chaptersix

Verification and Validation of the
Robot Architecture Framework

With the Robot Architecture Description Process presented in the last chapter, it is
possible to create Architecture Descriptions of complex Robots based on the RoAF. This
chapter verifies that the requirements defined in Section 1.2 are met: The process
must be applicable to various types of systems, the generated Architecture Descriptions
must be compact, and it must be possible to describe systems in partial aspects as
well. It is also validated that the goals of comparing complex systems, evolving
existing systems, and supporting the design of new systems are achieved. Verification
and validation are carried out both exemplary and conceptually. For the exemplary
validation, Architecture Descriptions of three very different systems were created.

The chapter therefore begins with the presentation of the three Architecture Descrip-
tions. Based on these descriptions and conceptual considerations, the applicability of
the RoAF is first verified. Then the RoAF is validated in terms of its utility.
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Figure 6.1: The autonomous industrial mobile manipulator AIMM

6.1 Application of the Robot Architecture Framework to vari-
ous Robots

The Architectures of three very different systems are described below. First, a complete
Architecture Description of an industrial mobile manipulator is presented. Then the
Mission View of a planetary exploration rover is given. Finally, the Physical View of an
autonomous drone is described.

6.1.1 Architecture Description of the Mobile Manipulator AIMM

The AIMM system is a research platform for researching and developing mobile
manipulation in an industrial context. The focus is on the software components of the
Robot, in particular the methodology for environment perception and manipulation
planning. The aim of the development is to enable its use in industry-related scenarios
without the need for robotics experts for system integration. The system must
therefore include the capabilities of a system integrator. Autonomy is therefore a
main focus of research on the AIMM system. The Robot should be able to take on
new Tasks independently and react appropriately to its environment. The system
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System Environment Stakeholders Concerns Total

word count 226 164 826 684 1900

Table 6.1: AIMM Architecture Context

was developed as part of the EU TAPAS project and has since been used in various
research projects.

As part of this work, a complete Architecture Description of the AIMM system with the
RoAF was created. This consists of the Architecture Context and the four Views that
can be generated from the Viewpoints of the RoAF.

Architecture Context The Architecture Context is used to classify the Architecture
Description. The full description of the Architecture Context can be found in the
appendix A of this thesis.

In order to quantify the extent of this description, similar to publication formats, the
number of words is used, see Table 6.1. For the description of the AIMM Architecture
Context consisting of the system, its environment as well as the Stakeholders and the
system-specific Concerns, 1900 words were used.

Physical View The Physical View describes the Architecture of the system from the
Viewpoint Physical. The complete Physical View of the AIMM system can be found in
the appendix B.

In Figure 6.2, the Relations Model of the View is displayed. It shows all Models and
their relationships with each other. As shown in Table 6.2, the View consists of 27
Models. These include 11 Guideline Models, 8 Approach Models and 8 Implementation
Models.
The Models in the Viewpoint Aspects Power, Safety and Interface have no relationships
to Models of other Viewpoint Aspects. In addition, these Models each form a chain
consisting of a Guideline, an Approach and an Implementation Model. They thus
form the simplest structure of the RoAF. One Approach Model of the Viewpoint Aspect
Interface is not addressed in any of the Implementation Models presented.
The Models of the Viewpoint Aspects IT, Perception and Structure have connections
across the Aspects. This models the dependency between these Viewpoint Aspects
in the Architecture of the AIMM system. The structure of the Models is also much
more complex. For example, many Models are referenced by several Models of the
lower abstraction level. Similarly, some Models are based on several Models of the
higher abstraction level. The various Guidelines and Approaches are therefore not
independent of each other in the AIMM Architecture.
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Guideline Approach Implementation total

Models 11 8 8 27

Rationales 32 20 6 58

word count 2565 2684 996 6245

Table 6.2: AIMM Physical View

A total of 58 Architecture Rationales were documented in this View. With 32 Rationales,
most Architecture Decisions were described in the Guideline Models. 20 Rationales are
attributable to the Approach Models and only 6 to the 8 Implementation Models. A
total of 6245 words were used to describe all Models and the associated Rationales.
Of these, the largest proportion, with 2684 words, is accounted for Approach Models.
The Implementation Models are described with 996 words. On average, the Approach
Models are therefore almost three times as large as the Implementation Models.

Capability View The Capability View of the AIMM system is also described in full in
the appendix C. The Relations Model of the View is shown in Figure 6.3. Here, the
Architecture Models of the View are grouped according to the Viewpoint Aspects. The
View consists of 23 Models including 12 Guideline Models, 7 Approach Models and 4
Implementation Models.

The Models of the various Viewpoint Aspects are relatively independent in this View.
Only one Implementation Model establishes a connection between the Aspects Com-
munication, Computation and Sense-Act Loop. However, the structure within the
Aspects is complex and highly interconnected. This shows that the Viewpoint Aspects
provide a good separation for the Architecture of the AIMM system.

Guideline Approach Implementation total

Models 12 7 4 23

Rationales 38 19 8 65

word count 8203 4598 1130 13931

Table 6.3: AIMM Capability View

The Capability View documents a total of 65 Rationales, as shown in 6.3. The majority
of the Rationales, 38 Rationales, are accounted for the Guideline Models. 19 Rationales
justify the Approach Models and 8 Rationales the Implementation Models. This is also
reflected in the number of words used. The Guideline Models use 8203 words, the
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Approach Models 4598 words. The four Implementation Models are described with
1130 words. In total, the Capability View of the AIMM system is described with 13931
words.

Skill View The Skill View describes the Architecture of the system from the Viewpoint
Skills. The full Skill View of the AIMM system can be found in the appendix D.

In Figure 6.4, the Relations Model of the View is displayed. As shown in Table 6.4, the
View consists of 23 Models. This includes 12 Guideline Models, 7 Approach Models and
4 Implementation Models.
The Models of the Viewpoint Aspects Resources and Dependability only have relation-
ships within their respective Viewpoint Aspect. Within the Aspects, however, they are
strongly interconnected.
The Models of the Viewpoint Aspects Type, Hierarchy and Composition, on the other
hand, are also strongly interlinked.

Guideline Approach Implementation total

Models 12 7 4 23

Rationales 37 20 0 57

word count 4904 3077 472 8453

Table 6.4: AIMM Skill View

The Skill View documents a total of 57 Rationales. The four Implementation Models of
the View do not contain any Rationales. Most Rationales can be found, like in all View
of the AIMM system, in the Guideline Models. There are 37 Rationales described here.
The Approach Models are justified with 20 Rationales.
Overall, the Skill View is described with 8453 words. More than half of these words
are accounted for Guideline Models with 4904 words. The Approach Models accounts
for 3077 words. On average, the individual Guideline Models and the Approach Models
are each described with approx. 400 words. The 4 Implementation Models of the
Skill View, however, are described together with 472 words. They are therefore
significantly smaller than the Models of the other abstraction levels with approx. 100
words per Model.
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Mission View The last View of the Architecture Description is the Mission View from the
perspective of the Viewpoint Mission. This is also described in full in the appendix E.

In Figure 6.5, the Relations Model of the View is displayed. As shown in Table 6.5, the
View consists of 24 Models. These include 11 Guideline Models, 9 Approach Models
and 4 Implementation Models.
The Models of the Mission View are very well separable by the Viewpoint Aspects. There
are only very few connections between the individual Models of different Aspects.
Compared to the Views Capability and Skill, the Mission View has a much simpler
structure. Many Models only refer to one Model of the higher levels of abstraction.

Guideline Approach Implementation total

Models 11 9 4 24

Rationales 16 7 1 24

word count 2042 1324 381 3747

Table 6.5: AIMM Mission View

The Mission View contains 24 Rationales. The largest part of this View is also accounted
for the Guideline Model with 16 Rationales. The Approach Models define 7 Rationales
and there is only one Rationale in one Implementation Model. Overall, the Mission
View is described with 3747 words. At 2042 words, the Guidelines accounts for
well over half of this. The Approach Models is described with 1324 words and the
Implementation Models are described very compactly with a total of 381 words.
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Full Architecture Description of AIMM The full Architecture Description of the AIMM
system based on the RoAF is summarized in Table 6.6.

Context Physical Capability Skill Mission Total

Guideline - 11 12 12 11 46

Approach - 8 7 7 9 31

Implementation - 8 4 4 4 20

Rationales - 58 65 57 24 204

Word count 1900 6245 13931 8453 3747 34276

Table 6.6: Overview Architecture Description AIMM

A total of 97 Models were used to describe the Architecture of the AIMM system.
Slightly less than half of the Models are assigned to the Guideline abstraction level.
A total of 204 Architecture Decisions were documented in Rationales. The entire
description, which contains the Architecture Context and the four Views, consists of
34276 words. According to the Stakeholder, the focus of the description is on the
Views Capability and Skill. The most extensive View is the Capability View with 13931
words. The most compact is the Mission View with 3747 words.

6.1.2 Architecture Description of the Planetary Exploration Rover LRU2

The LRU2 system [112], depicted in Figure 6.6, is an autonomous Robot designed to
develop technologies for the robotic exploration of planets.

In addition to environmental exploration, the system’s Tasks includes the installation
of infrastructure and scientific exploration. This involves using measuring instruments
and collecting rock samples.

As communication with distant planets is always subject to restrictions, the aim is
to achieve a very high degree of Autonomy. The Robot serves as a research platform
to develop and test technologies for future space missions. The system is also used
in analog missions to demonstrate the feasibility of the approaches. However, the
system is not designed as a flight system. The aim of the technology development is
to develop autonomous Robots that can work together in a team to support humans
in exploring the solar system. Despite the high level of Autonomy, humans should
be able to set the Mission objectives at all times and react to unforeseen situations.
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Figure 6.6: The autonomous planetary exploration rover LRU2

This poses a particular challenge for the system design. The Robot’s Autonomy should
make the technical Complexity manageable and, in the absence of communication, it
should be able to adapt the Mission independently to ensure a successful execution.
At the same time, it should allow humans to intervene at any time at different levels
of abstraction, from Mission planning to remote system control. In the following, the
Mission View of the LRU2, which reflects these challenges, is presented.

Mission View The Architecture of the rover LRU2 is described exclusively from the
perspective of the Mission Viewpoint. The full description of this View can be found in
the appendix G.

In Figure 6.7 the Relations Model of the View is shown. As displayed in Table 6.4, the
View consists of 28 Models. Of these, 12 are Guideline Models, 10 Approach Models
and 6 Implementation Models. Some of these Models are identical to the Models from
the Architecture Description of the AIMM system. Thus, 4 identical Models could be
identified at Guideline level, 3 at Approach level and one at Implementation level. A
total of 8 Models could thus be transferred from the Architecture Description of the
AIMM system.
The Mission View of the LRU2 shows, similar to the Mission View of the AIMM system,
few links between the Viewpoint Aspects. However, the linking of the individual
Models within the Aspects is more prominent in the LRU2 system.
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Guideline Approach Implementation total

Models 12 (4) 10 (3) 6 (1) 28 (8)

Rationales 17 (7) 9 (2) 4 (0) 30 (9)

words 2349 (1200) 2060 (568) 1076 (75) 5485 (1843)

Table 6.7: LRU2 Mission View

This Mission View contains 30 Rationales of which 9 could be taken from the Models of
the AIMM system. With 17 Rationales, most of the Architecture Decisions are justified
at the Guideline level. At this level, with 7 adopted Rationales, there is also the
largest overlap with the Mission View of the AIMM system. Among the 9 Rationales of
the Approach level, there are only two identical Rationales. The 4 Rationales of the
Implementation Models show no correspondence with the AIMM Mission View.
The View is described with a total of 5485 words, of which 1843 could be taken from
the AIMM Architecture Description. The word count per Model is in the Mission View
of the LRU2 regardless of the Model Abstraction Type at approx. 200 words.
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Figure 6.8: The autonomous drone ARDEA

6.1.3 Architecture Description of the Autonomous Drone ARDEA

The ARDEA system [75], see Figure 6.8, is an autonomous multicopter that is used in
the field of planetary exploration [142], but also in disaster control and humanitarian
aid.

The purpose of the system is the fast, ground-independent exploration of an area.
In addition, the system can be modularly equipped to collect data with various
measuring instruments. The system should also be able to cooperate with other Robots
and use them as a carrier system, for example. Due to the limited communication
possibilities, but also to relieve the operator, a high degree of Autonomy is being
sought for the ARDEA system. The size restriction of the drone poses a particular
challenge. In the following, the Physical View of the ARDEA Robot is presented.

Physical View

The Architecture of the ARDEA drone is described exclusively by the Viewpoint Physical.
The full description of the View can be found in the appendix F.

In Figure 6.9, the Relations Model of the View is shown. As displayed in Table 6.8,
the View consists of 25 Models. Among these Models are 8 Models that could be
taken from the Architecture Description of the AIMM system. 6 of these Models are
Guideline Models. This means that more than half of the 11 Guideline Models of the
ARDEA system match those of the AIMM system. Of the 9 Approach Models, only 2
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are identical to the AIMM Models. The 5 Implementation Models have no overlap with
the AIMM Models.
The Models of this Physical View have a stronger interconnection than those of the
AIMM Physical View. This applies both within and between the Viewpoint Aspects.

Guideline Approach Implementation total

Models 11 (6) 9 (2) 5 (0) 25 (8)

Rationales 30 (18) 15 (5) 4 (0) 49 (23)

words 2228 (1519) 1701 (765) 638 (0) 4567 (2284)

Table 6.8: ARDEA Physical View

The Physical View is documented by a total of 49 Rationales. Of these, 23 Rationales
were taken from the AD of the AIMM system. At the Guideline level, almost two-thirds
of the Rationales were taken from the AIMM system, with 18 out of 30 Rationales.
For the 15 Rationales of the Approach level, it is still one third. However, there is no
overlap for the 4 Rationales of the Implementation level. The ARDEA Physical View
has a total extent of 4567 words, of which half (2284 words) could be taken from
the AIMM Architecture Description. In the Guideline Models with 1519 of 2228 words,
about three quarter of the text is identical to the AIMM Architecture Description. In
the Implementation Models, the proportion is significantly lower with 765 of 1701
words. Since no Models and Rationales could be adopted at the Implementation level,
the 638 words are specific to the Architecture Description of the ARDEA system.

6.2 Verification

The aim of this thesis is to develop a systematic description structure for complex
autonomous Robots that fulfills the following requirements:

1. Compactness: It must be so compact that even complex systems can be de-
scribed.

2. Generality: It must enable the description of very different systems.

3. Divisibility: It must make it possible to describe the system in sub-aspects.
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This section verifies that the process defined in the RoAF meets the above require-
ments. To this end, the Architecture Descriptions carried out are used for an exemplary
verification. In a second step, a conceptual verification of the RoAF are carried out on
the basis of the selected approaches.

6.2.1 Experimental verification

Compactness The Architecture Description of the AIMM system has a total of 34276
words. The various Views are between 3747 and 13931 words. The Views of the
Architecture Descriptions of ARDEA with 4567 and LRU2 with 5485 are also in this
range. The extent of a View is approximately that of a conference paper up to a
journal publication.

Compared to the documentation of large robotic frameworks such as ARMAR-X
with 4378675 words of documentation (https://armarx.humanoids.kit.edu/ date
17.1.2024) or individual software components such as RAFCON with 60918 words
of documentation (RAFCON https://rafcon.readthedocs.io/ date 17.1.2024), the
compactness of the RoAF is very clear.

This demonstrates exemplary that the Architecture of complex systems can be de-
scribed compactly on the basis of the RoAF.

Generality In this thesis, very heterogeneous Robots from different domains and
different robot categories were described. The AIMM system is a mobile manipulator
that is to be used in an industrial environment. The LRU2 rover system is used for
planetary exploration, which includes scientific exploration and the construction
of infrastructure. The ARDEA drone is also used in planetary exploration, but is a
very different type as a flight system. Based on the (partial) description of these
three systems, it can thus be shown by way of example that the RoAF is suitable for
describing Architectures of a wide variety of systems.

Divisibility A full Architecture Description was created for the AIMM system. However,
the LRU2 and ARDEA systems were each only described from one Viewpoint. This
proves by exemplary means that partial aspects of an Architecture can be described
with the help of the RoAF, i.e. that the Architecture can be subdivided. From the
Architecture Descriptions it is widely apparent that a further subdivision based on the
Viewpoint Aspects is also possible. For example, the Architectures of a system could
only be described on the basis of one Viewpoint Aspect.
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6.2.2 Conceptual verification

Compactness The compactness of the Architecture Description compared to a system
description lies in the abstraction, which is determined by the definition of the
Architecture term in Definition 3.1. The system is reduced to its basic concepts
and their principles of design. It is therefore not necessary to list all components,
methods, interfaces, properties, etc. Instead, the architect who creates the Architecture
Description identifies the key decisions. The RoAF supports this process by defining
Viewpoints, Concerns and abstraction levels, but it is up to the user of the RoAF to
decide what is included in the description and what is not. Therefore, the extent
of the AD varies according to the personal judgment of the architect. It is therefore
not possible to define a guaranteed upper limit for the extent of an Architecture
Description according to RoAF. However, there is also no theoretical lower limit. It is
formally permissible not to document any Architecture Decision. From a conceptual
point of view, it is therefore possible to show that the Architecture Description is as
compact as the architect decides.

Generality The general applicability of RoAF is conceptually verified by the Robot
definition and identification as distributed software systems. In principle, the RoAF
can be applied to systems that can be described from all four Viewpoints. A chatbot,
for example, cannot be described from the Viewpoint Physical, so the full RoAF is not
applicable to pure software. For conceptual verification, it must therefore be proven
that all complex autonomous Robots can be described from these four Viewpoints.
Viewpoint Mission and Viewpoint Physical are derived directly from the Robot’s Defini-
tion 3.2 given in Chapter 3. As described in Section 3.2, this definition can in turn be
understood as a superset of the common robot definitions. The definition therefore
includes all Robots with the disadvantage that systems such as coffee machines also
fall under this definition. However, it is not a problem for the RoAF if the process can
also be applied to coffee machines. Since all Robots are therefore physical systems
and all Robots fulfill Tasks, it is conceptually proven that the Viewpoint Physical and
Viewpoint Mission can be applied to any Robot.
The Viewpoints Capabilities and Skills are the two software Viewpoints of the RoAF.
The two Viewpoints are based on the 4C [96], which were developed for distributed
software systems. The conceptual verification of these two Viewpoints can therefore
be carried out via the applicability of the 4Cs to Robots. This can be demonstrated by
the fact that autonomous Robots contain distributed software. All systems that use
middleware such as ROS connect different software modules via the middleware and
are therefore also distributed software systems. Since most autonomous systems use
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middleware, the majority of systems can be shown to be distributed software systems.
The other aspect that proves the applicability of 4Cs to Robots are approaches to
generatively create software for Robots that also use the 4Cs as a basis. For example,
the BRICS component model [26] extends the 4Cs with a further Concern composition
to address the various aspects of Robot software. This in turn implies that all systems
developed with this approach can be described on the basis of the 4Cs and thus the
applicability of the Viewpoints Capabilities and Skills. It can therefore be reasonably
assumed that the RoAF can be applied to most autonomous Robots.

Divisibility Subdivisibility is the central concept of the Architecture Description and
thus also of the superordinate Architecture Framework according to ISO 42010 [59].
Since the RoAF fulfills all the requirements of an Architecture Framework according to
ISO 42010, the general properties of an Architecture Framework and the Architecture
Descriptions generated from it can be transferred to the RoAF. The subdivisibility of
the Architecture is ensured by the Viewpoint approach. Viewpoints are independent
by definition and each describe the overall system, taking into account the aspects
defined in each case. This means that each Architecture Description according to ISO
42010 can be broken down into its individual Views, which conceptually proves the
subdivisibility of the RoAF. The definition of common Model Kinds, Viewpoint Aspects
and abstraction levels results in further structural possibilities of subdivisibility. In
contrast to the Viewpoints, however, these are not independent of each other. For
example, the different abstraction levels refer to each other. Subdivisibility via these
elements is therefore only possible to a limited extent.

6.3 Validation

This section examines whether the Architecture Description created by the RoAF have
their intended benefit. The following three goals were defined.

1. Comparability: It should support the comparison of different systems.

2. Evolution: It should facilitate the modification of existing systems.

3. Conception: It should make knowledge accessible for the development of new
systems.

Validation is carried out in two steps, analogous to verification. First, the performed
Architecture Descriptions are used as an example to prove that the desired goals have
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been achieved. This is followed by a conceptual validation to evaluate the RoAF with
regard to the robotic domain.

6.3.1 Experimental validation

Comparability One purpose of the Architecture Descriptions is to increase the compa-
rability of systems. It should be possible to recognize and classify similarities and
differences.

To this end, the AIMM and ARDEA systems are compared from the perspective of
the Viewpoint Physical. Comparing an autonomous drone and an industrial, mobile
manipulator from a hardware perspective is a major challenge, as the systems are
very different. With the help of RoAF, the comparison can nevertheless be carried
out in a structured manner by comparing the respective Architecture Models of one
system with those of the other system. This shows that despite the heterogeneity
of the systems, 8 identical Architecture Models can be identified. This means that
with 8 out of 25 Models in ARDEA, around a third of the concepts are identical to
those of the AIMM system. This comparatively high proportion is made possible by
the abstraction levels. At the Guideline level, 6 out of 11 Models are identical, at
the Approach level 2 out of 9 Models are identical and at the Implementation level
there are no similarities. The RoAF therefore makes it possible to identify similar or
identical concepts, although the respective implementations and their concepts no
longer have any commonalities. In this way, the similarities and differences between
the systems can be explicitly described.

Another aspect is that the predefined structure of the RoAF also describes the concepts
of a system that are not the focus of research and would not be described in a system
paper for reasons of space, for example. However, it is particularly important
to mention these aspects in the comparison, as they represent starting points for
further research or comparison with other systems. The suitability of ADs for system
comparison is thus demonstrated by way of example.

Evolution For the development of the planetary exploration rover LRU2, the software
components of the AIMM system were used to a large extent, especially for the
implementation of the manipulation capabilities. Therefore, the validation that the
RoAF can support the evolution of an existing autonomous system is demonstrated
using the example of the Mission View from LRU2, The Mission View of LRU2 has
diverged greatly from the View of the AIMM system over the years. While these two
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systems had the same, identical Mission View in 2015 at the Spacebotcup [112], the
one of LRU2 developed further, and now there are only 8 of 28 Architecture Models at
the status of the ARCHES mission 2022 [99] identical. This major change is due to
the extreme change in the Mission Environment and the resulting system adjustments.
These adjustments can be seen at all abstraction levels of the Architecture. The
explicit formulation of the RoAF helps to check whether Architecture Decision are still
valid under the new conditions or need to be adapted. In the case of less serious
changes to the requirements, fewer or no changes to the Architecture are necessary.
The RoAF helps to identify concepts that are no longer applicable in a timely manner
and replace them with suitable ones. The example of the evolution of the Mission
View of the LRU2 shows that even large system adaptation can be carried out with
the help of the RoAF.

Conception The third benefit of RoAF is support in the development of new systems.
The Architecture Description carried out in this work contain a total of 134 Architecture
Decisions which are discussed by 251 Architecture Rationales. By structuring them into
Views, Model Abstraction Types and Concerns, the relevant Models for the respective
decisions can still be found effectively when designing a new system. Depending
on the requirements for the new system, these can serve as a template. However,
they can also be identified as unsuitable for the new system based on the Rationales.
The subdivision into different levels of abstraction also allows existing Models to
be recombined in order to find a suitable solution for the use case. Overall, the
RoAF thus helps to use existing knowledge for the design of new systems and to
integrate new aspects into the knowledge base. Hypothetically, the RoAF would
have considerably simplified the hardware design of the ARDEA system based on the
AIMM Architecture Description, as one third of the concepts are directly transferable.

6.3.2 Conceptional validation

The central aim of an Architecture Framework is to enable the comparability and
further development of existing systems, and to support the design of new systems.
The RoAF fulfills all the requirements of an Architecture Framework. The approach is
therefore transferable to robotics and its applicability has been demonstrated both
exemplarily and conceptually in the verification process.

The fact that the approach of the Architecture Framework can fulfill the desired goals of
comparability, further development and redesign of systems has been demonstrated
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in a large number of domains. Many of the Architecture Frameworks refer to IT
systems or software architecture. However, some examples also transfer the approach
to technical systems such as the IEEE 2413 Standard for an Architectural Framework
for the Internet of Things [58] or the space domain with the European Space Agency
Architecture Framework [48]. It is therefore reasonable to assume that the RoAF will
have a similar benefit in the robotics domain.

6.4 Chapter Summary

This chapter examined whether the RoAF and the Architecture Descriptions generated
with it have the desired properties and offer the expected added value. To this end,
a full Architecture Description and two partial Architecture Descriptions of different
systems were first created based on the RoAF. These were presented in summarized
form in this chapter. Based on these descriptions, it was then shown exemplary that
the desired properties are achieved by the RoAF. Conceptual considerations were then
used to justify that this is transferable to other systems in the domain. Then the RoAF
was validated. Here, too, the benefit was first demonstrated using the Architecture
Descriptions as an example. The assumption of general validity for the domain was
underpinned by conceptual considerations. In the next chapter, important design
decisions of the RoAF are discussed and further steps for future work are outlined.
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Discussion and Future Work

In the previous chapter it was verified that the RoAF has the desired properties
and that the resulting Architecture Descriptions are useful for the comparison and
development of complex robots. The used methodology, the Architecture Framework,
allows a high grade of freedom in the design for the respective domain. Therefore,
this chapter discusses important design decisions of the RoAF. The Architecture
Framework was extended by Model Abstraction Types in order to describe the Robot
Architecture through different levels of abstraction. When choosing the Viewpoint care
was taken to keep them independent. Thus, the RoAF does not use Correspondence
rules between individual Views. In order to achieve general applicability, the Model
Kinds of the RoAF were kept generic. This enables any Architecture decisions to
be documented. Another design decision in the RoAF is to also capture simple AD
Elements. The goal is always to create a complete Architecture Description and to also
document decisions that were only made for practical reasons.
A side effect of the RoAF is that by documenting the Architecture Decisions, but also
through the elements of the framework, relevant aspects of Robots are identified and
described. Not all of these aspects are well represented in current research. Thus,
the RoAF helps to identify relevant topics for future research. The chapter concludes
with an outlook on future work, in particular how the RoAF can contribute to the
systematic development of autonomous Robots in the long term.
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7.1 Separation of Guideline, Approach and Implementation

The structuring into the Model Abstraction Types Guideline, Approach and Implementa-
tion is elementary for the benefit of the Architecture Descriptions. At the Guideline
level, desired properties and procedures can still be defined relatively independently.
Similarities but also differences between systems can be easily identified at this level.
At the Approach level, on the other hand, it can be seen that a compromise often
has to be found between different conceptual goals in robotics. Many Models at the
Approach level therefore do not describe the Approach of how a specific Guideline
can be achieved. Rather, they describe how the various requirements for the specific
system are linked together. Different Guidelines are therefore often addressed for one
Approach. Despite the same Guidelines, systems can differ greatly in their Architecture
at the Approach level. It can also be observed at the transition to the Implementation
level that different Approaches with a Implementation Model are often connected.
This shows that at the Implementation level, a single component is not used for each
Approach, but the software can often implement several Approaches. This reduces
complexity. Conversely, however, it is also apparent that Approach are more likely to
be selected for systems that can be implemented with the existing implementation
solution. The complexity of the Architecture of Robots becomes clear due to the large
number of links contained in the presented Architecture Descriptions. This explicitly
shows that many architectural decisions, whether at the level of the Approach or
at the level of Implementation, take into account a variety of aspects, even across
Aspects. A large part of the Architecture in robotics is to address different, sometimes
conflicting requirements. Even with identical Guidelines, a wide variety of Architec-
tures can emerge. It indicates that Architecture in robotics is probably individual for a
Robot or at least for a narrowly defined subset of systems. It is therefore unlikely that
a universally valid reference Architecture can be found.

7.2 Independence between the Views

The Views achieve a high degree of separation. This allows concepts to be described
and compared independently of their global dependencies. The division also corre-
lates with the Stakeholders of a Robot. This means that different Developer can each
find a full Architecture Description of the system from their perspective in a View.
The RoAF restricts the relationships between the Viewpoints to a few generally valid
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dependencies. Individual relationships across View boundaries cannot be captured
with the RoAF. This simplifies the Architecture Description, improves comparability
and makes it possible to create individual Views of an Architecture.
However, this does not mean that dependencies do not exist and that Views can be
developed completely independently of each other. For example, a change in the
Capability View can result in a significantly higher computing power requirement,
which would have to be taken into account in the Physical View.

This relationship is not modeled in the RoAF and is therefore not directly apparent
from the Architecture Description. Since the RoAF is used to describe the Architecture
of existing systems it is guaranteed that the Views fit together and all dependencies
are taken into account. However, if a system is only further developed on the basis
of the Architecture Description, it can happen that there are effects on other Views
without this being apparent from the Architecture Description.

7.3 Generic Model Kinds

Model Kinds of the RoAF are very generic. Essentially, a Model Kind is defined by
the Viewpoint Aspect and the Model Abstraction Type. There are not much further
formal restrictions. This means that Architecture Decisions can simply be formulated
in free text. In addition, Architecture Rationales are available to justify the Architecture
Decision. This very free form has the advantage that any decisions can be documented.
Stronger formalization requires structures, which increases the risk that not all
decisions can be documented, or that Model Kinds cannot be applied to all systems.
However, due to the very free form of representation, there is a risk that similar
solutions will not be recognized as such because they are described in a different
way. This is particularly relevant when a large number of Architecture Descriptions are
available. But these descriptions can then be used to identify suitable structures and
extend the RoAF accordingly. Since this information is currently difficult to access,
and the problem is manageable with a small number of Architecture Descriptions, this
free form of Models was chosen.
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7.4 Simplicity of Architecture

The RoAF enables the systematic capture and description of the Architecture of a
system. However, this does not ensure that the documented Architecture is also of
high quality and, for example, that it stands up to scientific review. On the contrary,
the fact that the RoAF ensures very broad coverage of a wide variety of aspects when
using all Viewpoints and Concerns means that aspects that are not the focus of the
respective system are also addressed in every current research system. In addition to
innovative, new solutions, a number of simple concepts can also be identified that
were used to solve certain problems with minimal effort.
For the RoAF, a conscious decision was made to also document these Architecture
Decisions and even to promote them through the strong networking in the Viewpoints
in order to create descriptions that are as complete as possible. There are two main
reasons for this. First, it is often very valuable for the community and each individual
Robot architect with limited resources to find simple solutions for topics that are
not within the main expertise of the respective team. For a functioning system,
all aspects must be solved, but there is no documented basic solution that can be
easily implemented; instead, each new team solves all problems again each time
with as little effort as possible before they can concentrate on their actual work.
These simple solutions are then usually not published. The aim of RoAF is therefore
also to document these simple solutions in order to make this knowledge accessible.
Systematic evaluation is also often difficult for the publication of system solutions, as
no basic solution exists as a reference.

The second aspect why complete Architecture Descriptions are important is that if the
focus is on individual sub-areas, composability is not guaranteed. For example, an
Architecture Decisions in one area can prevent solutions in other areas. To advance
the development of autonomous systems as a whole, it is therefore important to
check compatibility with the overall architecture. Only through a full description of
the Architecture can it be recognized when progress in one area leads to problems in
other areas.

7.5 Identification of Research Topics

The RoAF is a structured analysis of Robots. A central goal was to identify aspects
that are applicable to as many Robots as possible. Indirectly, however, this also means
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that these aspects play a major role in robotics, as every system requires a solution.
Nevertheless, it has been found that not all aspects are established research topics.
For example, the Viewpoint Aspect World Model of Viewpoint Capabilities is essential
for any autonomous Robot. Nevertheless, there has been little information in the
literature about what a world model is and what approaches exist. Based on the RoAF,
this topic was identified as underrepresented and was established as one of the three
research topics of the Transferable Explainable Knowledge group of the DLR Institute
of Robotics and Mechatronics. As a result, two doctoral positions were created and
the first publications have already been published [101], [100]. The RoAF thus also
makes it possible to identify important topics in robotics that are currently still little
covered in the literature, thereby helping to close important knowledge gaps.

7.6 Future Work

In this thesis, a process was developed that allows to describe the Architecture of
complex Robots systematically. This makes previously hidden knowledge about
robot design accessible and makes it possible to learn from existing solutions. The
current situation, where the development of a Robot is based on the knowledge and
experience of the individual system engineer, will initially only change insofar as it
becomes easier to gain knowledge about autonomous Robots. However, this will not
lead directly to the systematic development of autonomous Robots.

Several steps are necessary to achieve this goal. These are shown schematically in
Figure 7.1.

The first step has been taken with RoAF. It is now possible to describe the Architecture
of autonomous systems. However, the process can only be used by people who know
the Architecture of the system.

The next step is therefore for other system architects to describe their systems using
the RoAF. Based on these further descriptions, adjustments to the RoAF will probably
be necessary, as the RoAF is only based on the available information and the collected
knowledge about the analyzed systems. This can be done by extending the Viewpoints
or the Aspects under consideration. More formalized Model Kinds could help to
identify and reuse existing concepts. This iterative process will gradually improve
the RoAF so that all relevant aspects of systems can be considered.

In the next step, patterns could be identified on the basis of the Architecture De-
scriptions and their comparability. It is therefore reasonable that certain suitable
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development process itself. In addition, simplifications through abstraction and
separation of the concerns are no longer permissible and all existing dependencies
must be taken into account. If the RoAF were extended accordingly, the resulting
complexity would probably lead to important objectives such as comparability no
longer being met.

It is therefore likely that other approaches will be required for the design of systems.
As described in Chapter 2, there are already approaches in the form of model-
based software frameworks that can at least be used to systematically create the
system’s software. These approaches are not yet able to cover all the requirements
of autonomous systems. However, the RoAF could help to identify whether the
requirements for the system can be met by the framework. This could be done, for
example, using architecture patterns that are already used in model-based system
development [102]. It remains to be seen whether these approaches are also suitable
for other aspects of a system, e.g. the sensor concept. Therefore, a combination
of different approaches will probably be necessary to create and further develop
autonomous systems without expert knowledge. In the long term, the RoAF could
therefore serve as the basis for a meta-level for composing different frameworks.
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AppendixA

Architecture Context of the
Autonomous Industrial Mobile
Manipulator AIMM

This chapter describes the Architecture Context of the autonomous, mobile manipu-
lator AIMM based on the developed RoAF and identifies the system-of-interest, the
system environment, the Stakeholders and relevant system-specific Concerns.

A.1 System-of-Interest

The AIMM Robot is a research platform for investigating mobile manipulation in an
industrial context. The Robot was developed as part of the EU project TAPAS in 2011.
The task of the Robot in the project was to solve logistics Tasks and simple assembly
Tasks in a pump factory. The idea was to take on Tasks that had not previously
been automated due to the small quantities involved. The Robot was therefore not
supposed to perform just one Task, but various Tasks at different workstations. The
biggest challenge was therefore to make the system so flexible that it could carry out
different Tasks in a new environment in a short period of time. At the end of the
project, this was successfully demonstrated on a real production site [12].

The lesson learned from this project was that it is possible to develop a Robot that
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Figure A.1: The autonomous industrial mobile manipulator AIMM

can flexibly solve Tasks. But the flexibility and dependability of the system could only
be achieved by many experts on site, who adapted various modules and behaviors to
the Tasks at hand. Since then, the aim of the AIMM research platform has been to
research autonomy approaches that make it possible to operate the system without
Robot experts. The main system’s publication is Dömel et al. [35].

Usecase and Environment - System Boundaries to Physical Environment and Mission
Environment The Physical Environment of a Robot in an industrial setting, such as a
factory floor, has domain-specific characteristics that are important for the Architecture
of a Robot. Most industrial sites are static to a certain degree. This means that large
machines or fully automated cells are set up once and are only slightly changed until
the end of their operating time. The general structure of a factory is also static. The
warehouse will not change its location overnight. On the other hand, a production
facility can be very dynamic, for example with fast-moving forklift trucks. However,
as this is also dangerous for human workers, they are usually restricted to certain
areas. Large parts of a production facility are not dynamic, but still change over
time. For example, pallets of parts are placed in the environment, or workers place
boxes or tools on tables. These quasi-static environments, with a combination of
truly static things like tables and machines and non-dynamic but changing objects
like boxes, pallets and tools, are the most common environments in which people
spend time in a production facility. For human workers, it does not matter where
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exactly a box is located, as flexibility is not a problem for them. For Robots, however,
this poses a real challenge. In addition to these domain-specific characteristics, a
Robot in a factory has to deal with a real environment. In contrast to laboratory
conditions, problems such as changing light conditions, battery management and
connection losses to external networks must be taken into account. To summarize,
an industrial environment is a partially known, semi-structured environment that is
usually quasi-static.

The Tasks in industrial applications are well documented. There are usually very
precise work descriptions for human workers. The Mission Environment therefore
already provides a certain degree of segmentation into Subtasks. The challenge
for the Robot is to fulfill these Subtasks in the Physical Environment and provide an
interface to execute new sequences of these Subtasks.

A.2 Stakeholders

The AIMM Robot is purely a research platform. AIMM acts as a demonstrator on
which new approaches can be developed and tested. The aim is therefore not to
develop a prototype that will subsequently be marketed. Instead, the focus is on
scientists who want to use the system to research new approaches. The scientists
take on the role of both Developer and User.

Nevertheless, the Concerns of end users are also important in the development of the
research platform. They form the framework for the long-term development goal.
Stakeholders who have an interest in these goals are therefore also identified, even
if they are not directly involved. These future Stakeholders essentially correspond
to the Stakeholders from the User group identified in the RoAF, transferred to the
industrial context.

Future Stakeholder the end users:

Operator are persons who operate systems such as AIMM. Operators are not ex-
pected to have any special knowledge of robotics. As a rule, they are workers
who also perform other tasks in the factory.

Coworker are people who work together with the system. This allows work steps to
be shared between Robots and humans. One example of this is the supply of
assembly workstations by the Robot with the required parts and tools. It is also
conceivable that the coworker could carry out Tasks collaboratively with the
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Robot. In this case, the Robot can act as a third hand or take on simpler Tasks in
a joint assembly process.

Maintainer are people who are responsible for carrying out maintenance work on
the systems. This includes, for example, changing batteries, calibrating sensors
and replacing wearing parts.

System Integrator are people who are responsible for integrating a system into an
industrial plant. The main task of the system integrator is to connect the system
with the factory’s control system. For complex Tasks, the system integrator must
also integrate process-related knowledge into the Robot.

Factory Owner are the people who buy the system. They are interested in the
cost-efficient execution of Tasks by the Robot.

The various future Stakeholders provide AIMM with the rough direction in which
the development of the system should be driven forward. The individual points are
weighted differently. The current state of the art is concerned with feasibility in
principle; economic viability, for example, is not yet a factor. However, due to limited
resources, it is not possible to work on all of the required technologies; instead, AIMM
concentrates on certain sub-areas. The roles of the RoAF are not divided among the
people, but each person must take on a certain proportion of each role, from module
developer to operator.

The person-specific separation takes place at a specialist level, so that the AIMM
Stakeholders can be identified as follows:

Stakeholder AIMM:

Perception Researcher are persons who deal with methods and approaches in the
context of the perception of the Physical Environment. The two main focuses of
AIMM are modeling the partially unknown environment on the one hand and
semantic scene analysis on the other.

Manipulation Researcher are people who deal with methods and approaches for
manipulating the Physical Environment. The AIMM system focuses on efficient
movement planning and the development of robust manipulation strategies.

Autonomy Researcher are persons dealing with methods and approaches for the
autonomy of the Robot. The focus of the AIMM is on the flexibility and robust-
ness of Tasks execution, even with incomplete or incorrect knowledge of the
environment or the system.
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System Architecture Researcher are people who deal with methods and approaches
to the Architecture of Robots. The focus of the AIMM is on identifying and de-
veloping general concepts for the Architecture of Robots.

The topics to be investigated on the AIMM research platform are defined by the
relevant Stakeholders. In order to meet the requirements of future Stakeholders,
further technologies must be investigated in addition to the core topics. The following
list therefore refers to the necessary topics, which are not considered from a research
perspective.

No Stakeholders of AIMM:

Hardware Researcher are people who deal with methods and approaches for devel-
oping new hardware components. Purchased components are used at AIMM.

Control Researcher are people who deal with methods and approaches for the
development of new control technology concepts. At AIMM, the controllers
that are included in the purchased components are used.

Safety Researcher are persons who deal with the development of new safety con-
cepts. The AIMM system is used exclusively in monitored operation, whereby
safety is ensured by a person with an emergency stop.

HRI Researcher are persons who deal with new concepts for human-robot interac-
tion. At AIMM, only absolute experts operate the system. Interaction with the
Robot takes place on a very technical level.

Fleet Management/Factory Control Researcher The activity of “Fleet Managemen-
t/Factory Control Researcher” involves the integration of autonomous Robots
into a higher-level system, such as a factory. In the AIMM system, there is no
higher-level instance.

A.3 Concerns

Similar to the Stakeholders, two areas can also be distinguished for the Concerns: On
the one hand, there is the area of future requirements, which guides development,
and on the other, the area of specific requirements of current Stakeholders. The RoAF
Concerns naturally also exist in the AIMM. However, the Stakeholders of the system
result in a weighting of the Concerns.
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A.3.1 Future Stakeholders’ Concerns

This section describes the Concerns of future Stakeholders, categorized according to
the most important User Concerns. These form the scope for the development of the
AIMM system.

Flexibility The aim of the AIMM system is to solve a variety of different logistics and
assembly Tasks autonomously. The system must be able to cope with all expected
environmental conditions in a factory.

Dependability AIMM must perform its Tasks reliably. To achieve this, the system must
be so robust that any regularly occurring problems, such as poor lighting conditions,
environmental changes, etc., do not jeopardize the successful completion of the Tasks.
In the event of unforeseeable and unrecoverable faults, such as a power failure in the
system, the system must behave in such a way that no damage occurs.

Usability The operation of AIMM should be intuitive and simple. This applies both
to controlling the Robot and to working with the system. It must also be possible to
hand over new Tasks to the system without expert knowledge and the system must
be able to communicate its status to its environment in an understandable way.

A.3.2 Concerns of the Scientist

At AIMM, the scientists are both developers and users. The long-term goal is to
fulfill the Concerns of future users. However, the development and the work of the
researchers also result in direct Concerns for the system. As the researchers also
take on the role of Developer, the researchers’ Concerns are assigned to the five main
Robotic Concerns below.

Flexibility AIMM must be flexible in several respects. In terms of system boundaries,
the system must be able to solve different use cases in different environments in
order to validate and demonstrate the scientific approaches. But AIMM must also be
flexible within the system boundaries. Newly developed components often have to
be integrated or other components replaced. From a scientific point of view, it is also
necessary to compare different system configurations with each other.
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Dependability AIMM must have a certain degree of dependability in order to be able
to work with the system. The requirements are not as high as in real industrial
use, but with an interaction of several hundred components, either the individual
components must be very reliable or strategies must be in place to compensate for
the failure of individual components. Otherwise it is not possible to operate the
system properly.

Usability As AIMM is only used by robotics experts, the requirements for the system
differ from those used by end users. Operation must be less intuitive and can be
based on knowledge. Nevertheless, it is also important for the expert to be able to
monitor and control the system status efficiently.

Complexity Even if experts can handle a significantly higher level of complexity than
inexperienced operators, sooner or later a limit is reached that can no longer be
controlled. One of the scientists’ Concerns is therefore to keep complexity as low as
possible.

Autonomy Autonomy is one of the most important research goals of the AIMM system.
Therefore, methods and approaches are being researched to increase the degree of
autonomy. In addition, the autonomy of AIMM is an important instrument for
addressing the other Concerns.
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AIMM Physical View

This chapter describes the Physical View of the AIMM system. The AIMM system
has no Stakeholders with a research interest in this perspective of the system. The
concepts presented are therefore practical solutions for a functional research platform
with a focus on perception, manipulation and autonomy. First, an overview of all
identified Models and their Relations to each other is given. The individual Architecture
Models are then presented.
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B.1 AIMM Physical Overview

Guideline Models:

• Keep It Simple

• Use Off-the-Shelf
Components

• Exchangable Components

• Make Everything
Perceivable

• Sensor Groups

• Local Computing

• Unlimited Computational
Resources

• Unlimited Power
Resources

• Safety Operator

• Low Level Motion
Commands

• Simple Status Display

Approach Models:

• Mobile Manipulator

• Head, Hand & Navigation

• Processing

• Network

• Power Distribution

• Safety

• LED Status Display

• Remote Controller

Implementation Models:

• KUKA omniRob Structure

• KUKA omniRob Power

• KUKA omniRob Safety

• KUKA omniRob Remote

• Amtec Pan-Tilt Unit

• Roboception rc_visard 65

• LED-Projektor

• COM Express Boards

B.2 AIMM Physical Structure

B.2.1 Keep It Simple

Model Name: Model Kind: Model Type: ID:

Keep It Simple VP-M1G Guideline G1

Addressed Aspects:

VP-A1

Description:

The concept is to keep the system kinematically as simple as possible. This reduces the
mechatronic complexity of the system. Nevertheless, the system requirements must be met.

Rationale 1: Simple kinematics reduces the system complexity
A complex kinematic structure significantly increases the system complexity. The reason
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for this is the direct influence on the software components. Complex kinematics generally
require more complex controllers, schedulers, etc. The reduction in mechanical complexity
leads to a significant reduction in overall complexity.

Rationale 2: No Humanoid
One difficulty with this approach is finding the simplest solution that meets the requirements.
One approach is therefore to take human kinematics as a basis. This implicitly fulfills the
requirements, as the relevant environments have been designed for human kinematics.
However, this greatly increases the complexity of the system, which is why this approach is
not pursued.

Rationale 3: No scientific interest in mechatronics
The system does not have a Stakeholder who is involved in the mechatronic design of the
system. This approach minimizes the effort in this area.

Rationale 4: Soft system requirements
The system is a research platform. This means that both the environment and the Tasks can
be adapted to the system’s capabilities to a certain extent. The requirements for the system
are therefore less critical than for a system for productive use in a factory.

B.2.2 Use Off-the-Shelf Components

Model Name: Model Kind: Model Type: ID:

Use Off-the-Shelf Components VP-M1G Guideline G2

Addressed Aspects:

VP-A1, VP-A2, VP-A3, VP-A4, VP-A5, VP-A6

Description:

The hardware of the Robot should consist of commercially available components. Custom-made
products should be avoided wherever possible.

Rationale 5: Suboptimal hardware components
One disadvantage that must be taken into account with this concept is that the hardware is not
optimized for the exact application. There are usually significant disadvantages compared to a
custom-made product. For example, the required installation space is larger, the components
do not fit together without adapters and there are limitations in terms of performance.

Rationale 6: Faster & cheaper development
Off-the-shelf components are much more cost-effective than custom-made products due to
series production. They are also available more quickly and are easier to maintain.

Rationale 7: Increased dependability
Finished products are extensively tested and any weak points are eliminated. This makes
the products more reliable than custom-made products. As the hardware forms the basis
of the system and failures cannot usually be compensated for, dependability is particularly
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important here.

Rationale 8: Interesting for future stakeholder
Even if the Robot is purely a research platform, it should also be of interest to future
Stakeholders if possible. If the Robot’s hardware is already commercially available, this is a
strong argument for the feasibility of the concept.

B.2.3 Mobile Manipulator

Model Name: Model Kind: Model Type: ID:

Mobile Manipulator VP-M1A Approach A1

Addressed Aspects:

VP-A1

Description:

The kinematic structure is a mobile manipulator. A mobile manipulator consists of a manipulator
and a mobile platform. Based on the requirements of the use case and the concepts applied, a
holonomic platform was selected. This can move in flat environments with the help of Mecanum
wheels. A torque-controlled arm with a redundant axis was selected as the manipulator. A
parallel gripper with two fingers is used as the gripper.

Applies:

G1, G2

Rationale 9: Selection of a the mobile platform with mechanum wheels
Due to the requirements to be fulfilled by the system, the mobility of the Robot is a fun-
damental prerequisite. The simplest way to make a Robot mobile is to use wheel-based
platforms. The kinematics of the platform is crucial here. Since uncertainties are to be ex-
pected, corrective movements must be easily possible. The minimum requirement is therefore
omnidirectional kinematics. Platforms based on Mechanum wheels meet this requirement.
At the same time, the mechanical design is very simple. In addition, this technology is tried
and tested and is sold commercially by various suppliers. The disadvantage of this concept is
that the surface must be relatively level. However, this can be considered as given for this
application.

Rationale 10: Single manipulator
The kinematic configuration provides only one manipulator. This reduces the complexity of
the system compared to systems with multiple arms. However, this also reduces the system’s
capabilities. In particular, handling larger objects and assembly operations without fixtures
are difficult or impossible.

Rationale 11: Selection of the manipulator
The manipulator interacts with its environment. Since unknown obstacles and inaccuracies
are to be expected, the manipulator must be force-controlled in order to detect collisions and
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compensate for inaccuracies. A redundant degree of freedom makes it possible to approach a
point in the workspace in different manipulator configurations, which significantly increases
the flexibility of the system with only a slight increase in complexity. Manipulators with these
features are commercially available. A manipulator on a mobile platform has a significantly
smaller workspace than a human, for example. Additional joints or linear axes would be
required to approach this working space. This significantly increases the complexity of the
system. These limitations are therefore accepted for the research platform.

Rationale 12: Selection of the gripper
A 2-finger parallel gripper was chosen as the gripper. This is one of the simplest forms for
grasping various objects. Compared to a multi-finger gripper or a hand, the complexity is
greatly reduced. These grippers have been used in industry for a long time and are therefore
commercially available and very reliable.

Rationale 13: No suction gripper
A suction pad is also a simple and very flexible solution for grasping objects. The principle
works particularly robustly on large surfaces. The disadvantage is that the exact grasp
position cannot be determined. This makes it difficult to achieve the precision required for
assembly tasks.

B.2.4 KUKA omniRob Structure

Model Name: Model Kind: Model Type: ID:

KUKA omniRob Structure VP-M1I Implementation I1

Addressed Aspects:

VP-A1, VP-A2

Description:

The KUKA omniRob was chosen as the basis for the AIMM system. The KUKA omniRob therefore
implements the physical structure of the AIMM system. The KUKA omniRob is equipped with
Mechanum wheels, which fulfill the requirements of a holonomic platform. The mounted KUKA
LBR4+ is a force-controlled manipulator that also fulfills the requirements of the AIMM concept.
Missing sensors and computing infrastructure can be added later, as both installation space and
energy are available.

Implements:

A1, A2
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B.3 AIMM Physical Perception

B.3.1 Make Everything Perceivable

Model Name: Model Kind: Model Type: ID:

Make Everything Perceivable VP-M2G Guideline G3

Addressed Aspects:

VP-A2

Description:

The system’s ability to perceive is an important part of the interface between the Robot and its
physical environment. Perception is necessary to recognize uncertainties or faulty information
and to monitor processes. The more information available to the system, the better the Robot can
react. The concept is therefore to make as much information as technically possible perceptible.
This means that the system must be equipped with many sensors.

Rationale 14: Additional information does no harm
In contrast to mechatronic components, additional sensors do not lead to a significant increase
in complexity. Sensors offer the possibility of using additional information, but they do not
force this. It therefore makes sense to generate as much sensor information as possible.

Rationale 15: No perfect sensor available - combine them
There is currently no sensor that delivers good results under all realistic conditions. Active
sensors, for example, are sensitive to light, stereo sensors require texture, ultrasonic sensors
are material-dependent, etc. The conclusion is that there is no perfect sensor, but that each
concept has its strengths and weaknesses. Ideally, different sensor types should therefore be
used in order to obtain good data in every situation.

Rationale 16: Configuration of the sensors
Sensors can be adapted to a task by configuring the parameters (base distance) and using
accessories (lenses). As this adaptation is static, it may be necessary to use the same sensors
in different configurations.

Rationale 17: Useful redundancy
Even if sensors provide identical information, i.e. are redundant for the perception of the
environment, they can still be useful for the system. For example, the calibration of the
sensors can be checked. Different viewing angles of the same object can also be used to
improve accuracy.
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Rationale 18: Praktical limits
There are practical limits to the number of sensors. For example, there is not an unlimited
number of assembly positions. At the end effector in particular, sensors considerably restrict
the Robot’s workspace. Another limitation is data transmission and processing. Cameras in
particular generate large amounts of data that can quickly overwhelm the system’s technical
infrastructure.

B.3.2 Exchangeable Components

Model Name: Model Kind: Model Type: ID:

Exchangeable Components VP-M2G Guideline G4

Addressed Aspects:

VP-A1, VP-A2

Description:

The mechanical interchangeability of the sensors is an important concept for AIMM. As the
perfect configuration for mobile systems has not yet been found, it must be possible to adapt
the system’s sensor configuration without great effort.

Rationale 19: Part of the research
The development of suitable sensor technology for a mobile manipulator is the subject of
current research. The combination of different sensor types in particular offers interesting
questions. In order to carry out these experiments, it must be possible to convert the system
without great effort.

Rationale 20: New sensors
The development of sensors is also progressing rapidly. New commercial sensors that can
provide better data are regularly available. The concept considerably simplifies the integration
of these new sensors.

Rationale 21: Lower integration density
The flexible hardware structure requires installation space. Compared to a fixed solution, the
integration density is reduced. Depending on the position of the sensors, this disadvantage
is more or less relevant. Especially at the end effector of the robot, the size has a strong
influence on the workspace.

Rationale 22: More complex calibration
In order to use the sensor data, the position of each sensor must be known exactly. The
sensors are therefore calibrated in relation to each other and to the Robot. This process is
very time-consuming if many different sensors are used at different mounting positions.
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B.3.3 Sensor Groups

Model Name: Model Kind: Model Type: ID:

Sensor Groups VP-M2G Guideline G5

Addressed Aspects:

VP-A1, VP-A2

Description:

An autonomous system can have a large number of sensors. These can be configured, installed
and operated in different ways. This leads to enormous complexity that needs to be mastered.
Sensor groups are a concept for systematizing this problem. For this purpose, various perception
tasks are identified and requirements for the sensors and their installation and configuration
are derived from this. The sensors themselves are assigned to the various sensor groups and
share the common properties and the perception task with the other sensors in the group. The
different groups can fulfill different, possibly contradictory requirements.

Rationale 23: Perception Task
The perception Task is initially independent of the sensor itself. It describes what information
is to be perceived. There are usually several ways to fulfill the Task. The Task alone is
therefore not sufficient for defining the sensor group, but it forms an important basis. The
other properties of the sensor group are derived from the Task. However, due to the various
reasons, there can be several sensor groups with the same perception Task on one system.

Rationale 24: Kinematic configuration
The kinematic configuration of the sensor group is an important design decision as to how
the perception Task is to be fulfilled. It thus characterizes the sensor groups and strongly
influences the requirements for the sensors. All sensors in a group share the kinematic
configuration.

Rationale 25: Requirements for the sensors
The requirements for the sensors can be defined based on the Task and the kinematic
configuration. The requirements cover a broad spectrum. For example, the sensor group
can determine the size of the sensors or the working range, but also the frame rate and the
infrastructure (data, power).

Rationale 26: Reduced complexity
By dividing the perception Task into Subtasks, the complexity can be better mastered. It
also prevents the same perception Task from being solved unintentionally by different
concepts. This avoids an unnecessary increase in system complexity. Common infrastructure
requirements also reduce complexity. Simplification can also be achieved in operation by
grouping sensors. For example, groups of sensors can be calibrated together.

163



Appendix B. AIMM Physical View

B.3.4 Sensor Setup: Head, Hand and Navigation

Model Name: Model Kind: Model Type: ID:

Sensor Setup: Head, Hand and Navigation VP-M2A Approach A2

Addressed Aspects:

VP-A1, VP-A2

Description:

The sensor system of AIMM consists of four different sensor groups, which are designed for
different perception Tasks and together fulfill the requirements of the system.
The first sensor group are the internal sensors of the mechatronic components, e.g. joint angle
sensors and torque sensors.
The second group of sensors is called the sensor head. A PTU is mounted on a mast and carries
various sensors.
The third group of sensors is called the hand sensor. It contains the sensors that are attached to
the end effector of the manipulator.
The fourth sensor group, the navigation sensors, are mounted on the mobile platform and are
used for environmental perception for navigation.

Applies:

G3, G4, G5

Rationale 27: Mechatronic component sensors
The internal sensors are mainly used for the system’s self-awareness. They measure the joint
values, for example, and can therefore provide reliable and fast information about the status
of the kinematics. Small model errors and external disturbances can thus be compensated
for.
The environment can often only be detected indirectly with these sensors. External forces on
the manipulator can thus be estimated, taking into account the manipulator dynamics and
the built-in torque sensors.

Rationale 28: Sensor group head sensor
The integration of a sensor head offers many advantages, which is probably why this approach
has established itself in biology. It contains the system’s most important sensors and is used
to monitor the Robot’s workspace, perceive the environment and localize objects. As it is
mounted independently of the manipulator, perception is independent of the manipulation.
This means that the surroundings can also be observed during manipulation or the manipula-
tion itself can be monitored.
For AIMM, the head sensor was implemented using a sensor mast with a pan-tilt unit. This
separate installation also means that the sensors can be replaced much more easily and their
size only has a minimal impact on the Robot’s workspace. The pan-tilt unit enables the head
sensors to cover the entire working area of the Robot with a sufficiently high resolution to
be able to detect even smaller objects. One disadvantage of this sensor group is the long
kinematic chain to the end effector, which can lead to accumulated errors. Another aspect is
that the head sensor can only monitor the working area through movements of the pan-tilt

164



B.3. AIMM Physical Perception

unit. Simultaneous complete monitoring is not possible. A further disadvantage of the
kinematics of the pan-tilt unit is that only the field of view of the sensors can be extended.
Changing the direction of view of an object requires the entire system to be moved.

Rationale 29: Sensor group hand sensor
The Task of the hand sensor group is to inspect objects at close range and also to cover areas
that are hidden from the head sensor. The kinematic configuration of this group is therefore
to mount the sensors on the end effector. This allows the sensors to be positioned almost
anywhere in the working area.

Due to the static mounting of the sensors group on the end effector, there are no accumulated
errors for manipulation tasks. This group is therefore also relevant when high precision is
required.

A disadvantage of this sensor group is that it is not independent of the manipulator. Perception
with this sensor group is therefore difficult during manipulation. Another factor is that objects
at the end effector strongly influence the workspace of the Robot. The sensors must therefore
be small and integrated as compactly as possible. This restricts the type of sensors and makes
it difficult to replace components.

Rationale 30: Sensor group navigation sensor
The Robot’s moving platform is holonomic. It can therefore move in any direction at any
time. The navigation sensor group has the Task of fully monitoring the Robot’s surroundings
for the platform movements. The requirement for the sensors is therefore to provide a 360°
all-round view of the system. As the entire area is covered, these sensors can be mounted
statically.

B.3.5 Roboception rc_visard 65

Model Name: Model Kind: Model Type: ID:

Roboception rc visard 65 VP-M2I Implementation I2

Addressed Aspects:

VP-A2

Description:

The rc_visard 65 stereo camera system from Roboception is used as the main sensor for the
sensor head. The technical specifications of this purchased component meet the requirements
of the AIMM system. The software integrated in the sensor, which offers calibration and stereo
processing, among other things, reduces the system complexity of the AIMM system.

Implements:

A2
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B.3.6 LED-Projector

Model Name: Model Kind: Model Type: ID:

LED-Projector VP-M2I Implementation I3

Addressed Aspects:

VP-A2

Description:

An LED projector is used to support the system’s stereo sensor technology. This projects a pattern
so that the stereo algorithm can also deliver good results on untextured surfaces. The pattern
covers the field of view of the stereo cameras.

Implements:

A2

Rationale 31: Activate and deactivate
The pattern improves the depth perception of the system for poorly structured surfaces.
However, the projected structure is a drawback for other perception Tasks such as detection
or modeling. It is therefore important that the projector can be controlled by the system and
is only activated when required.

Rationale 32: No calibration necessary
There are also approaches to realize the depth perception by pattern projection with only
one camera, e.g. Primesense Kinect. However, this has some disadvantages compared to
the stereo system with projector. For example, the accuracy is poorer, especially for relevant
features such as edges and corners. Another problem is daylight. If this outshines the
projector image, depth measurement is not possible. Although a stereo system can then
no longer benefit from the projector, it can still deliver measured values. The additional
projector also does not need to be calibrated to the stereo system, which significantly reduces
the integration effort.

Rationale 33: Speckle effect
Many pattern projectors use laser diodes to generate the required light. This works for
mono camera systems. However, the speckle effect plays a significant role in stereo systems.
Minimal unevenness on a surface causes the coherent light to overlap differently depending
on the viewing angle. The projected points are therefore perceived differently by the two
cameras, which impairs the stereo algorithm. The AIMM system therefore uses an LED light
source with non-coherent light.
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B.3.7 Amtec Pan Tilt Unit

Model Name: Model Kind: Model Type: ID:

Amtec Pan Tilt Unit VP-M2I Implementation I4

Addressed Aspects:

VP-A1, VP-A2

Description:

The Amtec pan/tilt unit from 2004 is the oldest hardware component of the AIMM system. It
was already used in the same function in a predecessor system, the Robutler [56]. As it still
meets the requirements for the sensor head, it will continue to be used on AIMM.

Implements:

A2

B.4 AIMM Physical IT

B.4.1 Local Computing

Model Name: Model Kind: Model Type: ID:

Local Computing VP-M3G Guideline G6

Addressed Aspects:

VP-A3

Description:

A mobile system can change its location. In order to have a reliable data connection at all times,
a high technical effort is required. The concept of local computing therefore ensures that all
computations are carried out on the system itself. This significantly reduces the infrastructure
requirements.

Rationale 34: Autarchy
Local processing of the system achieves a higher degree of self-sufficiency. This means that
the system is less dependent on its environment. This reduces the integration effort and
increases the flexibility of the system.

Rationale 35: Clear system boundaries
When computations are outsourced to external hardware, it is more difficult to clearly define
the system boundaries. One possibility is to consider the external hardware as part of the
system. This approach is supported by the fact that these external computations are an
essential part of the Task fulfillment. However, the system boundary is then difficult to
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define, especially for server-based solutions. An alternative is to define the boundary via the
hardware. However, this means that the Robot can no longer perform its Tasks independently.
In addition, very different computations can be outsourced. From stereo data processing to
knowledge-based database queries. The interface is therefore arbitrarily complex.

The concept of local computation means that the system boundary of the Robot is clearly
defined, as all components are physically integrated in the device.

Rationale 36: High data bandwidth
Robot systems generate large amounts of data. This data must be transferred from the sensors
to the computers for processing. This can be done by cable within the system which allows
high bandwidth. Wireless technology must be used for external transmission. However, the
data rates involved cannot be fully transmitted using current technology.

Rationale 37: Reduced efficiency
One disadvantage of local computation is that the entire computing resources must be kept
on the system. However, the full capacity is often only required for relatively short periods of
time. The efficiency compared to an external solution is therefore lower.

Rationale 38: Requirements for installation space and energy supply
The computers on the system require space and energy. Both are limited resources on a
mobile system. This technical restriction limits the amount of computing power available
locally on a mobile system.

B.4.2 Unlimited Computational Resources

Model Name: Model Kind: Model Type: ID:

Unlimited Computational Resources VP-M3G Guideline G7

Addressed Aspects:

VP-A3

Description:

Sufficient computing resources are available for all processing operations on the system. Opti-
mization in terms of computing resources is therefore not necessary.

Rationale 39: Energy consumption is not a research topic of the platform
In contrast to the practical use of a system in industry, the costs for the optimization of
algorithms and modules are significantly higher in research than for the integration of
additional computing hardware. As the efficient use of computing resources is also not a
research topic for the group, the computing power is adapted to the requirements.
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B.4.3 Processing

Model Name: Model Kind: Model Type: ID:

Processing VP-M3A Approach A3

Addressed Aspects:

VP-A2, VP-A3

Description:

The AIMM’s IT equipment consists of four computers that perform different tasks.
There is a server computer. The task of the server is to simplify the administration of the system.
All computers mount the data hosted by the server as a home directory. This implicitly ensures
synchronization between the computers.
The sensor computer is the interface to all sensors. All sensor data is routed via this computer
and is provided with a time stamp here if the sensor does not offer this itself.
The GPU computer is used for GPU-based data processing. This computer is equipped with a
powerful graphics card. All modules that use a GPU for processing are started on this computer.
The processing computer is used to carry out computationally intensive processing. All
computing-intensive modules of the system are started here.

Applies:

G4, G6, G7

Rationale 40: Extendability by multi computer setup
By using several computers, it is possible to react flexibly to the demand for computing
resources. Additional computers can be easily integrated into the system as required.

Rationale 41: Embedded computer
There are two reasons for using embedded computers. Compared to server computers, for
example, the ratio between size, power consumption and computing power is more favorable
for embedded computers. In addition, this hardware is suitable for the mechanical stress
caused by the movement of the mobile platform.

Rationale 42: Increased efficiency by specialization
IT can be made more efficient by specializing the hardware. For example, not every computer
needs a powerful graphics card. When a resource limit is reached, the necessary expansion
can be carried out on a dedicated basis.
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B.4.4 Network

Model Name: Model Kind: Model Type: ID:

Network VP-M3A Approach A4

Addressed Aspects:

VP-A3

Description:

This model describes the concepts for data transmission on the AIMM system. The main
technology is ethernet and is used for various tasks. The network setup therefore consists of
three independent networks:
The data network is used to connect the various computers. This network is used, for example,
to implement the shared file system.
The service network is used to transport application data. Commands, for example, are
transmitted to the modules via this network.
The sensor network is used to connect the sensors. In contrast to the other two network types,
there is not just one connected sensor network, but several. A participant in a sensor network is
always the sensor PC. Only sensor data is transmitted in these networks.

Applies:

G6, G7

The internal communication, shown in Figure B.2, is realized via ethernet connections. Each
computer has two ethernet connections that form a network with all other computers. The
data network is used to share a file system that is hosted on the server computer. The service
network, in which the wireless access point is also integrated, is used for communication
between the processes. The sensor data is processed by the sensor PC, which is equipped
with four additional ports to provide the required bandwidth.

Rationale 43: Ethernet as communication solution
Ethernet is mainly used on AIMM, as it offers many advantages over other technologies. For
example, high data rates can be transmitted. Ethernet networks can be easily expanded using
switches, which is particularly important for flexible sensor systems. The same technology
can also be used for sensor connection, computer networking and external connection and
control.

Rationale 44: Multiple sensor networks
Some of the AIMM sensors have their own networks, i.e. a direct connection from the sensor
to the sensor PC. The advantage of this configuration is that the network can be configured
according to the data that is generated. For example, different settings make sense for
high-frequency but small data packets than for large, low-frequency data packets such as
camera data. The division into different networks also enables simpler resource management,
as the data rate for the connected sensors can be fully utilized.
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Rationale 46: Compact integration
COM express modules are supplied without housing, power supply unit or display. These
components are not required in the Robot. The integration of a COM express module is
therefore much more compact than that of a laptop, for example.

Rationale 47: Large number of interfaces
There are COM express modules with a large number of interfaces. The Kontron modules
used on the AIMM system, for example, already offer 3 Ethernet ports as well as a large
number of USB and other interfaces. This means that many devices can be connected directly
to the computer, especially on the sensor PC.

B.5 AIMM Physical Power

B.5.1 Unlimited Power Resources

Model Name: Model Kind: Model Type: ID:

Unlimited Power Resources VP-M4G Guideline G8

Addressed Aspects:

VP-A4

Description:

The system always has sufficient energy resources available. It is therefore not necessary to
optimize the energy consumption.

Rationale 48: Energy efficiency is not a research topic on the AIMM platform
The running time of the system without charging plays a subordinate role for use as a
research platform. As the energy efficiency of the robot is not in the group’s research interests,
unlimited energy resources are assumed for AIMM.
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B.5.2 Power Distribution

Model Name: Model Kind: Model Type: ID:

Power Distribution VP-M4A Approach A5

Addressed Aspects:

VP-A4

Description:

The AIMM’s power supply is based on a 48V battery integrated into the system. The loads are
connected to this battery via various power supply units. The system offers 5V, 12V, 24V and
48V. The system battery can be charged during operation. If the robot is connected to the grid
via the charger, the consumers are supplied directly from the charger.

Applies:

G8

Rationale 49: Plugged operation
An important requirement for the power setup is power supplied operation. During integra-
tion or system tests, the system should not run on battery power, but can be connected to the
charger. During this time, the Robot must be able to move. The risk here is that energy, e.g.
from braking the platform, is fed back into the charger. This leads to damage and must be
avoided.

B.5.3 KUKA omniRob Power

Model Name: Model Kind: Model Type: ID:

KUKA omniRob Power VP-M4I Implementation I6

Addressed Aspects:

VP-A4

Description:

The battery of the KUKA omniRob is designed for an 8-hour shift without recharging. This means
that the platform offers sufficient capacity even with additional consumers such as sensors and
computers. In addition, the platform can also be charged when active.

Implements:

A5
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B.6 AIMM Physical Safety

B.6.1 Safety Operator

Model Name: Model Kind: Model Type: ID:

Safety Operator VP-M5G Guideline G9

Addressed Aspects:

VP-A5

Description:

The safety of the system is the responsibility of a safety operator who monitors the system
during operation. This person must ensure that no persons are harmed and that neither the
system nor its surroundings are damaged.

Rationale 50: Open research topic
Currently, there are no applicable solutions to ensure the safety of autonomous mobile
manipulators in a partially unknown environment. There are various approaches working
towards this goal. Currently, these solutions are still under active research and cannot yet be
generally applied.

Rationale 51: Focus on the concerns
In contrast to the practical application of the system in industry, in research it can be ensured
that a safety operator monitors the system during execution. Since the safety of the Robot is
not in the research interest of the group, this concept was chosen for AIMM.

B.6.2 Safety

Model Name: Model Kind: Model Type: ID:

Safety VP-M5A Approach A6

Addressed Aspects:

VP-A5

Description:

The safety equipment of the AIMM system enables the safety operator to ensure safe operation.
The basis of this setup is a wireless emergency stop with which the system can be stopped and
laser scanners with safety fields. If these areas are violated, the system is automatically stopped.
It is also the task of the safety personnel to ensure that no persons come into direct contact with
the system.

Applies:

G9
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Rationale 52: High latency
A fundamental problem for a safety operator is the limited response time. At least a few
hundred milliseconds are required to react to a sudden event. The safety operator guard
must therefore ensure that there is always enough time to react.

Rationale 53: Wireless emergency stop as an interface to the safety operator
The safety operator must have a simple and safe way to stop the system. Emergency stop
switches on the system are not suitable for this, as the safety operator then has to reach
into the Robot’s danger zone. AIMM therefore uses a wireless solution. This allows the
safety operator to monitor the system from a safe distance and trigger an emergency stop.
The problem with wireless emergency stop systems is that the wireless connection must be
guaranteed at all times. An emergency stop must therefore be triggered automatically in the
event of a fault.

Rationale 54: Support of the safety operator through safety areas
The system’s laser scanners can independently monitor different areas. If an object is detected
in these areas, a system reaction, e.g. an emergency stop, can be triggered automatically. This
approach has some limitations in the current state of the art, which is why the technology
should only be seen as support for the safety operator.
The first limitation of the safety fields lies in the measuring range of the sensors, which is
planar. Safety areas can therefore only be defined and monitored in the measuring plane.
For example, the manipulator cannot be monitored. These sensors can therefore only be
considered as an additional safeguard in case the safety operator overlooks something or
reacts too slowly. Another problem is that the sensors used can only realize static safety
fields. Depending on the Task, however, there are different requirements for the safety field.
A larger safety field is desirable during navigation, as the platform has to be slowed down
in an emergency. During manipulation, on the other hand, contact with the environment is
necessary, which requires the platform to be positioned close to workstations. With AIMM,
the safety fields are therefore reduced to a minimum to enable manipulation. The lack of
automatic safeguarding of platform movements must be replaced by measures taken by the
safety operator.

Rationale 55: No direct contact with humans
Due to the limited reaction time of the operator and the lack of automation of the system,
AIMM is not suitable for direct physical contact with the user.
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B.6.3 KUKA omniRob Safety

Model Name: Model Kind: Model Type: ID:

KUKA omniRob Safety VP-M5I Implementation I7

Addressed Aspects:

VP-A5

Description:

In addition to emergency stop switches on the robot, the KUKA omniRob has a wireless emer-
gency stop and safety laser scanner. Both are designed using safe technology. For autonomous
manipulation, however, the safety fields of the lasers must be reduced to a minimum. Safe
operation without monitoring is then no longer possible. For AIMM, the wireless emergency
stop is sufficient to implement the safety concepts.

Implements:

A6

B.7 AIMM Physical Interface

B.7.1 Simple Status Display

Model Name: Model Kind: Model Type: ID:

Simple Status Display VP-M6G Guideline G10

Addressed Aspects:

VP-A6

Description:

An autonomous system acts by itself in its environment. A complex user interface for this system
is therefore not necessary. However, as people are also present in the Robot’s environment, it is
still important to display the current status of the system. This interface should be as simple
and intuitive as possible.

Rationale 56: Relevant operating modes
The most important information that the Robot has to communicate to its environment is
whether the system is active. Since the surrounding environment is not safe, it must be
clearly recognizable when the system is in operation. It is very helpful for monitoring the
system if the normal state can be distinguished from the error state.
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B.7.2 Low Level Motion Commands

Model Name: Model Kind: Model Type: ID:

Low Level Motion Commands VP-M6G Guideline G11

Addressed Aspects:

VP-A6

Description:

The operator should also be able to move the Robot directly. The AIMM system therefore
provides a low-level motion command interface with which movements can be controlled
directly.

Rationale 57: Need for a direct interface to move the platform
This interface is not required in standard operation. The Robot decides for itself which action
it performs when and how. Outside of this operating mode, the platform must also be moved.
This can be used to solve error situations. When setting up the system, manual input is also
initially required to move the Robot to its operating location.

B.7.3 LED Status Display

Model Name: Model Kind: Model Type: ID:

LED Status Display VP-M6A Approach A7

Addressed Aspects:

VP-A6

Description:

To achieve a simple status display, AIMM uses LED strips that can be color-controlled. AIMM
distinguishes between three different states. If the system is inactive, the light strips are switched
off. If the system is active and in the normal state, the strips light up blue. In case of a fault, the
light strips change to red. In order to be able to differentiate between different faults, the strip
is divided into segments to signal different fault states. For example, a red illuminated bumper
indicates an unacknowledged emergency stop.

Applies:

G10
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B.7.4 Remote Controller

Model Name: Model Kind: Model Type: ID:

Remote Controller VP-M6A Approach A8

Addressed Aspects:

VP-A6

Description:

A remote control is used to command the movements. It allows the specification of speed values
for the robot movement.

Applies:

G11

Rationale 58: Kinematic reduction
Only the three degrees of freedom of AIMM’s platform can be controlled with the remote
control. This is sufficient to reposition the Robot. The manipulator cannot be moved remotely,
as this would require a more complex input device.

B.7.5 KUKA omniRob Remote Control

Model Name: Model Kind: Model Type: ID:

KUKA omniRob Remote Control VP-M6I Implementation I8

Addressed Aspects:

VP-A6

Description:

The KUKA omniRob is supplied with a remote control. When the Robot is activated, the system
automatically switches to a state that allows the platform to be controlled directly via a gamepad.
However, it is not possible to control the manipulator. For AIMM, this is sufficient to realize the
operating concept.

Implements:

A8

178



AppendixC

AIMM Capability View

This chapter describes the Capability View of the AIMM system. An overview of
all identified Models and their interrelationships is provided first. The individual
Architecture Models are then presented.



Appendix C. AIMM Capability View

C.1 AIMM Capability Overview

Guideline Models:

• Hierarchical Loop Closure

• Flexible Combination of
Capabilities

• Tree Structure

• Central World Model

• Virtual Objects

• Scene Concept

• Combining Middlewares

• Fine Granularity

• Distributed Dedicated
System

• Central Module
Management

• Individual Runtime
Environments

• Process Dependencies

Approach Models:

• Dynamic Capability
Pipelines

• Robot Behaviours

• World Model

• World Model Modules

• Communication Map

• Host Types

• Process Manager

Implementation Models:

• World Model Framework

• Middleware Selection

• LN Manager

• RAFCON
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C.2 AIMM Capability Closing the Action Perception Loop

C.2.1 Hierarchical Loop Closure

Model Name: Model Kind: Model Type: ID:

Hierarchical Loop Closure VC-M1G Guideline G12

Addressed Aspects:

VC-A1

Description:

The action-perception loop can be closed at different levels of abstraction. A problem
can be solved by control, by reactive behavior or by planned actions. Each level has
advantages and disadvantages, which is why it is not possible to commit to one level for
more complex systems and Tasks. The concept of hierarchical loop closure is to combine
the advantages of the different approaches by cascading the different levels.

Rationale 59: Fast controller
A controller calculates a control value from the measured values of the sensors in
order to reduce the deviation between the actual value and the setpoint. This control
loop is very fast and robust, but cannot solve complex problems.

Rationale 60: Reactive behaviors
Similar to the controller approach, the actions are derived directly from the Robot’s
sensor signals. In a reactive behavior, however, there is no actual and target value,
but a behavior that depends on the measurement. For example, a collision avoidance
behavior detects obstacles based on the depth information. Depending on the distance
of the obstacles, virtual forces are generated that adapt the movement of the Robot.
As the calculations for reactive behavior are often more complex, they are slower
than controllers. Nevertheless, reactive behavior is controlled by sensor data and the
reaction is usually faster than a planned action.

By linking different information and actions, more complex Tasks can also be solved.
For example, Brooks [17] presents a mobile robot system that is able to navigate and
map an unknown environment using reactive behavior.

Rationale 61: Planned actions
Closing the loop with a planner is abstract as there is no direct processing of the
captured data into a response. The perceived data is usually used to model the
environment. For example, mapping algorithms and object localization methods
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C.2.2 Flexible Combination of Capabilities

Model Name: Model Kind: Model Type: ID:

Flexible Combination of Capabilities VC-M1G Guideline G13

Addressed Aspects:

VC-A1

Description:

The action-perception loop is realized by combining different Capabilities. For example,
sensor data is recorded by a Capability and used by a control Capability to calculate a
setpoint for the actuator Capability.
In AIMM, the concept is to keep these combinations flexible. This means that the
topology of the Capabilities can be changed at runtime. For example, Capabilities can be
exchanged or new Capabilities can be added.

Rationale 63: Situative behavior
An autonomous system has to adapt its behavior to the context. For example, a Robot
must behave differently in an unsafe environment than in a known, safe environment.
The type of uncertainty also plays a significant role. If the environment is static,
strategies for scene analysis and motion planning can solve the problem. However, if
the Robot is in a dynamic environment, reactive methods have to be used.
To achieve this variation in behavior, different Capabilities must be used in different
combinations depending on the context.

Rationale 64: Reducing complexity by separation
This adaptive behavior of the system can be achieved through various approaches.
One possibility is to activate all Capabilities simultaneously. The influence of the
respective component on the overall system is then set via weightings. For simple
systems, complex behaviors can be implemented in this way [17].
For complex systems, this static approach of using all Capability together is difficult
to manage. In order to reduce complexity, this approach does not attempt to find
a solution for the entire spectrum of behaviors. Instead, simpler constructs of
Capabilities are developed, each of which realizes a subset of the required behaviour.
The system is then reconfigured flexibly depending on the required solution.

Rationale 65: Resource efficiency
Some Capabilities require larger amounts of resources, e.g. in terms of working
memory or processor utilization. Flexible use allows the same Capabilities to be
used for different problems. This saves resources and increases the efficiency of the
system.
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C.2.3 Dynamic Capability Pipelines

Model Name: Model Kind: Model Type: ID:

Dynamic Capability Pipelines VC-M1A Approach A9

Addressed Aspects:

VC-A3

Description:

Several Capabilities can be combined by connecting them in sequence. The result of one
Capability is the input for the next Capability. This structure is referred to below as a
pipeline. The pipeline becomes dynamic by changing the links at runtime. Hierarchical
loops can be realized with pipelines by branching.

Applies:

G12, G13

Rationale 66: Data driven
Capability pipelines are data-driven. The information entering the pipeline is pro-
cessed sequentially by the various Capabilities. As soon as new information is
available, the Capability can determine the output based on the internal model and
the parameters and pass it on. Within the pipeline, the data is therefore triggered by
the Capabilities and the parameters usually remain unchanged over several data sets.

Rationale 67: No Capability layers
The concept of the dynamic Capability pipeline does not distinguish between the
different levels of abstraction of the Capabilities. Often, the data in a pipeline becomes
more complex with increasing processing depth, but even high-level Capabilities, such
as path planners, may require low-level input, such as the current joint configuration.
It is therefore not useful to identify layers or even interfaces between different layers.

Rationale 68: Structure of a dynamic Capability pipeline
There is at least one data source at the start of a dynamic Capability pipeline. This
can be a hardware interface or an event-triggered Capability. Within the pipeline,
data triggered Capabilities can be interconnected as required. In order to realize the
dynamics, both the interconnections and the parameters can be changed at runtime.
The end of a pipeline is either a data aggregating Capability or a hardware interface
Capability. It can also make technical sense to run a pipeline without terminating
components. The relevant Capabilities are then dynamically linked to this pipeline as
required.
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Rationale 69: Timestamps
For many types of data, a timestamp is important. With pipelines, the original
timestamp is usually passed on, i.e. the data does not receive the timestamp of the
processing, but the timestamp of the creation of the information.

C.2.4 Robot Behaviours

Model Name: Model Kind: Model Type: ID:

Robot Behaviours VC-M1A Approach A10

Addressed Aspects:

VC-A1

Description:

The connection of Capabilities implements the behavior of the Robot and is referred to
below as Robot behavior. This indicates that both the actions that are executed to fulfill
the Mission and the reactions to the environment are realized by Capabilities and their
interconnection and parameterization. However, this behavior is adapted or exchanged
at runtime in accordance with G13. Several Robot behaviors can also be active at the
same time.

Applies:

G12, G13

Rationale 70: Complexity of behavior
The complexity of Robot behaviors can have a very broad spectrum. Very simple
behaviors can be implemented with one or two Capabilities. An example of such a
behavior is the emergency stop switch. As soon as the switch is pressed, the brakes
of the Robot are activated.
It becomes more complex when the input data is linked to the output data via a
controller. This is of course also possible at the reactive level, the planning level
and any combination thereof. There are no upper limits to the complexity of Robot
behavior. Many traditional Robot Architectures only implement static robot behavior
(subsumption, 3T, etc.) in order to fulfill the Mission. This could be used to solve
complex tasks such as navigation in unknown, dynamic environments. In order to
realize such a Task using a behavior, a large number of Capabilities have to be linked
together. AIMM’s behaviors are also modified, activated and deactivated at runtime.

Rationale 71: Closed-Loop and Open-Loop
There are different types of behaviors. Simple behaviors often close the sense-act
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loop directly. For example, a gravity compensation behavior is based on the direct
connection of measured torques with controlled torques.
However, there are also behaviors that are open-loop. This means that they do not
react directly to the environment, but work without feedback. One example of this
is the Robot’s behavior of executing a trajectory. A trajectory is calculated from the
path. This is then commanded to the actuators.

Rationale 72: Execution of robot behaviors
Robot Behaviors can be executed in different ways. There are also different types
of Robot behaviors in terms of execution duration. There are behaviors that are
constantly active. An example of this is the emergency stop behavior. Other Robot
behaviors can run continuously, but are explicitly started and stopped. For example,
AIMM has a behavior to track the end effector with the cameras. This is only
desirable if the cameras are not used for other purposes. Other Robot behaviors have
a predefined duration or a predefined goal. These behaviors are triggered and then
terminate themselves. For example, the behavior “driving a trajectory” ends when
the trajectory has been completed.

C.2.5 RAFCON

Model Name: Model Kind: Model Type: ID:

RAFCON VC-M1I Implementation I9

Addressed Aspects:

CVC3, CVC4

Description:

Dynamic pipelines and high-level Robot behaviors are implemented for AIMM with
RAFCON. RAFCON state machines can trigger behaviors that are implemented externally.
By using the data flows, RAFCON can also be used directly to implement pipelines and
Robot behaviors.

Implements:

A9, A9

Rationale 73: Dynamic Capability pipelines
RAFCON can call Capabilities, the returned data can be passed on to the next state
via a data port. From here, the data can in turn be passed on to the next Capability.
In this way, Capability pipelines can be set up directly. RAFCON can also change the
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data flow during execution based on the data or with a superimposed control, which
makes the pipeline dynamic.

Rationale 74: Robot Behaviors
RAFCON can also link Capabilities cyclically. In the simplest case, the logical output
of a state is switched back directly to its input. Of course, several states can also be
linked cyclically and adapted dynamically. For example, a tracking behavior can be
implemented by cyclically linking an object detection and a movement command.
RAFCON then triggers the object recognizer, looks at the corresponding position
with the movement command and then triggers the object recognizer again. More
complex behaviors can also be implemented here. For example, a search strategy can
be started if object recognition fails.

Rationale 75: Efficiency and speed
RAFCON is not suitable for high timing requirements or large amounts of data.
No control loops can be implemented and RAFCON is also not the right tool for
perception pipelines due to the amount of data.

C.3 AIMM Capability World model

C.3.1 Central World Model

Model Name: Model Kind: Model Type: ID:

Central World Model VC-M2G Guideline G14

Addressed Aspects:

VC-A2

Description:

The world model is the central knowledge representation of the AIMM system, which
stores all the knowledge and information that the Robot has about its world (Robot and
environment). The information for the various skills is extracted and synchronized from
this central model. New information is continuously integrated into the world model.
The aim of the world model is to represent the entire world of the Robot at the selected
level of abstraction.

Rationale 76: World models are required for complex systems
Autonomous Robots can also exist without an explicit representation of the world.
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For example, the Architecture by Brooks [17] is based on behaviors that are direct
reactions to sensor measurements. Tasks such as exploration and obstacle avoidance
could be solved with this approach.
For more complex Tasks, such as pick-up and delivery services, this approach has not
yet been successful. There are several reasons for this. Many methods require more
complex models of the environment. For example, a path planner usually requires
a geometric model of the environment. The choice of methods is therefore limited
if no central world model is created. Another problem is that the complexity of
these systems is difficult to master. Since the sensor signals are processed directly,
all methods are directly coupled to these signals. The actuator signals in turn result
from a weighted sum of the respective methods. If different behaviors are to be
implemented, the approach requires a complex system for weighting the methods
used in parallel. Isolating errors or optimizing behavior is difficult due to the lack of
modularization.
A central world model is therefore necessary for autonomous robots that perform
more complex Tasks.

Rationale 77: Explicit modeling of dependencies between components
In recent years, the development of Robots has benefited greatly from the design
concept of a finely granular, modular approach. As a rule, more than a hundred
different modules are used in parallel in today’s Robots. One design goal is to
decouple these components. So why develop a central world model?

The modularization of components comes from software development and is essen-
tially based on the definition of interfaces between the modules. From a software
perspective, the components are therefore independent, as information is only ex-
changed via the interfaces. However, most modules of a Robot have a relation to the
physical world. As shown in Figure C.3, the modules are dependent on this.

For example, if component A is an object localization Capability, the result of this Ca-
pability depends on the physical position of the object. Other Capabilities also depend
on this position, e.g. Capability B could be a grasping Capability. This dependency
is not directly visible within the system, as it leaves the system boundary. From the
system perspective, the object recognizer provides an evaluation of the transferred
camera image and the gripping Capability closes the gripper at the transferred pose.
The fact that both depend on the same physical object is theoretically irrelevant.
The internal dependency can be modeled by the information flow. For example, the
grasping Capability depends on the object recognition Capability. Or the implicit
dependency is simply ignored.
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new state in the world model.

C.3.2 Tree Structure

Model Name: Model Kind: Model Type: ID:

Tree Structure VC-M2G Guideline G15

Addressed Aspects:

VC-A2

Description:

The world model of the AIMM platform focuses on the physical environment. The
most important knowledge about this environment is the laws of physics. In order to
approximate these, the world is modeled by objects that are related to each other via a
tree structure, i.e. each object has exactly one superordinate object.

Rationale 79: Information loss by modeling
In general, it can be said that information is lost during modeling. The world model
is therefore always a simplified representation of the Robot and its environment.
However, this can also be used deliberately to reduce the complexity of the real
environment through abstraction. In addition, not all aspects can be fully captured
in the real application. World models therefore usually focus on certain areas. These
two relationships are shown in Figure C.5.

Rationale 80: The focus is on the physical world
As shown in Figure C.5, world models can model different areas of a Robot and its
environment. For the AIMM system, an abstracted tree structure was chosen as the
world model, which is marked in red in the figure. As described in Appendix A, the
focus and research interest of AIMM is on how a system with incomplete knowledge
can act autonomously in an industrial environment. A model of the physical world is
therefore fundamental to AIMM.
In contrast, the Tasks of the system in an industrial context is very well defined. There
is no need to generate missing information or explore different solutions. An explicit
world model for the Mission is therefore not used in the AIMM.
The world model is therefore strongly focused on the physical world.

Rationale 81: Selection of the Tree-based World Model Structure
As shown in Figure C.5, there are different world model structures. These are suitable
for different aspects and applications. In the following, some well-known world
model structures are examined for their suitability for the AIMM platform:
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Finite State Machine A finite state machine can be used as a world model for a Robot.
There is a finite number of states in this structure. The system is always in exactly
one state. Events trigger transitions from one state to another.
This structure is well suited to implementing the world model of a vending machine.
Due to the limited possibilities for action and the limited interaction with the environ-
ment, such machines can be represented completely and clearly by state machines.
This approach is not suitable for an autonomous Robots with uncertainties in the
environment, a wide range of possible applications and a continuous physical environ-
ment. The complete modeling of the world of such a system would require countless
states and transitions. In the field of robotics, finite state machines that focus on a
sub-area of the Mission are suitable. For example, higher-level user interactions are
modeled by finite state machines. However, this structure is not suitable as a world
model for AIMM, as the focus is on the physical environment.

World State Vector The World State Vector is a structure that overcomes the limita-
tions of the Finite State Machine through two mechanisms. The first mechanism is to
define the state in multiple dimensions. This state vector can consist of any number
of dimensions. These dimensions can also be continuous. The second mechanism is
that transitions are not bound to a state. Instead, there are actions that change the
state vector in a defined way. The same action can therefore be applied to different
states.
These mechanisms extend the power of the world model enormously. By dividing the
state into different dimensions, much more complex systems can be captured. It can
also be modeled very well that different state dimensions are independent of each
other.
By separating state and action, Tasks can be represented very compactly. A Task
is defined as the desired state of the world. The system can then independently
determine how the current state can be transformed into the target state using the
available actions.
Symbolic planners such as STRIPS [42] are often used to determine the sequence
of actions. The basis for these planners is the world model in the form of a state
vector and the set of actions with their effects on the vector. The planner can then
virtually apply the various actions to change the current state so that the target
state is achieved. If a sequence of actions is found that achieves the goal, it can be
executed, leading to the fulfillment of the Mission. This approach can also be used to
achieve a reaction of the system to unforeseen events: The event changes the world
state vector. The plan can then be adapted to this new state or a new plan can be cre-
ated. A Robot with such an approach can therefore achieve a high degree of autonomy.
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However, the world state vector approach with actions based on it also entails a
number of limitations:

One problem is finding the right dimension and granularity of the state vector. For
example, the state vector must contain everything that concerns the Robot and its
environment for full coverage. In addition, the vector must also contain the Mission
state. There are therefore very different states in this vector.
For example, a Robot deployed in a disaster scenario has one dimension for "joint
angle", another dimension for "region is secured". Changing these completely different
states with one set of actions is problematic because they are not independent of
each other. For example, the Robot will change its joint angles to explore a region.
When the region is fully explored, the region secured state can be set. There must be
an action, e.g. secure region, which changes the state of the region from unsecured
to secured. However, this action requires that there is not only a change of state in
the joint angle, but an entire trajectory. This in turn does not fit into the abstraction
of actions that are only described by a change of state. The necessary hierarchies are
missing in the state vector model.

Another problem is the lack of a temporal component. The state vector is discrete-
time, i.e. an action changes the state in a defined way. How exactly the state change
takes place within the action is usually not defined. The state vector is therefore only
actually known between the actions. This restriction can be accepted for a sequence
of actions. However, if actions are executed simultaneously, the world state is in an
undefined state after one of these actions is completed.

Another limitation is that the world state model with action set is only based on
active state changes, in which the world state is only changed by actions. A change
of the world state from the outside is not intended and cannot be modeled directly.
Reactive behavior of the form if A happens then do B can only be integrated indirectly
by rescheduling. Due to the deterministic model, there are also no decisions that are
made at runtime, as no new information is formally generated during execution.
Another problem is that inaccuracies and incomplete knowledge are difficult to
integrate into the state vector. If a state is not known, it cannot be changed by
actions. If the action does not lead to a specific state change, the world state cannot
be adapted correctly. Of course, all possible variants can be managed as potential
world states.

In practice, however, this quickly leads to an unmanageable number of state vectors
to be managed in parallel.

In summary, it can be said about the world model World State Vector that it can
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be a very powerful model in combination with the modeled actions. Especially
for complex tasks for which a correct sequencing must be found, such a world
model can lead to a high degree of autonomy. However, the model is unsuitable
for the physical environment, as simultaneities, external events and incomplete and
inaccurate knowledge are omnipresent. This world model is therefore not used for
AIMM.

Physical simulation In terms of its approach, physical simulation is the opposite of
the state vector of the world. There is no state vector that can be discretely changed
by actions, but the world behaves continuously according to the laws of physics. The
Robot can exert forces, but it can also absorb them. The resulting world state results
from the accumulated forces. The focus of this model is naturally on the physical
environment.

Both the actions of the Robot on its environment and the influences of the environment
on the Robot can be modeled. The additional knowledge can be used to generate
information that goes beyond the measured information. For example, the Robot
cannot measure whether something falls down, but thanks to the physical model it
knows that objects do not float in free space. Based on this knowledge, measurement
errors can also be recognized and corrected. The model can also correctly model
dynamic environments and extrapolate future states of the world.

These advantages are accompanied by some disadvantages. For example, the world
model is limited to the physical world. A complete modeling of environments
including the mission state is not possible. Since the focus of AIMM is on the physical
world, this can be accepted. Much more critical is the fact that the physical simulation
requires much information in order to deliver realistic results. On the one hand,
this concerns the properties of the environment such as masses, friction coefficients,
geometries, stiffnesses, etc. and, on the other hand, its exact state such as speeds,
positions, forces, etc. Small errors and inaccuracies can lead to completely different
states of the world, especially in contact situations. The physical simulation must
therefore be constantly checked for plausibility. The aim of AIMM is to be able to
interact with any objects in unknown environments. The information required for
a physical simulation is therefore missing and cannot be determined with sufficient
accuracy using the system’s sensors. Another disadvantage of physical simulation
is the enormous computational effort. Physical simulation is therefore out of the
question as a world model for AIMM.

Object List In list-based world models, the world consists of various objects. These
objects can have different properties such as geometry, mass, etc. All objects have the
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property of being located in a common coordinate system in space. The objects in this
world model structure are completely independent of each other. All modifications to
the world must be carried out explicitly, e.g. the position property of a moving object
must be constantly updated. One advantage of this abstract representation of the
world is that very heterogeneous knowledge can be stored. As long as information
can be assigned to an object, it is possible to integrate it into the world model.
Another advantage of this very abstract model is that it is easy to implement and
requires hardly any computing resources. Additionally the high degree of abstraction
makes it easy to represent even complex environments.

Due to the high degree of abstraction, however, the model is also subject to some
limitations. One major limitation is the lack of relationships between objects. In the
physical world, on the other hand, objects are always related to each other.

In practical application on a Robot, this leads to a number of problems. For example,
physical objects can be contained within others. The screws in a container remain
physically in the container when it is moved. This relationship must be explicitly
monitored in the object list structure. The object position of each screw must therefore
be constantly updated. Similar dependencies occur when the Robot grasps an object.
The movement of the Robot’s end effector changes the position of the object in the
real world, but the world model must also be told on which trajectory the object is
moving. Depending on the environment, this tracking is very time-consuming and a
constant source of potential errors.

Another problem is that the position of objects in world coordinates cannot be
measured, as it is only an abstract definition. In order to estimate the position of an
object, a local reference coordinate system is required. This can be the coordinates
of the camera system, but also other objects. If the global pose of the reference
coordinate system is known, the global position of the object can be calculated. The
same reference object or the same reference coordinate system is often used for
many objects. However, the position of the reference object is subject to errors. If
this position can now be better determined, there are two ways of dealing with
this information. The simplest approach is not to use it. The knowledge of the
error is ignored. All positions that are determined on the basis of this reference are
and remain subject to errors. The alternative is to keep track of which pose was
determined with which reference. With an improved reference, the position of all
associated objects can then be adjusted. This variant is also not optimal, as artificial
movements are generated even though the position of the objects has not physically
changed.

These two world modifications occur very frequently on AIMM. A different world
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model structure is therefore required.

Abstracted Tree Structure In terms of its approach, the abstract tree structure can be
classified between the physical simulation and the object list. Like the object list, this
structure of the world model is very abstract. As with the object list, the world model
consists of objects that can have different properties. In addition, all objects have the
property pose in space. However, this does not refer to a world coordinate system,
but to a superordinate object.

The resulting tree structure is used to model the physical dependencies of the object
relationships and also the paradigm of the local reference objects. Each object has
exactly one parent object with a defined transformation. Changing this transformation
implicitly leads to changes in the positions of all sub-objects in relation to the world
coordinates.

For our world model, a basic physical understanding of the world is therefore repre-
sented by the tree structure: There are objects in the world. These are geometrically
related to each other. Instead of simulating physical laws, we assume that every
transformation is constant until we receive new information. Moving an object moves
other objects relative to the world coordinate system if they are sub-objects. Although
the physical simplifications are massive, the model is sufficient to enable the Robot to
predict and understand the state of the world beyond pure measurements. This is
especially true for simple tasks, such as grasping and transporting, in a quasi-static
environment. For example, when the Robot recognizes a known object in the scene,
the position of the object is usually measured in camera coordinates. However, the
physical relationship to the table on which the object is placed is much more relevant
than to the cameras mounted on the Robot, which move in the next time step and
change the relationship to the object. Due to the structure of the world model, the
Robot knows that the object is a child of the table and therefore the position of
the object relative to the table is stored. A subsequent movement of the cameras
therefore has no influence on the position of the object relative to the table.

If a reference object is more precisely measured or moved, the global position of all
child objects changes automatically without the local transformations having to be
changed.

Nevertheless, the tree structured world model is still a very abstract and simple
representation of the world, which leads to some limitations when modeling real
world effects. One limitation is that only one parent is allowed. For example, the
relationship of an object lying on top of two other objects cannot be represented by
the tree. The merging of two objects and the resulting new object cannot be modeled
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explicitly either. The assumption of a quasi-static environment naturally leads to
problems if the environment is dynamic, especially if these objects interact. Another
problem is that the reasons for the static transformation are not modeled and are all
interpreted in the same way, at least at the top level: always constant. For the model,
there is no difference between an object that is next to the reference object, an object
that contains another object and an object that is mounted on another object.

Despite these limitations, the world model has proven to be useful for AIMM. An ab-
stract, rather simple world model was deliberately chosen as this reduces complexity.
Of course, the tree structure is only a very rough model and only useful for some
aspects, but it is sufficient for many use cases. To a certain extent, it even makes sense
to have such strong constraints, as it is much easier to estimate what information can
and cannot be extracted from the model. With more complex models that attempt to
simulate the real world as realistically as possible, the question always arises as to
whether and to what extent the world model is reliable.
Another problem is that more complex models require more information, most of
which is very difficult to capture with sensors. Therefore, a lot of expert knowledge
about the environment has to be generated and passed on to the system, which
practically reduces autonomy. For AIMM therefore a Abstracted Tree Structure World
model is chosen, which excludes some use cases:

• Evaluation and optimization of the world state with the help of physical laws,
e.g. by simulating gravity, inertia or friction

• Simulation of the real world at sensor and actuator level for testing the Robot’s
software components

• Modeling of task states that are not implied by geometry and object states

• Additional relationships between objects, e.g. parts of a composite object
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C.3.3 Virtual Objects

Model Name: Model Kind: Model Type: ID:

Virtual Objects VC-M2G Guideline G16

Addressed Aspects:

VC-A2

Description:

The concept of virtual objects complements the concepts of the central world model
and the abstract tree structure. Despite the focus on the physical world, the system
generates and records information that is not of a physical nature but has a geometric
reference to objects. This information can be very different. It ranges from simple
geometric information such as grasp positions and camera angles to semantic objects.
Through abstraction, this information can be stored in the central world model. The
world model therefore also serves as a knowledge base beyond the physical world.

Rationale 82: Extention of the knowlegde representation
Virtual objects extend the options for knowledge representation in the world model.
A world model that only contains physical objects can only store knowledge about
these objects. For a Robot, however, further information is relevant that is related to
the physical objects but is not itself a physical object. For example, the position at
which an object can be placed is relevant for a Robot. Based on the knowledge of the
physical objects in the environment, the workspace of the Robot, the geometry and
the restrictions of the object to be placed, etc., such a place can be determined. This
place then has a geometric relationship to a physical object, e.g. a table, but is not
itself a physical object. With the help of virtual objects, such a place object can be
integrated into the world model. This makes it possible to know where an object can
be placed. This enables knowledge generation and application to be decoupled.
This possibility of storing Robot- or Task-specific knowledge can be a great advantage
for the system. Calculations can be parallelized, results can be reused and processes
can be optimized.

Rationale 83: Semantic objects
Virtual objects enable the integration of semantic objects into the world model. In
the simplest case, these objects can be used to attach labels to objects. For example,
all physical objects that are edible could be given a semantic child edible.

Semantic objects can also be used to group objects. As described in G15, the tree
structure of the world model also has some limitations. For example, the relationship
between objects is always a 1 : 𝑛 relationship and there is only ever one relationship
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between two objects. These restrictions can be mitigated with the help of semantic
objects. A semantic object can be inserted between two objects that describes a
further relationship between the two objects.
For example, objects can lie on a table. The objects are then stored as children of
the table object. In the tree structure, however, it is no longer possible to distinguish
whether the objects are on the table or under the table. This classification can be
modeled with the help of semantic objects. Two semantic children are added to the
table: "on" and "under". All other children of the table are then attached to these two
semantic objects. The objects are still children of the table, but now second degree.
However, if required, the information as to whether they are on or under the table
can be extracted from the tree structure.

Another limitation is that there is only one type of relationship, the geometric one.
This can be extended with semantic objects. In a purely physical tree structure, it
is not possible to show that two parts are assembled into one object. Once the two
parts are joined, they must be removed from the world model and a new object, the
joined one, must be added. This can be avoided with a semantic "assembeled" object.
When parts are assembled, they are attached as children of the semantic "assembeled"
object. All operations performed on the "assembeled" object, e.g. movements, affect
all children. The transformations between the children remain constant. Operations
on the individual children can in turn be interpreted as decompositions.

Semantic objects can be used to increase the power of tree-like world models. How-
ever, the fundamental restriction that each object can only have one parent object
cannot be circumvented. It is therefore not possible to model in the tree structure
that an object lies on top of two others.
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C.3.4 Scene Concept

Model Name: Model Kind: Model Type: ID:

Scene Concept VC-M2G Guideline G17

Addressed Aspects:

VC-A2

Description:

The AIMM platform is able to move autonomously. The workspace of this Robot is
therefore theoretically unlimited. However, the part of the environment that can
be changed by the system or detected by its sensors is limited to the current direct
environment. The scene concept reflects this fact in the world model. A scene is
therefore the part of the world that can currently be captured and changed by the
system. The Robot itself must always be part of the active scene.

Rationale 84: Scenes in the tree structure
There are various ways to define a scene in the world model. From a physical point
of view, a geometric space can be determined on the basis of the sensors that can
currently be detected. Another possibility would be to make the selection of the scene
dependent on the Task. For example, a scene could cover the part of the world in
which the Robot system is located during a work step.

For AIMM, the approach for the scene concept is to use the tree structure of the
world model. For this purpose, one node of the tree is selected as the scene root. All
children of this node are then part of the scene. This approach has the advantage
over the other options that it can be very easily integrated into the world model. No
complex calculations and analyses are required to determine which objects belong to
a scene. Nevertheless, the nature of the world model ensures that a local environment
is selected.

The tree structure also allows hierarchical scenes to be defined. This means that a
scene can be completely contained within another scene.

Rationale 85: Local referencing
The scene can be used as a local reference system. Since all known objects have a
geometric reference to the scene origin, these can be used to determine the position
of the Robot in the scene. This local referencing can be used to compensate for global
positioning errors. New measurements can also be used to improve the geometric
relationships between the objects and the scene.
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Rationale 86: Efficiency
By selecting a part of the world model as the active scene, information can be filtered.
Much of the data in the world model is only required by other modules if the Robot is
also in the corresponding scene. Based on the scene concept, the world model can
therefore automatically determine which information needs to be sent and which
does not.

C.3.5 World Model

Model Name: Model Kind: Model Type: ID:

World Model VC-M2A Approach A11

Addressed Aspects:

VC-A2, VC-A2

Description:

The central world representation of AIMM focuses on the physical world. It is extended
by virtual objects beyond the purely physical representation. The mission environment
is not represented in the world model. An abstract model is chosen for the world model.
This is based on an object-based representation. The objects are connected to each
other via a tree structure.

Applies:

G14, G15, G16, G17

Rationale 87: Object Types
The world model consists of objects that are held in a tree structure of geometric
relationships. Since an object is an abstract construct, it can represent different
aspects of the world. For the AIMM world model, different object types are used that
represent different information about the world:

Physical objects represent physical objects. This object type can have properties
such as geometric shape, mass, texture, material, etc., which describe the
physical properties of a physical object.

Obstacle objects represent obstacle areas in the world. This type of object is used
to model a different kind of knowledge about the environment. Due to the
incompleteness of information about the world, it is practically impossible and
often not useful to model everything as physical objects. However, it is possible
to obtain information about the world, e.g. by using sensor systems that provide
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depth information. Obstacle objects thus abstract the real world by dividing a
spatial area into obstructed and free parts. However, as this information can be
subject to errors, voxel spaces are used for the obstacle objects. This form of
representation makes it possible to store the reliability of the information or to
model the fact that no information is known about certain areas.
The separation of the space by obstacle objects into free, unknown and occupied
areas can also be used to introduce further knowledge into the world model. For
example, a work table is designed to have objects placed on it. It is therefore to
be expected that there will be obstacles on it. The table itself can be integrated
into the world model as a physical object. However, the work surface, on which
various objects are expected to be in different positions, cannot be represented.
More knowledge can be integrated into the world model by using an obstacle
object that identifies the work surface of the table as an unknown area.

Shape objects are even more abstract objects, as they exclusively define a geometric
shape. These shape objects can have primitive shapes such as cuboids, cylinders
or spheres, but also complex shapes. The object type can be used for various
purposes, e.g. to define a search volume for an object recognition module, to
model safety zones or to define target regions for physical objects. Complex
shapes can also be used as sub-objects of physical objects, especially if the
physical object is modeled with different shapes.

Transformation objects represent positions and orientations. Since the pose is the
relationship between objects and is not stored in the object itself, the object
type transformation is the simplest possible object type. The object itself does
not contain any information, but exists to implement the relationships.

Sematic objects encode special relationships between objects. As mentioned in the
previous sections, the tree structure is limited when modeling object relation-
ships in the real world. Semantic objects are a way to extend the modeling
capabilities of the world model. As described in Subsection C.3.3, they can clas-
sify objects or create new relationships between objects. For example, semantic
objects can be used to model the assembly of multiple parts.

Robot objects represent the Robot in the world model. These objects are primarily
used to model the relationships between the objects in the world and the
Robot. Detailed modeling of the Robot itself is omitted at this point. The AIMM
system is therefore reduced to two robot objects. The robot base represents the
platform and all components directly connected to it. Another robot object, the
robot flange, is used as a child of the robot base. The transformations between
the base and the flange are continuously transferred to the world model and
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updated. The details of the Robot, such as the individual joints or the status of
the pan-tilt unit, are not represented in the world model.
All world objects that relate to the Robot base, e.g. objects that are placed on
the platform, can be attached as children of the robot base. Objects that are
grasped and thus have a strong reference to the flange of the Robot are modeled
as children of the flange.
This minimalist model of the Robot is sufficient to represent the relationship of
the system to the objects in the world.

Grasp objects is a special virtual object type for modeling grasps. A grasp has a
geometric relationship to its physical object. Therefore, grasps can be added
as children of an object. In addition to this geometric relationship, the gripper
stores various process parameters such as gripping force and gripping width,
approach position and gripping strategies.

Viewpoint objects are objects that model viewpoints. These virtual objects are used
to model knowledge about the perception options of the system. For example,
several viewpoint objects can be stored as children at a workstation, which
together enable reliable perception. Viewpoint objects can of course also be
created and stored by the system itself. This means that a viewpoint does
not have to be calculated every time a station is approached; instead, prior
knowledge can be used.

Approach objects model approach positions. These virtual objects can be used for
both the robot base and the robot flange. As a child of an object, they define a
relative position for the robot base or the flange in relation to a world model
object. These objects can be used, for example, to define the approach positions
of the Robot at a workstation.

These different object types can be used to store very heterogeneous knowledge in
the world model. Many of these object types are virtual objects that do not describe
the physical state of the world, but represent knowledge that the Robot can use to
interact with its environment.

Rationale 88: Operations on the world model and other changes
The world model presented in the previous sections represents the world and its
state from the Robot’s point of view. Since the world is not static and the Robot can
collect information about its environment, the world model must be changed during
execution. There are two main categories of events that lead to an update of the
world model: passive and active changes.
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Passive changes The first category concerns the integration of new information into
the world model. During execution, this information is usually generated by the
Robot itself with the help of perception modules. However, other modules can also
provide new knowledge about the world and make changes necessary:

Object recognition When an object is localized in the scene, there are several pos-
sible effects on the world model. The measurement received from object
recognition is a relative transformation of the object to the camera coordinates.
How this information is integrated into the world model can vary and depends
on several factors, such as the reliability of the measurement, the uncertainty
of the Robot position, the structure of the world model and the context. The
decision on how to interpret the measurement is not up to the world model,
but the world model must allow for all possible interpretations. The following
modifications may be required for object recognition:

• Update relationship (transformation) object - parent object

• Change parent object and create relationship to new parent object

• Update other relationships in the chain e.g. parent to scene

• Add new object to the world model tree

• Remove object from the world model tree

The world model provides these different modification methods. The world
model cannot decide which of them should be used.

Scene registration To register the Robot in the environment, the transformation
between the Robot and the scene root must be measured. Since the scene
root can be a non-physical object, this registration is usually performed using
some landmarks that are physical objects and can be recognized by perception.
These landmarks can be specialized markers, but also any other object that
can be recognized. The world model can be used to determine the geometric
relationship between the landmarks and the scene root to calculate the pose of
the Robot in the scene. The following modifications may be required for scene
registration

• Update (transform) robot - parent object relationship

• Change parent object and create relationship to new parent object

Scene modeling When modeling a new scene, the Robot uses its perception modules
to generate and update the world model, e.g. to model its own workplace.
Depending on prior knowledge, the world model may have a rough structure
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of which regions are free, where obstacle regions are located and there may
already be some known objects, e.g. from CAD data. The modeling of the
scene is essentially a combination of object recognition and scene registration
with additional updates of the obstacle objects. However, the updates to the
obstacle objects only change the properties of these objects; the relationships
and therefore the structure of the world model tree remain unchanged. The
following changes may be required for scene modeling:

• Relationship (transform) update parent object

• Change parent object and create relationship to new parent object

• Update other relationships in the chain e.g. parent to scene

• Add new object to the world model tree

• Access to the properties of an object

Viewpoint planning Viewpoint planning refers to the perception modules, but is
not a perception module itself. Viewpoints are defined in relation to objects.
These objects can be physical objects, but are more often associated with ROIs.
The calculation of suitable viewpoints can be computationally intensive and
viewpoints can be context-dependent. For example, a window behind the table
influences the choice of viewpoints. Therefore, storing the viewpoint in the
world model is particularly useful for integrating experience over time. The
following modifications may be required for viewpoint planning:

• Update relationship (transform) parent object

• Add new object to the world model tree

• Remove object from the world model tree

Grasp planning Grasps refer to physical objects. Similar to a viewpoint, the grasp
can be optimized by the experience of the system. Therefore, new knowledge is
generated during the execution of the Task, which must be stored in the world
model. For example, if the Robot has lost the part with the specific grasp, the
gripping object can be removed or process parameters such as gripping forces
can be changed. The following changes may be required for gripper planning

• Update relationship (transformation) of the parent object

• Add new object to the world model tree

• Remove object from the world model tree

• Access to the properties of an object
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These examples represent only some of the possible knowledge-generating events.
Due to the simplicity of the structure of the world model, the operations necessary
for knowledge integration are bound to these introduced changes. Nevertheless, the
structure is complex enough to model different interpretations of measurements.

Active modifications In the first category, the Robot was passive and had to integrate
new knowledge into the world model, which was either perceived or calculated to
keep the world model up to date. Usually there are many ways to interpret this
information. The second category is the active category. By definition, the Robot must
perform a Task in the physical world. Therefore, the Robot usually has to change its
environment. These changes to the environment are intentional, so active operation
does not require interpretation of measurements, but can be modeled explicitly.

Move manipulator When the Robot move its manipulator the transformation be-
tween Robot base and flange has to be updated:

• update relationship (transform) object parent object

Move platform When the robots platform is moved the transformation between the
scene root and Robot base has to be updated:

• update relationship (transform) object parent object

Pick up object When an object is grasped, the parent of the object has to be changed
to the Robot flange in the world model. The transformation to the Robot flange
is given by the applied grasp.

• change parent object and create relation to new parent

Place object When an object is placed onto an object in the scene, the parent of the
object changes from the Robot flange to the object on which the object was
placed.

• change parent object and create relation to new parent
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C.3.6 World Model Modules

Model Name: Model Kind: Model Type: ID:

World Model Modules VC-M2A Approach A12

Addressed Aspects:

VC-A2, VC-A3

Description:

According to G14, the AIMM world model is a central world model. The requirements
for this world model are very different from a system perspective. The AIMM world
model is therefore based on a modular concept. The information is stored centrally in a
database. The interfaces to this data are realized in different modules in order to be
able to flexibly cover the heterogeneity of the requirements.

Applies:

G14

Rationale 89: Central Database with Tree Structure
AIMM uses a central database to store all information. All information is added to
this central database. The information is therefore only available in one place. The
relations between these data are realized by a tree structure. Each relation contains
a transformation between a child and a parent object.

Rationale 90: Access to the world model via a modules
The world model as the central component of the Robot contains the knowledge about
the world. An equally important point is how this knowledge can be made accessible
to the system and how new knowledge can be integrated. Each component needs
different information with different requirements, e.g. time constraints, from the
world model. Therefore, a module-based concept for accessing the world model was
developed, which provides an extensible interface for accessing the central database
of the world model. Some general interfaces to this database are presented below:

Basic module The basic module offers the basic functionality for modifying the
world model, such as adding and removing objects and changing relationships
and properties. Functions for analyzing the scene structure are also available.

File module The file module is used to load and save files that change or save the
state of the world model. It is used to define world models and objects in
a human-readable file format. The module can be used to integrate prior
knowledge, such as the structure of the world, but also the structure of subcom-
ponents, such as physical objects with attached markers and handles.
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C.3.7 Word Model Framework

Model Name: Model Kind: Model Type: ID:

Word Model Framework VC-M2I Implementation I10

Addressed Aspects:

VC-A2, VC-A3, VC-A4

Description:

The Neo4j Graph database is used as the central knowledge representation in the AIMM
World Model. The various world model modules communicate with this database in
order to integrate or extract information. Each world model module consists of two
parts. A common part, which is shared by all modules and ensures that the database
can only be modified in the specified way. And a specific part that implements the
individual operations and interfaces. Each module is started in a separate process.

Implements:

A11, A12

Rationale 91: neo4j as database
AIMM uses a neo4j database for knowledge representation. With the graph database,
the tree structure of the world model can be implemented directly. The nodes of
the graph correspond to the objects of the tree, the relations contain the geometric
relationship between child and parent object. The decision to use neo4j as a database
to store the world state has several reasons:

Persistent data storage and multi-client access The database itself ensures that
the transferred information is stored efficiently. neo4j keeps the data persistent,
i.e. no information is lost even if the database process is restarted. In addition,
neo4j has mechanisms that enable secure simultaneous access to the data from
multiple client processes.

Cypher query-language With Cypher, neo4j offers a language with which informa-
tion can be efficiently extracted based on the graph structure. For this purpose,
patterns can be defined that are identified by the database. The AIMM world
model uses this interface to extract information based on the tree structure.

NeoModel Library This library implements an object-graph mapping (OGM). It
therefore provides a python object that represents the current state of the DB.
Information can be extracted and modified here. The AIMM world model uses
this interface to access the properties of the objects.
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Figure C.7: Visualization of the world model by the neo4j viewer

Visualization neo4j offers a web-based visualization of the database, see C.7. This
visualization can be used to display the current status, but the database can
also be modified manually via cypher queries.

Open Source neo4j is an open source project. If functionalities are missing in the
future, neo4j can be extended.

Rationale 92: World Model Core
The world model core is based on the NeoModel library and consists of:

core.py Defines the base classes of the world model (objects, geometric relations).
The integrity checks for compliance with the tree structure are also implemented
here.

operations.py Implements the basic functions for creating, reassigning and deleting
objects and making simple queries.

mobile_systems.py Defines the object types that can be used in the world model:
e.g. Grasp, Marker etc.

All world model modules use the world model core. This ensures that the additional
restrictions, only one parent object, no ring closures, are adhered to so that a tree
structure is maintained at all times.
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C.4 AIMM Capability Communication

C.4.1 Combining Middlewares

Model Name: Model Kind: Model Type: ID:

Combining Middlewares VC-M3G Guideline G18

Addressed Aspects:

VC-A3,VC-A4

Description:

Communication within a Robot system is very heterogeneous. However, it has been
shown that standardized communication frameworks, so-called middlewares, offer
many advantages for a Robot. However, there is currently no middleware that can fulfill
all requirements on its own. The concept is therefore to combine different middlewares
in order to be able to use an optimal solution depending on the requirements.

Rationale 93: No middleware meets all requirements
Communication in a Robot is very heterogonous. There are very different types of
data with very different requirements. Middlewares homogenize the communication.
This simplifies the modularization of the software and the interchangeability of
components. However, there is still no middleware that meets all requirements.

Rationale 94: Requirements for the middleware

Timing The communication of some data is time-critical. The stability of controllers
requires that the data is received at a specified rate. If delays occur, this can
lead to dangerous system behavior. In addition, a high data rate is desirable for
controllers, which further increases the timing requirements.

Dependability Certain data must not be lost. For example, the emergency stop
signal is a datum that must be transmitted reliably. The exact timing is less
critical than the guaranteed reception of the signal.

Distributed system On a Robot the software components run on different computers.
Nevertheless, these components must communicate with each other. With a
high degree of modularization, it can also happen that modules are started on
different computers depending on the workload of the system. The middleware
must ensure that communication still functions reliably.
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Timing Safety Distributed Bandwidth Dynamic Data Tools Integration

Sunrise + + - ? - - -

Sensornet + o o + - o +

ROS - - + - + + o

Table C.1: Performance of middlewares used on AIMM

High bandwidth Cameras in particular generate very large amounts of data that
need to be processed by the communication system. Due to a strong modular-
ization of the perception pipeline, the required bandwidth multiplies with the
number of processing steps. This quickly results in data volumes that can no
longer be fully transmitted via the network.

Flexible data size Some data flows have flexible sizes. For example, the path length
of a motion planner depends on the specific task and environment. Middleware
must therefore also be able to transfer data with dynamic sizes.

Tools, third-party software and documentation In addition to the technical re-
quirements, a factor that should not be underestimated for middleware is
which tools are available for operation, maintenance and updating. How much
software with a connection to a middleware exists and how it is documented.

Integration effort Another factor is the integration effort. How high is the hurdle
to connect an existing or new software component with middleware?

As shown in table C.1, the various middlewares used on AIMM have strengths and
weaknesses. None of the middlewares can solve all requirements satisfactorily, which
is why a combination of middlewares is used on the system.
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C.4.2 Communication Map

Model Name: Model Kind: Model Type: ID:

Communication Map VC-M3A Approach A13

Addressed Aspects:

VC-A1, VC-A3

Description:

In order to be able to combine different middlewares, the communication of the system
is divided into different areas. Within these areas, the requirements should be as
homogeneous as possible so that they can be covered by one middleware. For AIMM, a
sensor area, a coordination area and a real-time area are identified. The coordination
area has interfaces to the other two communication areas.

Applies:

G18

Rationale 95: Segmentation of communication into different areas
Every area transition consumes resources. The aim of subdivision is therefore to
have as few transitions as possible. This can be achieved by having few areas but
also few transitions between the areas. A homogeneous requirement profile must be
identifiable for each individual area.

Rationale 96: Sensor area
The sensor area must be able to process large amounts of data efficiently. It must
also enable the implementation of data pipelines.

Rationale 97: Control area
The control area places high demands on the timing of communication. Control
loops are closed here. The communication frequency requirements are high, but the
bandwidth plays a subordinate role.

Rationale 98: Coordination area
The coordination area has the requirement that many components can be easily
connected. To achieve this, the corresponding middleware must work well with
distributed systems. The tools are also most important in this area, as this is where
the complexity is highest.

Rationale 99: Coordination area as a bridge
As shown in C.8, the coordination area serves as a bridge between the two other
areas. It is used to close the sense-act loop at a higher level.
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control, the weaknesses are of little consequence. This means that the strengths of
ROS, which lie above all in its wide range of tools, can be fully exploited.

Rationale 102: Cameras via Sensornet
The cameras are connected via Sensornet. The middleware can handle the large
amounts of data from the cameras well thanks to the shared memory approach.
In addition, many tools and drivers are available for the cameras. The perception
pipelines are therefore implemented with Sensornet.

Rationale 103: Control by KUKA Sunrise
The mobile platform including the manipulator is a KUKA product. Part of this
product is also the Sunrise middleware, which enables access to the system. The
hardware interfaces, the controllers and also the navigation software are integrated
in this framework. Sunrise thus serves as middleware for the control area on AIMM.

C.5 AIMM Capability Computation

C.5.1 Distributed Dedicated System

Model Name: Model Kind: Model Type: ID:

Distributed Dedicated System VC-M4G Guideline G19

Addressed Aspects:

VC-A3, VC-A4

Description:

The distribution of processes to different computers in a Robot system brings many
advantages in terms of the flexibility, reliability and performance of the overall system.
In addition, the tasks are not distributed evenly across the various computer units, but
individual computer units are specialized for certain tasks. This allows the different
requirements of the processes to be taken into account.

Rationale 104: Easy expandability and adaptability
In a distributed system, individual components can be replaced or expanded more
easily. The impact on the overall system is much less when replacing a component
than when replacing a central computer. Expansion is also easier, as the infrastructure
for connecting several computers is already in place.
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Rationale 105: Separation of time-critical and computing-intensive processes
Different process types place different demands on the computing system. Time-
critical processes such as controllers must adhere to the required control cycle. A
computing-intensive process such as a path planner, for example, requires dynamic
access to the memory and maximum utilization of the computing cores. By separating
these process types, it is possible to create the best possible environmental conditions
in each case without having negative side effects on the other process types.

Rationale 106: Reduction of data flows
Robots with sensors generate large amounts of data that need to be processed.
Information often passes through a series of processing steps. By bundling processes
on one computer that are involved in a common pipeline, the amount of data between
the different computers can be significantly reduced.

Rationale 107: Automatic prioritization
By distributing tasks to different computers, it can be ensured that sufficient resources
are available for critical processes. Conversely, the system can be fully utilized on
other computers that are intended for computing-intensive tasks.

Rationale 108: Higher complexity
A distributed computer system is more complex than a single central computer. The
complexity increases further if different computer types and different connections are
used. The concept of a distributed system therefore leads to increased maintenance
and operating costs.

C.5.2 Fine Granularity

Model Name: Model Kind: Model Type: ID:

Fine Granularity VC-M4G Guideline G20

Addressed Aspects:

VC-A4

Description:

Fine-grained modularization has many advantages in robotics. It simplifies the inter-
changeability of components. Increases the monitorability of the system. It avoids
duplicate implementation and enables greater flexibility. The aim is therefore to achieve
a separation into the smallest possible functional units.
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Rationale 109: Exchange of subcomponents
Thanks to the fine granularity of modularization, even small components can be
easily replaced. Ideally, the functionality is encapsulated in a process. To replace the
functionality, only a new process with the same interfaces needs to be implemented.
With coarser granularity, on the other hand, the new functionality must be integrated
into an existing process, which usually entails significant restrictions, e.g. in the
choice of programming language. In particular, contributions from the community or
partners can only be integrated with a lot of effort.

Rationale 110: Monitorability of the system
Communication between the processes is realized by the middlewares used. These
usually offer the option of monitoring the flow of information. With fine granularity,
the system can be better monitored without additional effort. Errors can be localized
more precisely. The performance of individual sub-steps can also be monitored
directly via the middleware. With coarse modularization, on the other hand, each
process must provide this information individually.

Rationale 111: Avoidance of duplicate implementations
Due to the fine granularity, even small functionalities can be easily integrated. This
avoids having to re-implement the same functionalities in different modules.

Rationale 112: Alternative solution methods
Modularization makes it possible to apply different methods to the same problem.
One reason for this is that the modules can be easily exchanged. In robotics, however,
it is often not possible to identify the absolute best method; methods have different
strengths and weaknesses depending on the conditions. By linking the modules
via the middleware, different approaches can also be supplied with the necessary
information. This parallelization of the methods means that the best solution can
always be accessed.

Rationale 113: Limits of granularization
The main factor that determines the limits of granularity is the communication
overhead. If the functionality is so small that the communication effort is very large
in relation to the method, other approaches, such as the use of shared libraries, must
be chosen.
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C.5.3 Central Module Management

Model Name: Model Kind: Model Type: ID:

Central Module Management VC-M4G Guideline G21

Addressed Aspects:

VC-A4

Description:

Due to the distributed concept and the fine granularity, a large number of modules
must be controlled and monitored. For very complex systems, it makes sense to use a
higher-level management system. This can take over the coordination of the modules
independently of the processes themselves. This software can start the modules and
monitor their status. Processes can also be stopped or automatic restarts initiated via
this instance.

Rationale 114: Simple integration
It is important that processes can be easily integrated. Even processes that cannot be
changed must be able to be controlled and ideally monitored by the management.

Rationale 115: Centralized vs decentralized
One of the manager’s tasks is to provide an overview of the various processes on the
individual machines. The visualization should therefore be centralized, which is why
it makes sense to also design the manager itself centrally. It would also be conceivable
to have one process manager per machine that is connected to a central visualization
system. A completely decentralized solution would place higher demands on the
implementation of the individual processes.

Rationale 116: Dynamic activation of the manager
The manager starts and monitors the processes. However, the processes must not be
dependent on the manager. Once started, they must run independently. The manager
must be able to access the processes again at any time and take over monitoring and
control.
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C.5.4 Process Dependencies

Model Name: Model Kind: Model Type: ID:

Process Dependencies VC-M4G Guideline G22

Addressed Aspects:

VC-A4

Description:

Many processes influence each other. An important point is to explicitly record and take
into account these process dependencies. The most common process dependencies lead
to a prescribed start sequence, as another process is absolutely necessary.

Rationale 117: Types of dependencies
Dependencies between processes can have various causes. Some types of dependen-
cies are briefly described here:

Data The process can only work correctly if the input data is available. This can of
course be handled within the process, but there are implementations where the
process goes into an error state for security reasons if the required data is not
available.

Infrastructure The process is dependent on a specific infrastructure. For example,
ROS processes that communicate with topics must register with the ROS core.
If this is not running, the ROS node cannot function properly either.

Initialization Some processes require information from other processes during the
start phase in order to initialize correctly.

Rationale 118: Dependencies of process states
Dependencies between processes usually require an operating state of the other
process. If, for example, the controller process depends on the joint sensor process, it
is not enough for the joint sensor process to have started; it must also supply data.
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C.5.5 Individual Runtime Environment

Model Name: Model Kind: Model Type: ID:

Individual Runtime Environment VC-M4G Guideline G23

Addressed Aspects:

VC-A4

Description:

Most processes require resources that they receive from their runtime environment.
These can be parameters, but also references to program libraries. The large number of
processes results in a very large number of parameters that are made available via the
runtime environment. Conflicts can also arise if different processes require the same
parameter with different values. The concept of the Individual Runtime Environment
therefore follows the approach of starting each of the processes in its own runtime
environment that is as minimal as possible.

Rationale 119: Versions of software
A common conflict in large environments is that different processes require the same
software in different versions. As the environment variables are usually identical, the
correct parameter can only be set for one process.

Rationale 120: Trouble shooting
The more processes are to be started from the same environment, the more extensive
the runtime environment becomes. In Robot systems with typically more than 100
different processes, it is very difficult to maintain an overview. Errors caused by
incorrect or unset parameters are therefore easily overlooked. With a minimal
runtime environment, this problem is much easier to manage.

Rationale 121: Flexible environments
Robot in research are often subject to continuous development. New versions of
components are regularly integrated or completely new parts are added. With a
large shared runtime environment, all effects on the other components must be taken
into account immediately. Splitting the runtime environment enables component-by-
component testing and integration of new libraries.
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C.5.6 Host Types

Model Name: Model Kind: Model Type: ID:

Host Types VC-M4A Approach A14

Addressed Aspects:

VC-A4

Description:

Various host types with different requirements are used in the AIMM system. The server
host type is used for the administration of central services, such as the shared file system.
The sensor host type is used to connect the system’s sensors. The Computation CPU
host type is used for computation-intensive software. The Computation GPU host type
is used for software that runs on GPUs. The real-time host type is used for applications
with real-time requirements, e.g. controllers. Each process is assigned to exactly one of
these host types.

Applies:

G19, G20

Rationale 122: Correspondency to physical hosts
The host type defines various requirements for a host. This is also associated with
implicit requirements for the physical machine. For example, a Computation GPU
host must be equipped with a graphics card. However, it is also possible to assign
several hosts to one physical machine. This is particularly the case for systems with a
small number of computers.
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C.5.7 Process Manager

Model Name: Model Kind: Model Type: ID:

Process Manager VC-M4A Approach A15

Addressed Aspects:

VC-A4

Description:

A central software is used as the process manager for AIMM. This means that the process
manager generates an individual runtime environment for each process. In addition,
the process manager starts and monitors all processes distributed on the various hosts
on the Robot system and ensures that the dependencies between the processes are taken
into account.

Applies:

G19, G20,G21, G22, G23

Rationale 123: Process groups
To organize the multitude of processes, the process manager offers the option of
grouping processes together. A process can belong to several groups. This allows
processes to be organized in different ways. For example, there can be a group that
contains all processes that are required for execution. However, groups can also
organize processes thematically, e.g. all image processing processes are combined
in one group. Another possible application is, for example, to group together all
processes of a middleware or to group all processes on a host. Groups can also be
structured hierarchically, i.e. one group can be part of another group. In this way, it
is possible to keep track of hundreds of processes. In addition to pure organization,
groups can also be used to control processes. For example, all processes in a group
can be started.

Individual Runtime Environment In order to have an individual runtime environment
for each process, the process manager offers various mechanisms. In the simplest
case, the desired environment variables are defined in the process manager and set
in the corresponding runtime environment when the process is started. Another way
to set the runtime environment of the process is to pass environment variables from
the runtime environment of the process manager to the processes. A third option is
to use environment variables from templates. For example, all Ros processes require
an environment variable ROS_MASTER_URI. This template can be created centrally
and then applied to all ROS processes.
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Monitoring In order to monitor the processes as generically as possible, the process
is not only monitored as a process, but the console output of the process is also
used to obtain information about the process status. For example, most processes
go through an initialization phase in which they are usually not yet able to perform
their task. The process manager can recognize this state based on the console output.
Another use case for text-based monitoring is warnings or error messages. These can
be recognized with the help of the process manager and can be highlighted centrally.

Dependencies Dependencies between processes are monitored with the process man-
ager. When a process is started, the system checks whether there are dependencies
to other processes. If these exist, the relevant processes are started first. The actual
process is only started when these are ready for operation. The process manager can
also recognize during operation if dependencies are violated. If a process on which
another process depends is terminated, this leads to warnings and, depending on the
configuration, to automated restarts of the processes involved.

C.5.8 LN Manager

Model Name: Model Kind: Model Type: ID:

LN Manager VC-M4I Implementation I12

Addressed Aspects:

VC-A1, VC-A2, VC-A3, VC-A4

Description:

The LN Manager is used for the implementation of AIMM process management, as it
can fulfill all the relevant requirements of the AIMM system. The LN Manager is also
used for communication parameterization. Furthermore, the manager distributes the
processes to the different hosts of the system based on the host type. The software tool
is part of the LN middleware [110]

Implements:

A9, A10, A13, A14, A15
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AIMM Skill View

This chapter describes the Skill View of the AIMM system. It begins with an overview
of all identified Models and their relationships with each other. The individual
Architecture Models are then presented.



Appendix D. AIMM Skill View

D.1 AIMM Skill Overview

Guideline Models:

• Finest Granularity

• State-based Composition

• Strong Hierarchy

• Reuse of skills

• Autonomy by Static
Routines

• Explict Formalization

• Open Approach

• Recources Type

• Forward Recovery

• Backward Recovery

• Fault Compensation

• Fault Removal

Approach Models:

• Hierarchical Statemachine
with Data Flow

• Skill Primitives

• Skill Libraries

• Resources Manager

• Operations on Resources

• Hierarchical Error
Propagation

• Execution Logging

Implementation Models:

• RAFCON Libraries

• RAFCON Statemachine
Design

• RAFCON Recource
Management

• RAFCON Handling &
Logging

D.2 AIMM Skill Type

D.2.1 Autonomy by Static Routines

Model Name: Model Kind: Model Type: ID:

Autonomy by Static Routines VS-M2G Guideline G24

Addressed Aspects:

VS-A2

Description:

The core of the AIMM Skill concept is to achieve autonomous behavior through static routines.
A Skill calls many Subskills and Capabilities in a fixed structure to ensure that the Task is
successfully solved even if problems arise. This means that the flow structures are deterministic,
but this does not mean that the Robot’s behavior is deterministic. Based on sensor data or e.g.
through Capabilities based on heuristic procedures, the system reacts differently to similar Tasks.
AIMM pursues this approach very intensively by solving even complex Tasks using static routines.
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Rationale 124: Explainability of the behavior
A major advantage over other approaches to achieving autonomy is the explainability of
behavior. The behavior cannot be predicted exactly, but after execution it is possible to
analyze exactly why the system reacted the way it did in this situation. This is crucial in order
to be able to localize and resolve any malfunctions.

Rationale 125: Iterative process possible
The routines can be constantly expanded and improved. It is therefore not a question of
finding a method, a model or an algorithm that can solve all conceivable problems. Rather,
the routine must be suitable for the problems at hand. If new requirements arise, the routine
can be extended accordingly. This allows the complexity of the flow control to be reduced to
a necessary level.

Rationale 126: Solving complex Tasks with static routines
Static routines are the appropriate approach for simple Tasks that are difficult to describe
symbolically. For sequencing problems of Subtasks, however, schedulers are the more suitable
method. In between, there are Tasks that can in principle be solved with both approaches.
These are, for example, simple manipulation Tasks. There are two main factors in favor of a
routine-based approach:
Firstly, a routine can deal better with incomplete knowledge, as it allows actions suitable for
a situation to be stored directly. It is not essential to know why these actions are carried out
or what they achieve in detail. The less information is available, the more reasonable it is
to fall back on general strategies. A range of different approaches, applied according to the
principle of trial and error, can also solve such situations.
In a planning approach, however, these concepts must be integrated into the general model
of actions, including their effects on the state of the world. Especially when the impact of an
action is unclear due to insufficient information, modeling becomes very difficult.

The second factor is Task variance. If an identical Task has to be performed very often, a
suitable routine is often more efficient than a planning-based approach that generates a new
solution for each repetition. For AIMM, in an industrial context, usually both factors are
relevant since it is a partially unknown environment and repetitive Tasks. Therefore, many
Tasks are solved by routines.

Rationale 127: Overhead through routines
The routines must be kept generic so that they can be used in different situations. This
leads to additional overhead, which reduces the efficiency of the system compared to other
approaches. This is also due to the fact that with encapsulated routines it is difficult to
optimize across several routines. If, for example, several objects are to be picked up, the pick
object routine is used several times. This may result in the platform having to be repositioned
several times. It would be more efficient to find a common platform position from which all
objects can be picked up. Such optimizations are difficult to implement with static routines.
At AIMM, nevertheless, this approach is chosen in order to achieve a high degree of autonomy
and robustness at the same time.
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However, in order to achieve an increase in efficiency, it can be useful to add an optimization
step, e.g. Brunner et al. [24].

D.2.2 Finest Skill Granularity

Model Name: Model Kind: Model Type: ID:

Finest Granularity VS-M2G Guideline G25

Addressed Aspects:

VS-A2

Description:

By definition, the usage of a Skill solves exactly one Task. Skills therefore link the goal of an
action with its implementation. However, no direct semantic information is stored within the
Skill. The individual sub-components, if they are not Skills, only contain the implementation
of the execution. Therefore, a finer granularity of the Skills leads to a better link between the
declarative representation and the procedural representation. This information is important in
order to be able to react to unforeseen problems. For AIMM, the Skills are therefore defined as
finely granular as possible.

Rationale 128: Skill: Combination of semantics and execution
Semantics and execution define a Skill. If a different execution is selected for the same Task,
this results in a different Skill. Conversely, the same execution can be used for different Tasks,
which in turn leads to different Skills. This combinatorics results in a large number of Skills.
A fine granularity helps to keep the execution variants manageable, as only a few actions are
called within a Skill. A Skill that only contains one Capability has fewer variation options
than a Skill with many linked Capabilities.
This does not change the combinatorial complexity, but helps to maintain an overview.
Skills with few components are clearer and, if Subskills are used, contain further semantic
information that helps to organize the Skills. This finer granularity of semantics helps to
interpret the variation when replacing a Subskill, for example. If the new Subskill has the
same Task, the execution has been changed, but if the new Subskill has a different Task, the
strategy has been changed. A fine granularity is also helpful for error detection, as even
smaller action sections have a defined Task. This Task accomplishment can often be checked
better than the correct execution itself. Fine-grained semantics therefore also enable more
specific error detection.

Rationale 129: Routines vs. behaviors
The classic behaviors, e.g. from the subsumption architecture [17], link different Capabilities
directly via their output values. The Robot behavior results from the combination of several
Capabilities. Certain Tasks, such as navigating to a position while avoiding obstacles, could be
realized with this approach. For more complex Tasks, however, adjusting the weights proved
to be impractical. Especially when opposing Tasks such as obstacle avoidance and driving
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through a bottleneck come together, it is difficult to find a generally valid parameter set.
Behaviors lack the semantics that allow the Robot to assess the situation. For example, the
system has to drive close to an obstacle because there is a bottleneck to pass. This situation-
dependent parameterization can be implemented using routines. In AIMM, behaviors are
therefore avoided and replaced by routines. Behaviors are only used for less complex Tasks
that require a fast reaction time.

D.2.3 Skill Primitives

Model Name: Model Kind: Model Type: ID:

Skill Primitives VS-M1A Approach A16

Addressed Aspects:

VS-A1

Description:

Skill Primitives are the most detailed structure of Skills. A Skill Primitive contains only one
Capability and optionally D&I components for interpreting the Capability’s result.

Applies:

G24, G25

Rationale 130: Minimal Skill
The finest granularity of a Skill is achieved when the Skill only contains a single Capability.
These so-called Skill Primitive Subsection 4.6.3 essentially have the function of defining
the purpose of execution In addition to calling the Capability, most Skill Primitives contain
components that interpret the return value of the Capability to determine the result of the
Skill.

Rationale 131: Use of low level semantics
The Capability itself contains no information about why it is used. Thus, the same Capability
can be executed for very different reasons. For example, a relative, cartesian movement
in the impedance controller can be used to bring the end effector to a relative position.
However, the same Capability can also be used to haptically reference to an object. Only the
purpose of the execution allows the result to be analyzed. In the first case, the "movement"
Skill, the execution is successful when the goal position is reached. In the second case, the
"referencing" Skill, the execution is only successful if the goal position is not reached, but
a force is created instead. Storing the semantics therefore already enables qualified error
detection at this level. For this reason, AIMM attempts to encapsulate every Capability call in
a Skill.
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D.3 AIMM Skill Hierarchy

D.3.1 Reuse of skills

Model Name: Model Kind: Model Type: ID:

Reuse of skills VS-M1G Guideline G26

Addressed Aspects:

VS-A1

Description:

The more complex Skills are kept as generic as possible to enable reuse. Therefore, the Skills
are not optimized for a specific situation, but an attempt is made to create the widest possible
range of applications. To achieve this, the Skills also contain components that generalize their
applicability and reduce dependencies on the system and environment status. In addition to
the generalization, the fine granularity also contributes to the reusability of the Skills, as each
Subtask is addressed in a Subskill that can be used elsewhere.

Rationale 132: Complex Skills
High level Skills can become very complex and contain several hundred Subskills and Capa-
bility calls. Due to the structure of high-level Skills as routines, often only a fraction of the
components they contain are activated during execution. This makes the design and, above
all, the testing of these Skills very complex. The aim is therefore to use as few, but well-tested
Skills as possible, which in turn are based on relatively few, well-tested and reusable Subskills.

Rationale 133: Reduction of dependencies
High-level Skills should have as few dependencies as possible, as this allows them to be used
more flexibly. This can be achieved by actively checking the influenceable dependencies
within the Skill and if necessary creating them. For example, a "pick object" Skill can have
the accessibility of an object as a dependency. Alternatively, the "pick object" Skill can also
contain a reachability check and a routine that ensures reachability if necessary.
This approach increases the complexity of the Skill, but allows it to be used in many situations.
This increases reusability.

Rationale 134: Incremental design
The incremental design of Skills continuously improves the abilities of the Robot. By reusing
Skills, routines that are not currently being worked on also benefit from improvements
elsewhere.
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D.3.2 Strong Hierarchy

Model Name: Model Kind: Model Type: ID:

Strong Hierarchy VS-M1G Guideline G27

Addressed Aspects:

VS-A1

Description:

Each Skill has the purpose of fulfilling a Task. The Skill annotates the components it contains with
the objective of the Task. However, the semantics of the individual components are not specified
in detail. AIMM therefore follows the concept of combining the components into Subskills as
soon as they jointly fulfill a Task that goes beyond the Tasks of the individual components. This
concept leads to a very strong hierarchization of Skills, but without introducing rigid layers.

Rationale 135: No static hierarchy levels
The concept of encapsulating every identifiable Task within a Skill in a Subskill results in a
large number of hierarchy levels. However, these are not rigidly defined, but result from
the identifiable Tasks and Subtasks. There is therefore no fixed categorization of Skills into
hierarchy levels. Each Skill can be used as a Subskill in another Skill. This results in a dynamic
number of hierarchy levels. The same Skill can also be used as a Subskill in different Skills at
different levels.

Rationale 136: Hierarchization is parallelization of Tasks
Hierarchization automatically results in parallelization of the Tasks. Each hierarchy level adds
a Task that must be completed simultaneously. In contrast to a flat plan, in which only actions
are sequenced, the hierarchical Skill approach creates a context that allows conclusions to be
drawn about the system status.

Rationale 137: Hierarchy structures and limits
The strong hierarchy keeps Skills with thousands of Subskills manageable. The resulting
structure is very helpful for human developers both when programming and when testing
and monitoring execution.
However, the hierarchy also entails various restrictions. For example, processes are strictly
divided into their Tasks, which are then executed sequentially. For technical reasons, however,
it would often make sense to start with parts of the next step before the previous one has
been completed. Hierarchization does not allow this directly. Another disadvantage of the
hierarchy is that it only allows one subdivision. However, different types of Subtasks can
often be identified, some of which overlap. The tree structure provided by the hierarchy does
not allow this to be modeled.
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D.3.3 Skill Libraries

Model Name: Model Kind: Model Type: ID:

Skill Libraries VS-M2A Approach A17

Addressed Aspects:

VS-A1, VS-A2

Description:

To increase the reusability of Skills, AIMM uses the Skill library approach. A Skill library can
be created from any Subskill. When a Subskill is converted into a library, this part becomes
independent of the parent Skill. This makes it possible to use this library as a Subskill anywhere
else. Changes to the library can only be made directly in the library. These then affect all
instances of the library. Local, application-specific adjustments to the library are no longer
possible.

Applies:

G24, G25, G26, G27

Rationale 138: General structure of Skill libraries
A library is a state machine of any complexity that can be integrated into other Skills as
a Subskill. For this purpose, the state machine is encapsulated in a so-called library state.
Like all states, a library state also has a logical input and at least one logical result. In
addition to the logical connection, a library can also define incoming and outgoing data flows.
Integrating a library therefore works in the same way as creating a subordinate hierarchy
level. Conversely, the use of a library in the higher-level state machine creates at least one
new hierarchy level.

Rationale 139: Skill library vs. Skill templates
A library is integrated like a hierarchy state. However, the subordinate levels are defined in
the library and cannot be changed from the superordinate state machine. Changes in the
library in turn affect all instances of the library. This has the advantage that all improvements
to a Skill resulting from the iterative development process are used automatically. Due to this
implementation, it is important that the libraries are implemented as generically as possible
in order to be able to use a wide range of applications.
The disadvantage of central libraries is that specific adaptations must always be compatible
with all other applications of the library. A Skill template that can be copied and then changed
locally would solve this problem. Local changes would then not affect the library and the
other instances. However, it is then very time-consuming to transfer general improvements
to all instances. With AIMM, the advantage of the iterative development process prevails,
which is why Skill libraries are used.
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Rationale 140: Hierarchical Libraries
A library can in turn contain any number of libraries. These are integrated into the library as
library states and thus automatically into a lower hierarchy level. A library can also contain
the same library multiple times on different hierarchy levels. The only restriction is that a
library cannot contain itself.

Rationale 141: Fine granularity
The granularity of the libraries should also be kept as low as possible. This means that as
soon as several states are linked together and this combination is required at another location,
a library should be created from these two states. This can then be used in both places, thus
avoiding code duplication.

D.3.4 RAFCON Libraries

Model Name: Model Kind: Model Type: ID:

RAFCON Libraries VS-M3I Implementation I13

Addressed Aspects:

VS-A1, VS-A2

Description:

RAFCON offers a library concept. Any existing state machine can simply be converted into a
library via the GUI. This library is then made accessible to other state machine implementations
via various concepts. However, online modification is then no longer directly possible. Neverthe-
less, RAFCON offers the option of opening several state machines simultaneously. The library
can then be modified in a separate window, but synchronization at runtime does not take place.
RAFCON libraries are therefore used on AIMM to implement Skill libraries.

Implements:

A16, A17
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D.4 AIMM Skill Composition

D.4.1 State based Composition

Model Name: Model Kind: Model Type: ID:

State based Composition VS-M3G Guideline G28

Addressed Aspects:

VS-A3

Description:

Robots and their flow control are complex, as many components and states of the system and
its environment must be taken into account. A state-based composition supports the developer
by explicitly specifying a part of the system state. When programming, it is not necessary to
analyze the history of past commands to determine the current state, but the position in the
flow itself represents this.

Rationale 142: State of the flow
The Robot’s behavior must adapt to the situation. The appropriate response depends on
the Task, the system state and the environmental conditions. However, the state-oriented
composition does not refer to this overall state, but to the small section that contains the
state of the flow. So essentially, what are the current Tasks to be solved. This focuses the
programming on a specific situation of the flow. This approach does not solve the problem
that the majority of the state is only very incompletely known at the time of programming.

Rationale 143: Local programming
State-oriented programming makes it possible to react to a specific situation. Possible errors or
limitations of the flow can be solved for specific problems without being a universal solution.
For example, the reaction of a Robot to unexpected contact with its environment must be very
different depending on the situation. If the Robot is in a human-robot collaboration, it is likely
that an emergency stop will be triggered immediately or the Robot will have to be switched
off. If the contact occurs in a “reach into the box” scenario, it is probably sufficient to move
the manipulator back so that the object position estimation can update the environmental
situation. The best solution would be to identify the reason for the different behavior and
then react generically to the semantic situation (human in the workspace, environment model
incorrect, ...). However, this generalization is difficult to achieve in real applications. Local
programming offers the possibility of implementing a direct solution. These programs can
then be analyzed in a further step to identify patterns.
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D.4.2 Hierachical Statemachine with Data Flow

Model Name: Model Kind: Model Type: ID:

Hierachical Statemachine with Data Flow VS-M3A Approach A18

Addressed Aspects:

VS-A1, VS-A2, VS-A3

Description:

In order to apply the guidelines G24, G27, G28, a statemachine-based approach to flow control
is chosen for AIMM.

The logic flow is represented by states that are connected to other states via transitions. To
enable a hierarchy, states can in turn contain state machines. To enable further linking of the
various execution states, the pure state machine approach is extended by data flows.

Applies:

G25, G24, G27, G28

Rationale 144: flow control state <> system state
The hierarchical state machine used as flow control represents the state of the flow and
therefore only a very small part of the system state. This is a fundamental difference to state
machines that represent the states of a classic automaton, for example.

This is illustrated in Figure D.2. In the classic state machine, the actions are the transitions,
as these change the state. In flow control, on the other hand, the states represent the actions.
The system states, in turn, are the transitions between the flow states. This approach has the
advantage that not all system states have to be modeled, but only the actions that a Robot
can execute.

Rationale 145: Data flow & discrete states
Modeling the logic flow as a state machine implies that all actions of the Robot are modeled
as discrete states. At the high hierarchy levels, this encapsulation into states works directly:
state 1 executes Task 1, state 2 executes Task 2, etc. On the lower hierarchy levels, however,
capabilities must be called. These usually require call parameters and often return values. In
order to encapsulate actions strictly in states, an infinite number of states would have to be
created that only encapsulate the parameters. For example, move TCP 1 cm in the z-direction,
move Tcp 2 cm in the z-direction, etc. This is not practicable, but as this fine granularity
is required for the application of G25, the state machines are extended by data flows. The
logical flow is modeled by the transitions between the states. However, parameters and
results are exchanged via data flows that are independent of the logical flow.
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D.4.3 RAFCON Statemachine Design

Model Name: Model Kind: Model Type: ID:

RAFCON Statemachine Design VS-M3I Implementation I14

Addressed Aspects:

VS-A3

Description:

RAFCON offers a graphical user interface for programming and executing complex hierarchical
state machines. The state machine can also be evolved and modified during execution. This
combination enables very efficient iterative development of state machines. Data streams can be
used both to link states and to parameterize them. RAFCON is therefore used for AIMM for the
implementation of A18. Skills of AIMM are therefore implemented as RAFCON statemachines.

Implements:

A18

D.5 AIMM Skill Resources

D.5.1 Explicit Formalization

Model Name: Model Kind: Model Type: ID:

Explicit Formalization VS-M4G Guideline G29

Addressed Aspects:

VS-A4

Description:

The Skills contain many dependencies that need to be taken into account and have effects
that need to be considered. Only a small part is explicitly formulated via interfaces, logic and
data as well as semantic annotation of the Task. All other effects, such as unintended effects,
preconditions, etc., must nevertheless be taken into account. Generic error handling or automatic
generation of new sequences is therefore impossible, as this implicit information is missing.
The concept of explicit formalization in Skill resources therefore requires all dependencies and
effects of a Skill to be modeled explicitly. This includes all external influences on the Skill as
well as all effects caused by the Skill.

The Skill concept of AIMM enables a robotics expert to develop routines on the basis of which
the Robot can autonomously solve Tasks in an environment that is only partially known. The
routines contain information on which Skills are linked and how, and which data flows occur.
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Depending on the maturity of the routines, the Task and the environment, this is sufficient to
define the Robot’s behavior.

However, if the conditions change, e.g. due to a change in the environment or a new Task,
and a routine fails, it is often difficult to find the exact cause of the error. Error analysis and
behavioral adaptation in turn require a lot of expert knowledge and the system itself can do
little to help.

The basic problem is that the necessary information is only implicitly coded in the routines, if
at all. A robotics expert can only solve this problem by interpreting the descriptions of the
Skills and using background knowledge. However, this is difficult to do with larger routines,
so that changes to routines often create new problems.

In Subsection 4.6.2 this level was introduced as a resource level. A central concept of AIMM
is to make this information explicit. In the AIMM system, all dependencies and effects of a
Skill are modeled as Skill resources.

Rationale 146: Automatic error handling
Skill resources are an important tool for the development of automatic error handling
strategies. Many error cases in robotics are not exclusively due to the currently executed
action, but are the result of error chains. These are often difficult to trace. There are often
several possible causes of error for one and the same problem. It is also often not trivial to
determine the exact point at which an error occurs, as methods work with tolerances. The
question of whether one method is too imprecise or another method is too sensitive for the
requirements often cannot be answered clearly.
Skill resources help to reduce this uncertainty by explicitly defining the prerequisites as well
as the results. If a prerequisite for a Skill is missing, a propagated error is not due to this
Skill, but must be looked for elsewhere.
Skill resources therefore help to find the source of the error and identify the type of error.
Based on these results, suitable error handling strategies can then be applied automatically
by the system, e.g. to fulfill a previously unfulfilled precondition for a Skill.

Rationale 147: Optimization of the process
The Skills are developed and tested by robotics experts for AIMM. This implies that the
behavior corresponds to a human-compatible implementation. Parallelizations, non-semantic
sequencing, etc. are difficult for humans to understand and are therefore rarely used. This
results in the generated behavior containing restrictions that do not result from the Task to be
solved, but from the type of generation. By using Skill resources, these artificial restrictions
can be recognized and resolved. This can significantly increase the efficiency of the Skill [24].

Rationale 148: Same Skill but different purpose -> different resources
By definition, a Skill solves a Task. However, what is not defined in a Skill and cannot be
defined is why this Task is being solved. This purpose can only be defined at a higher level.
Depending on the purpose of the Skill, there are different effects and dependencies. The Skill
resources can therefore only be partially assigned to the Skill, some resources must be linked
to the Skill instance, which is realized by the higher-level Skill.
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D.5.2 Resources Types

Model Name: Model Kind: Model Type: ID:

Resources Types VS-M4G Guideline G30

Addressed Aspects:

VS-A4

Description:

The Skill resources are very heterogeneous. Different types of resources can therefore be defined.
This grouping of resources helps to systematically determine the dependencies of a Skill. The
following resource types are defined for AIMM: world state, robot state, module state and
process state.

Rationale 149: World state
A Robot solves Tasks in its physical environment. This automatically creates a dependency
between the Skill instances via this shared environment. Changes made by one Skill instance
therefore affect the other Skill instances.
To make this explicit, it is necessary to define which world state resources are required,
consumed or generated for a Skill instance.

Rationale 150: Robot state
The physical Robot is another component that connects the Skill instances. All Skills run on
the same Robot, which creates certain dependencies. For this reason, all resources that are
assigned to the physical Robot are summarized in the Robot state resource type.
Robot state resources include all resources that model the state of the system, such as the
battery voltage. In addition, resources that model the relationship to the environment, e.g.
Robot has contact with the environment, are also assigned to this type.

Rationale 151: Module state
The AIMM software runs on separate modules. These modules can be in different states.
The execution of Skills therefore depends not only on the individual Capability call with its
input data and results, but also on the state of the corresponding module. Module state
resources are used to model these dependencies. An example of such a module state resource
would be a path planning Capability. Starting from the current configuration, a collision-free
path to the target configuration is calculated when the Capability is called. However, these
calculations are based on the environment model stored in the path planning module. For
a correct result, the environment model in the planning module must be up-to-date. This
dependency is modeled as a module-state resource.

Rationale 152: Processes state
A process can be in different states. For example, running, being started, stopped, etc.
Functionalities are available depending on these states. The Skills therefore depend on the
process state, which is modeled by the process state resource type.
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D.5.3 Open Approach

Model Name: Model Kind: Model Type: ID:

Open Approach VS-M4G Guideline G31

Addressed Aspects:

VS-A4

Description:

It is difficult to create a complete resource model for a complex system. During the development,
but also during the use of an autonomous Robot, new situations can always arise that reveal
incompleteness in the resource model. The concept for AIMM is therefore the extensibility
of the resource model. It must be possible to adapt and extend the resource model during
development and also at runtime. In addition, it must be possible to map any dependencies as
resources. For this reason, a very open approach is pursued in which any dependencies can be
mapped as resources.

Rationale 153: Systematic and unambiguous
The open approach allows any dependencies to be formulated directly as a resource. For
example, a resource could be parameters in the permissible range. The problem that arises
from this is that resources with the same name represent different circumstances, as different
parameters are naturally relevant for each Skill. This means that the uniqueness of the
resource is lost, as the resource exists for one Skill but not for another. Furthermore, it is
not possible to find a unique type for this ressource. General rules based on the type can
therefore not work. This also violates the systematic structure of the resources.

Rationale 154: Discovered dependencies must be modeled explicitly
The resource model enables the explicit modeling of dependencies. However, the developer
is not fully aware of all dependencies. Changes elsewhere or new application situations can
reveal dependencies that were previously not taken into account. These dependencies can
then often be identified during troubleshooting. It is therefore important to also record these
subsequently gained insights.

Rationale 155: Even imprecisely formulated resources can be helpful
Ideally, resources should be precisely specified and verifiable. However, if a dependency
cannot be identified in this way, unspecific resources can also be useful. For example, an object
recognizer requires a good quality image in order to be able to perform correct recognition.
The resource "good image" in itself does not say much, but offers a starting point for initiating
further steps in the event of frequent errors in a component. For example, another image can
be recorded.
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D.5.4 Operations on Resources

Model Name: Model Kind: Model Type: ID:

Operations on Resources VS-M4A Approach A19

Addressed Aspects:

VS-A4

Description:

The AIMM resource model is an open model. This means that any dependencies can be modeled
as resources. The possible operations in the resource model, in contrast, are uniformly defined.
Resources can be required, generated, consumed and blocked.

Applies:

G29, G30, G31

Rationale 156: Limited set of operations
The operations on open resources could be arbitrarily complex. However, the operations
required for AIMM to model the dependencies between the competencies can be reduced to
four operations:

create: Skills can create resources. These are available after the Skill has been executed.

require: Skills can require resources. The Skill can only be executed if the corresponding
resources are available.

block: Skills can block resources. Some resources are required exclusively by Skills. During
the entire execution of the Skill, no other Skill can access this resource. The resource is
only released again after execution.

consume: Skills can consume resources. These resources are required exclusively by Skills.
The resource is deleted when the Skill is executed.

By restricting the operations, the resource model can be efficiently adapted to the execution
by the resource manager. Changes to resources, at least by Skills, only take place when a Skill
is started and ended. Due to the strong hierarchy of Skills G27 and the fine granularity G25,
this is not a problem for the AIMM system.

Rationale 157: Skill hierarchy
Due to the hierarchical structure of the Skills, several Skills are usually active at the same
time. Even if they are embedded in each other, they do not share the same resources. This
means that if a Skill at a higher level blocks a resource, all the Skills below it cannot access
this resource. For this reason, it is important to block resources at the lowest possible level to
prevent subroutines from being blocked.
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D.5.5 Resources Manager

Model Name: Model Kind: Model Type: ID:

Resources Manager VS-M4A Approach A20

Addressed Aspects:

VS-A4

Description:

A central resource manager is used to manage the Skill resources. Resources can be created
and managed with this manager. The Skill instances can access the resources at runtime via the
resource manager. The Resource Manager is also responsible for monitoring the resources. In
addition, the resource manager implements general resource rules.

Applies:

G29, G30, G31

Rationale 158: Central resource manager
The resource manager is created as a central module, as many resources model dependencies
between components, modules, etc. In addition, the Skills are executed in a central master
state machine that contains all Skill instances. This means that the Skills already have a
centralized structure. It makes sense to use this structure for modeling the dependencies
between the contained Skill instances. However, centralizing resource management also has
disadvantages:
The bigger the scope of resource management, the higher the risk of violating the uniqueness
of the resources. This means that one resource name is used for several different resources.
The open approach and the iterative development of Skills in particular intensify this problem.
Some resource types are also strongly linked to components and modules. For example, all
process state resources can of course be linked to processes. This would also make it possible
to build decentralized resource administrations that manage the process resources on each
host. In this way, certain process resources, such as host utilization, could be monitored and
managed more easily and efficiently.

Rationale 159: Complex resources
The resources represent the dependencies between the Skill instances. For each Skill instance,
it is explicitly modeled which dependencies must be fulfilled, i.e. which resources are re-
quired, but also which dependencies are fulfilled, i.e. which resources are generated. From
the perspective of the Skill instance, this is clear. However, when many Skills interact, the
problem arises that the dependencies between the resources are not modeled. This means
that the consumption of one resource can have an indirect effect on many other resources, as
they are dependent on each other. The consequence of this is that either each Skill instance
contains a large number of resource effects, as each dependent resource must be entered. This
list must then be updated each time a new resource with a dependency is added. This leads
to a high level of complexity that is not scalable for systems with many Skills. Alternatively,
resources could be selected so that they have no dependencies on each other. This would
contradict the open approach, as it would no longer be possible to model any dependencies
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as resources.
So-called complex resources are therefore introduced in the AIMM. Complex resources have
dependencies on other resources. These are managed by the Resource Manager, which
monitors all dependencies and implements the respective effects. An example of a complex
resource is the_robot_is_ready_to_drive. This resource can only exist if emergency-stop-free and
battery_ok. If one of the two dependencies is violated, the resource manager also removes
the complex resource.
Conversely, the creation of a the_robot_is_ready_to_drive resource also means the creation
of the battery_ok and emergency-stop-free resources. A or link is also possible for com-
plex resources. For example, a resource object_is_visible can exist if one of the resources
object_in_field-of-view[sensor_1] or object_in_field-of-view[sensor_2] exists.

Rationale 160: General resource rules
There are resources that are not modified by the Skills but for which there are clear rules.
For example, a Capability can only be used if the corresponding process is running. There
is therefore a general dependency between Capability calls and the corresponding process
resources. This dependency is generally valid and is checked in the event of an error with the
help of the resource manager.

D.5.6 RAFCON Resource Management

Model Name: Model Kind: Model Type: ID:

RAFCON Resource Management VS-M4I Implementation I15

Addressed Aspects:

VS-A4

Description:

RAFCON does not offer a built-in resource manager. However, the Global Variable Manager
(GVM) from RAFCON is used on AIMM to save the current resource status. For this purpose,
simple data structures are created which model the respective resource. RAFCON libraries
that can access these values are used to realize the operations. The resource interfaces of the
respective Skills can be defined in the respective state machines using the Semantic Data plugin.

Implements:

A20, A19
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D.6.1 Fault Compensation

Model Name: Model Kind: Model Type: ID:

Fault Compensation VS-A5G Guideline G32

Addressed Aspects:

VS-A5

Description:

Fault Compensation means that the Skills fulfill their Task even if errors occur. On the one hand,
this goal is achieved by ensuring that the individual behaviors are robust against inaccuracies
and small deviations. On the other hand, components are integrated into the process that
neutralize possible errors. This enables the system to perform its Task correctly even if errors
occur.

Rationale 161: Handling uncertainties
When implementing Skills, the expected errors should always be taken into account. The
most common form of errors are small deviations from the exact values. This uncertainty
must be absorbed by the Skill implementation. To do this, these small deviations must be
prevented from accumulating. This can be achieved by referencing, for example.

Rationale 162: Independent of the error detection
No error detection is required to apply the error compensation concept. Errors that occur have
no influence on the result of the Skill as long as the errors are within the error tolerance of
the compensation methods. However, the occurrence of errors reduces the robustness of the
system. Without error detection, this happens unnoticed. In a system that is so overloaded,
another small error can mean that the system can no longer perform the Task correctly. Error
handling in this situation is complex, as the system failure is caused by a combination of
different errors. The causes of these errors may have occurred much earlier and only have an
effect in this situation through error propagation in combination with other errors. For larger
systems, this can result in error handling not being feasible.

Rationale 163: Inefficiency and additional complexity
The Fault Compensation deals with potential errors that often do not occur. This reduces
efficiency and can even cause errors itself. The reason for this is the increased complexity of
implementing the compensation strategy. The concept of Fault Compensation is therefore
particularly suitable for frequently occurring errors, such as uncertainties. In addition, the
complexity of the compensation strategies should be kept as low as possible so as not to
generate more additional errors than are compensated for.
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D.6.2 Backward Recovery

Model Name: Model Kind: Model Type: ID:

Backward Recovery VS-A5G Guideline G33

Addressed Aspects:

VS-A5

Description:

The concept of Backward Recovery is to restore the system to the state it was in before the
error occurred. Depending on the type of error, an attempt can then be made to restart the
unmodified execution of the Skills. However, if the error is persistent, error handling must be
carried out first.

Rationale 164: Generic strategy
The aim of the Backward Recovery concept is to return the system to the state it was in
before the error occurred. The system then returns to its nominal state. The advantage of
this strategy is that the recovery is universal. Using a checkpoint as a recovery state can serve
as a fallback for many subsequent actions and the errors that may occur. The strategy is also
generic: all actions performed since the error occurred must be undone. This applies to any
action on any system.

Rationale 165: High efficiency during execution
Since recovery is only carried out in the event of an error, execution does not lose efficiency
during proper operation. However, effective error detection is absolutely essential.

Rationale 166: Oscillating behavior
If errors occur deterministically, repeating the execution again leads to the identical error
that triggered the Backward Recovery. This leads to the strategy being triggered again and
thus to constantly repeating behavior. In the case of persistent errors, this oscillation can only
be broken by successful error handling, i.e. neutralizing the error.

Rationale 167: Physical world cannot simply be reset
The biggest challenge with the concept of Backward Recovery is to return the system to its
previous state. This is not just about the state of the control flow, but about the state of
the entire system and its environment. In contrast to pure software systems, a Robot and
its environment cannot simply be reset due to the lack of controllability. For a Backward
Recovery in robotics, the Skills of the system must be used to reset the state. Therefore, this
recovery can be complex and often impossible in practice.
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D.6.3 Forward Recovery

Model Name: Model Kind: Model Type: ID:

Forward Recovery VS-A5G Guideline G34

Addressed Aspects:

VS-A5

Description:

With the Forward Recovery strategy, the problem is solved by applying an alternative strategy.
In order to be able to apply this alternative strategy, error detection is necessary. As the faulty
components are no longer used, troubleshooting is not mandatory. However, this reduces the
redundancy and therefore the robustness of the system.

Rationale 168: Strengths and weaknesses of different methods
The Forward Recovery method is very suitable when different methods can solve the same
problem but have different strengths and weaknesses. For example, one method can deliver
results quickly, but these may be subject to errors. Another method is very reliable, but
requires a high computational effort. Provided that the errors of the first method are reliably
detected, the two methods can be combined using the forward recovery strategy to achieve
high efficiency and reliability at the same time.

Rationale 169: Error handling can be avoided
With the Forward Recovery strategy, troubleshooting is not mandatory even for persistent
errors. The Forward Recovery method is therefore a good choice for errors that are difficult
or impossible to resolve. For reasons of robustness, error correction should nevertheless be
carried out where possible.

Rationale 170: Efficient in execution
The Forward Recovery is the most efficient strategy in terms of execution. During the nominal
process, Forward Recovery, like Backward Recovery, has only minimal impact on the process.
In the event of an error, an alternative strategy can be used. It is not necessary to reset the
state as with Backward Recovery, which has a positive effect on efficiency.

Rationale 171: Specific solution
The main disadvantage of the Forward Recovery strategy is that it is very specific. The
strategies are often manually tailored to a specific failure, system state and available Skills.
The generalization of this recovery approach is an unsolved problem. Therefore, the use of
Forward Recoveries greatly increases the complexity of the Skill. As these strategies are only
used when errors occur, testing and maintaining the strategies is very time-consuming.
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D.6.4 Fault Removal

Model Name: Model Kind: Model Type: ID:

Fault Removal VS-A5G Guideline G35

Addressed Aspects:

VS-A5

Description:

The troubleshooting strategy consists of eliminating potential sources of error before they affect
the system. This can be done either by the system itself or externally outside of operation. Fault
Removal plays a particularly important role in the ongoing development process.

Rationale 172: Reliable components
In complex systems, the best solution is always to eliminate sources of error from the outset
before the errors affect larger parts of the system. Reliable components are therefore the
basis of every autonomous Robot.

Rationale 173: Complex causes of errors
Even with perfect components, faults can be caused by interactions. It is therefore crucial for
Fault Removal that the system provides an insight into these interactions.

D.6.5 Hierarchical Error Propagation

Model Name: Model Kind: Model Type: ID:

Hierarchical Error Propagation VS-M5A Approach A21

Addressed Aspects:

VS-A5

Description:

If an error occurs in a state machine that cannot be handled locally, it is automatically escalated
to the next hierarchy level. This continues until the error has been handled or the next higher
level has been reached. This hierarchical error propagation ensures that errors are always
handled at the correct level.

Applies:

G33, G34

Rationale 174: As local as possible, as global as necessary
Errors that occur should be handled as locally as possible in order to avoid error propagation
as far as possible. However, if the error leaves the scope of a Skill, the problem must be
solved at a different level. For example, a grasp Skill includes the ability to compensate for
uncertainties and positioning errors in order to pick up an object. However, if the object has
been removed, the grasp Skill cannot handle this error itself, but the error must be forwarded
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to the higher-level Skill, e.g. the pick-up Skill. Further Skills can then be used at these higher
levels, e.g. object localization, or the problem can be passed upwards again in order to
continue with the next object, for example.
Each level has different ways of reacting to errors. If the error cannot be resolved at any level,
execution is aborted.

Rationale 175: Backward recovery with hierarchical error propagation
If a state of a higher hierarchy is restarted, this implies a reset of the process for the state
machines contained in it, provided they are not the initial states. In the simplest case, a
Backward Recovery can therefore be carried out by restarting an active state of the hierarchy.
Of course, this only resets the state of the logic flow. Any changes in module states or the
physical world are not reset. This must be monitored and, if necessary, implemented using
additional routines, which increases complexity. This is usually still manageable for jumps
that only comprise 1 or 2 levels. Choosing the hierarchy as the starting point for smaller
Backward Recoveries is therefore a simple generic solution.

Rationale 176: Application of the forward recovery strategy
With the Forward Recovery strategy, a problem must be solvable in two different ways. It
makes sense to encapsulate each of these in a state machine. These two state machines are
located together in one state. If an error occurs in the nominal solution, it is automatically
propagated upwards and can then activate the alternative solution. However, this only works
for arbitrary errors if the two solutions are completely independent of each other.

D.6.6 Execution Logging

Model Name: Model Kind: Model Type: ID:

Execution Logging VS-M5A Approach A22

Addressed Aspects:

VS-A5

Description:

Execution logging plays a crucial role in the dependability of the Robot. Only by systematically
recording all data during execution is it possible to trace error chains. This essentially includes
sensor data, flow data and data within the sequence controller, module states such as the
world model, communication between the modules and external interventions such as user
interactions. In the AIMM system, all this information is stored as completely as possible during
execution.

Applies:

G33, G34, G35

Rationale 177: Error cause and error detection are often offset in time
The most important point for intensive logging of all information in robotics is that error
detection and error cause often occur at different times. When an error occurs, it often has
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no immediate effect and is therefore difficult to detect. The existence of this error then only
becomes apparent at another point in time.
For example, it is difficult to detect an error when localizing an object. If the Robot then
grasps the object at a later point in time, various causes of error are possible. The stored
information can then be used to check the various error causes, such as incorrect grasping
strategy, calibration error, object has been removed, etc., and a suitable error handling
strategy can be found.

Rationale 178: Handling large amounts of data and reproducible information
The seamless recording of all data results in large amounts of data. The camera data and the
information calculated from it, such as the depth data, are particularly important. As this
data is easily reproducible, only the initial data could be stored. Other information could
be reproduced as required. As today’s storage media allow all data to be stored over many
hours of operation, the reproducible data is also stored on the AIMM system.

Rationale 179: Middlewares, world model & process control
The use of middleware, a central world model and central process control makes most of the
information easily accessible. Most middlewares offer tools for logging communication. The
two central modules, flow control via Rafcon and the world model, also offer mechanisms for
logging. Logging the module statuses is more difficult. A separate solution must be found
for each module. This is very time-consuming and therefore even with AIMM the complete
status of each module is not recorded. However, this can often at least be reconstructed via
the stored input and output data.

Rationale 180: Automatic labeled data
The recorded data provides a lot of sensor data with contextual information. This can be used
to optimize data-driven processes for the situations that arise. For example, an object position
is verified after a successful pick-up process. This allows the object to be automatically
marked in all camera images that were previously recorded so that the position of the Robot
is known. In this way, large amounts of situation-relevant training data can be generated
automatically.
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D.6.7 RAFCON Error Handling and Logging

Model Name: Model Kind: Model Type: ID:

RAFCON Error Handling and Logging VS-M5I Implementation I16

Addressed Aspects:

VS-A5

Description:

RAFCON offers various mechanisms for error handling. For example, exceptions from the Python
level are catched by RAFCON states and mapped to the logical outcome aborted. If this is not
linked, the state of the next hierarchy level is automatically left with outcome aborted. In this
way, local error handling can be easily integrated or, alternatively, the problem is automatically
passed on to the next hierarchy level.
A step-by-step mode is available for testing the Skills, in which each individual state is actively
triggered. The data flows are also visualized. This provides an efficient tool for Fault Removal.
State-based programming can thus be implemented and tested efficiently.
RAFCON automatically logs both the logical sequence and all data flows implemented in RAF-
CON for each execution. With the help of timestamps, error times can be precisely determined
and, if necessary, synchronized with data from other sources. AIMM therefore uses the tools of
AIMM to implement A21 and A22.

Implements:

A21, A22
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AIMM Mission View

This chapter describes the Mission View of the AIMM system. It begins with an
overview of all identified Models and their relationships with each other. The individ-
ual Architecture Models are then presented.



Appendix E. AIMM Mission View

E.1 AIMM Mission Overview

Guideline Models:

• Low Level Tasks

• High Level Tasks

• Continuous Abstraction
Levels

• Worker Scaled Tasks

• 2-Phase Approach

• Setup Phase

• Execution Phase

• Production Scheduling

• Environmental Changes

• Static Mission Interface

• No Task Interfaces

Approach Models:

• Task Primitives

• Skill-driven Task
(De)composition

• Missions

• Industrial Robot Phases

• Trainee

• Production

• Static Mission

• Adaptive Tasks

• Control Mission
Statemachines

Implementation Models:

• RAFCON Mission Design

• RAFCON Mission Phases

• RAFCON Execution

• RAFCON GUI

E.2 AIMM Mission Abstraction

E.2.1 Low Level Tasks

Model Name: Model Kind: Model Type: ID:

Low Level Tasks VM-M1G Guideline G36

Addressed Aspects:

VM-A1

Description:

A fundamental concept of AIMM is to keep the abstraction level of the Tasks as low as possible.
The aim is to identify and explicitly name these smallest possible Tasks. As a rule, these are
created by decomposing Tasks of higher levels of abstraction.

Rationale 181: Smallest possible Tasks
According to Definition 3.3, Tasks represent a targeted modification to the physical environ-
ment or the extraction of information from it. The smallest possible Task must of course also
satisfy this definition.
No algorithm can change the physical world, it is always an interplay of hardware and
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software. Ultimately, the Robot can only change the physical world through its actuators. The
smallest possible Tasks are therefore individual movements of the Robot. Theoretically, every
movement in the continuous world can be broken down into an infinite number of partial
movements.

For perception Tasks, i.e. the extraction of information from the physical world, it is more
difficult to identify the finest granularity, as this cannot be reduced to individual sensor
measurements. Since this is a passive process, no Task can generally be defined. For example,
a new image may not contain any additional information or may contain a lot of different
information. Other information can only be extracted from several images, e.g. the speed
of an object. The smallest possible perception Task is therefore abstractly the smallest
information about the physical environment that can be obtained. In contrast to the active
Tasks, this cannot be broken down into infinitely small parts, as the information is limited,
e.g. in the sensor data.

Rationale 182: Explainability of the behavior
Tasks are generally independent of the Robot’s actions. A specification as a Task makes it
possible to observe the behavior of the Robot in the physical world or in the world model. The
finer the granularity of the Tasks, the more precisely the Robot’s behavior can be observed, as
it is defined what the current goals are.
If the Robot cannot achieve a goal, this also directly explains to the observer why the Robot
adapts its behavior. At a lower level of abstraction, this also alters the desired goals, which in
turn can be observed.

E.2.2 High Level Tasks

Model Name: Model Kind: Model Type: ID:

High Level Tasks VM-M1G Guideline G37

Addressed Aspects:

VM-A1

Description:

High level Tasks describe Tasks at a very high level of abstraction. This means that the state of
the physical world is specified without specifying how this is to be achieved. An example of a
high-level Task is: “Tidy up the room”. Due to the high level of abstraction, high-level Tasks are
usually very independent of the specific Robot. In addition, high-level Tasks are often also very
independent of the current state of the physical world.

Rationale 183: Operational freedom
The specification of Tasks at a high level gives the Robot a freedom of how solve the Task. The
Robot can recognize the necessary sub-steps itself and adapt them if necessary.
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Rationale 184: Avoidance of overspecification
A high level of abstraction avoids over-specification of Tasks. Since the Task describes the
target state without specifying the way to get there, no Tasks are specified that are not
necessary for solving the problem.

Rationale 185: More independent of the environment and its state
Due to the high level of abstraction, high-level Tasks are also less dependent on the specific
environment and the current state of the environment. A “Clean up the room” Task makes
sense regardless of the current state of the room. Of course, the implementation looks very
different. The Task is also very independent of the room itself, still “Clean up the room”
makes sense in any room.

Rationale 186: Independent of the Robot and its state
A high degree of abstraction also decouples the Task from the Robot system and its current
state. The Task of “tidying up the room” can be delegated to any Robot that is suitable for the
Task in principle. Tasks at this level can often also be transferred to humans, which can be
useful for collaborative applications.

E.2.3 Worker Scaled Tasks

Model Name: Model Kind: Model Type: ID:

Worker Scaled Tasks VM-M1G Guideline G38

Addressed Aspects:

VM-A1

Description:

The goal of AIMM is to take over Tasks that are currently performed by human workers. The
system must therefore be able to process Tasks at the level of abstraction used by human workers.

Rationale 187: Different levels of abstraction
It can be seen that workers in factories are assigned Tasks with different levels of abstraction.
This depends heavily on the complexity of the Task and the possible dangers or effects of
errors. If the Task is simple and non-critical, the level of abstraction is often very high. For
complex or dangerous Tasks, on the other hand, very specific protocols often have to be
processed.

Rationale 188: Simple Tasks
Simple Tasks are defined in industry at a high level of abstraction. A typical example is tidying
up the workplace. It is not specified what needs to be cleared away in which order, what is
waste, etc. AIMM must therefore be able to handle abstraction at this level.
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Rationale 189: Complex or dangerous Tasks
For complex Tasks or Tasks with far-reaching consequences in the event of errors, the processes
in the industry are precisely specified, e.g. assembly sequence, tightening torques, tools, etc.
The AIMM system must therefore also be able to perform Tasks at this level.

E.2.4 Continuous Abstraction Levels

Model Name: Model Kind: Model Type: ID:

Continuous Abstraction Levels VM-M1G Guideline G39

Addressed Aspects:

VM-A1

Description:

The concept of Continuous Abstraction Levels means that Tasks are not assigned to a specific
abstraction level. Instead, the Task abstraction levels of the Tasks form a continuous spectrum
from low-level Tasks to very abstract high-level Tasks that define the Mission.

Rationale 190: Continues vs. layered abstraction levels
There is the approach of organizing Task abstraction levels in layers. For example, some
Tasks form a layer in which production steps are recorded, e.g. “Assemble housing”, an
underlying layer defines the Tasks that must be executed for this, e.g. “Screw screw A into
thread B” and then possibly another layer that represents the individual Robot actions, “Move
to approach frame A”. This approach makes it possible to structure complex Robot programs.
However, it also severely restricts the modeling options. For example, two pre-assembled
parts can be joined together. A fixed hierarchy of 3 does not allow these Tasks to be specified
as superordinate. Another problem is that sequenced Tasks should always be at the same
level of abstraction. A mixture of high-level Tasks and Tasks at a lower level of abstraction is
therefore difficult to represent. In the industrial sector in particular, however, there are such
Tasks for workers with a strong mixture of abstraction levels. AIMM therefore does not use a
fixed classification of abstraction levels. Any Tasks can therefore be explicitly represented
and linked to each other. This leads to a continuous spectrum of Task abstraction levels.
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E.2.5 Task Primitives

Model Name: Model Kind: Model Type: ID:

Task Primitives VM-M1A Approach A23

Addressed Aspects:

VM-A1

Description:

Task primitives represent the lowest level of abstraction in the AIMM system. This indicates
that a Task primitive does not contain any Subtasks. By applying the G39 concept, no fixed
abstraction level is defined for Task primitives. Task primitives can therefore exist at different
abstraction levels. It is therefore also true that all Tasks can be broken down into Task primitives.

Applies:

G36, G39

Rationale 191: Tasks primitives are not smallest possible Tasks
As discussed in G36, Tasks can theoretically be broken down into very small Subtasks.
However, such a decomposition has no practical benefit, but creates additional complexity.
The Task primitives with the lowest level of abstraction are therefore individual movement
commands for active Tasks. For the perception Tasks, the lowest level of abstraction is a single
piece of information that is added to the world model.

Rationale 192: Contains no Subtasks
Contains no Subtasks can be achieved by completely decomposing the Task into the smallest
possible Task primitives. However, many Task primitives are at a much higher level of
abstraction. There can be various reasons for this. For example, if a Task can be solved by a
control loop, it is usually not broken down any further.
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E.2.6 Skill-driven Task (De)composition

Model Name: Model Kind: Model Type: ID:

Skill-driven Task (De)composition VM-M1A Approach A24

Addressed Aspects:

CV-C1

Description:

The Skills of the AIMM system are used to break down the Tasks. Each Skill can solve Tasks.
If the Skill contains Subskills, these also solve Tasks. The use of Skills therefore leads to Task
decomposition. However, this often only happens at runtime, as the specific Subtasks are only
determined based on the current situation. The structure of the Skill defines the abstraction
levels of the Tasks.

Applies:

G36, G37, G39

Rationale 193: General relation between Tasks an Skills
First, a few general observations about the relationship between Tasks and Skills

• One Skill can solve multiple Tasks A Skill can usually solve multiple Tasks.

• One Task can be solved by multiple Skills A certain Task can possibly be solved by
multiple Skills.

• Every Task primitive has to be solved by a Skill Every Task primitive has to be solved
by at least one Skill. This Skill must be a Skill Primitive as only these do not contain
Subskills.

Rationale 194: The Task decomposition depends on the situation
Even if the same Skill is used for a Task, the Task decomposition is usually not identical. This
is because the Tasks of the Skills are generated depending on the situation. The actual Task
decomposition therefore only takes place at runtime.

Rationale 195: Continues Task Abstraction Levels
The use of Skills to decompose Tasks automatically leads to a complex structure of Tasks at
very different levels of abstraction. Autonomous systems with very complex Skills result in an
almost continuous spectrum of Task abstractions.
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E.2.7 Missions

Model Name: Model Kind: Model Type: ID:

Missions VM-M1A Approach A25

Addressed Aspects:

CV-C1

Description:

The missions form the highest level of abstraction. This is where the top-level Tasks and their
dependencies are specified. Missions can be structured hierarchically and thus specify a fixed
Task decomposition.

Applies:

G38, G37

Rationale 196: Top-Level Abstraction - Independent from system and situation
In AIMM, the missions and the Tasks they contain form the highest level of abstraction of the
system. Missions are therefore generally independent of the Robot and the current situation.
For example, the same mission could also be assigned to a human worker.
The current state of the environment also usually only plays a very subordinate role at this
level of abstraction.

Rationale 197: Executability of missions
Missions can only be executed by the Robot if the system has the Skills to execute them. It
should be noted that only the lowest level of abstraction must be executable for hierarchical
missions.

E.2.8 RAFCON Mission Design

Model Name: Model Kind: Model Type: ID:

RAFCON Mission Design VM-M1I Implementation I17

Addressed Aspects:

VM-A1

Description:

Missions are implemented for AIMM with RAFCON. Tasks are represented by states and de-
pendencies by logical links. As Tasks are specific, no data flows are required at this level.
Hierarchical Tasks are represented by hierarchy states.

Implements:

A23, A24, A25
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Rationale 198: Same tool for Skills an Tasks
At AIMM, the same software tool RAFCON is used to implement both Skills and Missions. On
the one hand, this is practical because it is very easy to link Tasks with Skills. Appropriately
parameterized Skills are used for the lowest abstraction level of the mission. However, there
is a risk of Tasks and Skills being confused with each other, as they initially look very similar
in the implementation. However, a state that represents a Task never receives information
about a data port. A state can only be a Task if:

1. only Subtasks are contained

2. no Capabilities as substates

3. no internal data flows

E.3 AIMM Mission Phases

E.3.1 2-Phase Approach

Model Name: Model Kind: Model Type: ID:

2-Phase Approach VM-M2G Guideline G40

Addressed Aspects:

VM-A2

Description:

Autonomous systems solve their Tasks themselves by definition. To do this, however, the Robot
must have information or be in a certain state. The concept of the 2-phase approach therefore
divides the Mission into two phases. One phase, the setup phase, which serves to collect
information and establish the required system state, and a phase in which the actual Tasks are
solved.
The phase structure of the two-phase approach therefore consists of first collecting information
and checking the system status in a setup phase. This is followed by the transition to the
execution phase. This is only exited again when the conditions or the system status have
changed.

Rationale 199: Autonomy in both phases
The separation into two phases does not mean that the Robot is not autonomous in the
first phase. Here too, the system solves Tasks independently. However, these Tasks are not
specified externally, but by the system

Rationale 200: What are the prerequisites for the 2-phase approach
The division into 2 phases is possible if the information and system states are then valid for a
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longer period of time. If these change more frequently, these processes must be integrated
into the actual execution.

E.3.2 Setup Phase

Model Name: Model Kind: Model Type: ID:

Setup Phase VM-M2G Guideline G41

Addressed Aspects:

VM-A2

Description:

The purpose of the setup phase is to enable the Robot to solve Tasks. The Tasks that are solved
in the setup phase are therefore not specified externally, but come from the system itself. In
general, the setup phase can be divided into the categories system state, physical environment
and mission environment.

Rationale 201: System state
System states are Tasks that collect information about the Robot itself or change the state of
the system. These can be calibration routines or a tool change, for example.

Rationale 202: Physical Environment
The physical environment can be explored in the setup phase. A typical example would be
the creation of a map of the environment.

Rationale 203: Mission Environment
The mission environment can also be explored during the setup phase. E.g. which button
must be pressed to start a certain machine.

E.3.3 Execution Phase

Model Name: Model Kind: Model Type: ID:

Execution Phase VM-M2G Guideline G42

Addressed Aspects:

VM-A2

Description:

In the execution phase, the Tasks assigned to the system by the Mission Environment are solved.
This is based on the information and configurations from the setup phase. The productive use
of the system therefore takes place exclusively in the Execution phase. As long as the Mission
and physical environment remain constant and the system status meets the requirements, the
system remains in the execution phase.
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E.3.5 Trainee

Model Name: Model Kind: Model Type: ID:

Trainee VM-M2A Approach A27

Addressed Aspects:

VM-A2

Description:

In the training phase, the Robot has to learn the sequence of Tasks, which is very similar to
training a human worker. In addition to the information about what to do, the Robot system
also needs information about the world. The term world is used as an internal representation of
the Robot’s Physical Environment. The world can be very abstract, e.g. defined workstations, but
geometric models of the environment for path planning, for example, can also be part of the
concept. This knowledge must be acquired during the setup phase, possibly with the support of
a human employee. Robot-specific Tasks that are independent from the actual mission, such as
camera calibration, are also carried out during the setup phase.

Applies:

G41
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E.3.6 Production

Model Name: Model Kind: Model Type: ID:

Production VM-M2A Approach A28

Addressed Aspects:

VM-A2

Description:

In the production phase, the Robot carries out the Tasks of the Mission autonomously. For the
external observer, e.g. the owner of the factory, this is the productive phase. In production
facilities, there are two categories of common Tasks that are difficult to automate with traditional
automation approaches and are usually performed by human workers. These are pick-up and
delivery Tasks and assembly Tasks, which are therefore the focus of AIMM.
Pick-up and delivery Tasks include all Tasks in which a part has to be picked up from one
location and brought to another location. Classic Tasks in industry are warehouse logistics, e.g.
restocking parts magazines at the workplace from the warehouse.
Assembly Tasks are all Tasks in which parts have to be assembled. These are usually very simple
operations such as loading machines or pre-assembly for automated or human workstations, e.g.
inserting screws into drilled holes. As a rule, these are not complex Tasks, such as the assembly
of a complete pump. Even with human labor, such Tasks are prone to errors and are therefore
split into individual steps.

Applies:

G42
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E.3.7 RAFCON Mission Phases

Model Name: Model Kind: Model Type: ID:

RAFCON Mission Phases VM-M2I Implementation I18

Addressed Aspects:

VM-A2

Description:

RAFCON is used to implement the Mission phases in AIMM. At least one state machine is
implemented for each phase. They do not differ technically.

Implements:

A27, A28

E.4 AIMM Mission Dynamic

E.4.1 Production Scheduling

Model Name: Model Kind: Model Type: ID:

Production Scheduling VM-M3G Guideline G43

Addressed Aspects:

VM-A3

Description:

The dynamics of the Mission result from the dynamics that occur in production during resource
planning. Even if this planning, supported by software, is becoming ever faster and more
efficient, the resulting plans remain constant over longer periods of time. Ultimately, even
human workers cannot react to changes in plans as quickly as they like. The Production
Scheduling concept therefore assumes a dynamic that expects changes and adjustments in hours
or days.
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E.4.2 Environmental Changes

Model Name: Model Kind: Model Type: ID:

Environmental Changes VM-M3G Guideline G44

Addressed Aspects:

VM-A3

Description:

In an industrial environment, the basic structure is constant. As a rule, the things relevant to
the Task, such as workstations, machines and warehouses, remain in the same place. At the
same time, the details of the environment are constantly changing. Materials and preliminary
products are transported and temporarily stored. The environment is constantly changing,
especially at the workstations for human workers. The elements can therefore be regarded as
static at a high level of abstraction. At the lower levels of abstraction, however, quasi-static
changes are to be expected.

E.4.3 Static Mission

Model Name: Model Kind: Model Type: ID:

Static Mission VM-M3A Approach A29

Addressed Aspects:

VM-A3

Description:

In line with the concept of G38, a high degree of abstraction is to be expected for AIMM. At this
level of abstraction, a static mission can be assumed based on G43 and G44. This means that no
changes to the mission itself are assumed during the mission.

Applies:

G43
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E.4.4 Adaptive Tasks

Model Name: Model Kind: Model Type: ID:

Adaptive Tasks VM-M3A Approach A30

Addressed Aspects:

VM-A3

Description:

Modifications are to be expected at the lower levels of abstraction as the physical environment
changes. For AIMM, adaptive Tasks are therefore used at the lower levels of abstraction. These
make it possible to react flexibly to changes in the environment. This also means that the Tasks
on the lower abstraction levels are only defined at runtime.

Applies:

G44

E.4.5 RAFCON Execution

Model Name: Model Kind: Model Type: ID:

RAFCON Execution VM-M3I Implementation I19

Addressed Aspects:

VM-A3

Description:

The Mission is executed using the RAFCON framework. This makes it possible to represent the
static missions in the high-level area as Task state machines. The Skill concept, which is also
implemented in RAFCON, is used to implement the adaptive Tasks. This decides which specific
Tasks are executed based on the current situation.

Implements:

A29, A30
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E.5 AIMM Mission Interface

E.5.1 Static Mission Interface

Model Name: Model Kind: Model Type: ID:

Static Mission Interface VM-M4G Guideline G45

Addressed Aspects:

VM-A4

Description:

A Mission Control Interface for a static mission is limited to starting, stopping and monitoring
the Mission progress. It is not possible to change the sequence itself via the interface. To realize
the monitoring, the interface must communicate the status of the execution.

E.5.2 No Task Interfaces

Model Name: Model Kind: Model Type: ID:

No Task Interfaces VM-M4G Guideline G46

Addressed Aspects:

VM-A4

Description:

As the missions do not provide for cross-system Tasks, there are no Task Interfaces.
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E.5.3 Control Mission Statemachines

Model Name: Model Kind: Model Type: ID:

Control Mission Statemachines VM-M4A Approach A31

Addressed Aspects:

VM-A4

Description:

The Mission is implemented as a state machine. This does not change during execution, as the
Mission itself is static. Control of the state machine is therefore limited to starting, pausing
or stopping. When starting, the state machine is activated in its initial state. When pausing,
all transitions between the states are frozen. The state can therefore no longer be changed.
However, actions that take place within a state are not paused. When stopping, the current state
is exited. It is therefore not possible to resume execution directly at this point. The currently
active states are displayed to monitor the process.

Applies:

G45

E.5.4 RAFCON GUI

Model Name: Model Kind: Model Type: ID:

RAFCON GUI VM-M4I Implementation I20

Addressed Aspects:

VM-A4

Description:

The RAFCON software is used to control and monitor these Missions. This enables the execution
of state machines. A special feature of RAFCON is that the initial state can be freely selected.
RAFCON also offers the option of pausing, restarting or aborting the execution. The current
state of the state machine is displayed both in the graphical representation of the state machine
and in the text output.

Implements:

A31
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ARDEA Physical View

This chapter describes the Physical View of the ARDEA system. It begins with an
overview of all identified Models and their relationships with each other. The individ-
ual Architecture Models are then presented.



Appendix F. ARDEA Physical View

F.1 ARDEA Physical Overview

Guideline Models:

• Fail-safe Redundancy

• Indoor Usecases Size

• FPGA Processing

• Local Computing

• Dedicated Realtime
Computer

• Make Everything
Perceivable

• Exchangable Components

• Limited Power Resources

• Unlimited Power
Resources

• Safety Operator

• Low Level Motion
Commands

Approach Models:

• FPGA Stereo Processing

• IT Setup

• Wide Angle Stereo
Cameras

• Sensor Composition

• Frame & Stack

• Propulsion Frame

• Power Setup

• Safety Pilot

• Remote Controller

Implementation Models:

• ARDEA Stack IT

• ARDEA Stack Sensor

• ARDEA Frame

• ARDEA Stack Power

• Ardea Remote Controller

F.2 ARDEA Physical Structure

F.2.1 Fail-safe Redundancy

Model Name: Model Kind: Model Type: ID:

Fail-safe Redundancy VP-M1G Guideline G1

Addressed Aspects:

VP-A1

Description:

A central design concept of ARDEA is that the system remains airworthy even if a rotor fails.
The structure of the drone must therefore provide appropriate redundancy.

Rationale 1: Loss of efficiency due to redundancy
Redundancy is always accompanied by a loss of efficiency, i.e. the system could carry more
payload, fly longer or be more compact without redundancy.
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Rationale 2: Missions outside the laboratory
The ARDEA system is also intended to be used outside the laboratory environment in analog
missions. The safety measure for these missions is the safety pilot. For this concept to work, a
reliable flight capability of the system is crucial. ARDEA is therefore equipped with redundant
rotors.

F.2.2 Indoor Usecases Size

Model Name: Model Kind: Model Type: ID:

Indoor Usecases Size VP-M1G Guideline G2

Addressed Aspects:

VP-A1

Description:

In addition to use in open areas, ARDEA can also be used in caves or houses. This limits the
maximum size of the system as otherwise doors or windows can no longer be passed.

Rationale 3: Limitation of size leads to limitation of payload
Limiting the size of the system practically limits the payload of a multicopter. This is a
major challenge for an autonomous aircraft, as sensors and IT components are not infinitely
scalable. The system should therefore be designed to be as large as possible.

F.2.3 Frame and Stack

Model Name: Model Kind: Model Type: ID:

Frame and Stack VP-M1A Approach A1

Addressed Aspects:

VP-A1

Description:

ARDEA’s approach is to separate the system into two components, the frame and the stack. The
frame implements the propulsion of the system, the stack contains the sensors, the computers
and the power supply. Replacing the frame or stack is designed in such a way that it can be
carried out without a significant amount of effort. This allows damage to be repaired quickly
and the system to be reconfigured according to requirements.

Applies:

G4
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Rationale 4: Granularity of Components
With two components, the granularity is very high. Of course, the individual elements can be
exchanged. However, larger functional units are not easily interchangeable.

Rationale 5: Number of interfaces
The electrical interface between the stack and frame is limited to the power supply and the
bus line to the controller. If, for example, the computers were to be disconnected from the
sensors, many connections would have to be plugged in, which can lead potentially to errors
and make replacement time-consuming.

Rationale 6: Less compact and optimized
A component design leads to a less compact design. This is because the individual compo-
nents must remain accessible. In addition, the individual elements can no longer be freely
positioned. This has a negative effect on the cable lengths, but also on the positioning of the
sensors

F.2.4 Propulsion Frame

Model Name: Model Kind: Model Type: ID:

Propulsion Frame VP-M1A Approach A2

Addressed Aspects:

VP-A1

Description:

The frame is the basis for ARDEA’s propulsion system. It also determines the shape of the Robot.
An equilateral triangle was chosen to keep the system compact. To achieve redundancy, there
are two rotors at each corner of the triangle. This creates space inside the frame and enables
the positioning of sensors.

Applies:

G1, G2

Rationale 7: Protective function of the frame
The frame forms a ring around the electronic components. In the event of contact with the
environment, it is therefore usually the frame that absorbs the most energy. The sensitive
sensors and IT components are protected inside the system.

Rationale 8: Simple, lightweight and robust construction
In principle, the frame consists of just three bars and connectors and motor supports in the
corners. Cross bracing or similar for reinforcement is not required. This makes the frame
simple, but also light and robust.
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F.2.5 ARDEA Frame

Model Name: Model Kind: Model Type: ID:

ARDEA Frame VP-M1I Implementation I1

Addressed Aspects:

VP-A1

Description:

The ARDEA frame consists of three carbon tubes that form an equilateral triangle with aluminum
connectors. The rotors are mounted axially in pairs on the connectors. The motor controller
and the Robot’s landing gear are also located on the frame.

Implements:

A1, A2

Rationale 9: Axial rotor mounting
Axial rotor mounting has advantages, but also disadvantages. Axial mounting allows the
rotors to be mounted compactly, which keeps the flight system smaller. Another advantage is
that the cameras have a better, unobstructed viewing angle. As the rotors rotate in opposite
directions in pairs, the system is also inherently rotationally stable. The disadvantage of axial
mounting is that the lower rotor operates in the downstream of the upper rotor. This reduces
the efficiency and the maximum thrust of the lower rotor.

F.3 ARDEA Physical Perception

F.3.1 Make Everything Perceivable

Model Name: Model Kind: Model Type: ID:

Make Everything Perceivable (ARDEA) VP-M2G Guideline G3

Addressed Aspects:

VP-A2

Description:

The system’s ability to perceive is an important part of the interface between the Robot and
the physical environment. Perception is necessary to recognize uncertainties or erroneous
information and to monitor processes. The more information the system has at its disposal, the
better the Robot can react. The concept is therefore to make as much information as technically
possible perceptible. It follows that the system should be equipped with many sensors.

Identical to AIMM G3
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F.3.2 Exchangable Components

Model Name: Model Kind: Model Type: ID:

Exchangable Components (ARDEA) VP-M2G Guideline G4

Addressed Aspects:

VP-A1, VP-A2

Description:

The mechanical exchangeability of components is an important concept for ARDEA. The aim for
ARDEA is to be able to replace both the propulsion system and the sensors without any major
effort.

Similar to AIMM G4

Rationale 10: Replacement of the propulsion system
Replacing the propulsion system is primarily a way of repairing the system quickly. No
individual parts need to be replaced, but a functioning and tested component can be replaced
without much effort. However, the components are technically identical.

Rationale 11: Replacement of the sensors
The interchangeability of the sensors is used to reconfigure the system. This means that
specific sensors are only required for certain missions. As the weight of a flight system is
severely limited, the system can be optimally equipped for the Task at hand without carrying
unnecessary weight.
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F.3.3 Wide Angle Stereo Cameras

Model Name: Model Kind: Model Type: ID:

Wide Angle Stereo Cameras VP-M2A Approach A3

Addressed Aspects:

VP-A1, VP-A2

Description:

ARDEA’s approach of making everything perceptible is achieved through the use of cameras.
Mechanics such as a pan-tilt unit are not used for reasons of weight, among others. Therefore,
several cameras with wide-angle lenses are used. These can cover a very wide angle of view
with a low weight.

Applies:

G2, G3

Rationale 12: Sensor adjustment through Robot movement
The sensors are fixed to the system. However, the viewing angle around the vertical axis
of the system can be modified by turning the Robot. This is not possible for the downward
or upward coverage, at least in the static case. The aperture angles of the cameras must
therefore be selected so that they cover at least 90 degrees upwards and downwards.

F.3.4 Sensor Composition

Model Name: Model Kind: Model Type: ID:

Sensor Composition VP-M2A Approach A4

Addressed Aspects:

VP-A1, VP-A2

Description:

The core sensors of the ARDEA system consist of the wide-angle cameras and the IMU. These
sensors are used in combination to estimate the position of the system, so the sensors must be
calibrated to each other. On the hardware side, it is therefore important that the cameras are
fixed to each other and to the IMU. For ARDEA, all sensors are therefore mounted on a stack.
Additional sensors can also be mounted on this stack.

Applies:

G3, G4

Rationale 13: Calibrated stack
As all sensors are mounted on the stack, the calibration of the system is independent of the
frame. No new calibration is therefore required if the stack is replaced.
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F.3.5 ARDEA Stack Sensor

Model Name: Model Kind: Model Type: ID:

ARDEA Stack Sensor VP-M2I Implementation I2

Addressed Aspects:

VP-A2, VP-A3

Description:

Two pairs of stereo cameras with wide-angle lenses are mounted on the ARDEA stack. These
are aligned in the same way in the horizontal plane and allow a free view between two pairs
of rotors. In the vertical plane, the stereo camera pairs are offset by 60 degrees. One pair has
the optical axis directed 60 degrees downwards, the other 60 degrees upwards. Together, the
cameras cover a range of 240° in the vertical plane. The IMU is mounted in the center of the
stack with vibration damping.

Implements:

A3, A4

Rationale 14: Perception of the surroundings
The system’s sensor technology makes it possible to capture the entire environment in RGB
as well as the depth data by rotating around the vertical axis. This allows the flight system to
very quickly create a geometric representation of the surroundings.

Rationale 15: Monitoring the flight altitude
Thanks to the alignment of the stereo cameras, the distance to the ground and the distance
to the ceiling are always recorded. This reliably prevents collisions.

Rationale 16: Maximum disparity limits 3d perception
The quality of the stereo depth data decreases with the distance to the Robot. The base
distance and the resolution of the cameras allow reliable depth information up to a distance
of approximately 4m. The implementation on Ardea is not designed for larger distances or
higher flight altitudes.
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F.4 ARDEA Physical IT

F.4.1 Local Computing

Model Name: Model Kind: Model Type: ID:

Local Computing (ARDEA) VP-M3G Guideline G5

Addressed Aspects:

VP-A3

Description:

A mobile system will change its location. In order to have a reliable data connection at all
times, a large amount of technical effort is required. The concept of local computing therefore
ensures that all computations are carried out on the system itself. This significantly reduces the
infrastructure requirements.

Identical to AIMM G6

F.4.2 Dedicated Realtime Computer

Model Name: Model Kind: Model Type: ID:

Dedicated Realtime Computer VP-M4G Guideline G6

Addressed Aspects:

VP-A3

Description:

The system uses a dedicated computer exclusively for time-critical processes. The implemen-
tation of this concept at hardware level significantly simplifies the reliable operation of the
system.

Rationale 17: Native control of the actuators
With a dedicated computer for real-time-critical components, care can be taken to ensure
that the corresponding interfaces are already available natively. This reduces the complexity
of the system.

Rationale 18: Specific requirement
Software components with real-time requirements are very different from other components.
For example, communication must be guaranteed securely and at a high frequency. However,
the computing power requirements of these components are often low. Therefore, smaller
processors can often also meet these requirements.
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F.4.3 FPGA Processing

Model Name: Model Kind: Model Type: ID:

FPGA Processing VP-M4G Guideline G7

Addressed Aspects:

VP-A3

Description:

For suitable applications, FPGAs offer the possibility of solving computationally intensive tasks
very quickly and efficiently at the same time. Compared to alternative IT components such as
GPUs or processors, this saves installation space, weight and energy. At ARDEA, an FPGA is
therefore integrated into the IT hardware.

Rationale 19: FPGA as ASIC
In ARDEA, the FPGA is operated by the function as an ASIC. This means that the flexibility of
the FPGA is used to implement a specific algorithm. A flexible adaptation of the algorithms
or the addition of further algorithms is not carried out due to the high implementation effort.

Rationale 20: High frequency and parallelization
The use of FPGAs is worthwhile for problems that occur frequently, place high demands on
computing time and can be parallelized. In robotics, this applies to many components of the
perception pipeline.

F.4.4 IT Setup

Model Name: Model Kind: Model Type: ID:

IT Setup VP-M3A Approach A5

Addressed Aspects:

VP-A3

Description:

The computer structure of the ARDEA system consists of three components. An FPGA for
processing the stereo data. A high-level computer with good computing power for carrying out
computationally intensive operations. The cameras are connected to the high-level computer. A
low-level computer for tasks with real-time requirements. The IMU and the motor controller are
connected to the low-level computer. The high level computer is connected to the other two
components via an Ethernet interface.

Applies:

G6, G5, G7
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F.4.5 Stereo Processing FPGA

Model Name: Model Kind: Model Type: ID:

Stereo Processing FPGA VP-M3A Approach A6

Addressed Aspects:

VP-A2, VP-A3

Description:

Stereo processing is a computationally intensive process. As the visual odometry of the ARDEA
system works on the depth data, this is also time-critical and is constantly required. ARDEA
therefore uses an FPGA to calculate the depth data. SGM is used as the algorithm.

Applies:

G7

F.4.6 ARDEA Stack IT

Model Name: Model Kind: Model Type: ID:

ARDEA Stack IT VP-M3I Implementation I3

Addressed Aspects:

VP-A2, VP-A3

Description:

The ARDEA stack also contains all of the system’s IT components. The high-level computer
is implemented using an Intel NUK board, as this delivers high computing power in a small
installation space. The low-level computer is implemented using a BeagleBone Black, which is
compact, provides sufficient computing power and a native CAN interface to control the motor
controllers. The FPGA is implemented by a XiLinx Spartan 6.

Implements:

A6, A5
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F.5 ARDEA Physical Power

F.5.1 Limited Power Resources

Model Name: Model Kind: Model Type: ID:

Limited Power Resources VP-M4G Guideline G8

Addressed Aspects:

VP-A4

Description:

The available energy limits the possible applications of the system. The flight duration of a
multicopter is always limited by the available energy. This therefore limits the possible uses of
such a system.

Rationale 21: Larger battery can lead to smaller operating radius
The operating radius and therefore the possible applications cannot be increased arbitrarily
by choosing the size of the battery. A larger battery results in more weight. This increases
energy consumption in hovering flight, but also results in lower dynamics. This in turn means
that a heavier battery can lead to a smaller operating radius despite its higher capacity, as the
system consumes more energy and has to move more slowly.

Rationale 22: Weight saving leads directly to energy saving
The biggest lever for saving energy is saving weight. Therefore, only the components that are
actually needed should be carried.

F.5.2 Unlimited Power Resources

Model Name: Model Kind: Model Type: ID:

Unlimited Power Resources (ARDEA) VP-M4G Guideline G9

Addressed Aspects:

VP-A4

Description:

Sufficient energy reserves are always available for the system. It is therefore not necessary to
optimize the energy requirement.

Identical to AIMM G8

Rationale 23: Energy consumption of the propulsion system is crucial
By far the largest energy consumer in flight is the propulsion system. Optimization of the
other components is therefore of secondary importance
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F.5.3 Power Setup

Model Name: Model Kind: Model Type: ID:

Power Setup VP-M4A Approach A7

Addressed Aspects:

VP-A4

Description:

The system uses the same energy source to power all components. During the flight, this is a
battery. During the configuration of the system, this can be replaced by a power supply unit.
The voltage of the central energy source is then transformed via various voltage converters
to the voltages required by the components. To enable a battery change without restarting
the computer components, two voltage sources can be connected simultaneously to ensure an
uninterrupted power supply.

Applies:

G2, G8, G9

F.5.4 ARDEA Stack Power

Model Name: Model Kind: Model Type: ID:

ARDEA Stack Power VP-M4I Implementation I4

Addressed Aspects:

VP-A2, VP-A3

Description:

ARDEA’s power management is integrated into the system stack. This enables operation even
without the system frame.The standard flight battery is a LiPo battery with four cells. In order
to prevent uncontrolled charging currents when changing from an empty to a full battery, an
electronic circuit ensures that no energy can be fed back.

Implements:

A7
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F.6 ARDEA Physical Safety

F.6.1 Safety Operator

Model Name: Model Kind: Model Type: ID:

Safety Operator (ARDEA) VP-M5G Guideline G10

Addressed Aspects:

VP-A5

Description:

A safety operator is responsible for the safety of the system and monitors the system during
operation. This person must ensure that no persons are harmed and that neither the system nor
its surroundings are damaged.

Identical zu AIMM G9

F.6.2 Safety Pilot

Model Name: Model Kind: Model Type: ID:

Safety Pilot VP-M5A Approach A8

Addressed Aspects:

VP-A5

Description:

For ARDEA, the safety of the system is ensured by the safety pilot. This pilot ensures that no
person comes into contact with the system. If the system exhibits undesirable behavior, the
safety pilot intervenes at the low level motion command level. The safety pilot can also trigger
an emergency stop, i.e. a stop of all motors.

Applies:

G10, G11

Similar to AIMM A6

Rationale 24: Emergency stop not always safe
An emergency stop is not a safe option for a flight system as it causes the system to crash. This
leads to major damage to the system. It can also endanger people in the vicinity. Depending
on the situation, it may nevertheless be the best solution to trigger an emergency stop,
especially if the system is no longer controllable.

Rationale 25: Qualification of a safety pilot
The safety pilot must be able to control the system manually. The challenge with a drone,
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unlike many other systems, is that control is necessary to ensure safe operation. The safety
pilot must guarantee this and be able to take over the drone at any time and in any condition.

F.7 ARDEA Physical Interface

F.7.1 Low Level Motion Commands

Model Name: Model Kind: Model Type: ID:

Low Level Motion Commands (ARDEA) VP-M6G Guideline G11

Addressed Aspects:

VP-A6

Description:

The Robot should also be able to be moved directly by the user. The ARDEA system therefore
provides a low-level motion command interface that enables movements to be commanded
directly.

Identical to AIMM G11

F.7.2 Remote Controller

Model Name: Model Kind: Model Type: ID:

Remote Controller (ARDEA) VP-M6A Approach A9

Addressed Aspects:

VP-A6

Description:

A remote control is used to control the movements. This enables the specification of speed
setpoints for the Robot movement.

Applies:

G11

Similar to AIMM A8

Rationale 26: All degrees of freedom of the system controllable
The remote control for ARDEA enables full control of the system. The remote controller
therefore has access to all possible actions of the system. This differs from the AIMM system,
for example, where the manipulator cannot be controlled remotely.
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F.7.3 ARDEA Remote Controller

Model Name: Model Kind: Model Type: ID:

ARDEA Remote Controller VP-M6I Implementation I5

Addressed Aspects:

VP-A5, VP-A6

Description:

Remote control is via a standard Spectrum remote control for model airplanes. This product
implements the full ARDEA remote control concept. This includes the low-level commands, but
also additional channels, e.g. to switch motors on and off. The technical requirements such as
range or size of the receiver also meet the ARDEA requirements.

Implements:

A8, A9
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AppendixG

LRU2 Mission View

This chapter describes the Mission View of the LRU2 system. It begins with an overview
of all identified Models and their relationships with each other. The individual
Architecture Models are then presented.



Appendix G. LRU2 Mission View

G.1 LRU2 Mission Overview

Guideline Models:

• Low Level Tasks

• Continuous Abstraction
Levels

• High Level Mission Tasks

• Task Sequence Mission

• Situation and Event based
Mission Phases

• Collaborative Execution

• Autonomous Execution

• Online Mission
Modification

• Knowledge gain about
Environment

• Robot Mission
Modification

• No robotic expert needed

• Scientist in the Loop

Approach Models:

• Task Primitives

• Skill-driven Task
(De)composition

• Skill Set and Behaviors

• Robotic Explorer

• Supervised Exploration

• Autonomous Exploration

• Local Autonomy

• Adaptive Tasks

• Mission Control for
Scientist

• Task Specific GUIs

Implementation Models:

• RAFCON Mission Task

• Operator as Information
Source

• ROSMC Client

• RAFCON Execution

• ROSMC GUI

• Scientists GUIs

G.2 LRU2 Mission Abstraction

G.2.1 Low Level Tasks

Model Name: Model Kind: Model Type: ID:

Low Level Tasks (LRU2) VM-M1G Guideline G1

Addressed Aspects:

VM-A1

Description:

A fundamental concept is to keep the level of abstraction of the Tasks as low as possible. The
aim is to identify and explicitly name these smallest possible Tasks. These usually result from
the decomposition of Tasks at higher levels of abstraction.
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Appendix G. LRU2 Mission View

Identical to AIMM G36

G.2.2 Continuous Abstraction Levels

Model Name: Model Kind: Model Type: ID:

Continuous Abstraction Levels (LRU2) VM-M1G Guideline G2

Addressed Aspects:

VM-A1

Description:

The concept of Continuous Abstraction Levels is that Tasks are not assigned to a specific
abstraction level. Instead, the Task abstraction levels of the Tasks form a continuous spectrum
from low-level Tasks to very abstract high-level Tasks that define the Mission.

Identical to AIMM G39

G.2.3 High Level Tasks

Model Name: Model Kind: Model Type: ID:

High Level Tasks (LRU2) VM-M1G Guideline G3

Addressed Aspects:

VM-A1

Description:

High level Tasks describe Tasks at a very high level of abstraction. This makes it possible
to specify what state the physical world should be in without specifying how this should be
achieved. An example of a high-level Task is: “Tidy up the room”. Due to the high level of
abstraction, high-level Tasks are usually very independent of the specific Robot. In addition,
high-level Tasks are often also very independent of the current state of the physical world.

Identical to AIMM G37
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G.2.4 Task Sequence Mission

Model Name: Model Kind: Model Type: ID:

Task Sequence Mission VM-M1G Guideline G4

Addressed Aspects:

VM-A1

Description:

A Robot often has various Tasks to fulfill in its Mission. There are often additional dependencies
between these Tasks with regard to their sequence. A Task sequence makes it possible to define
which Tasks must be executed in which order so that the Mission can be successfully completed.

Rationale 1: Many missions can be represented as sequences
Complex Tasks can often be split into individual, consecutive steps. Classic examples of this
are assembly instructions for furniture or industrial manufacturing processes, for example.
Generic instructions are also often given in the form of checklists. For example, after an
accident, the accident site should first be secured, then first aid provided and then help called.
Sequential Missions are simple, but still have a very wide range of application.

Rationale 2: Intuitive type of Mission design
Task sequences are also popular with humans because they are easy to understand and
implement. The status of a Task is very clear to understand and the successive actions are
obvious without thinking, as the dependencies between the individual Tasks are very small.
These characteristics also simplify the design of such a Mission.

Rationale 3: Compatible with many Task planners
Many Task planners provide a sequence of Subtasks to be executed as a solution to a higher-
level problem. A representation of the Task as a sequence enables the use of such approaches
to Task planning.

Rationale 4: Unnecessary restrictions
A disadvantage of the sequence is that the Mission is often restricted more than necessary.
Some steps of the sequence may not be causally dependent on each other. For example, they
could also be carried out in parallel or in a different order. The sequence is therefore often
only one of several possible approaches to represent the Mission.

Rationale 5: Error handling only rudimentary possible
A sequence can only handle errors in its individual steps to a very limited extent. Ultimately,
the only way to handle errors is to repeat or skip individual steps. Otherwise, the Mission
fails as soon as one of the steps fails.

Rationale 6: Reactive behavior cannot be represented
Tasks that have to react to events during execution are difficult to represent in sequences.
The simplification that the execution of a Task only depends on the execution of the previous
Task excludes the possibility of Tasks being triggered by other dependencies.
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G.2.5 Task Primitives

Model Name: Model Kind: Model Type: ID:

Task Primitives (LRU2) VM-M1A Approach A1

Addressed Aspects:

VM-A1

Description:

Task primitives represent the lowest level of abstraction in the system. This means that a Task
primitive does not contain any Subtasks. By applying the G2 concept, no fixed abstraction level
is defined for Task primitives. Task primitives can therefore exist at different levels of abstraction.
It is therefore also true that all Tasks can be decomposed into Task primitives.

Applies:

G1,G2

Identical to AIMM A23

G.2.6 Skill-driven Task (De)composition

Model Name: Model Kind: Model Type: ID:

Skill-driven Task (De)composition (LRU2) VM-M1A Approach A2

Addressed Aspects:

VM-A1

Description:

The system’s Skills are used to decompose the Tasks. Each Skill can solve Tasks. If the Skill con-
tains Subskills, these can also solve Tasks. The use of Skills therefore leads to Task decomposition.
However, this often only happens at runtime, as the specific Subtasks are only determined based
on the current situation. The structure of the Skill defines the abstraction levels of the Tasks.

Applies:

G1, G3, G2

Identical to AIMM A24
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G.2.7 Skill Set and Behaviors

Model Name: Model Kind: Model Type: ID:

Skill Set and Behaviors VM-M1A Approach A3

Addressed Aspects:

VM-A1

Description:

The approach to defining Missions for LRU2 is based on G4. The possible Tasks are specified by
high-level Skills. Any sequences can be created from this set of high-level Tasks. The use of G3
when creating the Task set ensures that the sequence can only be created on the basis of the
Mission objectives. Technical dependencies are handled at the lower levels of abstraction. In
addition, so-called behaviors can be defined for all Tasks. These specify the desired behavior of
the system at runtime. For example, it may be desirable for the Robot to be permanently within
communication range. If the Robot loses wireless contact, behaviors are automatically activated
that attempt to re-establish wireless contact. Reactive behaviors can thus be specified within the
list-based Mission.

Applies:

G3, G4

Rationale 7: High Level Skills: A compact way of specifiing Tasks Sets
According to G4, the Mission of LRU2 consists of a sequence of Tasks. In the realization, these
Tasks cannot be chosen arbitrarily, but it is implicitly assumed that the Tasks are solvable
for the system. Since Tasks are concrete by definition, an autonomous system can solve an
infinite number of Tasks. If, for example, a Robot has the Skill to move to a position, then
there are an infinite number of Tasks in continuous space that the Robot can solve. A very
compact and practicable representation is therefore not the definition of the Task set but
the use of Skills and their permissible parameter spaces. This also has the advantage that a
solution approach automatically exists for each Task.

Rationale 8: Behaviors in list-based Mission
Sequence-based Missions do not allow reactions to events to be specified directly. For example,
a mobile system must move in such a way that communication with the system is possible.
If this behavior is universal, it can be stored generally. In practice, however, there may be
individual Tasks in which the rover has to explore a crater, for example. In this case, the
behavior must be modified locally for a Task, e.g. exploration in the radio shadow is permitted.
To make this possible, a set of behaviors is specified in addition to the Task, which are taken
into account when performing the Task. However, more complex behavioral dependencies,
e.g. combinations of several Mission, world and system states, cannot be represented in this
way. In this case, the Mission would have to be extended to a behavior tree-based structure,
for example.
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G.2.8 RAFCON Mission Task

Model Name: Model Kind: Model Type: ID:

RAFCON Mission Task VM-M1I Implementation I1

Addressed Aspects:

VM-A1

Description:

The RAFCON framework is used to implement the various abstraction levels of the Tasks. The
Tasks of all abstraction levels are represented here by the hierarchy concept. The high-level
Skills that specify the Mission Tasks are each implemented by a separate state machine that can
be executed at any time. These Skills must therefore first check the current status and then
create a suitable context within the Skill. This enables the Mission Tasks to be sequenced as
required.

Implements:

A1, A2, A3

Rationale 9: Context-independent Skills create high complexity
Making Skills generally context-independent can create a high level of complexity depending
on the Task. For some Tasks, e.g. driving to a position, context independence can be achieved
relatively easily. This is because the system is able to move to positions regardless of the
current configuration, environment, etc. Other Tasks, such as carrying out a measurement
with an instrument, have many prerequisites that must be fulfilled. For example, the
instrument must be docked -> the instrument must be available or retrieved -> there must
be enough available capacity on the instrument holder -> another instrument must be put
down –> etc. A precondition that the instrument needs to be on the rover would simplify
the Skill enormously. However, this would then also have to be taken into account when
sequencing the Tasks, which would increase the knowledge required by the Mission planner.

Rationale 10: Hierarchy of Top Level Skills
The high-level Skills set is on one level from a Mission perspective. All Tasks that can be
solved with this set are possible elements of a Mission. From an implementation perspective,
however, hierarchies between these high-level Skills are possible and reasonable. For example,
the Skill Driving to a position is a high-level Skill that allows the operator to send the Robot
to any position. However, this Skill is also required in many other high-level Skills, e.g. if the
rover is to fetch something from the lander. At the implementation level, high-level Skills can
also contain other high-level Skills as Subskills.
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G.3 LRU2 Mission Phases

G.3.1 Situation and Event-based Mission Phases

Model Name: Model Kind: Model Type: ID:

Situation and Eventbased Mission Phases VM-M2G Guideline G5

Addressed Aspects:

VM-A2

Description:

The individual Mission phases are not in a static sequence, but the current Mission phase changes
due to situations and events. Situations are contexts that are deliberately created by the Robot.
The Robot therefore plays an active role in such a phase transition. Events, on the other hand,
are triggered by external circumstances, e.g. the environment, the operator or other agents. In
this case, the Robot takes on a passive role. Both lead to a change in the current phase and thus
to a change in the system behavior.

G.3.2 Collaborative Execution

Model Name: Model Kind: Model Type: ID:

Collaborative Execution VM-M2G Guideline G6

Addressed Aspects:

VM-A2

Description:

In the collaborative phase, interaction with another agent is required to solve the Task. This can
be an operator or another Robot. A communication option is required for collaboration with an
operator.

Rationale 11: Collaborative Tasks/Autonomous Tasks
The dependence on the operator can be artificial. For example, the Robot can select and
collect a sample without the scientist. The Task is therefore technically solvable, but it is
intended that the human makes the decision.
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G.3.3 Autonomous Execution

Model Name: Model Kind: Model Type: ID:

Autonomous Execution VM-M2G Guideline G7

Addressed Aspects:

VM-A2

Description:

In the autonomous execution phase, the system makes all decisions on its own. This applies to
the Mission itself, but also to the reaction to unforeseen problems. However, the system can also
decide to release control itself and thus initiate a phase change. In addition, every Robot has the
option of aborting this phase from outside.

G.3.4 Robotic Explorer

Model Name: Model Kind: Model Type: ID:

Robotic Explorer VM-M2A Approach A4

Addressed Aspects:

VM-A2

Description:

The Robotic Explorer should relieve the operator as much as possible and simplify operation.
Nevertheless, the operator must be able to make or monitor all important decisions. Additional
challenges arise from the fact that the environment is only incompletely known and communica-
tion with the system may be limited or even impossible. The robotic system therefore alternates
between two phases, Supervised Exploration, in which the human must make decisions, and
Autonomous Exploration, in which the Robot makes all decisions independently. As shown
in Figure G.2, the transition between the phases can be triggered by the Robot itself, by the
operator or by events that occur.

Applies:

G5, G6, G7

Rationale 12: Phase of the Robot does not match the phase of the operator
The phases described correspond to the system phases. As far as possible, the operator will
also monitor the autonomous phase of the Robot. From the operator’s point of view, the Robot
is therefore much more often in the monitored autonomy phase. However, this happens
outside the Robot’s system boundaries and therefore has no influence on the Robot phases.
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G.3.5 Supervised Exploration

Model Name: Model Kind: Model Type: ID:

Supervised Exploration VM-M2A Approach A5

Addressed Aspects:

VM-A2

Description:

In the supervised exploration phase, the operator makes important decisions that determine the
behavior or Task of the system. The aim of this phase is therefore to support these decisions
from the Robot’s perspective. One challenge here is that many Tasks have to be performed by
the system itself in order to master the technical complexity. For example, the scientist wants to
select the sample, but accessibility, movement planning, object segmentation etc. remain the
Task of the system. Another special characteristic is that the depth of intervention can take place
at very different technical levels. For example, the operator determines which higher-level Tasks
the system should perform. However, the scientist also determines exactly which sample is to be
taken, including direct control of the pan-tilt unit to capture images of interesting formations.

Applies:

G6

Rationale 13: Self-activation of the autonomous phase
A special feature of planetary exploration is that the Robot can also independently switch
from the supervised exploration phase to the autonomous exploration phase. This is neces-
sary because external events can interrupt communication, which practically requires full
autonomy to either re-establish communication or, alternatively, to solve the Mission as far as
possible autonomously.
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G.3.6 Autonomous Exploration

Model Name: Model Kind: Model Type: ID:

Autonomous Exploration VM-M2A Approach A6

Addressed Aspects:

VM-A2

Description:

During autonomous exploration, the Robot makes all decisions itself. In this phase, there are no
commands from outside. The Robot has a Mission to fulfill, but must also react to events and
protect itself. For example, the Robot must ensure that the battery charge level is sufficient. An
important part of this phase is deciding when the Robot leaves the autonomous phase on its
own. This can be a complex task as a communication link must be established.

Applies:

G7
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G.3.7 Operator as Information Source

Model Name: Model Kind: Model Type: ID:

Operator as Information Source VM-M2I Implementation I2

Addressed Aspects:

VM-A2

Description:

The autonomy framework RAFCON is used to implement the various phases and their transitions.
From the implementation point of view, the Robot is always in an autonomous state, i.e. RAFCON
controls the Robot’s behavior at all times and in all phases. From the implementation perspective,
the monitored autonomy phases are phases in which external information influences the behavior
or information is requested from the operator. The operator is integrated into the sequence
control like other sources of information.

Implements:

A4, A5, A6

Rationale 14: Operator as a source of information
The integration of the operator as a source of information from an implementation perspective
has several advantages. For example, the operator can be easily integrated into different
abstraction levels, as components serve as information sources at each level. The change
between autonomous and monitored phases is therefore limited to the selection of the
information source. If one source fails, it is possible to switch to the other.
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G.4 LRU2 Mission Dynamic

G.4.1 Online Mission Modification

Model Name: Model Kind: Model Type: ID:

Online Mission Modification VM-M3G Guideline G8

Addressed Aspects:

VM-A3

Description:

The full LRU2 Mission is designed in advance and then executed on the Robot. During execution,
however, events may occur that make it necessary to modify the Mission. The reasons for such a
change can be manifold. For example, exploration with a Robot may take longer than planned,
making it necessary to redistribute the Tasks. However, it is also possible that the information
gained shifts the focus of the exploration, which means, for example, that more samples have to
be taken.

Rationale 15: Static Mission with modifications
A Mission with online modifications has similarities to an adaptive Mission. However, this
is only the case if the operator is part of the system. From the operator’s point of view, it is
also an adaptive Mission. For the Robot, however, the Mission is static. The overall goal, e.g.
geological exploration, is not part of the Robot’s Mission.

G.4.2 Knowledge gain about Environment

Model Name: Model Kind: Model Type: ID:

Knowledge gain about Environment VM-M3G Guideline G9

Addressed Aspects:

VM-A3

Description:

During a space mission, it can be assumed that the environment is largely static. Particularly
during the first exploration missions, there are no other actors on site who could cause changes.
However, knowledge about the environment is incomplete and sometimes incorrect. Only
during the mission further information can be collected, which may influence the Mission and
thus require adaptive behavior.

Rationale 16: Similar to AIMM G44
Gaining new insights about the environment is fundamentally different from physically
changing the environment AIMM G44. From the point of view of the Robot’s Mission,

307



Appendix G. LRU2 Mission View

however, it is of secondary importance whether a large boulder has moved or has always
been in a different place. The Mission must be adapted accordingly as soon as new findings
are available.

G.4.3 Local Autonomy

Model Name: Model Kind: Model Type: ID:

Local Autonomy VM-M3A Approach A7

Addressed Aspects:

VM-A3

Description:

In order to be able to react to external Mission changes G8 as well as unforeseen events, the
approach is to give the Robot the possibility to adapt the Mission itself. To do this, the Robot
is given the full Mission, i.e. the sequence of all Tasks to be performed. If this is changed, the
sequence of Tasks is updated. The Robot can also modify the Task sequence and report back to
the Mission control accordingly.

Applies:

G8, G9

Rationale 17: Task executing agent
An alternative approach is to keep the Task sequence in the Mission control outside the Robot.
From there, the Robot would receive its next Task after completing a Task. This approach
simplifies Mission modifications, as the Robot only ever knows its current Task. However,
this also prevents the Robot from reacting autonomously to events, e.g. a sampling point
cannot be reached. As long as the operator has contact with the system, the situation can be
resolved. If communication is restricted, however, it becomes impossible.

Rationale 18: Interleaved interface
The Mission specification of the LRU2 is overlaid by local autonomy. This means that the
individual Tasks and their sequence are already specified in the Mission from the outside, but
the Robot has the option of adapting them. This combines the advantages of Mission planning
from the outside, which is based on more information and resources, with Mission planning
on the system, which enables higher autonomy and reliability.

Rationale 19: Knowledge as basis of intelligent decision making
Even if the Robot does not change the Mission itself, knowledge about it is the basis for
intelligent decisions. This means that Tasks below the Mission level, such as recharging the
batteries, can be scheduled at appropriate points.
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G.4.4 Adaptive Tasks

Model Name: Model Kind: Model Type: ID:

Adaptive Tasks (LRU2) VM-M3A Approach A8

Addressed Aspects:

VM-A3

Description:

Changes are to be expected at the lower levels of abstraction, as knowledge about the physical
environment changes. For LRU2, adaptive Tasks are therefore used at the lower levels of
abstraction. These make it possible to react flexibly to these changes. This also means that the
Tasks on the lower abstraction levels are only defined at runtime.

Applies:

G9

Identical to AIMM A30

G.4.5 RAFCON Execution

Model Name: Model Kind: Model Type: ID:

RAFCON Execution (LRU2) VM-M3I Implementation I3

Addressed Aspects:

VM-A3

Description:

The Mission is executed using the RAFCON framework. This makes it possible to represent the
static missions in the high-level area as Task state machines. The Skill concept, which is also
implemented in RAFCON, is used to implement the adaptive Tasks. This decides which specific
Tasks are executed based on the current situation.

Implements:

A7, A8

Identical to AIMM I19
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G.4.6 ROSMC Client

Model Name: Model Kind: Model Type: ID:

ROSMC Client VM-M3I Implementation I4

Addressed Aspects:

VM-A3

Description:

The ROSMC client is also implemented in RAFCON. This top-level state machine implements
the execution of the Mission. The Task list is not instantiated directly as a state machine, i.e. as
a sequence of Task states, but the sequencing is implemented in a so-called decider state, which
is linked to all high-level Skills. Based on the Task list and the outcome of the last Task, the next
Task is determined and parameterized at runtime.

Implements:

A7

Rationale 20: Decider vs. Statemachine
The use of a decider state has several advantages. The first advantage is that the state
machine itself is independent of the Mission. A change to the Mission during runtime can
also be applied without changing the state machine. Another advantage of the decider
architecture is that even long missions remain very compact. The complexity is determined by
the number of Skills and not by the Mission elements. In addition, the same checks must be
carried out between Tasks, e.g. Mission paused. In a statemachine implementation, the same
check state would always have to be introduced between each Task state. The disadvantage
of the decider solution is that the current state of the Mission cannot be read from the state
of the state machine. A start within the sequence is also not possible directly via RAFCON
with the decider solution.

G.4.7 Robot Mission Modification

Model Name: Model Kind: Model Type: ID:

Robot Mission Modification VM-M4G Guideline G10

Addressed Aspects:

VM-A4

Description:

The Robot’s Mission must be adaptable both in the planning phase and during execution.
Therefore, an interface is needed that makes this possible. In order to be able to make
adjustments during the Mission, it is also necessary to display the current status of the Mission,
as parts of the Mission that have already been executed can no longer be changed.
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G.4.8 No robotic expert needed

Model Name: Model Kind: Model Type: ID:

No robotic expert needed VM-M4G Guideline G11

Addressed Aspects:

VM-A4

Description:

The Robot should be operable by non-robotic experts. A general requirement for all user
interfaces is therefore that no expert knowledge is required to use them.

Rationale 21: System boundary Mission
GUIs are generally used for high-level interfaces in particular. These programs often run on
separate operating stations, e.g. in mission control center for the LRU2. Often several Robots
can also be controlled via these programs. Nevertheless, the operating program is considered
as part of the Robot Mission and not as part of the Mission Environment.

G.4.9 Scientist in the Loop

Model Name: Model Kind: Model Type: ID:

Scientist in the Loop VM-M4G Guideline G12

Addressed Aspects:

VM-A4

Description:

An important requirement for the LRU2 interface is that the scientist can intervene at any time.
From the interface’s point of view, the Robot has an assistance function. It should therefore
be possible for humans to make important decisions. These decisions can be made at very
different levels of abstraction. For example, the scientist should be involved in the planning and
execution of the overall Mission. However, they should also be able to select certain samples or
carry out certain measurements with instruments.
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G.4.10 Mission Control for Scientist

Model Name: Model Kind: Model Type: ID:

Mission Control for Scientist VM-M4A Approach A9

Addressed Aspects:

VM-A4

Description:

A Mission control program is used for Mission planning and execution. This enables the scientist
to plan, monitor and modify the Robot Mission. The accessible abstraction level here is the
specification, distribution and sequencing of high-level Tasks. The specification of Tasks is
supported by the Mission control program by offering the available Skills of the Robot and
requesting the necessary parameters from the user. Once the Skill has been fully parameterized,
the Task is defined and can be added to the Task list. The Mission Control program then makes
it possible to modify the order of the Tasks and synchronize them with the Robot. The Mission
Control GUI then allows the Mission to be started, paused or canceled. During execution, the
status of the Mission is displayed.

Applies:

G10, G11, G12
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G.4.11 Task Specific GUIs

Model Name: Model Kind: Model Type: ID:

Task Specific GUIs VM-M4A Approach A10

Addressed Aspects:

VM-A4

Description:

Task-specific GUIs are used to integrate the scientist at the lower levels of abstraction. Here,
decisions can also be made by the scientist below the high-level Tasks. As these GUIs are
individually adapted to Task sets, it is possible to intervene at very deep levels. For example, the
pan-tilt unit can be moved directly in such a GUI or certain filter wheels can be set to capture a
spectral image.

Applies:

G11, G12

G.4.12 ROSMC GUI

Model Name: Model Kind: Model Type: ID:

ROSMC GUI VM-M4I Implementation I5

Addressed Aspects:

VM-A4

Description:

To design and customize the sequential Mission, the tool ROSMC [99] is used. It enables the user
to intuitively create, execute and monitor multi-robot missions. It is based on Task sequences
that can be synchronized with the various Robots. A Task is created by parameterizing a Skill.
This parameterization can be done directly in an input mask in ROSMC. However, certain
parameters can also be defined in a 3D viewer (positions, objects). As these two forms of input
are synchronized, the operator can use the preferred method in each case. During execution,
the status of the Mission is displayed using the list, but also in the 3D viewer using the current
positions of the Robots.

Implements:

A9
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G.4.13 Scientist GUIs

Model Name: Model Kind: Model Type: ID:

ROSMC VM-M4I Implementation I6

Addressed Aspects:

VM-A4

Description:

The Scientist GUI is used to integrate the scientist into the process during sampling. The GUI
is triggered by the Robot. In this GUI, the scientist can select the desired sample. The Robot
can also be moved locally and potential samples are highlighted using image segmentation.
The corresponding sample is then selected by clicking in the image and the Robot picks it up
autonomously and continues with the autonomous Mission execution.

Implements:

A10
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Glossary

4C acronym of Four Software Concerns according to Radestock and Eisenbach [96]. 44, 53,
66, 133, 134, 319

AD acronym of Architecture Description. 131, 133, 135

AD Element abbreviation of Architecture Description Element [59] 48, 99, 100, 107, 139

AFE acronym of Architecture Framework Element. 39, 47–49, 96, 97, 100

Approach Model Abstraction Type with intermediate abstraction level. This type is used to
describe how the Guidelines are used and combined vi, 50–52, 57, 65, 80, 103–105,
108, 109, 117, 119, 121, 123, 125, 126, 128, 129, 131, 135, 140, 156, 180, 228, 256,
276, 294, 317

Architecture fundamental concepts or properties of a system in its environment embodied
in its elements, relationships, and in the principles of its design and evolution [59] v,
23–29, 39, 40, 42, 45, 47, 49–54, 57, 64, 68, 78, 79, 92–94, 96, 97, 99–101, 103, 104,
111, 116, 117, 119, 121, 125, 126, 129, 132–134, 136, 139–144, 148, 151, 186, 189,
315–317

Architecture Context contains the documentation of the elements of an architectural de-
scription that do not contain architectural decisions but rather classify the environment
of the architecture. This contains a brief description of the system-of-interest and its
environment, the Stakeholder identification and system specific Concerns vi, ix, 47, 48,
97, 100–103, 111, 113, 117, 125, 147

Architecture Decision documentation of decisions regarding the Architecture [59] 49, 51,
55, 56, 64, 65, 78, 79, 92, 93, 97, 100, 101, 103–105, 107, 119, 125, 128, 133, 136,
139, 141, 142, 315

Architecture Description work product used to express an Architecture [59] v, ix, 13, 23,
26–30, 38, 39, 46, 47, 49–51, 53, 95, 96, 99–101, 103, 105, 111, 113, 115–117, 123,
125, 126, 128, 129, 131–137, 139–143, 315, 317

Architecture Description Element is any construct related to an Architecture Description.
Every Stakeholder, Concern, Architecture Viewpoint, Architecture View, Model Kind,
Architecture Model, Architecture Decision and Rationale is considered an AD element.
[59] 39, 48, 99, 315
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Architecture Description Process process of describing an Architecture v, vi, 100, 101, 103,
105, 112, 115

Architecture Framework conventions, principles and practices for the description of Ar-
chitectures established within a specific domain of application and/or community of
stakeholders [59] v, 13, 18, 23, 24, 26, 28–30, 38–40, 42, 44, 46–48, 51, 53, 94, 96,
134, 136, 137, 139, 317, 318

Architecture Framework Element all Architecture agnostic AD Elements defining the Archi-
tecture Framework. v, 39, 48, 96, 99, 100

Architecture Model an Architecture View is composed of one or more Architecture Models.
An Architecture Model uses modelling conventions appropriate to the Concerns to be
addressed. These conventions are specified by the Model Kind governing that Model.
[59] 28, 47, 51, 52, 100, 105–107, 119, 135, 136, 155, 179, 227, 255, 275, 293, 315,
316, 318

Architecture Rationale Records explanation, justification or reasoning about architecture
decisions that have been made. The rationale for a decision can include the basis for a
decision, alternatives and trade-offs considered, potential consequences of the decision
and citations to sources of additional information. [59] 107, 119, 136, 141, 318

Architecture View expresses the Architecture of the system-of-interest in accordance with
an Architecture Viewpoint [59] 28, 103, 315, 316, 320

Architecture Viewpoint work product establishing the conventions for the construction,
interpretation and use of Architecture Views to frame specific system Concerns [59] 27,
28, 39, 47, 50, 315, 316, 320

Aspect abbreviation of Viewpoint Aspect. 64, 65, 79, 93, 97, 107, 117, 119, 121, 123, 126,
140, 143

Autonomy Robotic Concern that deals with the approach that autonomous robotic system
can achieve flexibility, usability and dependability by solving problems on their own.
43, 46, 67, 81, 116, 125, 126, 129, 319

Capability generation of specific information through calculations based on specific data to
solve a specific problem. Definition 4.1 v, vi, ix, 41, 53, 58–63, 66–76, 78, 94, 96, 101,
119–121, 123, 125, 133, 134, 141, 179, 181, 184–190, 228, 231–233, 242, 246, 264,
316, 317, 319, 320

Capability trigger is a Correspondence Rule between Viewpoints Capabilities and Skills 95

Communication Software Concern that deals with the exchange of data, with a foundation
of communication paradigms such as request-reply, synchronous and asynchronous.
[96] 44, 46, 53, 58, 63, 64, 66, 319

Complexity Robotic Concern that frames the fact that complexity is one of the major chal-
lenges in robotic systems 35, 43, 45–47, 49, 52, 55, 58, 67, 81, 96, 126, 318, 319
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Computation Software Concern is concerned with the data processing algorithms required
by an application, with a foundation in traditional paradigms such as functional
programming and object-oriented programming. [96] 44–46, 53, 58, 63, 64, 66, 319

Concern interest in a system relevant to one or more of its Stakeholder [59] v, ix, 27–29, 39,
41–49, 53, 55–58, 64, 65, 67, 70, 78, 79, 81, 96, 97, 100, 103, 117, 133, 134, 136,
142, 147, 149, 151–153, 315, 316, 318, 319

Configuration Software Concern that determines which system components should exist,
and how they are inter-connected, and is based on principles of software architecture.
[96] 44, 46, 53, 67, 70, 78, 319

Coordination Software Concern that is concerned with the interaction of the various system
components. [96] 44, 46, 53, 67, 70, 78, 319

Correspondence are used to express Architecture relations of interest within an Architecture
Description [59] 28, 39, 54, 94, 95, 139

Correspondence Rule are used to express Architecture relations of interest within an Archi-
tecture Framework [59] v, 28, 39, 94–97, 316, 317, 319

D&I abbreviation of Decision & Interpretation components 69, 73, 232

Decision & Interpretation Skill components that make decisions or interpretations based
on data. 70, 72, 73, 317

Dependability Robotic Concern that is concerned with the robotic requirement that a Robot
need to solve Tasks reliable 42, 43, 45, 46, 55, 57, 67, 78–81, 103, 319

Developer group of Stakeholders interested in the development of the Robot 40, 41, 43, 47,
53, 96, 103, 140, 149, 152, 319

Flexibility Robotic Concern that frames the robotic requirement to solve various Tasks 35,
42, 43, 45, 46, 55, 58, 67, 81, 92, 319

Guideline Model Abstraction Type with highest abstraction level. This type is used to describe
general concepts and guidelines vi, 49–52, 57, 65, 80, 103–105, 107, 108, 117, 119,
121, 123, 125, 126, 128, 129, 131, 135, 140, 156, 180, 228, 256, 276, 294, 315

Hardware abstraction is a Correspondence Rule between Viewpoints Physical and Capabilities
95

Interface is a Correspondence Rule between Viewpoints Physical and Mission 95

Hardware Interface Capability type which is used to access the physical hardware compo-
nents of a Robot. 61, 62

Implementation Model Abstraction Type with lowest abstraction level. This type is used to
describe to describe concepts how Approaches are implemented. vi, 50–52, 57, 65, 80,
103–105, 109, 117, 119, 121, 123, 125, 126, 128, 131, 135, 140, 156, 180, 228, 256,
276, 294
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Mission the collection of all Tasks a Robot has to solve vi, vii, ix, 31–33, 53, 66, 68, 80–83,
86–94, 96, 116, 123–128, 135, 136, 186, 192, 194, 195, 255, 257, 260, 264–266, 268,
269, 271–273, 293, 295–297, 299–302, 304, 305, 307–314, 317–320

Mission Control Environment Mission Control Task which is not part of the Robot Mission
83, 91, 318

Mission Control Interface connection between Mission Control Robot and Mission Control
Environment 83, 88, 90–94, 272

Mission Control Robot Mission Control Task which is part of the Robot Mission 83, 91, 94,
318

Mission Control Task top level Task of a Mission 82, 83, 88, 91, 317, 318

Mission Environment the part of the Mission that is not solved by the Robot 33, 80–83, 86,
88, 91–93, 103, 136, 149, 265, 311

Model abbreviation of Architecture Model [59] vi, vii, 51, 52, 100, 103–110, 113, 117–131,
135, 136, 140, 141, 155–157, 179–181, 227–229, 255–257, 275–277, 293–295, 316,
318

Model Abstraction Type separation of Concern Complexity based on abstraction level of the
architecture description v, 47–52, 57, 65, 66, 79, 80, 93, 94, 96, 97, 104–106, 113,
128, 136, 139–141, 315, 317

Model Kind conventions for a type of modelling [59] ix, 28, 47–49, 51–53, 55, 57, 58,
65–67, 79–81, 93, 94, 96, 100, 105, 106, 134, 139, 141, 143, 315, 316

Physical the physical part of the system. vi, vii, ix, 55, 58, 59, 71, 73, 96, 116–119, 129–131,
141, 155, 157, 275, 277, 317

Physical Environment the physical world without the Robot’s hardware 32, 57, 71, 103,
148–150

Process Skill Skill Type that has the purpose of encapsulating knowledge about a process. v,
74, 75

Rationale abbreviation of Architecture Rationale [59] 119, 121, 123, 125, 128, 131, 136,
315

Relations is describing relations between Models within a View vi, vii, 52, 103, 110, 117–124,
126, 127, 129, 130, 155, 157, 181, 229, 257, 277, 295

Resource allow the dependencies between Skills created by the physical world to be explicitly
described. 69, 71–73, 79, 80

RoAF acronym of Robot Architecture Framework. v, vi, 7–9, 12, 18, 23, 24, 26, 28, 30, 32,
38, 39, 41–45, 47–52, 54, 56, 57, 59, 65, 68, 74, 79, 93–97, 99–101, 103–105, 107,
111–113, 115, 117, 125, 132–137, 139–145, 147, 149, 150, 319

318
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Robot a machine which is designed to solve various Tasks in physical environments. 3.2
v, vi, 25, 26, 30–47, 49–59, 61–64, 66–68, 71, 73–78, 80–88, 90–96, 99–103, 111,
113, 115, 116, 125, 126, 129, 131–134, 139, 140, 142, 143, 147–152, 158, 159, 161,
162, 164, 165, 168, 172–178, 182–184, 186–189, 191, 192, 194–200, 202–210, 213,
217, 218, 222, 224, 228, 231–233, 237, 238, 240–243, 247, 249, 251–253, 258–260,
263–268, 279, 280, 282, 283, 290, 296, 297, 299–308, 310–314, 317–320

Robot Architecture Framework Architecture Framework for robotics domain 7, 13, 318

Robot Mission the part of the Mission that is solved by the Robot v, 32, 33, 53, 81, 82, 88,
91, 92, 311, 312, 317, 318

Robotic Concern the Developer five Concerns for the Robot. These are Flexibility, Usability,
Dependability, Complexity and Autonomy. Together with the Software Concerns, these
Concerns form the main Concerns specified in the RoAF. v, 42–45, 55, 81, 92, 96, 152,
316, 317, 319

Skill ability to solve a specific Task effectively by a combination of knowledge, capabilities
and experience. Definition 4.2 v, vi, ix, 41, 46, 53, 67–80, 84, 85, 87, 94–96, 121–123,
125, 133, 134, 227–229, 231–236, 240–246, 248–252, 254, 262–264, 271, 298–300,
309, 310, 312, 313, 316–320

Skill Primitive Skill Type that has the purpose of linking a Capability directly to a Task. v,
73–75, 232, 262

Skill Type specialization of the general Skill for a specific purpose. 68, 73–80, 318, 319

Software Concern identify relevant aspects from the perspective of the Robot as a complex,
distributed software system. Theses are the 4C: Computation, Communication, Configu-
ration and Coordination identified by Radestock and Eisenbach [96] 18, 44, 45, 55, 57,
66, 78, 81, 92, 96, 316, 317, 319

Stakeholder individual, team, organization, or classes thereof, having an interest in a system
[59] ix, 26–29, 39–42, 44–49, 55, 58, 64, 67, 81, 96, 97, 100, 103, 117, 125, 140, 147,
149–152, 155, 158, 159, 315–317, 319

Subskill Skill used as component in another Skill 69–73, 78, 85, 228, 231, 233–235, 262,
298, 300

Subtask Task that is used to solve a higher-level Task. 72, 84–87, 89, 149, 163, 230, 233,
234, 261, 262, 264, 297, 298

Task a defined modification of the physical world or a determination of information about
the physical world v, 31, 33–38, 40, 42, 43, 45, 66–70, 72–92, 94, 95, 103, 116,
125, 133, 144, 147–150, 152, 158, 163–168, 175, 182, 186, 189, 192, 194, 200, 202,
207, 208, 228, 230–232, 234, 237–242, 247, 248, 256, 258–268, 270–272, 281, 294,
296–301, 304, 307–310, 312, 313, 317–319

Task Abstraction Skill Skill Type that has the purpose to allow a simplified programming. v,
77, 78
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Task Interface connection between two or more Tasks 83, 85–88, 91, 93, 272

Task Programming Skill Skill Type that has the purpose to allow a simplified programming.
v, 76, 78

Task solving is a Correspondence Rule between Viewpoints Skills and Mission 95

Usability Robotic Concern that deals with the robotic requirement that a Robot need to be
usable to solve Tasks 35, 42, 43, 45, 46, 55, 81, 92, 319

User group of Stakeholders interested in the application of the Robot 40–42, 46, 96, 103,
149, 152

View abbreviation of Architecture View [59] vi, vii, ix, 27, 51, 54, 83, 94, 100, 101, 103–105,
110, 111, 113, 116–132, 134–136, 139–141, 155, 157, 179, 181, 227, 229, 255, 257,
275, 277, 293, 295, 318

Viewpoint abbreviation of Architecture Viewpoint [59] 29, 42, 47–49, 52–55, 57, 58, 67, 68,
94, 96, 97, 100, 103–105, 111, 113, 117, 126, 132–134, 139, 140, 142, 143, 316, 317,
319, 320

Viewpoint Aspect identifies the relevant aspects of a certain Viewpoint. 48–50, 55–58,
64–67, 78–81, 92–95, 105–111, 117, 119, 121, 123, 126, 131, 132, 134, 141, 143

Viewpoint Capabilities perspective from which the Capabilities and their communication
with each other are visible ix, 53, 57, 58, 64–66, 94, 100, 143

Viewpoint Mission perspective from which the Mission is visible ix, 53, 80–83, 92–94, 100,
123, 133

Viewpoint Physical Perspective from which the Robot is viewed as a physical system. ix, 53,
55–57, 94, 95, 100, 101, 117, 129, 133, 135

Viewpoint Skills perspective in which Skills and their relationship are visible. ix, 53, 66–68,
70, 78–80, 94, 100, 121
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