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Summary

As machine learning algorithms become increasingly integrated into critical sys-

tems, assessing the reliability of their predictions is essential, especially when errors

can have severe consequences. Incorporating statistical methods can help to quan-

tify the inherent uncertainty and improve decision-making. This work proposes a

new method for estimating confidence limits for prediction performance.

In the first part, we introduce fundamental concepts and findings from the

machine learning and statistical inference literature, framing the selection and

evaluation of prediction models as a statistical inference problem. In particular, we

consider the simultaneous evaluation of multiple candidate models and interpret

this as a multiple testing problem.

We also explore the bootstrap and nonparametric bootstrap tilting, which

provides a reliable approach for estimating confidence intervals without the need

to assume a specific underlying distribution.

The second part integrates these concepts and presents the proposed multiplicity-

adjusted bootstrap tilting lower confidence limits for conditional prediction perfor-

mance. This approach is computationally undemanding and universally applicable

to any combination of prediction models, model selection strategies, and perfor-

mance measures.

We prove that the proposed interval asymptotically achieves the nominal cover-

age probability and conduct simulation experiments to assess its goodness in finite

samples. Specifically, we investigate the prediction accuracy of lasso and random

forest classifiers. The proposed approach shows reliable coverage and competitive

lower confidence limits. In contrast, we also show that recent alternative methods

such as bootstrap bias-corrected cross-validation and nested cross-validation may

fail to accurately track conditional performance.

Finally, we apply the proposed approach to real-world data, where it demon-

strates stability when model selection is highly sensitive to the allocation of the

sample data to the learning and evaluation sets or in the presence of a distribution

shift.
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Zusammenfassung

Machine Learning und Vorhersagemodelle werden zunehmend in kritische Anwen-

dungsbereiche integriert. Damit wird gleichzeitig die Bewertung der Zuverlässigkeit

der Vorhersagen immer wichtiger, insbesondere wenn Fehler schwerwiegende Fol-

gen haben können. Diese Arbeit schlägt eine neue Methode zur Schätzung von

Konfidenzgrenzen für die Vorhersagegüte vor.

Im ersten Teil werden grundlegende Konzepte aus der Literatur zu Machine

Learning und statistischer Inferenz vorgestellt. Ziel ist es, die Auswahl und Be-

wertung von Vorhersagemodellen als statistisches Inferenzproblem zu verstehen.

Insbesondere wird die simultane Gütebewertung mehrerer konkurrierender Mod-

elle als multiples Testproblem interpretiert.

Außerdem wird der Bootstrap und das sogenannte Nonparametric Bootstrap

Tilting beschrieben, eine Methode zur zuverlässigen Schätzung von Konfidenzin-

tervallen ohne starke Verteilungsannahmen.

Im zweiten Teil werden diese Konzepte zusammengeführt und die vorgeschlage-

nen Multiplizitäts-adjustierten Bootstrap Tilting Konfidenzintervalle für die be-

dingte Vorhersagegüte vorgestellt. Der Ansatz ist recheneffizient und universell

anwendbar, unabhängig von der Kombination der Vorhersagemodelle, den Strate-

gien zur Modellselektion und den Gütemaßen.

Es wird bewiesen, dass die vorgeschlagenen Konfidenzintervalle asymptotisch

die nominale Überdeckungswahrscheinlichkeit erreichen. In Simulationsexperi-

menten wird ihre Güte in endlichen Stichproben bewertet. Insbesondere wird

die Vorhersagegenauigkeit von lasso und Random Forest Klassifikatoren un-

tersucht. Die vorgeschlagenen Intervalle erreichen zuverlässig die gewünschte

Überdeckungswahrscheinlichkeit und bieten konkurrenzfähige untere Konfidenz-

grenzen. Im Vergleich dazu schätzen alternative Methoden wie Bootstrap Bias-

Corrected Cross-Validation und Nested Cross-Validation nicht immer zuverlässig

Konfidenzintervalle für die bedingte Vorhersagegüte.

Abschließend wird der vorgeschlagene Ansatz auf echte Daten angewendet,

wo er sich als stabil erweist, selbst wenn die Modellselektion empfindlich auf die

Aufteilung der Daten in Lern- und Evaluationsdaten reagiert oder wenn sich die

Verteilung zwischen den beiden Phasen ändert.
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3.1 Šidák and Bonferroni adjusted significance levels . . . . . . . . . . . 37

6.1 Per-data set comparisons of lower limits in the lasso simulations . 101

6.2 Per-data set comparisons of lower limits in the random forest sims. 104

7.1 Summaries on the Openml benchmark data sets . . . . . . . . . . . 106

7.2 Prediction accuracies and ranks in Cardiotocography example (i) . 110

7.3 Lower limits in Cardiotocography example (i) . . . . . . . . . . . . 111

7.4 Prediction accuracies and ranks in the Cardiotocography ex. (ii) . . 111

7.5 Lower limits in the Cardiotocography example (ii) . . . . . . . . . . 112

7.6 Prediction accuracies and ranks in the Cardiotocography ex. (iii) . 113

7.7 Lower limits in the Cardiotocography ex. (iii) . . . . . . . . . . . . 113

C.1 Additional lasso simulation experiment scenarios . . . . . . . . . . 128

C.2 Additional random forest simulation experiment scenarios . . . . . . 128

C.3 lasso simulation experiment scenarios for auc . . . . . . . . . . . 129

C.4 Comp. of lower limits from emp. and normal transformation . . . . 130

C.5 Results to conditional coverage probability simulations . . . . . . . 130

C.6 Coverage probabilities by λ in conditional coverage sims. for mabt 131

C.7 Coverage probs. by λ in cond. coverage sims. for bbc-cv & ncv . . 133

C.8 Coverage probs. by λ in distribution shift cond. cov. sims. for mabt 135

C.9 Cov. probs. by λ in dist. shift cond. cov. sims. for bbc-cv & ncv . 136

C.10 Lower limits and tightness in lasso simulations . . . . . . . . . . . 137

C.11 True performances in lasso simulations . . . . . . . . . . . . . . . 137

C.12 Lower limits and tightness random forest simulations . . . . . . . . 138

C.13 True performances in random forest simulations . . . . . . . . . . . 138

D.14 Summary tables to the Openml benchmark . . . . . . . . . . . . . 139

D.15 Data sets for the Openml benchmark . . . . . . . . . . . . . . . . . 140

xvii





Chapter 1

Introduction

1.1 Motivation

In recent years, machine learning has transitioned from specialized applications

to becoming omnipresent. Today, machine learning is seamlessly integrated in ev-

eryday life, powering personalized recommendation algorithms on streaming plat-

forms and e-commerce websites, as well as voice assistants and social media apps,

controlling what content we see and interact with.

However, machine learning influences not only consumer technology, but has

entered even more critical areas. In healthcare, it supports doctors in decision-

making, diagnosing conditions, predicting treatment outcomes, and optimizing

medication. In finance, machine learning assesses risks and possibilities, and de-

tects fraud and money laundering. In cybersecurity, it helps to identify and prevent

threats, from e-mail spam to hacking attempts.

As machine learning algorithms evolve and grow more powerful, they are in-

creasingly integrated into critical systems affecting both personal and public well-

being and security. In many of its applications, machine learning is utilized to

make a decision whether an observation should be categorized into the one or the

other of two competing classes. For example, a spam filter labels an e-mail as

spam or not spam; fraud detection systems classify transactions as fraudulent or

legitimate; and diagnostic tests determine whether a medical condition is present

or absent.

As the consequences of wrong decisions grow progressively more severe, there

is an increasing need to evaluate the reliability of such predictions. A missed

malicious e-mail can compromise data security, while incorrectly flagged legitimate

transactions can disrupt a customer’s financial stability. A false positive in medical

diagnosis may lead to unnecessary treatments, while a false negative may prevent

timely intervention; both may eventually harm patient’s health.

1



2 Chapter 1. Introduction

Machine learning algorithms face inherent uncertainty due to various factors

such as noisy, incomplete, or scarce data. This variability means that basic perfor-

mance metrics may not be sufficient for capturing a model’s probabilistic nature.

To assess and quantify its reliability, more sophisticated approaches are necessary.

Statistical methodology is crucial in this context, as it provides tools to quantify

uncertainty and draw meaningful conclusions about the reliability of predictions.

However, statistical methods are not always applied in machine learning. Many

practitioners focus on empirical performance metrics and heuristics rather than

incorporating formal statistical reasoning. As Breiman (2001) pointed out, statis-

ticians and machine learning practitioners often approach problems from different

perspectives. Statistical modeling emphasizes understanding the data generating

process and interpreting underlying patters, while machine learning typically pri-

oritizes effective prediction, often neglecting to quantify the confidence in those

predictions.

Understanding a prediction model’s confidence is as important as the predic-

tion itself, especially when potential consequences of wrong decisions are severe.

Statistical reasoning, including hypothesis testing and confidence intervals, pro-

vides valuable insights into a prediction model’s reliability. Breiman (2001) ar-

gued that, while machine learning led to revolutionary advances in prediction from

complex, high-dimensional, and noisy real-world data, drawing statistically valid

conclusions should not be ignored. By incorporating statistical methods, machine

learning practitioners can better understand uncertainty and make more informed

decisions.

In the present work, we will propose a universal method for estimating confi-

dence limits for prediction performance measures, particularly in situations where

data is scarce.

1.2 Outline

The present work is designed to address both statisticians and machine learning

practitioners. It avoids unnecessary technical depth in areas where such detail

is not absolutely essential. Instead, it focuses on explaining key concepts in an

illustrative manner, and provides references to more detailed literature where ap-

propriate. The goal is to offer a coherent and self-contained presentation that is

of use to readers from both fields.

This work both builds and expands on our comprehensive publication Rink &

Brannath (2025), which can be accessed online at https://doi.org/10.1007/

s10994-024-06632-w. Specifically, while the principle idea remains the same,

in this work, we additionally investigate theoretical properties that also slightly
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affect the methodology of the proposed method. We will discuss the differences

at a later point.

We divide our presentation into two parts. In Part I we will predominantly

introduce well-established concepts and findings from the literature. In Chapters 2

and 3 we will begin with a brief overview of foundational ideas and results from

machine learning and statistical inference, notably conditional performance and

multiple testing. The objective will be to frame the selection and evaluation

of a prediction model in terms of a statistical inference problem. In addition, in

Chapter 4, we will discuss the bootstrap method and the nonparametric bootstrap

tilting confidence interval, which our proposed method is based on.

In Part II, in contrast, we will almost entirely present only our own contri-

butions, integrating the various introduced concepts into a multiplicity-adjusted

version of the nonparametric tilting interval. In Chapter 5, we will develop its

methodology and prove asymptotic properties. Then, in Chapter 6, we will assess

its goodness in simulation experiments, and apply it to real-world data in Chap-

ter 7. We will conclude Part II with a discussion of our findings in Chapter 8.

Furthermore, the present work contains comprehensive appendices. They

supplement the presentations in the various chapters with additional key con-

cepts, proofs, and results. Moreover, the R code to all plots, computations,

and simulations is provided online via a public GitHub repository at https:

//gitlab.informatik.uni-bremen.de/s_opbgf3/clfpp.

The main body of this work was written entirely by Pascal Rink. Any use of

the pronoun we is purely for stylistic reasons.
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Part I

Foundations
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Chapter 2

Machine Learning

In this chapter, we will explore essential concepts in machine learning for the de-

velopment of effective prediction models. We will begin this chapter in Section 2.1

with a fundamental comparison of the two primary fields of machine learning, su-

pervised and unsupervised learning. Then, in Section 2.2, we will discuss various

aspects of performance estimation, which is a critical aspect of model develop-

ment and goodness assessment. We will conclude Section 2.2 with contrasting

conditional and unconditional performance. These two concepts will be of special

importance later in Part II of this work. Finally, in Section 2.3, we will turn

to model selection and address the challenges of choosing the best model for a

particular problem. This section examines the issue of overfitting and ends with

two approaches to model selection and evaluation, one standard approach and one

that has only recently been proposed.

In this chapter, we will only present selected aspects of machine learning. There

are numerous references that provide comprehensive coverage and discussion on

the field. They include Hastie et al. (2009), Murphy (2012), and Shalev-Shwartz

& Ben-David (2014).

2.1 Supervised and unsupervised learning

A major distinction in machine learning is between unsupervised and supervised

learning. In unsupervised learning, the goal is to explore and understand inher-

ent patterns and relationships within the data without much prior knowledge of

what those might be. Techniques such as clustering or dimensionality reduction

are commonly used for such tasks and work largely without human intervention.

Therefore, unsupervised learning tasks often appear when there is a large amount

of data that is too costly to label or structure by hand.

In supervised learning, in contrast, the data is labeled. In particular, the data

7



8 Chapter 2. Machine Learning

consists of some input values called features and an output value, the label. One

of the primary goals in supervised machine learning is to learn a mapping from

the features to the labels. This is typically referred to as training of a prediction

model. This process is considered to be supervised, because the training is guided

by the labeled data. For example, linear regression can be understood as a type

of supervised learning.

The prediction model will later be utilized to predict the labels of new obser-

vations. Of course, its goodness determines its usefulness, and hence, the goal

is to train prediction models that maximize performance, that is, the similarity

of the predictions and the true labels on new data. The specific way to measure

performance depends on the type of data.

This work concerns supervised machine learning in binary classification prob-

lems, that is, the labels are limited to two discrete classes. Examples of such prob-

lems include e-mail spam recognition, or medical testing to determine whether a

patient has a certain disease or not.

2.2 Performance estimation

In this section, we will discuss various aspects of performance estimation. We

will start by setting the stage for binary classification problems in Section 2.2.1,

introducing both linear and non-linear classifiers, along with an example of each.

In Section 2.2.2, we will give an overview of several common measures of prediction

performance in classification problems. Then, in Section 2.2.3, we will outline how

to estimate the performance on new observations and introduce cross-validation

as a popular tool for this purpose in Section 2.2.4. Finally, we will conclude

with an important and consequential discussion of conditional and unconditional

performance in Section 2.2.5.

2.2.1 Binary classification

In a binary classification problem, the goal is to assign each input data point xi to

one of two discrete labels, which we will represent by the numbers zero and one.

The input data point xi is a k-dimensional vector (xi1, xi2, . . . , xik), and the xij’s

are called the features. They can be both continuously or discretely scaled.

To assign a data point to a label, we learn a function f̂ : xi �→ ŷi ∈ {0, 1} from

a sample of observations (xi, yi), i = 1, 2, . . . , n, that maps an input data point

xi to its prediction ŷi, and yi denotes the true label. Throughout this work, the

ˆ symbol will denote quantities that we learned from the data in some way. The

main challenge is to learn f̂ such that it correctly labels new, unseen data based
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Figure 2.1: Example of a linear (solid line) and a non-linear (dashed line) decision
boundary in a binary classification problem with two features

on patterns learned from the sample.

There are numerous ways to learn these patterns, using different algorithms

that we will refer to as models or classifiers. They can broadly be separated

into linear and non-linear classifiers. Linear and non-linear classifiers operate

differently on the feature space, which is the multi-dimensional space spanned by

the features; in other words, the feature space is a geometrical representation of

all the possible values that the features can take, and each point in the feature

space represents a single data point xi.

In Figure 2.1, we present an example of a two-dimensional feature space, along-

side both a linear and a non-linear so-called decision boundary, represented by a

solid and a dashed line, respectively. The two classes are depicted by circles and

triangles. Binary classifiers, in general, try to separate the two classes in the fea-

ture space by such a decision boundary, which represents the threshold where the

model switches from predicting one class to the other. The shape and complex-

ity of the decision boundary displays how well the model can separate between

the classes. In this example, the non-linear classifier achieves perfect separation

between the classes.
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Linear classifiers Linear classifiers model the decision boundary as a straight

line, when there are only two features present, or a hyperplane, when there are

more than two features, respectively; that is, linear classifiers assume that the two

classes can be separated by a linear function of the features.

One foundational linear classifier is logistic regression. A logistic regression

model predicts the probability πi of an observation to belong to a particular class,

say class one, based on its feature values xi. In particular,

πi =
exiβ

1 + exiβ
. (2.1)

Note that this model assumes a linear relationship between the features xi and

the coefficients β. Therefore, logistic regression is considered a linear classifier.

We compare the probability computed in Equation (2.1) to a threshold, typi-

cally 0.5, in order to obtain the class prediction. Specifically, if πi is larger than

the threshold, we will predict class one.

Usually, the coefficients β = (β1, β2, . . . , βk) are unknown and we need to es-

timate them. For a given data set, the coefficients are basically estimated by

maximizing the likelihood function using gradient descent to iteratively update

the coefficients. For details, see, for example, Hastie et al. (2009).

Non-linear classifiers Non-linear classifiers, in contrast, do not assume linear

separability of the feature space. Instead, they model complex dependencies be-

tween the features and the classes by learning, for example, curved or even more

complex boundaries. This way, non-linear classifiers are more flexible and more

versatile.

A notable example of non-linear classifiers are decision trees. A decision tree

recursively splits the observations into two sets, based on the feature that provides

the best separation, until a stopping criterion is met, such as maximum tree depth

or minimum number of observations in a leaf node. This yields a tree-like structure;

each internal node represents a feature split, and each leaf node represents a class

prediction.

In Figure 2.2 we present an example of a decision tree for the classification

of e-mails into the two classes spam and no spam, due to the features sender,

contains suspicious link, and number of uppercase characters. Here, the decision

tree learns that, initially, the best separation of the data is based on whether the

sender of the e-mail is known or unknown, and in case of the former, the decision

tree predicts the e-mail not be spam. In case the sender is unknown, the decision

tree will continue to make decisions based on the remaining features. For example,
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Figure 2.2: Example of a simple decision tree for e-mail spam detection

for the final feature number of uppercase characters, the decision tree learns the

threshold 42 and predicts the class accordingly.

Linear classifiers are mostly easy to interpret and computationally efficient.

In addition to logistic regression, common instances of linear classifiers are linear

support vector machines and the least absolute shrinkage and selection operator,

which is a variant of logistic regression we will describe in Section 2.3.1. On the

other hand, their limitation to linear decision boundaries might lead to ineffective

prediction models when the feature space is not really linearly separable.

Non-linear classifiers are in fact able to handle such data. Yet, they are typ-

ically less easy to interpret and computationally more expensive. Apart from

decision trees, other noteworthy instances of non-linear classifiers are kernelized

support vector machines and neural networks, see Murphy (2012) and Goodfellow

et al. (2016), respectively, as well as random forests. The latter utilizes multiple

individual decision trees, and we will outline how later in Section 2.3.1.

2.2.2 Measures of prediction performance

To make it simple, we will denote the two classes one and zero the positive class,

and the negative class, respectively. Typically, the positive class represents the

event that we are interested in, for example, the presence of a medical condition
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ŷi = 1 ŷi = 0

yi = 1 |{ŷi = 1} ∩ {yi = 1}| |{ŷi = 0} ∩ {yi = 1}| |N+|
yi = 0 |{ŷi = 1} ∩ {yi = 0}| |{ŷi = 0} ∩ {yi = 0}| |N−|

|N̂+| |N̂−| n

Table 2.1: General form of a confusion matrix

ŷi = 1 ŷi = 0

yi = 1 59 25 |N+| = 84

yi = 0 3 13 |N−| = 16

|N̂+| = 62 |N̂−| = 38 n = 100

Table 2.2: Confusion matrix of the example prediction model

or whether an e-mail is spam. Recall that yi and ŷi denote the true and pre-

dicted label of the i-th observation from some prediction model, respectively. In

the following, we will discuss some common measures to quantify the predictive

performance of binary classification models.

A common way to summarize the predictions of a model is to give its confusion

matrix, which compares the true classes to the predicted ones. In general, a confu-

sion matrix is of the form as presented in Table 2.1. There are four combinations of

true class and predicted class that we need to consider: a true-positive prediction

occurs if the model correctly predicts the positive class; a false-negative predic-

tion is one where the model incorrectly predicts the negative class; accordingly, a

false-positive occurs when the model incorrectly predicts the positive class, and

a true-negative is one where the model correctly predicts the negative class. For

each of these, there is a corresponding cell in the confusion matrix.

We will introduce some notation in order to denote both the row sums and

the column sums of the confusion matrix. Let N+ = {i = 1, 2, . . . , n | yi = 1} be

the index set of observations that belong to the positive class, and, similarly, let

N− = {i = 1, 2, . . . , n | yi = 0} be the index set of observations that belong to the

negative class. Also, let N̂+ = {i = 1, 2, . . . , n | ŷi = 1} denote the index set of

positive predictions, and let N̂− = {i = 1, 2, . . . , n | ŷi = 0} denote the index set

of negative predictions.

We will have a running example of a binary prediction model that we will keep

coming back to. This model’s predictions are summarized in the confusion matrix

in Table 2.2.
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Prediction accuracy The prediction accuracy is the proportion of correct pre-

dictions out of the total number of predictions,

âcc =
1

n

n∑
i=1

1{ŷi = yi}.

Prediction accuracy is a very basic and widely-used measure for the overall

performance of a prediction model across all classes. The example prediction

model from Table 2.2 has prediction accuracy (59 + 13)/100 = 72%.

However, the prediction accuracy of a model can be misleading in the presence

of severe class imbalance. For example, if 95 percent of the observations belong

to the positive class and five percent belong to the negative class, a model that

always predicts the positive class will have 95 percent prediction accuracy, but

performs poorly on the negative class.

Also, prediction accuracy weighs a false-positive prediction equally as bad as a

false-negative. Depending on the application, for example if we want to diagnose

a medical condition, the implications of a false-positive and a false-negative can

vary in severity; a false-negative diagnostic prediction could mean that further

cancer screenings are halted and the present condition will not be recognized.

Sensitivity and specificity Two measures that address the issue of class im-

balance are the sensitivity,

ŝens =
1

|N+|
∑
i∈N+

1{ŷi = yi},

and the specificity,

ŝpec =
1

|N−|
∑
i∈N−

1{ŷi = yi}.

of the prediction model. They represent its accuracies in each class. Other names

for sensitivity are recall or true positive rate, and specificity is also known as true

negative rate.

In the example in Table 2.2, the prediction model has sensitivity 59/84 = 70%

and specificity 13/16 = 81%. Recall that its prediction accuracy is 72 percent; its

sensitivity is only slightly smaller but its specificity is visibly larger, while both,

sensitivity and specificity, are quite different.

Revisiting the class-imbalance example from the previous section, a model that

always predicts the positive majority class will have a sensitivity of 100 percent,

but its specificity will be zero percent.
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Balanced prediction accuracy It is not unusual to take the average of the

sensitivity and the specificity of a prediction model to summarize both in a single

number, the balanced prediction accuracy,

b̂acc =
1

2

⎛⎝ 1

|N+|
∑
i∈N+

1{ŷi = yi}+ 1

|N−|
∑
i∈N−

1{ŷi = yi}
⎞⎠ .

From the sensitivity and specificity estimates of the prediction model presented

in the example from Table 2.2, we obtain a balanced prediction accuracy of (70%+

81%)/2 = 76%.

While the balanced prediction accuracy mitigates the issue of class imbalance

to some extent, it is still somewhat simplistic and it does not capture all potentially

relevant aspects of prediction performance. Therefore, an individual consideration

of sensitivity and specificity might be useful, or at least an unequal weighing of

sensitivity and specificity,

ŵacc =
ω

|N+|
∑
i∈N+

1{ŷi = yi}+ 1− ω

|N−|
∑
i∈N−

1{ŷi = yi},

where ω ∈ [0, 1] is the weight for sensitivity.

Precision The precision of the model is its accuracy among positive predictions,

p̂rec =
1

|N̂+|
∑
i∈N̂+

1{ŷi = yi}.

Precision is also known as positive predicted value.

The precision of the prediction model from the example in Table 2.2 is 59/62 =

95%.

Negative predicted value The negative predicted value of the prediction model

is its accuracy among negative predictions,

n̂pv =
1

|N̂−|
∑
i∈N̂−

1{ŷi = yi}.

The prediction model from the example in Table 2.2 has a negative predicted value

of 25/38 = 66%.
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Performance measure Estimate

Precision 95%

Specificity 81%

Balanced prediction accuracy 76%

Prediction accuracy 72%

Sensitivity 70%

Negative predicted value 66%

Table 2.3: Performance estimates of the example prediction model presented

Choice of measure Table 2.3 lists all the performance estimates from the pre-

vious sections of the example prediction model. It is hard to say whether its

predictive performance is bad, mediocre, good, or even very good; this heavily

depends on what we are particularly interested in and the context in which the

model is applied.

For example, when diagnosing a medical condition, it may be more important

to identify all patients who are likely to have that condition, even at the cost of

some patients being identified as having the condition when they actually do not.

This means to aim for a prediction model with high sensitivity. The model from

the example in Table 2.2, however, only has a sensitivity of 70 percent, so it might

be worth trying to find a predictive model with higher sensitivity.

In another example, when we try to detect spam e-mails, marking a legitimate

e-mail as spam can cause important information not being communicated. Here,

it is probably wiser to make sure that e-mails marked as spam are in fact spam,

even at the cost of some spam e-mails not being detected. This means to aim

for a prediction model with a high precision, which applies to the model from the

example in Table 2.2, as its precision is 95 percent.

Note that all the presented prediction measures can be written as means. This

property will be important later. We will come back to that.

2.2.3 Generalization performance

In the previous section, we explored a variety of measures that capture different

aspects of predictive performance. They allow for a deeper understanding of a

prediction model’s strengths and weaknesses.

However, another important aspect to consider when evaluating prediction

performance is the method of evaluating the model itself. A key focus here is gen-
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eralization performance, which refers to the model’s performance on new, unseen

data. In rare cases, we can keep a separate hold-out set of data that we use for

model fitting; its only purpose is to test the model’s performance, providing an

independent evaluation of its ability to generalize to new, unseen data. However,

more often than not, we only have a single data set at hand that we need to use

wisely for both model fitting and estimation of generalization performance.

One approach to do so is data splitting. This is the most straightforward

approach to estimate generalization performance. We split the sample at hand

randomly into two parts, the training and the test set. We use the observations

in the training set exclusively to fit the model and the observations in the test

set exclusively to estimate the model’s generalization performance, for example,

its prediction accuracy. This way, no information from the test set is used during

model fitting.

A major drawback of data splitting is that we need to irrevocably allocate the

observations to either the training or the test set. This is particularly challenging

when only little data is available. By allocating a greater fraction towards model

training, the estimate of generalization performance gets less reliable, and the

allocation of a greater fraction towards performance estimation deteriorates the

model’s predictive performance, as it learns from less data.

Another approach is cross-validation, which we will address in the next section.

A third example is bootstrap aggregating or bagging that we will not discuss here;

see Murphy (2012) for more information.

2.2.4 Cross-validation

An alternative option to data splitting is cross-validation, which might be the most

popular and widely-used approach to estimate the generalization performance of

a prediction model. Instead of a fixed allocation of the observations in the sample

at hand into a training and a test set, each is used for both, but not at the same

time.

Rather, we split the sample into K > 1 equal-sized parts, which are also called

folds. In each iteration, one of the folds is held out and serves as the test set. The

remaining K − 1 folds are used to train the prediction model, which is then used

to predict the observations in the test fold. This way, for each fold, we obtain an

estimate of prediction performance. Finally, the average of these K numbers is an

estimate of the generalization performance of the prediction model.

More specifically, let I� denote the index set of the observations that are al-

located to the �-th fold. Let β̂
(−�)

denote the coefficient vector that we obtain

from training the prediction model on all but the �-th fold, and let the associated
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Figure 2.3: Illustration of 5-fold cross-validation

prediction function be denoted by f̂ : (xi, β̂
(−�)

) �→ ŷi ∈ {0, 1}. In addition, let

u : (ŷ, y) �→ {0, 1} be a utility function that formalizes how well f̂ predicts. For

example, u(ŷi, yi) = 1{ŷi = yi} is associated with prediction accuracy, and is a

typical choice in a classification setting.

Then, we estimate the prediction performance in the �-th fold by

θ̂
(�)

cv =
1

|I�|
∑
i∈I�

u[f̂(xi, β̂
(−�)

), yi],

and the average across the K folds

θ̂cv =
1

K

K∑
�=1

θ̂
(�)

cv =
1

n

K∑
�=1

∑
i∈I�

u[f̂(xi, β̂
(−�)

), yi]

estimates the generalization performance.

There are some standard choices for the number of folds K, which include

K = 5 and K = 10. In Figure 2.3, 5-fold cross-validation is illustrated. Another

common option is to take K = n. This is called leave-one-out cross-validation.

All of these choices lead to different levels of bias and variance in the estimation.

For a discussion, see Hastie et al. (2009), as we will not get into more detail here.

Note that the cross-validation scheme also allows for the computation of a
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variance estimate

σ̂2
cv =

1

n− 1

K∑
�=1

∑
i∈I�

{u[f̂(xi, β̂
(−�)

), yi]− θ̂cv}2.

We will revisit this estimate later.

Cross-validation can also be used for model selection. For that, the cross-

validation performances θ̂cv,1, θ̂cv,2, . . . , θ̂cv,m are computed and compared to each

other. Usually, we would select the best-performing among them for future use.

2.2.5 Conditional and unconditional performance

There are different kinds of generalization performances that we might be inter-

ested in. When we evaluate the unconditional prediction performance of a model,

we estimate the average performance of the fitting algorithm across a wide range

of hypothetical same-sized data sets from the same underlying distribution. Here,

we do not account for specific characteristics of the sample. Rather, the goal is to

ensure that the model is able to perform well across different instances of training

data. In this way, unconditional performance reflects the interaction between the

model and the data-generating process. In practice, it is often utilized to compare

different fitting algorithms.

On the other hand, when we are interested in the conditional prediction per-

formance, we estimate the generalization performance of the prediction model

trained on the sample at hand. Thus, it depends on the particularities of the

sample. In many practical applications, though, conditional performance is often

the more relevant measure, because it reflects how well we can expect the model to

predict future observations, rather than its theoretical average performance across

hypothetical instances.

To further illustrate the differences, we will give a mathematical description

of conditional and unconditional performance. Suppose we have a utility function

u : (ŷ, y) �→ {0, 1}, and let f̂ : (xi, β̂) �→ ŷi ∈ {0, 1} be the function that predicts yi

from its corresponding feature vector xi and estimated coefficients β̂. Moreover,

let X and y denote the feature matrix and vector of true class labels of the sample

at hand, respectively. Then, the conditional prediction performance is given by

perfX,y = E{u[f̂(x̃, β̂), ỹ] | X,y},

where (x̃, ỹ) is an independent new observation from the same distribution.

While perfX,y is a random quantity that depends on the sample (X,y) at
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hand, in contrast, the unconditional performance

perf = E(perfX,y).

is its expected value across multiple hypothetical samples.

For the further course of this work, we will focus our interest on conditional

performance. In fact, since Bates et al. (2024) argued that the cross-validation es-

timate of generalization performance θ̂cv estimates perf rather than the perfX,y,

we will not be able use cross-validation to evaluate prediction models. There are,

however, proposals by Bates et al. (2024) and Tsamardinos et al. (2018) to esti-

mate conditional performance using modified variants of cross-validation. We will

review them later in Part II of this work. In any case, cross-validation often is a

valuable selection tool in the presence of multiple competing prediction models.

2.3 Model selection

Typically, when fitting prediction models in supervised learning applications, there

are multiple candidate models available that could potentially provide reliable pre-

dictions. This is because different models work well for different types of data, and

even within certain applications, there is rarely a single model that is universally

best suited to learn from different samples. In addition, a model might perform

differently in terms of different measures of prediction performance. It is a major

and intricate task to select a prediction model for future use among the candidate

models.

The abundance of candidate models is due on the one hand to the fact that

there are so many different algorithms that can learn prediction models for binary

classification, and on the other hand due to fact that, within the same algorithm,

we can often adjust so-called hyperparameters, which can lead to completely differ-

ent prediction models. These hyperparameters usually control the complexity of

the model. For example, hyperparameters for a decision tree include the maximum

tree depth and the minimum number of observations in a leaf node.

Complexity refers to the ability of a model to capture intricate or complicated

interactions among the features and between the features and the labels. Less

complex models tend to produce reliable predictions when these relationships are

rather simple or when there are not many features present. More complicated

data requires more complex models. But as complexity increases, so does the risk

of overfitting, that is, the model fits the data in the sample too closely. It then

fits to the noise and even potential outliers. Overfitting generally leads to poor

generalization performance. The challenge is, thus, to select a prediction model
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Figure 2.4: Behavior of in-sample (solid line) and out-of-sample prediction perfor-
mance (dashed line) as model complexity increases

for future use that balances complexity and performance on new, unseen data.

In Section 2.3.1, we will show how to track the occurrence of overfitting and

present modifications on both logistic regression and decision trees that mitigate

this risk. Then, in Section 2.3.2, we will present both a well-established and a

recently proposed approach by Westphal & Brannath (2020) to use the sample for

efficient model selection. In this context, we will also address the phenomenon of

selection-induced over-optimism.

2.3.1 Overfitting

Generally speaking, overfitting occurs when a model does not only capture the

underlying patterns in the data, but also learns from the random fluctuations or

noise. As a result, the model becomes overly sensitive to the specific data it is

fitted to and, consequently, performs relatively poorly on new, unseen data. The

risk of overfitting is particularly high when there are too many features in the data

relative to the number observations, or when a model is complex enough to be able

to memorize the particularities of the data instead of learning the generalizable

trends.

We can track overfitting by comparing a model’s in-sample performance with



2.3. Model selection 21

its out-of-sample performance. The former means the performance on the data it

is fitted to, while the latter means the performance on new, unseen data.

We illustrate the behavior of the in-sample and out-of-sample performance

when model complexity increases in Figure 2.4. When model complexity is low,

both in-sample and out-of-sample performance are also low, because the model

essentially underfits, that is, it fails to capture the underlying patterns. As the

complexity increases, both performances increase, because the model becomes

better at learning the underlying trends. However, beyond a certain point, while

in-sample performance naturally continues to improve, the out-of-sample perfor-

mance begins to decline, signaling overfitting. The optimal prediction model is

the one that achieves the highest out-of-sample performance.

There are basically two approaches to handle overfitting. The first is, as we

usually only have a single set of data at hand, to utilize it wisely to obtain estimates

of both in-sample and out-of-sample performance. One approach is to use cross-

validation. The cross-validation estimates of prediction performance generally give

a fairly good indication of which of the candidate models generalize well. Note that

well means in relative terms and not in absolute, since cross-validation estimates

the unconditional performance. Another way is to split the data set at hand into

two, use one part for model fitting and in-sample performance estimation, and the

other for prediction and out-of-sample estimation.

The second strategy is to penalize the complexity of a regression model, and,

therefore, discouraging it from fitting noise or overly complex patterns in the

data. In Section 2.2.1 we established logistic regression as a simple approach

to classification. While the resulting coefficient estimates are easy to interpret,

logistic regression can struggle with overfitting in high-dimensional data sets or in

the presence of irrelevant features. Adding a penalty to the complexity is called

regularization. One such instance is �1 regularization, also known in this context

as the Least Absolute Shrinkage and Selection Operator, or lasso, for short.

LASSO The lasso penalty term is proportional to the sum of the absolute

values of the estimated coefficients β̂j. It, thus, penalizes large coefficients and

shrinks some of the coefficients of less important features exactly to zero, as shown,

for example, in Section 13.3 in Murphy (2012). Shrinking coefficients exactly to

zero effectively excludes the corresponding features from the prediction model,

which simplifies it and makes it easier to interpret.

The strength of regularization affects the number of features that are excluded

from the model and is controlled via the hyperparameter λ. Admissible values for
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λ are larger than zero but smaller than

λmax = min {λ > 0 | β̂λ = 0}, (2.2)

the smallest value for the hyperparameter such that none of the features are se-

lected into the prediction model, and β̂λ is the estimate of the true coefficient

vector β from a lasso regression with regularization parameter λ.

The lasso works particularly well in situations where there are many features,

but only a small subset of them are truly informative for prediction. However, if

the true underlying dependencies between the features and the true class labels

are complex or the signal is in fact not sparse, the lasso may perform poorly

because it eliminates features. In such cases, a combination of �1 and �2 penalty

terms might be a better option, leading to the elastic net.

Elastic net The �2 penalty is proportional to the sum of squares of the esti-

mated coefficients β̂j and encourages the coefficients to be evenly small, but in

contrast to the �1 penalty, it does not force them to be exactly zero. This is use-

ful when we believe that most of the features are informative for the true class

label, but some may be noisy, have only little influence, or when some features

are highly correlated. Again, the strength of regularization is controlled via a

hyperparameter.

Combining the �1 and �2 penalties yields the elastic net, which has two hy-

perparameters λ ∈ [0, λmax(γ)] and γ ∈ [0, 1] that control the overall strength

of regularization and the balance between the �1 and �2 penalty, respectively. In

particular, the elastic net penalty can be written as λ[γ‖β‖1 + (1− γ)‖β‖22].

Random forest In addition to logistic regression, we mentioned decision trees

as an example of a non-linear classifier in Section 2.2.1. While a single decision

tree can separate the classes based on feature splits, it is likely to overfit, because

the splits can be highly specific, capturing noise rather than underlying patterns.

This can happen especially when the tree is deep and complex.

A random forest is a so-called ensemble learning method that builds on the

idea of decision trees. Ensemble learners combine multiple individual and typically

simple prediction models. They aggregate their predictions in order to improve

the overall predictive performance.

In particular, a random forest combines multiple decision trees. Random

forests address overfitting by averaging the predictions from a collection of de-
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cision trees. For each such trees, we randomly draw subsets with replacement

from the observations (so-called bootstrap samples ; we will discuss bootstrap sam-

pling in great detail in Chapter 4) and a random subset of the features. This way,

we obtain multiple decision trees and multiple predictions per observation. The

final predicted class for an observation is determined by a majority vote among

the predictions from the individual trees.

Random forests are useful in prediction problems with many features that have

complex dependencies. They usually yield high predictive performance, but this

comes at the expense of higher computational cost and worse interpretability than,

for instance, a single decision tree or a lasso model.

Note that the above strategies only help to handle overfitting. They do not

directly address model selection or generalization performance. When we need

to do both model selection and evaluation, even more careful consideration is

required.

2.3.2 Selection-evaluation pipelines

In case we need to first select a model from a collection of competing prediction

models before we can evaluate it, the predominant recommendation in the liter-

ature is to split the sample into three parts, see, for example, Goodfellow et al.

(2016), Hastie et al. (2009), Japkowicz & Shah (2011), Murphy (2012), or Raschka

(2018).

Training set The first part, the training set, is used to fit all the candidate

models in order to learn the underlying patterns and allow the models to adjust

in order to accurately map the features to the correct labels. It is typically the

largest of the three parts and contains usually at least 50 percent of the observa-

tions in the sample.

Validation set The second part is called the validation set. Its purpose is to find

values for the candidate models’ hyperparameters that lead to a high prediction

performance. This is known as tuning. Keeping the validation set separate from

the training set mitigates the risk of overfitting, and ensures that the models do

not memorize the training data, but rather generalize well to new, unseen data.

Typically, we prespecify all the hyperparameter values that we want to test,

fit the corresponding models on the training set, and compare them based on

their predictions in the validation set. Alternatively, we could also validate the
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model iteratively by repeatedly going back and forth between the training and the

validation set, adjusting the hyperparameters. In any case, the prevailing recom-

mendation is to only select a single model to proceed with to the third and last

part.

Evaluation set The remaining portion of the data is called the evaluation set.

We utilize it to estimate generalization performance, as its observations are truly

unseen by the prediction models. Once a model is selected for future use, we fit it

again to both the training and the validation data, and apply it to the evaluation

set in order to compare the predictions to the true labels. This way, we obtain an

unbiased estimate of the selected model’s generalization performance, using, for

example, any of the measures presented in Section 2.2.2.

The reason to keep the evaluation set separate from both the training and

validation set is to prevent data leakage, that is, information from outside model

development accidentally influencing the model. Something similar occurs when

we base the model selection on the evaluation performance. This leads to selection-

induced over-optimism, that is, inflated performance estimates, and creates a false

sense of the reliability of the prediction model.

In many real-world applications, we identify multiple promising models dur-

ing validation, and often some perform almost equally well. Additionally, an-

other promising model might be easier to interpret or to compute than the most-

promising one. When we acknowledge that the performance estimates from the

validation set are subject to variability and do not account for potential changes

in the distribution of future observations, we might wonder if we should perform

the model selection based on the evaluation performances after all, despite the

selection-induced over-optimism.

Recent work by Westphal & Brannath (2020) showed that it is indeed benefi-

cial to shift the model selection from the validation phase to the evaluation phase,

yielding final models with better prediction performance. The authors also pro-

posed a way to deal with the arising selection-induced over-optimism. This idea

is fundamental to the present work and we will elaborate on the details later. We

will call this approach the proposed machine learning selection-evaluation pipeline,

in contrast to the default pipeline explained before.

In Figure 2.5, we illustrate both the default and the proposed pipeline. From

the training set, we obtain prediction models that we represent by their respective

estimated model parameters β̂1, β̂2, . . . , β̂M . Using the validation set, we estimate

the validation performances θ̂V,1, θ̂V,2, . . . , θ̂V,M . Alternatively, depending on the
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Figure 2.5: Default and proposed machine learning selection-evaluation pipelines
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specific application, we could also use cross-validation to estimate the θ̂V,i’s. The

next step is where both pipelines differ. In the default pipeline, we select the

most-promising model and estimate its generalization performance in the evalu-

ation set; in the proposed pipeline, we preselect multiple models and select the

final model s ∈ {s1, s2, . . . , sm} among them, based on the performance estimates

θ̂s1 , θ̂s2 , . . . , θ̂sm from the evaluation set. Note that the estimate θ̂s this way is

inflated due to selection-induced over-optimism.

In Chapter 3, we will introduce the statistical concepts needed to better un-

derstand the proposed selection-evaluation pipeline.



Chapter 3

Statistical Inference

In Chapter 2, we set the stage for our further considerations: Among a collection

of candidate binary classification models, we want to select one or more promis-

ing prediction models and assess their generalization performance. This chapter

will provide all the fundamental concepts to translate this task into a statistical

inference problem.

We will begin this chapter in Section 3.1 with the introduction of statistical

hypothesis testing. This is a foundational mathematical framework for evaluating

the validity of claims or theories about so-called populations of subjects. Building

on this, in Sections 3.2 and 3.3, we will turn to test statistics, p-values, and confi-

dence intervals, which provide quantitative measures of how likely the claims are

true. In Section 3.4, we will explore in which ways statistical inference is affected

when we investigate multiple claims simultaneously. This will ultimately be the

key to translating the proposed machine learning selection-evaluation pipeline into

a statistical inference framework, which we will do in Section 3.5, before concluding

this chapter.

This chapter only briefly addresses the essential aspects of statistical inference,

and comprehensive discussions can be found elsewhere. Key references for Sec-

tions 3.1, 3.2, and 3.3 include Lehmann & Romano (2005). Section 3.4 loosely

follows Dmitrienko & Hsu (2014), and Dickhaus (2014) provides a detailed pre-

sentation.

3.1 Hypothesis testing

Statistical hypothesis testing is a general and rigorous statistical framework for

drawing conclusions about unknown parameters based on observed data. It con-

trasts two opposing hypotheses, the so-called null hypothesis H0 and alternative

hypothesis HA, only one of which can be in fact true. We use a test statistic to

27
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summarize the strength of evidence in the observed data against the null hypoth-

esis H0. If the evidence is large enough, we may decide to reject H0 and conclude

that we believe the alternative HA to be true.

For example, suppose we consider a newly developed model for predicting the

success of some medical treatment, and the reference model has a prediction ac-

curacy of, say, ξ = 90%. We could ask whether the new model has higher or lower

prediction accuracy θ. We could aim to discover that the newly developed model

has higher predictive performance than the reference, and we would only want to

replace the reference model when we are pretty sure about that. Because hypoth-

esis testing treats the null hypothesis H0 and the alternative HA asymmetrically

in that it collects evidence against the null hypothesis from the observed data,

the null hypothesis should be that the predictive performance of the new model

is at most the reference performance, that is, H0 : θ ≤ ξ. If we could reject H0

with the observed data, we would conclude that we believe the opposite is true,

that is, that the new model is truly better in predicting the success of the medical

treatment than the reference, or HA : θ > ξ.

We need to be aware of this asymmetry when we define H0 and HA. In general,

H0 represents the default state of belief about the parameter of interest or the less

severe outcome, while HA corresponds to a discovery with potentially extensive

consequences.

A null hypothesis such as H0 : θ ≤ ξ from above is referred to as a one-

sided hypothesis, because the alternative is one-directional relative to the reference

value ξ; if we rejected H0 : θ ≤ ξ, we would believe that in truth the predictive

performance of the new model is larger than the reference. Similar applies when

testing H0 : θ ≥ ξ against HA : θ < ξ.

In general, a null hypothesis can also be two-sided. For example, when we

test H0 : θ = ξ against HA : θ 	= ξ, we call H0 a two-sided hypothesis. Here, the

alternative is two-directional relative to ξ, and rejecting H0 does not yield any

information whether we believe that θ > ξ or θ < ξ. In the example above, a two-

sided hypothesis would correspond to the question whether the newly developed

model has the same predictive performance as the reference model. While this

can indeed be an interesting question at times, we will mainly consider one-sided

hypotheses in this work.

3.2 Test statistics and p-values

To quantify the level of evidence in the observed data against the null hypothesis

H0 : θ ≤ ξ, we construct a so-called test statistic T . The specific choice of T

depends in different ways on the null hypothesis we want to test. A detailed
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Figure 3.1: Test statistic T and p-value p when T follows a standard-normal
distribution under the null hypothesis

summary of the various test statistics and their use is provided in Lehmann &

Romano (2005). In many cases, however, test statistics are constructed in such

a way that larger values of T correspond to stronger evidence against H0. We

assume that the same applies throughout this work.

The level of evidence against H0 is measured in terms of the probability of

obtaining at least the observed value of T under the assumption thatH0 is actually

true. This involves knowledge of the distribution of T given that H0 is true. This

probability p is called the p-value. If p is small, the evidence from the observed

data against H0 is strong.

Suppose, for example, that the test statistic T follows a standard-normal dis-

tribution under H0, and from the observed data we compute T = 1.75, which

corresponds to the 96 percent quantile of the standard-normal distribution, that

is, 96 percent of the probability mass lies below 1.75. Thus, the probability to

observe a value of T that is 1.75 or even larger is only p = 4%. We illustrate this

in Figure 3.1.

In general, we decide against H0 if the observed value of the test statistic T is

larger than a critical value cα, which we choose such that we reject H0 when it is

actually true only with a small probability α, typically α = 5%. This probability

α is called the significance level.

In particular, recall that in the example above, we assume that T follows a
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standard-normal distribution under H0. Then, if P0 denotes probability under H0

and Φ is the cumulative distribution function of the standard-normal distribution,

we want

α = P0(T ≥ cα) = 1− P0(T < cα) = 1− Φ(cα).

Inverting α = 1 − Φ(cα) yields cα = Φ−1(1 − α), that is, the critical value is the

(1− α) · 100%-quantile of the standard-normal distribution.

We follow the same idea to find the critical values for different test problems

with different distributional assumptions.

3.3 Confidence intervals

An alternative option to measure the evidence against a null hypothesis is confi-

dence intervals, which contain a range of plausible values for the true parameter

θ, with a certain level of confidence. In particular, when we consider a so-called

(1− α) · 100%-confidence interval for some population parameter θ, we mean the

following. If we drew repeated samples from the same population that our observed

data is from, and for each sample we computed a (1−α)·100%-confidence interval,

we would expect that the proportion of intervals that contain θ is (1−α) · 100%.

In practice, however, we usually only have a single sample of observations at

hand, and we need to make assumptions on their distribution. This is why in

finite samples, even if the so-called nominal confidence level is (1 − α) · 100%,

the actual observed or estimated confidence level of the estimated interval may

be considerably lower, when the assumptions are not fully or only asymptotically

met. It will be a major point of discussion how to estimate the confidence level of

an interval method later in Section 6.1.2 in Part II of this work.

Confidence intervals that fall below the nominal level (1−α) · 100% are called

anti-conservative. They are often too narrow, creating an inaccurate perception of

the range of plausible values. From an inferential point of view, anti-conservative

confidence intervals lead to an increased risk to falsely reject a null hypothesis.

On the other hand, confidence intervals that substantially exceed the nominal

level are called conservative. They are often too wide, overestimating the present

uncertainty and, thus, reducing the precision. This could result in failing to reject

a null hypothesis when it is actually false.

Compared to test statistics or p-values, confidence intervals offer a better un-

derstanding about the test decision. The range of plausible values they provide

gives more information about the effect size, its possible range, and the degree of

uncertainty. However, independent of whether we test a null hypothesis with a

test statistic or with a confidence interval, the test decision is the same.
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3.3.1 Duality to hypothesis testing

In many cases, confidence intervals are based on test statistics. To illustrate this,

suppose that we test H0
ξ : θ = ξ against HA

ξ : θ 	= ξ using the test statistic Tξ. Note

that H0
ξ is two-sided. Hence, we need to consider deviations of Tξ from the critical

value in both directions. When we assume that Tξ follows a standard-normal

distribution under H0
ξ and reject H0

ξ if |Tξ| ≥ Φ−1(1− α/2), then the probability

to falsely reject H0
ξ is

Pξ[|Tξ| ≥ Φ−1(1− α/2)] = Pξ[Tξ ≥ Φ−1(1− α/2)] + Pξ[Tξ ≤ −Φ−1(1− α/2)]

= 2Pξ[Tξ ≥ Φ−1(1− α/2)] = 2 {1− Φ[Φ−1(1− α/2)]}
= α,

because of the symmetry of the standard-normal distribution, and Pξ denotes the

probability under H0
ξ .

In order to construct a confidence interval, we do not only test one specific

ξ this way, but all potential values for ξ ∈ R, and we reject all ξ’s for which

|Tξ| ≥ Φ−1(1 − α/2). Those ξ’s that we cannot reject remain as the plausible

values for θ and form the confidence interval

ci(1− α) = {ξ ∈ R : |Tξ| ≤ Φ−1(1− α/2)}.

Therefore, we can reject H0
ξ either if |Tξ| ≥ Φ−1(1 − α/2) or if ξ /∈ ci(1 − α).

This is known as the duality between hypothesis testing and confidence intervals.

Because the probability to falsely reject the null hypothesis is equal to α, ci(1−α)
is a (1−α) ·100%-confidence interval, and, hence, ci(1−α) is said to have coverage

probability (1− α) · 100%.

We will conclude our considerations on confidence intervals in the following

Section 3.3.2, where we present some popular standard confidence intervals.

3.3.2 Standard methods

In this section, we will present some standard approaches for constructing confi-

dence intervals when the parameter of interest is a binomial proportion. Hence,

let X1, X2, . . . , Xn ∈ {0, 1} denote an i. i. d. sample from a Bernoulli distribution.

Our goal is to make statistical inferences about the unknown success probability θ

using a confidence interval. Specifically, we want to test whether the true success

probability θ exceeds some reference value ξ, that is, the null hypothesis we test

is H0 : θ ≤ ξ.

First, we need to introduce some notation. Let θ̂n = n−1
∑n

i=1Xi denote the
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estimated success probability, σ̂2
n = θ̂n(1− θ̂n)/n is a variance estimate, and z1−α

denotes the (1 − α) · 100%-quantile of the standard-normal distribution. The

following lower confidence limits all induce an interval with nominal coverage

probability (1− α) · 100%.

Wald normal approximation interval This popular and widely-used method

to estimate confidence intervals assumes that the parameter of interest follows a

normal distribution, which is often the case in applications, at least asymptotically.

The Wald lower confidence limit is given by

θ̂n − z1−α σ̂n,

and we obtain it by testing ξ for inclusion in the confidence interval using the dual

test (θ̂n − ξ)/σ̂n ≤ z1−α. It is known to sometimes struggle to reach the nomi-

nal coverage probability, especially in small samples or when θ̂n is near zero or one.

Wilson interval This interval constitutes an improvement over the Wald inter-

val in many respects as it allows for asymmetric intervals, incorporates a continuity

correction, and can be applied to small samples, as well. In addition, it offers bet-

ter performance than the Wald interval when θ̂n is close to zero or one. While the

Wald interval uses the estimated standard error σ̂n, the Wilson interval incorpo-

rates the null hypothesis variance ξ(1− ξ)/n; that is, when we test ξ for inclusion

in the confidence interval, we use the dual test (θ̂n − ξ)/
√
ξ(1− ξ)/n ≤ z1−α, and

solving for ξ yields the Wilson lower confidence limit(
θ̂n +

z21−α

2n
− z1−α

√
σ̂2
n +

z21−α

4n2

)/(
1 +

z21−α

n

)
,

see, for instance, Example 11.2.7 in Lehmann & Romano (2005). Even though

the Wilson interval tends to give more reasonable results than the Wald interval,

it still relies on normal approximations. Also, it may yield too conservative esti-

mates when θ̂n is close to zero or one.

Clopper-Pearson exact interval The Clopper-Pearson, or, for short, cp in-

terval is based on the binomial distribution of the true success probability θ instead

of a normal approximation. In particular, let Sn =
∑n

i=1Xi denote the random

variable that counts the number of successes among the n trials X1, X2, . . . , Xn.

Then, Sn is binomially distributed, and its cumulative distribution function is
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given by

Pθ(Sn ≤ s) =
s∑

i=0

(
n

i

)
θi(1− θ)n−i.

Let sn = n θ̂n denote the number of successes observed in the sample. We

utilize the dual test and include ξ in the confidence interval if

Pξ(Sn ≥ sn) =
n∑

i=sn

(
n

i

)
ξi(1− ξ)n−i ≥ α. (3.1)

Since Pξ(Sn ≥ sn) is increasing in ξ, the cp lower confidence limit is given as the

smallest value of ξ such that Equation (3.1) holds.

Because the binomial distribution is discrete and the cp approach ensures that

the probability in Equation (3.1) is at least α, corresponding to a coverage prob-

ability of at least (1 − α) · 100%, it tends to yield conservative confidence limits

in comparison to the Wald and the Wilson interval; see, for example, Brown et al.

(2001). Therefore, it is typically considered a better choice in small samples or

when θ̂n is close to zero or one.

For now, this concludes our presentation of confidence intervals and their ap-

plication in statistical inference for a single null hypothesis. Moving forward, in

the next section, we will examine how inference is impacted when we test multiple

null hypotheses simultaneously.

3.4 Multiple testing

In hypothesis testing, one of the major concerns is the possibility of falsely rejecting

a null hypothesis that is actually true. When this happens, we commit a so-called

type-1 error. There is also a type-2 error, which refers to failing to reject the null

hypothesis when it is in fact false, but we will not elaborate further on that.

In the context of a single null hypothesis H0, we prespecify a significance level

α, which limits the probability of the occurrence of a type-1 error. Smaller values

of α make it increasingly harder to reject H0, resulting in larger critical values and

wider confidence intervals.

However, it is also common to test multiple hypotheses at once. In medical

applications, for example, we might examine several outcome variables that de-

scribe the condition of a patient or compare different treatments. Each individual

test carries its own risk of a type-1 error, and controlling the occurrence of type-1

errors effectively and efficiently is challenging and needs careful consideration. In

this section, we will explore different approaches to this.
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For this purpose, let H0
1,H0

2, . . . ,H0
m denote a collection of null hypotheses

that we want to test against their respective alternatives HA
j , j = 1, 2, . . . ,m.

3.4.1 Per-comparison error rate

Suppose that each individual null hypothesis H0
j is tested independently in such

a way that the probability of making a type-1 error is at most α. Then the per-

comparison error rate is said to be controlled at significance level α. It can be

shown that the ratio of the number of type-1 errors to the total number m0 of true

null hypotheses is at most α when the number m of null hypotheses approaches

infinity. For example, say we test m = 100 null hypotheses and control the

per-comparison error rate at the significance level α = 5%. If 80 of these null

hypotheses are in fact true, we expect that we erroneously reject four of them.

Note, however, that if all m null hypotheses are in fact true, the probability of

erroneously rejecting any null hypothesis is equal to 1 − (1 − α)m, which can be

considerably larger than α, even for small m. Figure 3.2 shows the inflation of the

probability for a type-1 error for different numbers m and significance levels α.

3.4.2 Per-experiment error rate

One attempt to mitigate the type-1 error inflation illustrated in Figure 3.2 is to

understand the testing of the m null hypotheses as one experimental unit and to

define the per-experiment error rate as the proportion of experimental units with

at least one type-1 error out of the total number of experimental units investigated.

It is said to be controlled at significance level α if the probability of at least one

type-1 error is at most α when all m null hypotheses are true.

For example, suppose that we have 20 experimental units with 20 different

data sets and we test the same null hypotheses, which are in fact all true. The

per-experiment error rate is the probability of making any type-1 error in one

experimental unit given that all null hypotheses are true. Given a test that controls

the per-experiment error rate at α = 5%, we expect to observe rejections in only

one of the 20 experimental units.

All null hypotheses being true, however, is not always the worst-case scenario

in terms of the probability of making any type-1 error. For example, suppose

we have an experimental unit where all but one of the null hypotheses are true,

say H0
1,H0

2, . . . ,H0
m−1 and the remaining null hypothesis H0

m is in fact not true.

Suppose further that we have a testing procedure for which the probability of

making at least one type-1 error is at most α given that all null hypotheses are

true, and the probability of rejecting one of H0
1,H0

2, . . . ,H0
m−1 is larger than α

given that they are true and H0
m is not true. This testing procedure controls
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Figure 3.2: Probability of at making least one type-1 error for different numbers
m of null hypotheses when each null hypothesis is independently tested at level
α. The solid, dashed, and dotted lines correspond to α-levels of ten, five and one
percent, respectively
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the per-experiment error rate at level α, but this does not guarantee that the

probability of making any type-1 error is at most α.

3.4.3 Family-wise error rate

The error rate presented next builds on the notion of experimental units, but it

is much more stringent than the per-experiment error rate. The family-wise error

rate, or, for short, fwer, is said to be controlled at the significance level α if the

probability of making any type-1 error among a collection of null hypotheses is

at most α, regardless of which and how many of these null hypotheses are in fact

true, which is in contrast to the per-experiment error rate.

For example, suppose that we have 20 experimental units with the same null

hypotheses on different data sets. If we control the family-wise error rate at the

significance level α = 5%, we expect that in only one of the 20 analyses there are

any type-1 errors.

More formally, let δj,αj
∈ {0, 1} denote a test for the null hypothesis H0

j at

significance level αj based on the sample X1, X2, . . . , Xn. The test δj,αj
is equal

to one when we reject H0
j , and it is equal to zero when we cannot reject H0

j .

When J0 ⊆ {1, 2, . . . ,m} denotes the index set of true null hypotheses, then the

family-wise error rate fwerθ(δ) of δ = (δj,αj
: j = 1, 2, . . . ,m) under θ is given by

fwerθ(δ) = Pθ(∪j∈J0{δj,αj
= 1}).

Note that, in general, the significance level αj might depend on the specific null

hypothesis H0
j . It is thus called a local significance level. A testing procedure that

controls the family-wise error rate at the global significance level α typically adjusts

the local levels αj such that the family-wise error rate is at most α. There are

several ways to do this adjustment. We present a brief overview of some popular

procedures. They are adequate when there is no particular structure or hierarchy

between the null hypotheses such that it is sensible to test all null hypotheses

simultaneously, yet individually and independently of the other ones.

Single-step tests Procedures from the class of single-step tests are the sim-

plest in that they are easy to understand and widely applicable with only little

assumptions. Two of the most prominent examples are the Bonferroni and the

Šidák test. Each of these allocate the same proportion of the global significance

level to each null hypothesis such that each H0
j is tested at the same local level

αj = αadj, independently of the index j.

For the Bonferroni test, no additional assumptions need to be made and the

adjusted significance level is given by αadj = α/m. It can easily be shown that
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%/m 1 2 5 10 50 100 200 500

Šidák 5 2.53 1.02 0.512 0.103 0.0513 0.256 0.0103

Bonferroni 5 2.5 1 0.5 0.1 0.05 0.25 0.01

Table 3.1: Adjusted significance levels (in percent) for each individual null hy-
pothesis H0

j when the Šidák test is used compared to the Bonferroni test

allocating an equal share of the global level to each null hypotheses leads to the

control of the family-wise error rate,

fwerθ(δ) = Pθ(∪j∈J0{δj,αadj
= 1}) ≤

∑
j∈J0

Pθ{δj,αadj
= 1}

≤
∑
j∈J0

αadj =
∑
j∈J0

α

m
=
m0

m
α ≤ α,

due to the Bonferroni inequality and sincem0 ≤ m, wherem0 = |J0| is the number

of true null hypotheses.

The disadvantage of the Bonferroni test is that the adjusted level αadj = α/m

gets very small when the number m of null hypotheses gets large. It then becomes

increasingly difficult to reject any null hypothesis.

In case we can assume that all m individual tests are jointly stochastically

independent, the Šidák test allows us to choose αadj slightly larger while still

controlling the family-wise error rate. At this point, we should remark, even if we

do not elaborate further, that the Šidák test remains valid under certain forms

of positive dependence between the individual tests, see Section 4.3.2 in Dickhaus

(2014) for details.

In particular, we choose αadj = 1− (1−α)1/m and test each null hypothesis at

this adjusted level. Then,

fwerθ(δ) = Pθ(∪j∈J0{δj,αadj
= 1}) = 1− Pθ(∩j∈J0{δj,αadj

= 0})
= 1−

∏
j∈J0

Pθ{δj,αadj
= 0} ≤ 1−

∏
j∈J0

(1− α)1/m

= 1− (1− α)m0/m ≤ 1− (1− α) = α,

due to the joint stochastic independence and because m0 ≤ m.

The relative gain of the Šidák over the Bonferroni test increases with the num-

ber m of null hypotheses, but admittedly, the gains are small, see Table 3.1. Yet,

also with the Šidák test the adjusted level gets very small when m gets large. In

addition, even for smaller numbers m, both the Šidák and the Bonferroni test

can be overly conservative or anti-conservative, for instance, when the correlation
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Figure 3.3: Adjusted significance levels from the max-t correction (diamonds) and
the Šidák correction (squares) for different levels of correlation ρ

structure between the individual hypothesis tests is complex, see, for example,

Section 2.3.1 in Westfall & Young (1993).

Parametric single-step tests If we can make assumptions about the joint

distribution of the associated test statistics T1, T2, . . . , Tm and model their covari-

ance structure, we are able to obtain much less conservative tests. For example,

if (T1, T2, . . . , Tm) follows a multivariate normal distribution, the so-called max-t

test estimates the critical value cα as the (1−α) ·100% quantile of the distribution

of the maximum max(T1, T2, . . . , Tm) under the assumption that H0
1,H0

2, . . . ,H0
m

are all simultaneously true.

Figure 3.3 shows the adjusted significance levels for the max-t and the Šidák test

for different levels of correlation ρ and different numbersm of simultaneously tested

null hypotheses, when the true distribution of (T1, T2, . . . , Tm) is multivariate nor-

mal with mean vector 0 = (0, 0, . . . , 0), and covariance matrix Σ = (Σj,j′)j,j′ , given

by

Σj,j′ =

⎧⎨⎩1, if j = j′,

ρ, if j 	= j′;

that is, each two distinct test statistics Tj and Tj′ are equally correlated. The ad-

justed critical value cα for the max-t test can then be obtained from the solution to
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Φ0,Σ(cα) = 1−α, where Φ0,Σ denotes the m-dimensional multivariate normal dis-

tribution with mean vector 0 and covariance matrix Σ, and cα = (cα, cα, . . . , cα);

see, for example, the discussion around Equation (4.1) in Dickhaus (2014) for

details.

There are visible gains when the max-t test is used compared to the Šidák test,

in that the adjusted significance level available for each individual hypothesis test

is substantially larger, especially when the correlation between the test statistics

is large.

The max-t correction is a well-known standard approach in multiple testing,

for example, to compute multiplicity-adjusted confidence intervals for linear com-

binations of parameters, such as mean differences. For an extensive discussion of

the max-t correction, see Hothorn et al. (2008).

Resampling-based single step tests In many real-world applications, how-

ever, the joint distribution of the test statistics T1, T2, . . . , Tm is unknown. But

instead of falling back on the Bonferroni or the Šidák test, Westfall & Young

(1993) proposed a universal procedure based on so-called bootstrap resampling.

This is a statistical method that can be used to estimate the joint distribution of

T1, T2, . . . , Tm based only on the sample X1, X2, . . . , Xn, and the derived tests are

less conservative than the aforementioned single-step tests because they account

for the empirical correlation structure of (T1, T2, . . . , Tm). In fact, the multiple

testing procedure we propose in this work is based on bootstrap resampling. We

will discuss it in much more detail in Chapter 4.

3.5 Reframing model selection and evaluation

In this final section of Chapter 3, we will meet our objective and translate the

model selection and evaluation task from Chapter 2 into the framework of statis-

tical inference.

Recall that we are interested in assessing the conditional prediction perfor-

mance of binary classification models. This, in particular, requires that we hold-

out an evaluation set. In the context of statistical inference, this constitutes the

sample X1, X2, . . . , Xn. Depending on whether we employ the default selection-

evaluation pipeline or the proposed one, where we evaluate multiple models simul-

taneously, we either do not to deal with a multiplicity problem or we do.

Inference in the default pipeline In particular, when we employ the default

pipeline, we select a prediction model among a collection of candidate models
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based on their validation performances θ̂V,j, j = 1, 2, . . . ,M . Suppose we select

the model with index s. With this model, we predict the observations in the

evaluation set and obtain a performance estimate θ̂s, such as prediction accuracy.

Of course, we want the selected model to perform reasonably well, for example,

we might want its performance to exceed a minimum acceptable performance ξ.

In the framework of statistical inference, this corresponds to testing the null

hypothesis H0
s : θs ≤ ξ against the alternative HA

s : θs > ξ. To decide whether we

can reject H0
s, we estimate a lower (1 − α) · 100%-confidence limit L̂(1 − α), for

example, using the Wald method, and check if ξ < L̂(1− α). If this is indeed the

case, the evidence from the evaluation is set is strong enough such that we can

reject H0
s and conclude that HA

s is true; that is, with high confidence, the true per-

formance exceeds the minimum acceptable performance. Or in other words: With

high confidence, the true performance of prediction model s is at least L̂(1− α).

Inference in the proposed pipeline In contrast, when we employ the pro-

posed pipeline, we preselect multiple models for evaluation. With each of the

preselected models, we predict the observations in the evaluation set and estimate

their respective prediction performances θ̂s1 , θ̂s2 , . . . , θ̂sm .

In the context of statistical inference, the simultaneous performance assessment

of the m preselected model poses a multiple testing problem with null hypotheses

H0
j : θsj ≤ ξj and alternatives HA

j : θsj > ξj, for j = 1, 2, . . . ,m. Regardless of

whether and how we perform the final model selection on the basis of the θ̂sj ’s,

we need to correct for multiplicity. To decide whether we can reject each indi-

vidual hypothesis H0
j , we need to adjust the significance level, for example using

the Bonferroni method, and estimate lower (1− αadj) · 100%-confidence limits L̂j

and check if ξj < L̂j. Let JA = {j = 1, 2, . . . ,m | ξj < L̂j} denote the set of

indexes for which we can reject the corresponding null hypothesis and conclude

that the alternative is true; that is, for j′ ∈ JA, with high confidence, the true

performance θj′ exceeds the respective minimum acceptable performance ξj′ . Or

in other words: For each j′ ∈ JA, with high confidence, the true performance θj′

of the corresponding prediction model is at least L̂j′ .

The translation of the selection-evaluation task into the inference framework

allows us to use rigorous statistical methods, efficiently exhausting the permissi-

ble type-1 error probability α while drawing valid conclusions about the predictive

performance. The main contribution of this work is a sophisticated approach to

compute multiplicity-adjusted confidence limits that can be applied in the pro-

posed selection-evaluation pipeline. The idea to interpret this as a multiple testing
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problem is based on work on universally valid post-selection confidence limits for

regression coefficients by Berk et al. (2013).

We will present our approach in Part II of this work. It extensively uses a

popular resampling technique, the bootstrap, which we will explore in great detail

in the next Chapter 4.
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Chapter 4

Bootstrap

In Chapter 3, we used hypothesis testing to draw conclusions about population

characteristics. For example, we might ask whether the mean of some distribution

is larger than some reference value, and address this using a test statistic, or

equivalently, we could estimate a lower confidence bound.

Usually, we only have a single data sample available to estimate the population

characteristic with, using a particular test statistic. But we typically do not know

the probability distribution of that test statistic. In order to be able to compute

a confidence interval, however, we will need information about this distribution.

If many more replicated samples from the population were available, we could

compute the test statistic in each of these samples and use this series of values

to estimate the distribution of the test statistic. Typically, though, it is not pos-

sible to obtain such additional samples. The bootstrap method offers a practical

solution in such cases, allowing for the estimation of the distribution of the test

statistic without requiring additional samples from the population.

This chapter is organized as follows. In Section 4.1, we will introduce the basic

concept of the bootstrap. Then, in Section 4.2, we will address the question why

the bootstrap even works and in which sense. In Section 4.3, we will introduce

bootstrap confidence intervals, and in Section 4.4 we will discuss the nonpara-

metric bootstrap tilting confidence interval, which we will base our subsequent

considerations on in Part II of this work.

Sections 4.1, 4.2, and 4.3 loosely follow Section 29 in DasGupta (2008). Key

references for a comprehensive presentation of the bootstrap include Davison &

Hinkley (1997) and Efron & Tibshirani (1994).

43
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4.1 Principle idea

The bootstrap is an approach to estimate a probability distribution based only on

the one available sample. The main idea is to regard the sample as the population

and generate new samples from the original one. Assuming that the original

sample represents the population well, repeated random samples from the original

sample can be considered as proxies for repeated samples from the population

itself. These proxies are called bootstrap samples. In each of the bootstrap samples,

we compute the test statistic and use this series of values to obtain an estimate of

the distribution.

Nonparametric bootstrap More specifically, let X1, X2, . . . , Xn denote the

original sample, where the Xi’s are i. i. d. random variables from an unknown

distribution represented by its cumulative distribution function F . We want to

use the Xi’s to make inferences about a population characteristic θ = θ(F ) using

a test statistic T . Hence, we need knowledge about the true distribution function

Hn(t) = PF [T ≤ t]

of the test statistic. The idea is to generate bootstrap samples (X∗
1 , X

∗
2 , . . . , X

∗
n)

from the Xi’s, that is, random samples of size n from the empirical distribution

Fn, and to approximate Hn by the bootstrap distribution function

Ĥ
∗
n(t) = PFn [T

∗ ≤ t], (4.1)

where T ∗ denotes the test statistic in the bootstrap sample, and PFn in Equa-

tion (4.1) indicates probability under all nn possible bootstrap samples from the

original sample, as each Xi can be drawn into the bootstrap sample any num-

ber of times. But even for moderately large samples, recalculating T from all nn

bootstrap samples becomes computationally infeasible. We will thus draw only a

smaller number B of bootstrap samples, usually a few thousand.

Of course, this introduces a second source of error into the approximation, in

addition to the error from pretending that a bootstrap sample is a proxy for a

true sample from the true distribution F . However, it turns out that drawing only

a much smaller number B � nn of bootstrap samples provides a good balance

between accuracy of the estimate and computational cost, with diminishing returns

beyond that, such that this second source of error is entirely ignored in any further

considerations.
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Consequently, we use

Ĥ
∗
n(t) = P∗[T ∗ ≤ t] =

1

B

B∑
b=1

1{T ∗
b ≤ t}

as the bootstrap estimate for the true distribution function Hn, where T
∗
b denotes

the value of the test statistic in the b-th bootstrap sample.

Note that we replaced PFn in Equation (4.1) with P∗ here to indicate probability

under bootstrap sampling using B bootstrap samples. Throughout this work

bootstrap quantities will carry a subscript or superscript ∗. Such quantities depend

on both the sample size n and the sample X1, X2, . . . , Xn itself. Thus, Ĥ
∗
n is a

random distribution function that we use to approximate the deterministic but

unknown distribution function Hn of the test statistic.

Although the bootstrap is in general not restricted to that case, we will continue

to assume that X1, X2, . . . , Xn are i. i. d. random variables. This will give us access

to powerful theoretical results on the bootstrap, as we will see later. In addition,

we also assume that X1, X2, . . . , Xn are scalars, at least for now.

The bootstrap approach presented in this section is called the nonparame-

teric bootstrap, as it does not make any distributional assumptions on the sample.

Rather, the bootstrap samples are generated by repeatedly drawing randomly from

the Xi’s. The nonparametric bootstrap is one of the two fundamental bootstrap

approaches, next to the parametric bootstrap, which we will briefly discuss next.

Parametric bootstrap The parametric bootstrap assumes that the sample

X1, X2, . . . , Xn comes from a known parametric distribution Fη with unknown

parameter vector η. The process involves computing an estimate η̂ from the

original sample and generating bootstrap samples from the fitted distribution Fη̂.

We will provide an example in order to illustrate how the parametric boot-

strap operates and how it differs from the nonparametric bootstrap. Suppose the

i. i. d. sample comes from a normal distribution with unknown population mean

θ = θ(F ) and population variance one, and we want to gain information about

the distribution of the test statistic T =
√
n(X̄n − θ), where X̄n = n−1

∑n
i=1Xi

denotes the sample mean. We estimate θ using the sample mean, fit a normal

distribution with mean X̄n and variance one, and draw bootstrap samples from it,

in contrast to the nonparametric bootstrap, where we sample from the empirical

distribution. In each of the bootstrap samples, we recalculate the test statistic

T ∗ =
√
n(X̄

∗
n − X̄n), where X̄

∗
n = n−1

∑n
i=1X

∗
i is the mean in the bootstrap sam-

ple. This yields a series of values T ∗
1 , T

∗
2 , . . . , T

∗
B that we use to finally estimate
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the true distribution Hn of T by

Ĥ
∗
n(t) =

1

B

B∑
b=1

1{T ∗
b ≤ t}.

Compared to its parametric counterpart, though, the nonparametric bootstrap

is more versatile and, due to its automatic nature, a very popular tool. However,

it is not immediately clear why one or the other even works.

4.2 Theoretical justification

We first need to establish what it means for the bootstrap to work. Intuitively,

when we need to estimate a distribution function, we would want the bootstrap

distribution function Ĥ
∗
n to be numerically close to the true distribution function

Hn, which can be captured by the idea of consistency of Ĥ
∗
n for Hn. For this, we

will need some basic concepts from asymptotic statistics, specifically almost sure

convergence and convergence in probability, which we provide in Appendix A.

The bootstrap is called weakly consistent under a metric ρ for the test statistic

T if ρ(Hn, Ĥ
∗
n) converges to zero in probability as n tends to ∞, and it is strongly

consistent under ρ for T if ρ(Hn, Ĥ
∗
n) converges to zero almost surely.

Powerful results have been established under the Kolmogorov distance,

ρ∞(Hn, Ĥ
∗
n) = sup

t∈R
|Hn(t)− Ĥ

∗
n(t)|.

It captures the maximum difference between the true and the bootstrap distribu-

tion function. The following result is Theorem 29.1 in DasGupta (2008), and it

shows that if our goal of inference is the expected value μ of F and the test statis-

tic is given by T =
√
n(X̄n − μ), the bootstrap accurately estimates the entire

distribution of T ; this property is called the strong consistency of the bootstrap.

Theorem 4.2.1 (Strong consistency of the bootstrap). Let X1, X2, . . . , Xn be

i. i. d. random variables from some unknown distribution represented by its cu-

mulative distribution function F that has a finite second moment EF (X
2
i ) < ∞.

Let μ = EF (Xi) and X̄n = n−1
∑n

i=1Xi denote the expected value of F and the

sample mean of the Xi’s, respectively.

If T =
√
n(X̄n − μ), then the Kolmogorov distance ρ∞(Hn, Ĥ

∗
n) converges to

zero almost surely as n tends to ∞; that is, the absolute difference between the true

distribution function Hn(t) and the bootstrap distribution function Ĥ
∗
n(t) converges

almost surely to zero, uniformly over all possible values of t.
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We note that the test statistic T in Theorem 4.2.1 has a limiting normal

distribution by the Central Limit Theorem, which we provide in a more gen-

eral multivariate version in Proposition A.3 in Appendix A. When we assume

that our goal of inference is a smooth function f of μ instead, the test statis-

tic T =
√
n[f(X̄n) − f(μ)] has a limiting normal distribution, as well (by the

Delta Theorem, see Proposition A.4 in Appendix A), and the bootstrap remains

strongly consistent, as stated in the next result, which is based on Theorem 29.4

in DasGupta (2008).

Theorem 4.2.2 (Delta theorem for the bootstrap). Let X1, X2, . . . , Xn be i. i. d.

random variables from some unknown distribution represented by its cumulative

distribution function F that has a finite second moment EF (X
2
i ) < ∞. Let μ =

EF (Xi) and X̄n = n−1
∑n

i=1Xi denote the expected value of F and the sample

mean of the Xi’s, respectively. Additionally, let θ = f(μ) be a smooth function f

of μ, and let θ̂n = f(X̄n) denote the observed value of θ in the sample.

Then, for T =
√
n(θ̂n − θ), the Kolmogorov distance ρ∞(Hn, Ĥ

∗
n) converges

to zero almost surely as n tends to ∞; that is, the absolute difference between

the true distribution function Hn(t) and the bootstrap distribution function Ĥ
∗
n(t)

converges almost surely to zero, uniformly over all possible values of t.

This Theorem 4.2.2 assures that the probability that the bootstrap distribu-

tion accurately reflects the true distribution approaches one, providing reliable

estimates for statistical inference, such as confidence intervals.

A natural question regarding the accuracy that comes to mind is whether there

is any gain in using the bootstrap when a normal approximation is available. In

fact, there are situations in which the bootstrap can be more accurate than the

normal approximation. For instance, suppose the true distribution is severely

skewed. Because the normal distribution is symmetric around its mean, it is

unable to capture this skewness. When our goal is to derive a confidence interval

from the approximated distribution, this can considerably reduce its accuracy,

that is, the coverage probability of the derived confidence intervals can fall far

below the nominal level. Bootstrap confidence intervals, in contrast, are able to

correct for skewness.

4.3 Standard confidence intervals

There are different methods to compute bootstrap confidence intervals. Which to

use depends very much on the specific application and it is hard to give general

recommendations. In this section, we will present an exemplary intuitive method
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and describe its characteristics. A detailed review of common bootstrap interval

methods can, for example, be found in Carpenter & Bithell (2000).

Recall that a confidence set appropriate for testing the null hypothesis H0
ξ : θ =

ξ is based on a test statistic T (ξ) that depends on ξ, and it consists of those test

values ξ for which we are unable to reject H0
ξ . In order to decide whether to reject

H0
ξ or not, we need to know the distribution of T (ξ) for each test value ξ.

4.3.1 Bootstrap pivotal interval

To simplify the process, the test statistic is often constructed in such a way that

it is pivotal, that is, under the assumption that the null hypothesis H0
ξ is true, has

a distribution which is independent of ξ.

As an example, consider i. i. d. random variables X1, X2, . . . , Xn from the

normal distribution with unknown population mean θ and variance 1. Then,

assuming that H0
ξ : θ = ξ is true, the asymptotic distribution of the test statistic√

n(X̄n − ξ) is standard-normal and, in particular, independent of ξ and thus

pivotal.

Let T (ξ) denote some test statistic which is monotonically decreasing in ξ and

pivotal, that is, its unknown true distribution Hn does not depend on the test

value ξ. When T−1 denotes the inverse of T in ξ, inversion of the test statistic

yields

1− α = PF{Hn[T (ξ)] ≤ 1− α} = PF{ξ ≤ T−1[H−1
n (1− α)]},

and hence a lower (1− α) · 100%-confidence bound �(1− α) for θ(F ) is given by

L(1− α) = T−1[H−1
n (1− α)].

Inserting the estimated quantile function Ĥ
∗−1

n (q) = inf{t | Ĥ∗
n(t) ≥ q} of the

bootstrap distribution yields the estimate for the lower limit, the bootstrap pivotal

lower limit

L̂
∗
(1− α) = T−1 [Ĥ

∗−1

n (1− α)].

There are several other bootstrap interval approaches that are based on the

idea of pivotality, including the bootstrap percentile interval and generalizations

of it, as well as the bias-corrected bootstrap percentile interval and its accelerated

versions, see, for example, Carpenter & Bithell (2000) for details.



4.4. Nonparametric tilting confidence interval 49

4.3.2 Pivotality condition

Let us briefly review the pivotality condition introduced in Section 4.3.1. We can

view any distribution of the data to comprise two parts, the parameter of interest

θ and a possibly infinite-dimensional vector of nuisance parameters η. The true

distribution F of the Xi’s can consequently be represented as F = (θ,η).

When we assume that the test statistic is pivotal, we effectively assume that

F belongs to a family {Fξ}ξ of distributions in which each member Fξ is linked

to a test value ξ. However, because the distribution Hn of the test statistic T (ξ)

is independent of ξ, for the methods described in Section 4.3.1, it is sufficient to

estimate only one member of {Fξ}ξ, the empirical distribution Fn, in order to

obtain Hn.

In the next section, we will introduce the nonparametric tilting interval. This

instance of bootstrap confidence intervals aims to estimate the entire family {Fξ}ξ
without assuming that the test statistic is pivotal, and will be foundational for our

further considerations in Part II of this work. Key references for the nonparametric

tilting interval are Csiszár (1975) and Efron (1981).

4.4 Nonparametric tilting confidence interval

When we generate a bootstrap sample from the empirical distribution Fn, the

probability that a particular Xi is drawn into the bootstrap sample is n−1. Non-

parametric tilting aims to estimate the distribution of the test statistic T (ξ) by

adjusting the probabilities to draw bootstrap samples with from the original sam-

ple X1, X2, . . . , Xn. The confidence set for θ is then formed consisting of those

test values ξ that we cannot reject in a test of the null hypothesis H0
ξ : θ = ξ using

T (ξ).

More precisely, when we restrict our considerations to distributions with sup-

port only on X = (X1, X2, . . . , Xn), we may represent a distribution in terms of

the probabilitiesw = (w1, w2, . . . , wn) it puts onX. Let Fw denote this reweighted

distribution and let θ̂(w) denote the population parameter of interest estimated

from the reweighted distribution w.

For example, the empirical distribution Fn can be represented by the vector

w0 = (n−1, n−1, . . . , n−1), and the observed value of θ in the sample is θ̂n = θ(w0).

Typically, though, we will be interested in distributions w other than w0.

Specifically, in order to test a particular test value ξ for inclusion in the confidence

set, we need to find the distribution corresponding to the weight vector wξ for

which it holds true that θ(wξ) = ξ. Yet, there may be more than one such

distribution.
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Moving forward, we reduce the problem to a one-parametric family {Fτ}τ of

distributions, indexed by the scalar parameter τ . Effectively, this means that the

weight vector gets parametrized such that w(τ) = [w1(τ), w2(τ), . . . , wn(τ)], and

the goal is to find the value of τ such that θ̂[w(τ)] = ξ. This, however, does not

suggest the specific form of the weights. Because we want to sample from Fw,

from a theoretical point of view, it seems sensible that we want Fw to be close to

the empirical distribution Fn.

In the next section, we will address the question of what we mean by one distri-

bution is close to another and derive a closed-form expression for the parametrized

weights.

4.4.1 Statistical closeness and exponential tilting weights

The notion of statistical closeness is fundamental when we want to quantify how

similar or dissimilar two distributions are. One prominent example of a statistical

distance is the Kullback-Leibler divergence. It quantifies the amount of information

that is lost when we use one distribution to approximate another. Another notable

name for the Kullback-Leibler divergence is relative entropy. A broader class of

divergence measures that includes the Kullback-Leibler divergence as a special

case was introduced by Csiszár (1975) through the so-called I-divergence.

In particular, when we use a distribution Ψ′ to approximate a reference distri-

bution Ψ, the Kullback-Leibler divergence is formally given as

dKL(Ψ,Ψ
′) =

∫ ∞

−∞
ψ(x) log

[
ψ(x)

ψ′(x)

]
dx, (4.2)

where ψ and ψ′ are the probability density functions of Ψ and Ψ′, respectively.

From Equation (4.2) we can derive a few important properties of the Kullback-

Leibler divergence. Firstly, we notice that dKL is not symmetrical in its arguments,

that is, dKL(Ψ,Ψ
′) 	= dKL(Ψ

′,Ψ). Secondly, by Jensen’s inequality,

dKL(Ψ,Ψ
′) =

∫ ∞

−∞
−ψ(x) log

[
ψ′(x)
ψ(x)

]
dx = EΨ

{
− log

[
ψ′(x)
ψ(x)

]}
≥ − log

{
EΨ

[
ψ′(x)
ψ(x)

]}
= − log

[∫ ∞

−∞
ψ(x)

ψ′(x)
ψ(x)

dx

]
= 0,

dKL is nonnegative. And thirdly, dKL is equal to zero if and only if the distributions

Ψ and Ψ′ are identical.

Recall that our goal is to find a distribution Fw that is close to Fn, that is, a

closed-form expression for the weights w. Both distributions Fw and Fn are dis-
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crete and can be identified by w and w0, respectively. As a result, Equation (4.2)

can be rewritten as

dKL(w,w
0) =

n∑
i=1

wi log
( wi

n−1

)
=

n∑
i=1

wi log(nwi). (4.3)

Note that in Equation (4.3), we use the backward Kullback-Leibler divergence,

that is, we measure the information loss when using the empirical distribution

Fn to approximate the reweighted distribution Fw. This will yield a closed-form

expression for the weights w that can easily be computed, as we will see in the

following. In contrast, the forward Kullback-Leibler divergence dKL(w
0,w) does

not yield a closed-form solution; see, for example, Section 7 in Dickhaus (2018).

As Fw should be close to Fn, we minimize dKL(w,w
0) in the weight vector w

subject to the constraints θ(w) = ξ and
∑n

i=1wi = 1, where wi ∈ [0, 1]. For that,

we use the Lagrange multiplier method. Here, the Lagrangian function is

L(w, τ , ν) =
n∑

i=1

wi log(nwi)− τ [θ(w)− ξ] − ν(1−
n∑

i=1

wi) .

We take the partial derivative of L(w, τ , ν) with respect to wj and obtain

Dwj
[L(w, τ , ν)] = Dwj

[wj log(nwj)]− τDwj
[θ(w)] −νDwj

(wj)

= log(n) + log(wj) + 1− τUj(w) − ν,

where we set Uj(w) = Dwj
[θ(w)]. We will comment on Uj(w) later in Section 4.4.2.

Solving

Dwj
[L(w, τ , ν)] = 0

for log(wj) yields log(wj) = τUj(w)− log(n)− 1 − ν, and taking the exponent of

both sides yields

wj = eτUj(w) n−1e−1−ν . (4.4)

Plugging this into the second constraint
∑n

i=1wi = 1 yields

n∑
i=1

eτUj(w) n−1e−1−ν = 1,

which is equivalent to
n∑

i=1

eτUj(w) = n e1+ν .
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With this, wj in Equation (4.4) simplifies to

wj =
eτUj(w)∑n
i=1 e

τUj(w)
.

Evidently, this is a function of the parameter τ , and we will write

wj(τ) =
eτUj(w)∑n
i=1 e

τUi(w)
. (4.5)

Thus, in the backward Kullback-Leibler sense, the reweighted distribution us-

ing the exponential tilting weights from Equation (4.5) is the closest to the observed

sample under the constraint that θ[w(τ)] = ξ in a one-parametric family. Note

that this family includes the empirical distribution, as for τ = 0, the exponential

tilting weight reduces to 1/n.

4.4.2 Empirical influence function and means

The partial derivative Uj(w) = Dwj
[θ(w)] in Equation (4.5) quantifies the re-

sponsiveness of the test statistic to small changes in the weights, that is, how

much θ(w) would change in response to a small perturbation in wj. This partial

derivative is also known as the empirical influence function and is given by

Dwj
[θ(w)] = lim

ε→0

θ[w + εej]− θ(w)

ε
(4.6)

where ej is the n-dimensional unit vector with the one in the j-th component.

In case the population parameter of interest is a mean, we can obtain a closed-

form expression for the influence function, which we will derive next. This will be

important when we address the performance measures presented in Section 2.2.2.

We continue by computing the weightsw′ = (w′
1, w

′
2, . . . , w

′
n) = w + εej, which

are given by

w′
i =

⎧⎨⎩wi, if i 	= j

wi + ε, if i = j.

Using these weights, we compute the weighted mean

θ[w + εej] = w′
jxj +

∑
i �=j

w′
ixi = (wj + ε)xj +

∑
i �=j

wixi.
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It follows that

θ[w + εej]− θ(w)

ε
=
εxj + wjxj +

∑
i �=j wixi −

∑n
i=1wixi

ε
= xj.

Thus, in case of a mean, the influence function reduces to

Uj(w) = xj.

Substituting this expression for Uj(w) into the weights in Equation (4.5) yields

wj(τ) =
eτxj∑n
i=1 e

τxi
. (4.7)

Hence, when θ can be written as a mean, the reweighted distribution Fw(τ) is an

exponential tilt of the empirical distribution, which is why the weights are called

exponential tilting weights.

Since the reweighted distribution w(τ) is fully determined by the tilting pa-

rameter τ , we will simply write Fτ instead of Fw(τ), with the understanding that

Fτ represents the reweighted distribution using the exponential tilting weights.

We might initially think that the reduction of the nonparametric problem to a

one-parameter family of distributions would make the estimation somehow easier.

After all, dealing with a single parameter that adjusts the reweighted distribution

might suggest a simplification.

A way to measure this is the Cramér-Rao bound, see, for example, Section 2.6

in Spokoiny & Dickhaus (2015), which is a lower limit on the variance of an

unbiased estimator, and provides an idea about its precision. In fact, in case θ

is a mean, the Cramér-Rao bound for the unbiased estimation of θ(w) in {Fτ}τ ,
evaluated at w = w0 is n−2

∑n
i=1[xi − θ(w)]2, which is the bootstrap estimate

of variance for θ̂(w), see Efron (1981) for details. Thus, the reduction does not

decrease the estimated variance, and can be understood to be least-favorable.

It is, of course, possible to think of different one-parameter families to substi-

tute for the exponential tilting family, and thus different choices for the weights wi.

One notable instance are the so-called maximum likelihood tilting weights, which

can be obtained by maximizing the likelihood Πn
i=1wi under the constraint that

θ(w) = ξ, as well as that the weights are non-negative and sum to one. For more

options to choose the tilting weights, see DiCiccio & Romano (1990) or Hesterberg

(2014).

Recall that, previously, when we assumed the test statistic to be pivotal and

monotonically increasing in the test value ξ, we did not need to test each ξ for

inclusion in the confidence set individually. Rather, by inversion of the test statis-
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tic, we obtained a lower confidence limit. In nonparametric tilting, the confidence

set is an interval, as well, as we will argue next.

As mentioned earlier, we can measure the level of evidence against the null

hypothesis H0
ξ : θ = ξ in terms of the p-value, which is the probability of obtaining

at least the observed value of the test statistic in the original sample under the

assumption that H0 is true, that is, we exclude ξ from the confidence set for θ if

Pτ [T
∗ ≥ T (τ)] ≤ α,

where the tilting parameter τ is such that θ[w(τ)] = ξ. Fortunately, this proba-

bility increases monotonically in τ , which follows from the slightly more general

Proposition 4.4.1 given below. For that, we will require the concept and properties

of the one-parameter canonical exponential family, which we will shortly discuss

next. For more details on exponential families, see Lehmann & Romano (2005).

The one-parameter canonical exponential family is a class of probability dis-

tributions that can be expressed in a general but specific form. Representing a

distribution in its canonical structure simplifies many mathematical operations.

In its general form, the probability density function of a distribution from the

one-parameter exponential family is proportional to z �→ eγa(z)−b(γ)h(z), where γ

is called the canonical parameter the distribution is parametrized by; a(z) is the

sufficient statistic that captures all necessary information for estimating γ; b(γ)

is called the cumulant function and ensures that the distribution normalizes to

one; and h(z) is a measurable function that can vary with z, but not with γ.

The important property for our use is that b is at least three-times continuously

differentiable and the first derivate of b(γ) equals the first cumulant, that is, the

mean.

We are now set to record and prove the monotonicity property in the upcoming

Proposition 4.4.1.

Proposition 4.4.1. Let Z denote a random variable that follows a distribution

represented by its cumulative distribution function Ψγ. Let Ψγ belong to a one-

parameter canonical exponential family with parameter γ ∈ R and sufficient statis-

tic a(z) = z. Then, the probability PΨγ (Z ≥ t) is increasing in γ for all t ∈ R.

Proof. We begin this proof with an observation that we will come back to later.

Let Z ′ be some arbitrary random variable. If t′ ≥ 0, then E(Z ′ 1{Z ′ ≥ t′}) ≥ 0.

If, alternatively, t′ < 0, then

Z ′ = |Z ′|1{Z ′ ≥ 0} − |Z ′|1{Z ′ < 0}
≤ |Z ′|1{Z ′ ≥ 0} − |Z ′|1{t′ ≤ Z ′ < 0} = Z ′ 1{Z ′ ≥ t′}.
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Therefore, if E(Z ′) ≥ 0, then E(Z ′ 1{Z ′ ≥ t′}) ≥ 0 for all t′ ∈ R.

Now, let Ψγ belong to the canonical one-parameter exponential family, that is,

its probability density function is proportional to eγz−b(γ)h(z), where b is at least

three-times continuously differentiable and d
dγ
b(γ) = EΨγ (Z).

Consider the probability

PΨγ (Z ≥ t) =

∫ ∞

t

eγz−b(γ)h(z) dz

and the derivative

d

dγ
Pγ(Z ≥ t) =

∫ ∞

t

[z − d

dγ
b(γ)] eγz−b(γ)h(z) dz

= EΨγ [{Z − EΨγ (Z)}1{Z − EΨγ (Z) ≥ t− EΨγ (Z)}].

Recall that we observed at the beginning of this proof that E(Z ′ 1{Z ′ ≥ t}) ≥ 0

for all t ∈ R if E(Z ′) ≥ 0. Let Z ′ = Z − EΨγ (Z). Then, since EΨγ [Z
′] = 0, it

follows that

0 ≤ E(Z ′ 1{Z ′ ≥ t′}) = EΨγ [{Z − EΨγ (Z)}1{Z − EΨγ (Z) ≥ t− EΨγ (Z)}]
=

d

dγ
Pγ(Z ≥ t),

and hence, PΨγ (Z ≥ t) is increasing in γ.

From Proposition 4.4.1, it follows that there exists a maximum value for the

tilting parameter τ such that for all τ ′ > τ , we include the corresponding value

θ[w(τ ′)] in the confidence set for θ. Thus, θ[w(τ)] is a lower confidence limit.

This considerably facilitates the calibration of τ for the estimation of the lower

confidence limit: Find the largest value of τ < 0 such that

Pτ [T
∗ ≥ T (τ)] ≤ α; (4.8)

that is, L = θ[w(τ)] is the largest value of ξ such that, if the sample came from a

distribution with parameter L, the probability of observing T (τ) or an even larger

value would be at most α.

When we use a traditional so-called Monte Carlo simulation for the estima-

tion of the lower limit L, conceptually, for any candidate value for τ , we would

need to compute the exponential tilting weights; draw bootstrap samples from the

reweighted distribution; compute the bootstrap test statistics for each bootstrap

sample; compute the proportion of bootstrap test statistics that exceeds the ob-

served value of the test statistics under the null hypothesis; and repeat these steps
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with different values for τ until the proportion equals α. Obviously, this would

be both computationally very expensive and prone to the randomness of repeated

sampling.

In order to circumvent this, what we actually do is to employ an importance

sampling reweighting approach. In the next section, we will explore importance

sampling and its use to effectively address the limitations of traditional sampling

in the estimation of nonparametric tilting confidence limits, allowing us to directly

draw samples from the empirical distribution.

4.4.3 Importance sampling

When we revisit Equation (4.8), it becomes clear that the calibration of the tilting

parameter τ < 0 for a lower confidence limit is difficult for two major reasons. The

first is that it involves estimating tail probabilities, that is, the likelihood of events

that occur with very low probability. This can only hardly be done accurately using

traditional Monte Carlo simulation because of the number of samples needed to

observe such events directly with sufficiently high precision. The second is that,

in addition, there is an excessive amount of distributions that we need to sample

from. Therefore, direct sampling becomes computationally prohibitive or even

infeasible.

Importance sampling offers a practical solution to such problems. Our presen-

tation will loosely follow Section 23.6 in Efron & Tibshirani (1994). The main

idea is, instead of sampling directly from the target distribution, to sample from

a different, more easily accessible design distribution and then weight the samples

appropriately to correct for the difference between the two distributions. This

way, it is ensured that the estimates remain accurate for the target distribution.

The key advantage of this approach is that it allows for more efficient sam-

pling in difficult regions of the target distribution, such as the tails, by focusing

the sampling effort where there is insufficient data. The correction weights are

typically computed as the ratio of the probabilities of the sample under the target

to the design distribution such that the contribution of each sample reflects its

relative likelihood under the target distribution.

In particular, suppose we need to estimate a probability qt = PΨ(Z ≥ t), where

Z is distributed according to the target distribution Ψ with probability density

function ψ. In addition, let W = ψ/ψ′ denote the relative likelihood under Ψ

relative to sampling from a design distribution Ψ′ with density function ψ′. Then,

we can express the probability under Ψ as a mean of a transformed random variable
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under Ψ′,

qt = EΨ[1{Z ≥ t}] =
∫ ∞

−∞

(
1{Z ≥ t} ψ(z)

ψ′(z)

)
ψ′(z) dz = EΨ′ [1{Z ≥ t}W (Z)],

where ψ′ needs to dominate ψ; that is, ψ(z) = 0 needs to hold whenever ψ′(z) = 0,

in order to avoid an indefinite integrand.

Hence, we do not need to sample from Ψ in order to compute qt, but we can

instead use samples from a more convenient distribution Ψ′, for example, the em-

pirical distribution, and compensate for the misspecification with a multiplicative

factor. This way, we can concentrate our effort on the tail regions.

Now, traditional Monte Carlo simulation for the mean EΨ′ [1{Z ≥ t}W (Z)]

yields the importance sampling estimate of qt,

q̂t =
1

B

B∑
b=1

1{Zb ≥ t}W (Zb), (4.9)

where the Zb’s are i. i. d. samples from Ψ′.

4.4.4 Estimation

In this section, we will integrate the previous findings and give a concise mathe-

matical description of the nonparametric bootstrap tilting confidence interval and

its estimation. We will work under a slight extension of a collection of assumptions

that are often summarized as Hall’s smooth function model, see Hall (1988). We

will provide it next.

Let X1, X2, . . . , Xn be an i. i. d. random sample from some unknown distri-

bution F on some arbitrary sample space Ω. Let h denote a smooth function

from Ω to R that maps each random variable Xi to the random variable Yi. Let

μ = μ(F) = EF(Yi) denote the mean of Yi. Let θ denote a distributional param-

eter that we assume to be a smooth function θ = f(μ) of μ. Additionally, let Fn

denote the empirical distribution of the Xi’s, and let Ȳ n = n−1
∑n

i=1 Yi denote the

sample mean of the Yi’s. Lastly, let θ̂n = θ(Fn) = f(Ȳ n) be the observed value of

θ in the sample.

Our goal of inference is θ. Specifically, for a given significance level α ∈ [0, 1],

we want to provide a lower (1− α) · 100%-confidence limit for θ. We will use the

duality between testing the null hypothesis H0
ξ : θ = ξ with a confidence interval

and with a test statistic

Tξ =
√
n
θ̂n − ξ

σ̂n

,
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Figure 4.1: Illustration of the estimation of a nonparametric bootstrap tilting
lower confidence limit

where θ̂n = θ(Fn) = f(Ȳ n) is the observed value of θ in the sample and

σ̂n =

√√√√ 1

n− 1

n∑
i=1

[f(Yi)− θ̂n]2

estimates the standard deviation. Then, the bootstrap test statistic is

T ∗ =
√
n
θ̂
∗
n − θ̂n
σ̂∗
n

,

where θ̂
∗
n and σ̂∗

n are the mean and standard deviation estimates in the bootstrap

sample, respectively. Consequently, by Equation (4.8), the p-value for testing H0
ξ

is

p = Pτ

(√
n
θ̂
∗
n − θ̂n
σ̂∗
n

≥ √
n
θ̂n − ξ

σ̂n

)
, (4.10)

and our objective is to find the largest value for τ < 0 such that p ≤ α.

We will use importance sampling to estimate the p-value in Equation (4.10),

using bootstrap samples from Fn. Specifically, let M∗
i,b denote the number of

times Xi is drawn into the b-th bootstrap sample X∗
b = (X∗

b1, X
∗
b2, . . . , X

∗
bn), b =
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1, 2, . . . , B, and let w(τ) denote the vector of exponential tilting weights wi(τ),

see Equation (4.5). We weight each bootstrap sample with the relative likelihood

Wb(τ) =

∏n
i=1wi(τ)

M∗
i,b∏n

i=1 n
−1

of the bootstrap sample under w(τ)-weighted sampling relative to sampling with

equal weights n−1. Then, we calibrate the tilting parameter τ < 0 such that the

estimated probability of obtaining at least the observed value T of the test statis-

tic in the original sample under H0
ξ is equal to α, that is, under the reweighted

distribution Fτ . This means, using the importance sampling estimate in Equa-

tion (4.9),

p̂(τ) =
1

B

B∑
b=1

1

{√
n
θ̂
∗
n,b − θ̂n

σ̂∗
n,b

≥ √
n
θ̂n − ξ

σ̂n

}
Wb(τ),

where

σ̂∗
n,b =

√√√√ 1

n− 1

n∑
i=1

[f(Y ∗
bi)− θ̂n]2

is the bootstrap estimate of standard deviation in the b-th bootstrap sample, and

we calibrate τ such that p̂(τ) = α. Then, L̂ = θ̂[w(τ)] is the desired lower

confidence limit.

To summarize, the basic idea of bootstrap tilting is to adjust the probabilities

of samples drawn from the empirical distribution to match the null hypothesis.

Utilizing the duality between hypothesis testing and confidence interval estima-

tion, we obtain the lower confidence limit as the parameter of interest estimated

from the reweighted distribution. Figure 4.1 illustrates the idea.

It is not immediately clear why the resulting confidence interval should have

the nominal coverage probability, which is key for valid statistical inference. The

theoretical understanding of the goodness of bootstrap tilting confidence intervals

was profoundly advanced by DiCiccio & Romano (1990). We will discuss their

findings in the following section.

4.4.5 Asymptotic properties

When we evaluate the theoretical properties of a confidence interval method, one

key aspect to consider is the order of correctness. It refers to the rate at which

they approach the nominal coverage level as the sample size n tends to infinity.

The following two characterizations hold under Hall’s smooth function model. Let

L̂ denote a proposed lower (1−α) ·100%-confidence limit for θ. According to Hall
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(1988), L̂ is called first-order correct if

P(θ ≥ L̂) = 1− α +O(n−1/2),

and L̂ is called second-order correct if

P(θ ≥ L̂) = 1− α +O(n−1),

where O(n−1/2) and O(n−1) represent quantities that have a rate of convergence to

zero of n−1/2 and n−1, respectively. Therefore, the difference between the coverage

probability and the nominal level is proportional to n−1/2 and n−1, respectively.

Many confidence interval methods are only first-order correct, such as the

Wald and the bootstrap pivotal interval. In practical terms, such methods are

often based on relatively simple assumptions, such as the asymptotic normality

for the Wald intervals, and are often less reliable regarding coverage probability

or less informative, especially in smaller samples. Second-order correct intervals,

such as the Wilson interval, in contrast, typically account for more subtle factors,

such as skewness of the distribution, and are often more sophisticated. These

properties lead to better coverage properties, also in smaller samples. For a de-

tailed review on the asymptotic properties of bootstrap confidence intervals and

confidence intervals for binomial proportions, see Hall (1992) and Brown et al.

(2001), respectively. Note that the cp interval is an exact method, so we cannot

assign an asymptotic order to it.

In fact, DiCiccio & Romano (1990) proved that the nonparametric bootstrap

tilting confidence interval is second-order correct. Before we will end this section

with some final remarks, we will record this finding for later use.

Proposition 4.4.2. Under Hall’s smooth function model, the lower (1 − α) ·
100%-confidence limit L̂(1−α) obtained from nonparametric bootstrap tilting using

exponential tilting weights is second-order correct; that is, it holds that

L̂(1− α) = θ̂n − n−1/2σ̂nH
−1
n (1− α) +OP(n

−3/2),

and

Pθ[θ ≥ L̂(1− α)] = 1− α +O(n−1).

4.4.6 Final remarks

We will conclude this chapter with some observations and remarks on the non-

parametric bootstrap tilting confidence interval.
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Finite samples According to Hall (1988), the asymptotic properties of any con-

fidence interval method is only one part of the information needed to accurately

assess it. The other part are simulation studies and applications to real-world data

sets. Hesterberg (1999) showed that nonparametric bootstrap tilting confidence

intervals reach a comparable level of precision to other bootstrap techniques with

far less resamples, and offer a good balance between confidence interval length and

accurate coverage in finite samples.

Perfect classifiers A second observation is that, in view of Equation (4.7), we

must recognize that nonparametric bootstrap tilting can never work if the data is

constant, because then w1(τ) = w2(τ) = · · · = wn(τ) for any value of the tilting

parameter τ , and the empirical distribution cannot be reweighted. This is not only

true when the parameter of interest θ is a mean, but in general, see Equations (4.5)

and (4.6).

Regarding the application to machine learning prediction models, this issue

occurs when the model perfectly predicts the true classes. To deal with this, we

could, for example, switch to another, perhaps conservative, interval estimation

method, such as the cp interval.

Empirical likelihood Another aspect we would like to mention here are the

close links between bootstrap tilting and empirical likelihood methods. Both share

foundational similarities in their approach to nonparametric statistical inference,

particularly the use of reweighting to approximate distributions. Both estimate a

probability distribution that is optimal in the Kullback-Leibler sense.

While bootstrap tilting uses resampling with adjusted weights to reflect the

distribution under the null hypothesis, empirical likelihood works directly with the

empirical distribution with no resampling required, and is more focused on like-

lihood theory and nonparametric estimation. While bootstrap tilting minimizes

the backward Kullback-Leibler divergence to achieve more accurate statistical in-

ference, empirical likelihood minimizes the forward Kullback-Leibler divergence.

For a more detailed account on the connections between bootstrap tilting and

empirical likelihood, or on empirical likelihood, in general, see the considerations

around remark 7.12 in Dickhaus (2018) or Schennach (2007) and Owen (2001),

respectively.
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Part II

Multiplicity-Adjusted

Bootstrap Tilting
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Chapter 5

Methodology and Theory

In Part I of this work, we explored the development of an effective machine learning

prediction model and translated the task of model evaluation into a statistical

inference problem. Using the duality to hypothesis testing, we illustrated how to

estimate confidence intervals for prediction performance. We also reviewed the

bootstrap and discussed nonparametric bootstrap tilting, which is a sophisticated

and fairly accurate approach to confidence interval estimation.

Moreover, we presented the default model selection and evaluation pipeline,

where we only evaluate a single model, as well as a novel approach by Westphal

& Brannath (2020). In this proposed pipeline, multiple models are evaluated and

the final model is selected based on its evaluation performance, and we framed

this as a multiple testing problem. Additionally, we argued that using the max-t-

correction can make simultaneous inference more efficient compared to standard

corrections such as the Šidák method, which, in contrast, does not incorporate

information about the relationship between the multiple hypotheses.

In this part of the present work, we will integrate these various components

to develop an approach that combines the strengths of the different techniques.

In particular, we will promote the proposed selection-evaluation pipeline. While

Westphal & Brannath (2020) offered a multiple test, we will extend the non-

parametric bootstrap tilting confidence interval to correct for multiplicity. The

resulting interval will be universally applicable and statistically valid. It will work

with any measure of prediction performance from Section 2.2.2; with any com-

bination of prediction models even from different model classes like linear and

non-linear candidate models; any model selection strategy, whether formal or in-

formal, or even based on post-hoc considerations; and it will be computationally

undemanding as it does not require any additional model training.

The idea to use a resampling-based approach for multiplicity correction is not

a new one, though. Westfall & Young (1993) provided a comprehensive overview

of various resampling techniques, including the bootstrap, and their use for con-

65
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trolling the fwer. However, the application of the max-t approach in a selection

and evaluation problem or, in general, in machine learning applications is not

common. It will ultimately enable us to evaluate the conditional performances of

multiple candidate models and provide a statistically valid lower confidence limit

for the final selected model.

This chapter is organized as follows. In Section 5.1, we will give a complete

mathematical description of our proposed multiplicity-adjusted bootstrap tilting,

or, for short, mabt confidence limits. In Section 5.2, we will record asymptotic

properties of our approach, and in Section 5.3 we will conduct the proofs.

5.1 Mathematical description and estimation

We operate under a multivariate extension of Hall’s smooth function model regard-

ing the dimension of the parameter of interest. Let X1,X2, . . . ,Xn be i. i. d. ran-

dom vectors from some unknown multivariate distribution F on some arbitrary

sample space Ω. For m ≥ 2, let h denote a smooth function from Ω to Rm

that maps each Xi to the m-dimensional vector Yi = h(Xi). Let Fj and μj =

μ(Fj) = EFj
(Yi) denote the marginal distributions and marginal means of Yi =

(Yi1, Yi2, . . . , Yim), respectively. Our goal is simultaneous inference for the vector

of parameters θ = (θ1, θ2, . . . , θm), using test statistics

Tj =
√
n
θ̂j,n − θj
σ̂j

,

where θj = θ(Fj) is a smooth function fj of μj, that is, θj = fj(μj).

In particular, for a prespecified global significance level α ∈ [0, 1], we want

to utilize the duality between estimating confidence intervals and testing the col-

lection of null hypotheses {H0
j : θj = ξj | j = 1, 2, . . . ,m} simultaneously, and

estimate simultaneous lower confidence limits with asymptotic coverage probabil-

ity (1−α)·100% using the bootstrap tilting approach; that is, for the simultaneous

lower limit L̂ = (L1, L2, . . . , Lm) it holds that, as n→ ∞,

Pθ(∩m
j=1{θj > Lj}) → 1− α,

where the Lj’s are bootstrap tilting lower confidence limits, all calibrated at the

same multiplicity-adjusted significance level αadj = αadj(α); that is, Lj = Lj(1 −
αadj).

Additionally, let X∗
1 ,X

∗
2 , . . . ,X

∗
B denote bootstrap samples drawn from the

original sample X1,X2, . . . ,Xn, and let T ∗
b = (T ∗

1b, T
∗
2b, . . . , T

∗
mb) be the vector of
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test statistics obtained from the b-th bootstrap sample Xb, that is,

T ∗
jb =

√
n
θ̂
∗
jb − θ̂j,n

σ̂∗
jb

.

Note that this way of generating bootstrap samples respects the dependencies

between the Xb’s.

The presentation will continue as follows: First, we will use the T ∗
b ’s to esti-

mate the marginal reweighted cumulative empirical distribution functions under

hypothetical values for the θj’s, as well as the regular marginal cumulative empir-

ical distribution functions. Then, we will use the joint distribution to account for

multiplicity and estimate αadj. Finally, we will calibrate the tilting parameters τj

accordingly.

We estimate the marginal reweighted distributions the same way we do in

regular (univariate) bootstrap tilting. From the bootstrap test statistics T ∗
b , for

each j = 1, 2, . . . ,m, we estimate the empirical reweighted distribution function

Ĥ
∗
j,τj

(t) =
1

B

B∑
b=1

1{T ∗
jb ≤ t}Wjb(τj), (5.1)

where

Wjb(τj) =
n∏

i=1

wij(τj)

n−1
= nn

n∏
i=1

eτjxij∑n
�=1 e

τjx�j

are the importance sampling weights.

For each j = 1, 2, . . . ,m, we plug the test statistic Tj into Ĥ
∗
j,τj

to obtain

Ĥ
∗
j,τj

(Tj). We will come back to this later when we use the Ĥ
∗
j,τj

(Tj)’s in the

context of another cumulative distribution function which we will derive next.

Eventually, this will provide the adjustment of the significance level that we need

to address the multiplicity problem.

Next, we need to transform the bootstrap test statistics to a comparable scale

by deriving univariate pivots and applying a minimum p-value approach, which is

equivalent to a max-t approach and will ultimately yield the multiplicity-adjusted

bootstrap tilting, or, for short, mabt lower confidence limits.

For each j = 1, 2, . . . ,m, we estimate the marginal empirical cumulative dis-

tribution function

Ĥ
∗
j(t) =

1

B

B∑
b=1

1{T ∗
jb ≤ t}

from the bootstrap test statistics T ∗
j1, T

∗
j2, . . . , T

∗
jB. We plug these into Ĥ

∗
j , which

yields transformed bootstrap test statistics Ĥ
∗
j(T

∗
j1), Ĥ

∗
j(T

∗
j2), . . . , Ĥ

∗
j(T

∗
jB), which

are now asymptotically uniformly distributed on the unit interval. Note that these



68 Chapter 5. Methodology and Theory

Ĥ
∗
j(T

∗
jb)’s correspond to one minus p-values.

Next, in each bootstrap sample, we determine the bootstrap-wise maximum

transformed test statistic maxmj=1 Ĥ
∗
j(T

∗
jb) and estimate the maximum empirical

cumulative distribution function of the transformed test statistics

Ĝ
∗
max(x) =

1

B

B∑
b=1

1{ m
max
j=1

Ĥ
∗
j(T

∗
jb) ≤ x}, (5.2)

We use this distribution function to estimate the adjusted significance level αadj,

α̂∗
adj = 1− Ĝ

∗−1

max(1− α), (5.3)

where Ĝ
∗−1

max(q) = inf{x | Ĝ∗
max(x) ≥ q} denotes the corresponding empirical quan-

tile function.

We note that the estimate Ĥ
∗
j,τj

in Equation (5.1) only concerns the tilting,

while Equation (5.3) corresponds to a maximum one minus p-value approach and

yields the multiplicity correction.

Lastly, we combine these cumulative distribution functions and present the

calibration task in order to get simultaneous lower confidence limits for the θj’s:

Find the values of the tilting parameters τ̂ L̂1
1 , τ̂

L̂2
2 , . . . , τ̂

L̂m
m < 0 such that for each

j = 1, 2, . . . ,m it holds that

Ĥ
∗
j,τ̂

L̂j
j

(Tj) = 1− α̂∗
adj.

Once the specific values for the τ̂
L̂j

j ’s are identified, we can determine the desired

simultaneous lower confidence limits via

L̂j = θ̂[w(τ̂
L̂j

j )]; (5.4)

that is, for each j, the multiplicity-adjusted lower confidence limit for θj is given

as the parameter of interest obtained from the calibrated reweighted distribu-

tion Ĥ
∗
j,τ̂

L̂j
j

. An R implementation of this approach can be accessed via a public

GitHub repository at https://gitlab.informatik.uni-bremen.de/s_opbgf3/

clfpp/-/blob/main/5-example/MabtCi-function.R.

We acknowledge that it is not imperative that we use the empirical distribu-

tion function within the multiplicity correction. When we marginally transform

the bootstrap test statistics, an alternative approach is to simply use the limit
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standard-normal distribution of the test statistics, that is,

Ĝ
∗
max(x) =

1

B

B∑
b=1

1{ m
max
j=1

Φ(T ∗
jb) ≤ x}, (5.5)

where Φ denotes the cumulative distribution function of the standard-normal dis-

tribution. We will investigate this later in simulation experiments, see Section 6.

We need to mention that the adjusted significance level and, thus, the cali-

brated tilting parameter and lower confidence limits are obviously functions of the

global level α, that is, α̂∗
adj = α̂∗

adj(α), τ̂
L̂j

j = τ̂
L̂j

j [α̂∗
adj(α)], L̂j = L̂j[1 − α̂∗

adj(α)],

and, thus,

L̂ = L̂(1− α) =
(
L̂1[1− α̂∗

adj(α)], L̂2[1− α̂∗
adj(α)], . . . , L̂m[1− α̂∗

adj(α)]
)
.

We will, however, mostly omit this dependency for notational simplicity.

On a final note, in the present work, we base our approach on test statistics,

while in our publication Rink & Brannath (2025), we directly use the parameter of

interest instead. Using the test statistic enables us to establish desirable theoretical

properties, as we will see in the following section.

5.2 Theoretical properties

Conceptually, because we base our multiplicity correction on the max-t approach,

it is not unlikely that the confidence limits in Equation (5.4) are actually good.

In the context of confidence interval estimates, a desirable property is that they

asymptotically have the correct coverage probability, that is, when the sample size

n tends to infinity, the coverage probability converges to (1− α) · 100%.

Specifically, we want to prove that for the proposed mabt simultaneous lower

(1−α) ·100%-confidence limits L̂(1−α) = [L̂1, L̂2, . . . , L̂m] for θ = (θ1, θ2, . . . , θm)

it holds that

Pθ[∩m
j=1{θj > L̂j}] → 1− α, (5.6)

or equivalently, using the dual test,

Pθ[∩m
j=1{Tj ≤ Ĥ

∗−1

j,τ̂
L̂j
j

(1− α̂∗
adj)}] → 1− α, (5.7)

where θ(τ̂
L̂j

j ) = L̂j.

From the upcoming Theorem 5.2.1, which is the main technical contribution

of this work, we will conclude that the convergence in Equation (5.7) and, conse-

quently, the convergence in Equation (5.6) holds true.
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In order to conduct the proof, we will need some basic concepts and results

from asymptotic statistics, which we provide in Appendix A. Thorough discus-

sions of asymptotic statistics can be found, for example, in DasGupta (2008) and

van der Vaart (1998). We denote almost sure convergence by
a.s.−→, convergence in

probability by
P−→, and convergence in distribution by

L−→.

Theorem 5.2.1. The following three statements about the proposed mabt confi-

dence limits hold true as n→ ∞.

1. The estimated adjusted significance level converges to the true adjusted sig-

nificance level, that is,

1− Ĝ
∗−1

max(1− α) = α̂∗
adj(α)

a.s.−→ αadj(α) = 1−G−1
max(1− α),

uniformly in α ∈ [0, 1], where Gmax(x) = P[maxmj=1 Φ(Tj) ≤ x], and Φ de-

notes the cumulative distribution function of the standard-normal distribu-

tion.

2. When using the true adjusted significance level αadj(α), for some global sig-

nificance level α ∈ [0, 1], the proposed simultaneous confidence limits asymp-

totically have coverage probability (1− α) · 100%, that is,

Pθ[∩m
j=1{θj > L̂j[1− αadj(α)]}] → 1− α,

or equivalently, using the dual test,

Pθ[∩m
j=1{Tj ≤ Ĥ

∗−1

j,τ̂
L̂j
j

[1−αadj(α)]}] → Pθ[∩m
j=1{Tj ≤ Φ−1[1−αadj(α)]}] (= 1−α).

3. The difference between the coverage probability obtained when using the true

and the estimated adjusted significance level converges to zero, that is, for

all α ∈ [0, 1], it holds that

|Pθ[∩m
j=1{θj > L̂j[1− α̂∗

adj(α)]}]− Pθ[∩m
j=1{θj > L̂j[1− αadj(α)]}]| → 0,

or equivalently, using the dual test,

|Pθ[∩m
j=1{Tj ≤ Ĥ

∗−1

j,τ̂
L̂j
j

[1−α̂∗
adj(α)]}]−Pθ[∩m

j=1{Tj ≤ Φ−1[1−αadj(α)]}]| → 0.

In the next section, we will prove the three statements from Theorem 5.2.1.

They will hold true under the set of regularity conditions DiCiccio & Romano

(1990) assumed for their proof of the second-order correctness of the univariate

bootstrap tilting confidence interval, see Proposition 4.4.2.
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5.3 Proofs

The proof of Theorem 5.2.1 requires the use of the following three Propositions 5.3.1,

5.3.2 and 5.3.3, which we record and prove first.

Proposition 5.3.1 provides conditions under which we can conclude the almost

sure and uniform convergence of quantiles from the convergence of the correspond-

ing cumulative distribution functions, and vice versa.

Proposition 5.3.1. Let (Ψn)n and Ψ be cumulative distribution functions with

quantile functions (Ψ−1
n )n and Ψ−1, respectively, such that Ψn(t)

a.s.−→ Ψ(t) uni-

formly in t. If the limit cumulative distribution function Ψ is continuous and

strictly increasing, it holds that Ψ−1
n (q)

a.s.−→ Ψ−1(q) for all q ∈ [0, 1].

Proof of Proposition 5.3.1. Choose an arbitrary q ∈ [0, 1] and let ε > 0. We

observe that from

Ψ(t)− ε ≤ Ψn(t) ≤ Ψ(t) + ε,

it follows

inf{t | Ψ(t) + ε ≥ q} ≤ inf{t | Ψn(t) ≥ q} ≤ inf{t | Ψ(t)− ε ≥ q},

which is equivalent to

Ψ−1(q − ε) ≤ Ψ−1
n (q) ≤ Ψ−1(q + ε),

where Ψ−1 is continuous because Ψ is continuous and strictly increasing.

Since Ψn(t)
a.s.−→ Ψ(t) uniformly in t, there exists almost surely a numberN ∈ N

such that for all n ≥ N it holds that |Ψ(t)−Ψn(t)| < ε for all t ∈ R, that is,

Ψ(t)− ε ≤ Ψn(t) ≤ Ψ(t) + ε,

and therefore, according to our observation from above,

Ψ−1(q − ε) ≤ Ψ−1
n (q) ≤ Ψ−1(q + ε).

Now, since it holds always true that lim inf
n→∞

Ψ−1
n (q) ≤ lim sup

n→∞
Ψ−1

n (q), there

exists a number N ′ ∈ N such that for all n ≥ N ′,

Ψ−1(q − ε) ≤ lim inf
n→∞

Ψ−1
n (q) ≤ lim sup

n→∞
Ψ−1

n (q) ≤ Ψ−1(q + ε).

As this is true for all ε > 0, and because Ψ−1 is continuous, we obtain

Ψ−1(q) ≤ lim inf
n→∞

Ψ−1
n (q) ≤ lim sup

n→∞
Ψ−1

n (q) ≤ Ψ−1(q).
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Therefore, lim inf
n→∞

Ψ−1
n (q) = lim sup

n→∞
Ψ−1

n (q) needs to hold and, hence, Ψ−1
n (q)

a.s.−→
Ψ−1(q).

The following Proposition 5.3.2 is a generalization of the widely-known and

powerful Glivenko-Cantelli Theorem, see, for example, Theorem 19.1 in van der

Vaart (1998). It describes how we can obtain almost sure and uniform convergence

from pointwise convergence.

Proposition 5.3.2. Let Ψ: R → [0, 1] be a monotonically increasing function

with limt→−∞ Ψ(t) = 0 and limt→∞ Ψ(t) = 1, and that is continuous from the

right. Additionally, let (Ψn)n be a sequence of functions such that Ψn converges

pointwise to Ψ, that is, as n → ∞, Ψn(t) → Ψ(t) for all t ∈ R. Then, it follows

that this convergence is even uniform in t.

The proof of Proposition 5.3.2 is rather technical, so we place it in Appendix B

and continue.

Previously, in Proposition 4.4.2, we presented the second-order accuracy of the

bootstrap tilting confidence intervals. We use this result in the proof of Theo-

rem 5.2.1 in that we are able to conclude from it the convergence in probability of

the quantile function of the reweighted distribution to the quantile function of the

standard-normal distribution. We present this convergence in Proposition 5.3.3.

Proposition 5.3.3. The quantile function of the reweighted distribution converges

in probability to the quantile function of the standard-normal distribution, that is,

for q ∈ [0, 1],

Ĥ
∗−1

τ̂ L̂ (1− q)
P−→ Φ−1(1− q).

Proof of Proposition 5.3.3. Recall that, in order to a find a bootstrap tilting lower

(1− q) · 100%-confidence limit for the mean using the test statistic T =
√
n (θ̂n −

θ)/σ̂n, we need to find the value τ̂ L̂ of the tilting parameter such that the proba-

bility under the τ̂ L̂-reweighted distribution to observe a value of the test statistic

larger than the value in the sample is equal to q · 100%; that is,

P
τ̂ L̂

(
√
n
θ̂
∗
n − θ̂n
σ̂∗
n

>
√
n
θ̂n − L̂

σ̂n

)
= q. (5.8)

Then, the parameter of the reweighted distribution θ(τ̂ L̂) = L̂ is the desired lower

limit.

Solving Equation (5.8) for L̂ yields the following expression for the lower con-

fidence limit,

L̂ = θ̂n − n−1/2σ̂n Ĥ
∗−1

τ̂ L̂ (1− q). (5.9)
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From the second-order accuracy of the bootstrap tilting confidence interval, see

Proposition 4.4.2, we know that

L̂ = θ̂n − n−1/2σ̂nH
−1
n (1− q) +OP(n

−3/2), (5.10)

where H−1
n (1− q) is the (1− q) · 100%-quantile of the true distribution of the test

statistic, with cumulative distribution function

Hn(t) = PF

{
√
n
θ̂n − θ(F )

σ̂n

≤ t

}
.

Equating the two expressions for L̂ in Equations (5.9) and (5.10) yields

H−1
n (1− q)− Ĥ

∗−1

τ̂ L̂ (1− q)= OP(n
−3/2)

√
n/σ̂n = OP(n

−3/2)OP(n) = OP(n
−1/2),

which implies that

|H−1
n (1− q)− Ĥ

∗−1

τ̂ L̂ (1− q)| P−→ 0.

We know that the asymptotic distribution of the test statistic is standard-

normal, and thus, when Φ denotes the cumulative distribution function of the

standard-normal distribution,

H−1
n (1− q) → Φ−1(1− q),

pointwise for all q ∈ [0, 1]. Thus, we finally conclude that

Ĥ
∗−1

τ̂ L̂ (1− q)
P−→ Φ−1(1− q),

and this holds true for arbitrary q ∈ [0, 1].

Note that Proposition 5.3.3 addresses the univariate case, and we will apply it

marginally for each j = 1, 2, . . . ,m later. Next, we return to our main objective

and prove Theorem 5.2.1, which is the main technical contribution of this work.

Proof of Theorem 5.2.1

Proof of part (1). We want to prove that

1− Ĝ
∗−1

max(1− α) = α̂∗
adj(α)

a.s.−→ αadj(α) = 1−G−1
max(1− α),

uniformly in α ∈ [0, 1].
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From the strong consistency of the bootstrap, see Theorem 4.2.2, we know that

sup
t∈R

|Ĥ∗
j(t)−Hn,j(t)| a.s.−→ 0.

Since the asymptotic distribution of the test statistic is standard-normal, we

know that

sup
t∈R

|Hn,j(t)− Φ(t)| a.s.−→ 0,

Consequently,

sup
t∈R

|Ĥ∗
j(t)− Φ(t)| a.s.−→ 0,

and this holds true for each j = 1, 2, . . . ,m. Thus, it holds that

| m
max
j=1

Ĥ
∗
j(Tj)−

m
max
j=1

Φ(Tj)| a.s.−→ 0,

and because almost sure convergence implies convergence in distribution, we ob-

tain for all x ∈ [0, 1],

Ĝ
∗
max(x) = P[

m
max
j=1

Ĥ
∗
j(Tj) ≤ x] → P[

m
max
j=1

Φ(Tj) ≤ x] = Gmax(x).

Because Ĝ
∗
max(x) and Gmax(x) are cumulative distribution functions, Propo-

sition 5.3.2 implies that Ĝ
∗
max(x)

a.s.−→ Gmax(x) uniformly in x. Since Gmax(x) is

continuous and strictly increasing in x, due to Proposition 5.3.1 we can conclude

that Ĝ
∗−1

max(α)
a.s.−→ G−1

max(α). Finally, we obtain that

α̂∗
adj(α) = 1− Ĝ

∗−1

max(α)
a.s.−→ 1−G−1

max(α) = αadj(α).

Proof of part (2). The dual test formulation of the second part of the theorem

reads

Pθ[∩m
j=1{Tj ≤ Ĥ

∗−1

j,τ̂
L̂j
j

[1− αadj(α)]}] → Pθ[∩m
j=1{Tj ≤ Φ−1[1− αadj(α)]}].

To prove this convergence, we define the random variable

Zj = Tj + Φ−1[1− αadj(α)]− Ĥ
∗−1

j,τ̂
L̂j
j

[1− αadj(α)]}],

and show that

Pθ[∩m
j=1{Zj ≤ Φ−1[1− αadj(α)]}] → Pθ[∩m

j=1{Tj ≤ Φ−1[1− αadj(α)]}].
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Due to Proposition 5.3.3, |Φ−1(q) − Ĥ
∗−1

j,τ̂
L̂j
j

(q)| P−→ 0 for all q ∈ [0, 1], and

because |Φ−1(q)− Ĥ
∗−1

j,τ̂
L̂j
j

(q)| = |Zj − Tj|, we conclude that

|Zj − Tj| P−→ 0,

and this holds true for each j = 1, 2, . . . ,m. Let Z and T denote the vectors

(Z1, Z2, . . . , Zm) and (T1, T2, . . . , Tm), respectively, and let ‖ · ‖1 denote the �1-

norm. Then, for any ε > 0 it holds that

P(‖Z − T ‖1 ≥ ε) ≤ P

(
m

max
j=1

|Zj − Tj| ≥ ε

m

)
≤

m∑
j=1

P

(
|Zj − Tj| ≥ ε

m

)
→ 0

as n→ ∞, for any j ∈ {1, 2, . . . ,m}. Hence, ‖Z − T ‖1 P−→ 0 and, in particular,

‖Z − T ‖1 L−→ 0.

Thus, we obtain that

Pθ[∩m
j=1{Zj ≤ Φ−1[1− αadj(α)]}] → Pθ[∩m

j=1{Tj ≤ Φ−1[1− αadj(α)]}],

and the limit is equal to 1− α by construction.

Proof of part (3). We use the dual test again to prove the third part of the theorem

and show that

|Pθ[∩m
j=1{Tj ≤ Ĥ

∗−1

j,τ̂
L̂j
j

[1− α̂∗
adj(α)]}]− Pθ[∩m

j=1{Tj ≤ Φ−1[1− αadj(α)]}]| → 0.

In order to prove this convergence, we show that |Δ(n)
1 (α) − Δ

(n)
2 (α)| → 0 as

n→ ∞, where

Δ
(n)
1 (α) = Pθ[∩m

j=1{Tj ≤ Ĥ
∗−1

j,τ̂
L̂j
j

[1− α̂∗
adj(α)]}]−Pθ[∩m

j=1{Tj ≤ Φ−1[1− α̂∗
adj(α)]}],

and

Δ
(n)
2 (α) = Pθ[∩m

j=1{Tj ≤ Φ−1[1− α̂∗
adj(α)]}]− Pθ[∩m

j=1{Tj ≤ Φ−1[1− αadj(α)]}].

From part (2) of Theorem 5.2.1, we obtain the pointwise convergence

|Pθ[∩m
j=1{Tj ≤ Ĥ

∗−1

j,τ̂
L̂j
j

(q)}]− Pθ[∩m
j=1{Tj ≤ Φ−1(q)]}]| → 0,

for any q ∈ [0, 1]. Due to Proposition 5.3.2, this convergence is even uniform in
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q. According to part (1) of Theorem 5.2.1, for any fixed α ∈ [0, 1], α̂∗
adj(α)

a.s.−→
αadj(α). Therefore, as n→ ∞, it follows that

|Δ(n)
1 (α)| ≤ sup

q∈[0,1]
|Pθ[∩m

j=1{Tj ≤ Ĥ
∗−1

j,τ̂
L̂j
j

(q)}]− Pθ[∩m
j=1{Tj ≤ Φ−1(q)]}]| → 0.

Since, by part (1) of Theorem 5.2.1, 1− α̂∗
adj(α)

a.s.−→ 1−αadj(α), it follows from

the Continuous Mapping Theorem, see Proposition A.1 in Appendix A, that

Φ−1[1− α̂∗
adj(α)]

a.s.−→ Φ−1[1− αadj(α)],

uniformly in α. Because the joint asymptotic distribution of (T1, T2, . . . , Tm) is m-

dimensional multivariate standard-normal, which has a continuous multivariate

distribution function, it follows that |Δ(n)
2 (α)| → 0.

Consequently, in conclusion, |Δ(n)
1 (α)−Δ

(n)
2 (α)| → 0 pointwise in α.

This concludes the proof of Theorem 5.2.1. Hence, the simultaneous lower

limits

L̂(1− α) =
(
L̂1[1− α̂∗

adj(α)], L̂2[1− α̂∗
adj(α)], . . . , L̂m[1− α̂∗

adj(α)]
)

for θ = (θ1, θ2, . . . , θm) asymptotically have simultaneous coverage probability

(1− α) · 100%, that is, Equations (5.6) and (5.7) hold true.

In particular, mabt yields valid lower conditional confidence limits when we

use any of the performance measures from Section 2.2.2, independent of the model

selection strategy, whether formal or informal, and even when it is based on post-

hoc considerations.
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Simulation Experiments

The considerations in Chapter 5 revealed good and desirable theoretical proper-

ties of the proposed mabt confidence limits. To complement these asymptotic

results, we investigate the goodness of the proposed approach in finite samples

using extensive simulation experiments.

We will assess the goodness of the lower confidence limits on the basis of three

indicators: conditional coverage probability, the confidence limits themselves, and

their informativeness. In addition, we will approximate and compare the true

performances of the models selected from the default and the proposed selection-

evaluation pipeline, respectively.

Coverage probability This is the proportion of times that a confidence inter-

val, constructed from multiple independent samples, contains the true value for

the parameter of interest. Assessing the coverage probability is essential to un-

derstand the reliability and accuracy of a confidence interval. Sample size and

model or distributional assumptions may affect it. When it is much lower than

expected, this indicates that the interval underestimates the true uncertainty in

the parameter estimate, and vice versa. In the former case the method is called

anti-conservative and in the latter conservative.

Size of the lower confidence limit In a real-world scenario, the user does not

know the truth and assesses the predictive performance by the lower confidence

limit. In the proposed selection-evaluation pipeline, we need to account for the

present multiplicity, such that it is not immediately clear whether we will actually

gain from mabt relative to comparative methods. It might well be the case that

the expected gains due to the preselection of multiple candidate models for evalu-

ation are counterbalanced by the multiplicity correction. In other words: There is

no real use in finding a better prediction model regarding true predictive perfor-

77
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mance when we are unable to identify it as such via a larger lower confidence limit.

Informativeness of the lower confidence limit To capture the informative-

ness, we will compute the distance between the true performance and the lower

confidence limit, and will refer to this as tightness for brevity. We do not have

clear expectations regarding the tightness of the mabt limits compares to other

methods. This is largely due to observations by Hall (1988) that the coverage

probability of a bootstrap confidence interval is not necessarily directly related to

its informativeness.

True performance For each simulated data set, we will obtain two selected

models, one from the default selection-evaluation pipeline and one from the pro-

posed pipeline. Due to the gainful way of the latter approach, we expect the true

performance of the final selected model to be better. Nevertheless, we will not be

able to affect model training by, for instance, training on a larger fraction of the

sample, so that we do not expect radical improvements in general.

This chapter is organized as follows. In Section 6.1, we will pose and discuss the

questions we would like to answer using simulation experiments. In Section 6.2,

we will explain in detail how we structure and conduct the experiments. Then, in

Section 6.3, we will present the results.

The full R implementation of the simulation experiments can be accessed and

downloaded from a public GitHub repository at https://gitlab.informatik.

uni-bremen.de/s_opbgf3/clfpp.

We will base most of the simulation experiments in the present work on the

experiments conducted in our publication Rink & Brannath (2025). In line with

the theoretical results obtained in the previous chapter, we will use test statistics

here, while in the publication we used the parameter of interest directly.

6.1 Objectives

There are three major questions that we will address separately. Broadly speaking,

they concern a design choice within the multiplicity adjustment in the proposed

confidence limits; alternative methods that use the entire sample to estimate a con-

fidence limit for conditional performance; and how the proposed intervals compare

to standard methods, which will be our main concern. We will discuss these issues

in the following Sections 6.1.1, 6.1.2, and 6.1.3.
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6.1.1 Two variants of multiplicity correction

In Section 5.1 we acknowledge that it is not imperative that we use the empiri-

cal distribution function Ĥ
∗
j within the proposed multiplicity correction in Equa-

tion (5.2). Another viable option is to use the standard-normal distribution, as

the considered test statistic is asymptotically standard-normally distributed. It

will be interesting to see whether the additional work of estimating the empirical

distributions pays off regarding the coverage probability as well as the size and

tightness of the estimated lower confidence limits.

Note that the considerations on the two variants of multiplicity correction are

not a part of our publication Rink & Brannath (2025).

6.1.2 Conditional performance

There are proposals in the literature advocating the use of the entire sample for

model training, selection, and evaluation. They include bootstrap bias-corrected

cross-validation (Tsamardinos et al., 2018) and nested cross-validation (Bates

et al., 2024), or, for short, bbc-cv and ncv, respectively.

The ad-hoc lower (1−α) ·100%-confidence limit estimate from cross-validation

is given by θ̂cv − z1−α ŝcv, where z1−α denotes the (1 − α) · 100%-quantile of the

standard-normal distribution and

ŝcv =

√
σ̂2
cv/n. (6.1)

This interval relies on standard-normal quantiles, and, additionally, is known to

not accurately track conditional performance; see, for example, Hastie et al. (2009)

and Bates et al. (2024).

Both bbc-cv and ncv improve on the ad-hoc cross-validation interval and

claim that they yield confidence intervals for conditional performance, which

makes them direct competitors to our proposed mabt intervals as well as to stan-

dard methods that rely on a held-out evaluation set for interval estimation. We

will characterize both competitors and compare their results from the default

pipeline with mabt later in Section 6.2.3. Note, however, that both bbc-cv and

ncv could in principle be extended to the proposed selection-evaluation pipeline

by incorporating a multiplicity correction, but we will not consider this in the

present work.

Being able to train the model on the entire sample and eliminating the need

for a held-out evaluation set (and for a multiplicity correction) are tremendous

advantages over mabt and standard methods. While it is clear that methods

that use a held-out evaluation set yield intervals for conditional performance, the
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situation is more intricate for methods such as bbc-cv and ncv.

It is not straightforward to even design simulation experiments that investigate

the ability of a method to produce confidence intervals for conditional performance,

especially when no sample splitting should be involved.

Designing a simulation experiment for the unconditional coverage probability

is fairly obvious, though. First, we need to decide on a classifier and fix the hyper-

parameters, for example, the lasso and the value of the �1 penalty λ. Then, we

need to repeatedly draw samples of the same size from a prespecified distribution.

In each sample, we apply the lasso with hyperparameter λ, estimate a confidence

interval, and check whether it contains the true performance value or not. The

proportion of such covering intervals among all estimated intervals is an estimate

of the unconditional coverage probability. Note that this is a statement about the

classifier together with the data-generating process.

In the conditional case, on the other hand, the design is somewhat more in-

tricate, as we need to fix both the classifier with all its hyperparameters as well

as the model parameters; that is, it does not suffice to specify the lasso as the

classifier of our choice together with a specific value for the hyperparameter λ,

but we also need to fix the coefficients β̂λ. Because we obtain the latter from the

sample at hand, we would need to draw the samples in such a way that we always

estimate the exact same vector β̂λ. We will go into more detail later.

In order to compare bbc-cv and ncv to mabt, we need to investigate how well

the respective intervals track the conditional performance. Additionally, we will

also investigate the goodness of the three methods in the presence of a distribution

shift, that is, the distribution between learning and validation changes. We will

present the setups for these experiments in Section 6.2.3.

6.1.3 Comparison to standard methods

The mabt intervals have promising asymptotic properties, which suggest their

potential theoretical effectiveness. However, to fully assess their practical effec-

tiveness, we need to test them in finite samples against several popular and widely-

used standard methods and assess how they compare in a variety of settings. This

will provide a better understanding of whether mabt intervals constitute any im-

provement over the standard methods, and to which extent.

6.2 Setups

In this section, we will describe the simulation experiments that we set up to

address the questions previously raised.
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In general, we will simulate under a typical machine learning model selection

and evaluation setup: We generate data for a binary classification task, learn

several prediction models, select the most-promising one among them, and eval-

uate its conditional performance using a lower confidence limit. We will provide

much more detail on the data generation, model training, performance estimation,

model selection, and the estimation of confidence limits in Section 6.2.1.

Note that we will only report a single multiplicity-adjusted confidence limit

for the final selected model here instead of simultaneous confidence limits for all

the considered prediction models. Of course, it would also be possible to do the

latter. However, the former is a more practical and concise scenario within machine

learning applications.

For the descriptions of the simulation setups, we will change the order in which

we address the issues from the previous section to make the presentation clearer. In

particular, for the issues presented in Sections 6.1.1 and 6.1.2, we will rely on ideas

and strategies or even reuse parts of the experiments we design for the comparison

of mabt to standard procedures. Hence, we will begin with the description of these

experiments. Then, we will address the other two objectives.

6.2.1 Comparison to standard procedures

In the following, we will address the various aspects of the experimental setup,

that is, how we generate the data, what type of prediction models we fit, which

measures we use to assess the performance, how we select a model for evaluation

and obtain a lower confidence limit, and how we estimate coverage probability.

Data generation We will split the data into two parts, a so-called learning

set that combines the training and the validation set and contains 75 percent of

the observations, and a held-out evaluation set, which contains the remaining 25

percent. We will generate medium-sized samples of 400 observations, so there are

300 observations available for learning and 100 for evaluation.

In addition to the learning and the evaluation set, from the same distribution,

we sample another much larger data set of 20 000 observations. We will refer to

the latter, slightly misleading, as the population. It will serve as a ground truth

from which we will later derive the true model performances.

During our experiments, we will generate the features and true class labels in

our data sets in two different ways. They represent two different levels of data

complexity. Still, both setups will lead to balanced classes.

In the first and simpler case, which we will refer to as the normal feature case,

we draw uncorrelated random numbers from the standard-normal distribution.
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We arrange these numbers into an n-by-k feature matrix [xi]i with rows xi, where

k is the number of features.

To obtain the true class labels yi, we specify a sparse true coefficient vector β

with only one percent non-zero coefficients. Then, using the inverse logit function

and a vector of uncorrelated observations ri that are uniformly distributed on the

unit interval, the true class labels are obtained via

yi = 1
{ 1

1 + e−xiβ
≥ ri

}
.

The reasoning behind the use of the ri’s is the following. From the inverse logit

function, we obtain probabilities of the i-th observation with features xi to fall into

the positive class. These numbers are deterministic, because they deterministically

depend on the features xi. So, until this point, regarding the class labels there is

no randomness involved.

In order to introduce some, we generate the ri’s, that is, random sampling

from the uniform distribution on the unit interval. We assign the positive class

to the i-th observation when the inverse logit is larger than ri. This means, the

chance to fall into the positive class is high when the inverse logit is large. But

in some rare cases, when ri is particularly large, the observation might still fall

into the negative class. Other than that, it is likely that the observation falls into

the negative class when the inverse logit itself is rather small. In this way, we

introduce chance, which we need to proceed.

Specifically, we generate k = 1000 features and choose the true coefficient

vector to be β = c · (1, 1, . . . , 1, 0, 0, . . . , 0) to have only ten non-zero entries, that

is, only one percent of the features actually contribute to the class label. The

factor c > 0 represents the signal strength, that is, the clarity and quality of the

underlying relationship between the features and the true class labels that the

prediction models will try to learn from. When c gets larger, it is easier to detect

the signal and separate it from noice. We choose c = 1, as this seems to make the

classification task sufficiently hard.

In summary, considering the shape of β, the signal strength, and the under-

lying standard-normal distribution of the features, we provide a sparse and not

particularly strong signal.

The second case, the caret feature case, we use the twoClassSim function

from the caret R package by Kuhn (2008) to mimic a more complex relation-

ship between the features and the true class labels, which is closer to real-world

data than the normal feature case. The function generates a feature matrix that

includes linear and non-linear effects as well as noise variables, each both uncor-

related and correlated, where we choose a constant correlation of 0.8. In addition,
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one percent of the data is mislabeled.

In particular, the probability of the i-th observation falling into the posi-

tive class against the negative is the i-th component of the probability vector

π = (π1, π2, . . . , πn) in Equation (C.1), which we place in Appendix C.3. Then, a

random number ri is drawn from the uniform distribution on the unit interval in

order to assign the true class label yi = 1{πi > ri}.

Model training For model training, we consider lasso and random forest clas-

sifiers, which we introduced in Section 2.3.1. For brevity, we will use the lasso

classifier only on the normal feature data, and the random forests only on the caret

feature data. This is an appropriate choice regarding the complexities of the data

and the classifiers.

For the lasso prediction models, we determine the maximum regularization

parameter λmax as shown in Equation (2.2), and fit lassomodels with 100 equidis-

tant values for λ between zero and λmax. Note that λmax depends on the data at

hand. We leave its computation to the glmnet R function from the glmnet R

package by Friedman et al. (2010).

For the random forest prediction models, we use the tuneRanger R function

from the tuneRanger R package. This function automatically tunes the involved

hyperparameters of a random forest, that is, number of features to possibly split at

in each node, minimal node size, and the fraction of observations to sample, with

model-based optimization, see Probst et al. (2018). Again, we fit 100 competing

models.

Performance estimation For both, the lasso and the random forest, we aim

for a lower confidence limit for the conditional prediction accuracy of the final

selected model.

However, note that in both the default and the proposed selection-evaluation

pipeline, we estimate the performance of the prediction models at two different

stages. We will go into more detail on model selection in both pipelines in the

next section.

First, we need to estimate the prediction performances of all candidate models.

In case of the lasso classifier, we use ten-fold cross-validation on the learning

data. For the random forest classifier, we use a resampling-based approach, as

implemented in the tuneRanger R function that we already use for hyperparameter

tuning.

Note that the cross-validation performance estimates cannot be interpreted as
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conditional estimates. Rather, as they are averaged over the ten folds, they are

unconditional estimates. Similar applies for the resampling-based approach in the

random forest case. However, we use the cross-validation performances only to

identify promising prediction models to preselect for evaluation.

Selecting a model for evaluation in the learning phase means that we fix the

associated hyperparameters; the model parameters, that is, the estimated coeffi-

cients, in contrast, might change. This is due to the fact that during learning and

model selection for evaluation, we usually obtain performance estimates for mod-

els that do not use the entire learning data. For example, when cross-validation is

employed, for each fold we obtain a performance estimate, but none of those come

from a model that is trained on the entire learning set. During learning, our main

goal is to identify the most promising hyperparameter constellations. Once these

are identified, the models are refitted on the entire learning set, and the second

stage of performance estimation follows. Using the evaluation data, we obtain

conditional estimates of their generalization performances.

Model selection Regarding model selection, we need to distinguish between

the default and the proposed selection and evaluation pipeline. In the default

pipeline, only a single model is selected for evaluation. This will be the one with

the best cross-validation performance in the learning set, that is, the best average

performance across cross-validation folds.

In contrast, when we employ the proposed pipeline, model selection is con-

ducted at two different stages. First, based on their cross-validation performance,

promising models are identified and preselected for evaluation. In the second stage,

a final model is selected among them, based on its evaluation performance, that

is, the generalization performance on the held-out evaluation set, conditional on

the hyperparameters and coefficients estimated from the learning data.

In general, we do not need to use the same selection rule in both stages. It is

even possible to use one performance measure for preselection and another one for

the final selection. We do not consider this here, though. Instead, in both stages,

for preselection and final selection, we will select models based on their prediction

accuracy.

There are many ways to preselect multiple prediction models. One apparent

option is to rank the candidate models due to their predictive performance on the

learning set and preselect a fixed number or a proportion. In particular, we will

select the top ten percent of models for evaluation and call this selection rule the

top ten percent rule, accordingly.

Another idea is to perform a data-driven selection. In particular, based on the
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cross-validation performances, we identify the best-performing model and compute

the cross-validation standard error ŝcv from Equation (6.1). Then, we preselect

the best-performing model and all models that are within one standard-error of

the best-performing one for evaluation. We will refer to this selection rule as the

within one standard-error selection rule.

Since the standard-error estimate is directly obtained from the cross-validation,

it reflects the uncertainty of the average performance estimate itself and, thus, the

uncertainty with which a model might be identified to be the most promising

one. The standard-error is smaller when the performance estimate of the best-

performing model is rather precise, and larger when it fluctuates greatly between

cross-validation folds. Thus, less or more models fall into the margin, respectively.

Another dimension to this is that when many candidate models all perform

comparably well during cross-validation, more models will be preselected. At the

same time, it is possible that only a few candidate models will be preselected in

case there are only a few models that perform clearly better than the rest.

In this way, the within one standard-error rule is more adaptive than the top

ten percent rule, but we can only consider it when we employ cross-validation

during learning, as in the lasso experiments. In the random forest experiments,

therefore, we will use the top ten percent selection rule. The tuneRanger im-

plementation does not directly allow for a similar adaptive rule, as it typically

does not yield repeated performance estimates per hyperparameter configuration.

Rather, it averages the hyperparameters of several promising candidate models;

see Section 3.5 in Probst et al. (2018) for details.

Due to the way we address the multiplicity, a larger number of preselected

models typically needs a stronger correction, which might yield unnecessarily con-

servative confidence intervals; if more models are preselected, the probability is

higher that any one of them performs better in a bootstrap sample than the final

selected model. This shifts the maximum distribution to the right. This is also the

reason why we preselect a subset of models for preselection and do not evaluate all

candidate models. Note, however, that a high correlation between the predictions

from the different candidate models reduces the amount of multiplicity correction

needed, as we illustrated in Figure 3.3.

In view of the uncertainty in the cross-validation performance estimates, it

seems reasonable to select multiple models for evaluation instead of only a single

one; we want to avoid the exclusion of a promising model from evaluation just

because it scored slightly worse than the best one. Later, in Section 7.2, we will

see that even repeated cross-validation does not eliminate this issue completely.

Moreover, the cross-validation estimates cannot be understood as estimates of

conditional performance. Rather, they estimate the unconditional performance,
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and it is not immediately clear how both interact.

Once models are preselected, they are refitted using the entire learning set and

the final selection is done based on the prediction performance in the evaluation

set.

It might well happen that multiple models yield the same performance in the

evaluation set. In that case, we select the least complex of those. When dealing

with lasso models, the least complex is the one with the largest value of the

regularization hyperparameter λ, which corresponds to the one with the smallest

number of features. In case of random forest prediction models, we use the com-

putation time for fitting the model as a substitute for model complexity, and we

regard models with shorter computation time as less complex.

Confidence limits For each simulated data set, we will obtain two selected

models, one from the default pipeline and one from the proposed pipeline. For

each of the models, we will employ different competing interval methods in order

to estimate lower limits for the prediction accuracy, using the evaluation set.

In the default pipeline, there is no need for multiplicity adjustment, as only a

single model is selected for evaluation. Its performance estimates in the evalua-

tion set are unbiased estimates of their respective conditional performance given

the fitted prediction model. Here, we will compute lower confidence limits using

the standard approaches presented in Section 3.3.2, that is, the Wald normal ap-

proximation interval, the Wilson interval, and the cp interval, each using the full

global significance level α = 5%. While the latter is an exact method, both the

Wald and the Wilson intervals rely on normal approximations, and it is unclear

how well this assumption applies.

In the proposed pipeline, however, in order to control the family-wise error

rate, we must adjust for multiplicity due to the multiple models being evaluated.

Hence, we compute our proposed mabt lower confidence limits, as they control

for multiplicity independent of the selection rule applied, using 10 000 bootstrap

samples. Also, they do not assume approximate normality, which we expect to

result in better preservation of the nominal coverage probability. We provide a

formal algorithmic description of the mabt limits in Appendix C.1.

Another idea that comes to mind is to use the same comparative methods

as in the default pipeline, but with a simple multiplicity adjustment such as the

Bonferroni or the Šidák correction, to adjust for the multiple models selected

for evaluation. As we can safely assume that the predictions from the different

candidate prediction models are not negatively dependent, we choose to use the

Šidák-adjusted significance level αŠidák = 1−(1−α)1/m over the Bonferroni level, as



6.2. Setups 87

it is less conservative. It is unclear whether there is additional gain in using mabt

over the Šidák-corrected limits, as the former incorporates information about the

dependency structure of the predictions from the preselected models.

True performance and coverage probability For each simulated data set

we will compute the true performances of the two selected models obtained from

the two pipelines by applying the models to the population and comparing the

predicted classes to the true labels. This is an obvious imprecision in our consid-

erations, as the population is a finite sample of 20 000 observations. Therefore, we

will only obtain an estimate instead of the true prediction accuracy itself. How-

ever, these estimates will be fairly precise, as they are expected to differ by no

more than ±√
0.52/20 000 = ±0.0035 from the truth.

Then, for each competing interval method, we will compare the lower limit to

the respective estimated true performance and decide whether it is covered by the

induced confidence interval. To estimate the coverage probability of an interval

method, we will report the proportion of covering intervals.

Comparison to Rink & Brannath (2025) The general difference to our pub-

lication Rink & Brannath (2025) is, as already mentioned, the use of test statistics

instead of the parameter of interest directly. Moreover, we only present a subset

of the scenarios from Rink & Brannath (2025) here, as the results are consistent

across the scenarios. For a list of all the scenarios considered in the publication,

see Appendix C.2. Moreover, the simulation experiments in Rink & Brannath

(2025) additionally consider confidence limits from (univariate) bootstrap tilting.

In the default pipeline, they turned out similarly competitive as the Wilson limits,

while the Šidák-adjusted version was clearly outperformed by the mabt limits in

the proposed pipeline. However, to keep the presentation in this work concise, we

will not show detailed results here.

6.2.2 Two variants of multiplicity correction

To address the question raised in Section 6.1.1 whether to use the empirical or

the standard-normal distribution function within the multiplicity correction of our

proposed intervals, we will use the lasso simulation experiments and compute an

additional lower confidence limit that utilizes the standard-normal distribution in-

stead of the empirical distribution, that is, we estimate Gmax using Equation (5.5)

instead of Equation (5.2). We will present the results in Section 6.3.1.
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6.2.3 Conditional performance

In Section 6.1.2 we began to discuss the investigation of conditional coverage

probability. In particular, we noted that we would need to generate the data sets

in such a way that we consistently arrive at the exact same model, which includes

both model and hyperparameters.

In the following, we will argue why it is not inherently possible for bbc-cv

and ncv to estimate conditional coverage probability, while it is for mabt. We

begin with a short description of how both cross-validation variants work.

Recall that cross-validation does not only yield a selection of a candidate model,

but in addition, for each observation, we obtain a single prediction ŷij of the i-th

observation from the j-th candidate model.

BBC-CV The bbc-cv approach by Tsamardinos et al. (2018) repeatedly draws

bootstrap samples from the ŷij’s. Let Ib denote the index set of observations drawn

into the b-th bootstrap sample, and let Ic
b = {1, 2, . . . , n} \ Ib denote the index

set of non-drawn observations. For each candidate model, the procedure com-

putes an in-bootstrap-sample performance estimate according to Ib. Typically,

in a binary classification setting, this could be the in-bootstrap-sample prediction

accuracy
∑

i∈Ib 1{ŷij = yi}/|Ib|. Next, for each bootstrap sample b, the proce-

dure identifies the best model according to the in-bootstrap-sample performance

and estimates the out-of-bootstrap-sample performance of this model according

to Ic
b . This yields a series of out-of-bootstrap-sample estimates. bbc-cv reports

the lower α-quantile of these estimates as the lower (1−α) ·100%-confidence limit

for the candidate prediction model selected from regular cross-validation.

NCV The ncv approach to confidence interval estimation was proposed by

Bates et al. (2024). It eventually relies on normal approximations to estimate

the confidence interval. However, instead of the regular cross-validation estimate,

it uses a nested scheme to estimate the standard-error. In order to stabilize the

estimate, the procedure repeatedly performs ncv, including model training, which

results in many additional model trainings, and finally aggregates the results.

Both of these variants of confidence interval estimation for cross-validation

claim to be adapted to the conditional case. However, they operate on the entire

sample and do not leave a held-out evaluation set. Also, as cross-validation is

considered to yield unconditional estimates, it is not immediately clear why both

variants should lead to valid conditional intervals, as they rely on correction terms.
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mabt, in contrast, yields inherently conditional estimates, as it only operates

on the predictions from a hold-out evaluation set. In addition, it is easy to design a

simulation experiment to assess its conditional coverage properties. The prediction

models including model and hyperparameters are fixed after the learning phase.

Thus, they are independent of the evaluation set and the interval estimation.

Consequently, we can fix the learning set and with it the fitted models, repeatedly

sample evaluation sets, and estimate the respective confidence intervals. This way,

we obtain an estimate of conditional coverage probability.

Regular scenario In particular, we will slightly modify the lasso simulation

experiments and generate medium-sized random samples of 400 observations, split

into 90 percent for learning and ten percent for evaluation. We generate the data

analogous to the lasso experiments in Section 6.2.1; that is, 1000 uncorrelated

features randomly drawn from the standard-normal distribution, a sparse true co-

efficient vector with ten non-zero coefficients and signal strength one, and balanced

classes.

A single learning set remains fixed between simulation runs. We use ten-fold

cross-validation to compare 100 candidate lasso models, that is, 100 equidistant

values λ1, λ2, . . . , λ100 for the �1 penalty λ between zero and λmax, which we obtain

from the cv.glmnet function from the glmnet R package (Friedman et al., 2010).

For each candidate model j = 1, 2, . . . ,m, ten-fold cross-validation yields a

prediction accuracy estimate θ̂cv,j and a corresponding estimated coefficient vector

β̂λj
. Based on the θ̂cv,j’s, we use the within one standard-error selection rule to

preselect m models β̂λs1
, β̂λs2

, . . . , β̂λsm
for evaluation.

For each of these preselected models, we estimate the true prediction accuracy

θsj from a large sample of 20 000 observations from the same distribution. We will

again refer to this sample as the population.

The simulation experiment runs along D = 100 000 generated evaluation sam-

ples. On each of these, we predict the true class labels using the preselected

models. This way, we obtain evaluation performance estimates θ̂
(d)

sj
and a final

model selection s(d) = argmax{θ̂sj | j = 1, 2, . . . ,m}. Finally, we use 10 000

bootstrap samples to estimate a mabt lower (1− α) · 100%-confidence limit L̂
(d)

s(d)

and check whether the interval contains the true prediction accuracy θs(d), that is,

θs(d) > L̂
(d)

s(d).

We proceed in this fashion for each evaluation sample d = 1, 2, . . . , D. Hence,

we obtain repeated measurements per preselected model sj and, thus, estimate

the conditional coverage probability p̂cvgsj
individually for each preselected model
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sj as the proportion of covering intervals among all intervals,

p̂cvgsj
=

∑
d : s(d)=sj

1{L̂(d)

s(d) < θs(d)}
#{d : s(d) = sj} , (6.2)

for each j ∈ {1, 2, . . . ,m}.
Next, we will modify the design to investigate the conditional coverage prop-

erties of both bbc-cv and ncv.

As mentioned earlier, we would actually need to first specify the desired model

and hyperparameters and then repeatedly draw samples such that model training

and cross-validation yield these exact prediction models. While it is easy to specify

the candidate values for the hyperparameters λ in a lasso regression, since both

operate on the entire sample, it is practically infeasible to obtain the exact same

estimated coefficient vector β̂λ from different samples.

As an approximation, we suggest to weaken the conditioning. In particular,

for bbc-cv and ncv, we estimate the respective coverage probabilities conditional

on the hyperparameters, but not on the model parameters.

Therefore, we modify the simulation design for mabt such that it is applicable

to bbc-cv and ncv and present it alongside the mabt design in Figure 6.1.

Specifically, we use the same 360 observations in the single learning set and the

same 100 candidate values λ1, λ2, . . . , λ100 for the �1 penalty. Then, we combine

the learning sample with each of the D evaluation samples. We will refer to these

samples as learning-evaluation samples.

On each learning-evaluation sample, ten-fold cross-validation yields predic-

tion accuracy estimates θ̂
(d)

1 , θ̂
(d)

2 , . . . , θ̂
(d)

100. Then, as usual, we select the best-

performing model s̃(d) = argmax{θ̂(d)j : j = 1, 2, . . . , 100}. Note that the selection

here does not necessarily need to be the same as for the mabt case, that is, in

general, s̃(d) 	= s(d).

For the selected model s̃(d), we estimate a corresponding lower (1−α) · 100%-

confidence limit using bbc-cv and ncv, respectively, and check whether the re-

spective confidence interval contains the true prediction accuracy θs̃(d).

For bbc-cv, we use 10 000 bootstrap samples, and for ncv we use the default

value of 50 repetitions of nested cross-validations to combine.

Because the model selections differ between the D learning-evaluation sam-

ples, we get repeated measurements per candidate hyperparameter value λj on

whether the resulting confidence intervals contains the true prediction accuracy or

not. Therefore, we estimate the coverage probability conditional on the selected

hyperparameter value, analogously to Equation (6.2), but with s̃(d) instead of s(d)

and separately for bbc-cv and ncv.
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Figure 6.1: Designs for the simulation experiments to investigate the conditional
coverage probabilities of mabt as well as bbc-cv and ncv intervals
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Neither in the mabt nor bbc-cv and ncv simulation experiments, the can-

didate prediction models, or rather hyperparameter values in case of the cross-

validation variants, are expected to be all selected equally often, and some candi-

dates might even not be selected at all. Because it is our goal to compare coverage

probabilities, we want to make sure that there are enough repeated measurements

per candidate in order to get an estimate of the coverage probability with accept-

able and comparable precision. Consequently, we only consider such candidates

that are selected at least 1000 times among the D = 100 000 repetitions. This

ensures acceptable precision, and we reach comparable precision by computing

the coverage probabilities from exactly 1000 randomly selected results each.

Distribution shift scenario A relevant scenario in real-world applications is

that feature effects are amplified in the learning sample compared to the popula-

tion and the evaluation sample. This distribution shift might happen, for instance,

when the measurement of the features is conducted differently between the learn-

ing and the evaluation phase, or when the target distribution itself changes.

Hence, to emulate a distribution shift between the learning and the evaluation

sets, we halve the signal strength in the evaluation set and in the population.

Apart from that, the experiments remain unchanged compared to our previous

considerations in this section, which we will refer to as the regular scenario; im-

portantly, the (single) learning set remains the exactly the same.

We will present the results to the regular and the distribution shift scenario

experiments in Section 6.3.2.

6.3 Results

In this section, we will present the results to the simulation experiments. For the

sake of argumentation, we will revert to the original order in which we presented

the objectives in Section 6.1.

Before we proceed, we need to establish a few general principles for handling

the results, which will apply consistently across all experiments.

Coverage Because we only have finite numbers of simulation experiment repli-

cations, it is unlikely to exactly observe the desired confidence level. This is why

we define an acceptable coverage region, that is, a deviation from the nominal con-

fidence level 1−α that we can explain by finite replications. In particular, because

coverage probability is a binary proportion, we will allow the observed coverage
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probability to vary within one standard error around the nominal level, that is,

{acceptable coverage region} = 1− α±
√
α(1− α)/{no. of replications}.

For example, when we repeat the experiment 1000 times, the acceptable cov-

erage region is the interval (94.31%, 95.69%), and for 5000 replications, it is

(94.69%, 95.31%).

Lower limits and tightness In order to avoid that we misleadingly favor confi-

dence limits from anti-conservative methods, we only compare confidence intervals

that actually contain the true prediction performance of the respective model. This

also applies when we compare the tightness of limits.

In case the mabt interval contains the true value, but the comparator does not,

the former is always considered superior than the latter. Similar applies when the

interval from the comparative method contains the interval, but the mabt interval

does not.

Also, notice that larger lower limits are associated with better prediction mod-

els and are, thus, better. In contrast, smaller values for the tightness of a lower

limit means that it is more informative, as it gives a better idea about the true

performance, and thus, are better than larger values.

True performance As the true performances only differ between the two com-

peting selection-evaluation pipelines and not between the interval methods them-

selves, we only need to compare them by pipeline. Higher values are, of course,

better here.

6.3.1 Two variants of multiplicity correction

In this section, we will investigate whether we should use the empirical or the

standard-normal distribution within the proposed multiplicity correction. Both

methods need almost the same computation time, so there is no advantage for the

normal-variant in that regard.

Overall comparison For the overall comparison, we aggregate the results from

all 5000 generated data sets and estimate the coverage probabilities of the two vari-

ants as the respective proportion of covering intervals. When we use the empirical

distribution within the multiplicity correction, we observe a coverage probability
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Figure 6.2: Lower confidence limits (left-hand pane) from mabt using the em-
pirical and standard-normal distribution function, respectively, and per-data set
differences (right-hand pane)
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of 95.24 percent compared to 97.22 percent when we use the standard-normal

distribution, respectively. Thus, the former variant yields fairly accurate cover-

age and is, in particular, less conservative than the standard-normal distribution

variant.

However, this does not necessarily mean that the more conservative bootstrap

interval method yields less informative confidence intervals, as pointed out by Hall

(1988). In the left-hand pane in Figure 6.2, we present the lower limits from the

two variants. The boxplots are created over all 5000 simulated data sets. The

corresponding summary table is in Table C.4 in Appendix C.4.

There are only small gains of the empirical distribution variant over the standard-

normal variant regarding the size of the lower limit. In particular, we do not spot

any overly negative effects of the more conservative limits from the standard-

normal variant. However, this may be true here, but does not necessarily need to

transfer to other settings.

Per-data set comparison We will continue with the per-data set comparison

of the lower confidence limits from the two variants. We computed the difference

between the lower limit obtained from the empirical distribution-variant and the

normal-variant. Hence, a positive difference is in favor of the empirical distribution

variant. We only consider those results here where both intervals contain the true

performance, which happens in 4762 out of 5000 simulated data sets.

We plot these differences in the right-hand pane in Figure 6.2, and the corre-

sponding summary table is in Table C.4 in Appendix C.4. The empirical distribution-

variant limits are at least as large as the normal-variant limits in 98.2 percent of

the simulated data sets, and strictly larger in 93.2 percent.

This suggests that using the empirical distribution within the multiplicity cor-

rection is superior to the normal distribution transformation as in the vast major-

ity of data sets we obtain larger lower limits, which seems reasonable because the

empirical distribution variant does not rely on the approximate standard-normal

distribution. Consequently, we will continue to use the empirical distribution vari-

ant for all subsequent considerations and experiments.

6.3.2 Conditional performance

In this section, we will compare how well bbc-cv, mabt, and ncv track the

conditional performance in both the regular and distribution shift scenarios.
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Figure 6.3: Estimated conditional coverage probabilities from the regular and
distribution shift simulation experiments on the left-hand and the right-hand side,
respectively
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Regular scenario The total computation time for the experiments where the

samples in the learning and the evaluation sets come from the same distribution

is about three days on an amd Ryzen Threadripper pro 5975wx cpu using 60

threads. In the mabt experiments, 26 of the 100 candidate lasso prediction

models get preselected, 24 of which in at least 1000 evaluation sets.

Because for bbc-cv and ncv the selection is due to the average performance

from a ten-fold cross-validation, both variants end up with the same selected

hyperparameter value per evaluation set. Over the course of the D = 100 000

evaluation sets, a total of 83 different values for the hyperparameter get selected,

59 of which in at least 1000 evaluation sets.

In the left-hand pane in Figure 6.3, we present summarized results to the three

interval procedures. The corresponding summary table is the upper one in Ta-

ble C.5 in Appendix C.5. In addition, Tables C.6 and C.9 as well as Figures C.1

and C.2 can also be found there, where we list the estimated conditional coverage

probabilities and plot them against the associated hyperparameter values, respec-

tively.

Distribution shift scenario The distribution shift scenario runs about three

days, as well, on the same cpu with the same number of threads. Since the

learning set is the same as in the regular experiments, for the mabt experiments,

the same 26 lasso prediction models get preselected for evaluation, all of them

in at least 1000 evaluation sets.

For the experiments that concern bbc-cv and ncv, 85 candidate hyperparam-

eter values are selected, and 57 of which in at least 1000 evaluation sets.

In the right-hand pane in Figure 6.3 we present summarized results to the

three interval procedures. The corresponding summary table is the lower one in

Table C.5 in Appendix C.5. In addition, Tables C.8 and C.9 as well as Figures C.1

and C.2 can also be found there, where we list the estimated conditional coverage

probabilities and plot them against the associated hyperparameter values, respec-

tively.

Conclusion We conclude that, in our experiments, neither bbc-cv nor ncv

yield confidence intervals for the prediction accuracy of a lasso binary classifier

that maintain the desired conditional coverage level; mabt, in contrast, does.

In addition, the first two methods are only applicable when cross-validation it-

self is employed. This considerably limits the range of potential applications. For
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instance, when either is utilized alongside complex neural nets, the total compu-

tation time likely gets excessively long. This is not a huge problem with bbc-cv,

but with ncv even more, due to the many additional model trainings and the

need to run the ncv scheme repeatedly, with different allocations of the observa-

tions to the folds, in order to obtain stable results. In our experiments, ncv is

repeated 50 times with ten folds each, which results in 5000 additional model fits

per confidence interval.

mabt, however, does not require cross-validation at all; it is merely a tool for

stabilizing the preselection of promising models. Also, it directly and inherently

estimates conditional lower limits, without any additional distributional assump-

tions or model training.

We note that the confidence intervals from bbc-cv and ncv are not fully

conditional, though, that is, on both model parameter and hyperparameter, as

this appears infeasible to us. However, they are conditional on the hyperparameter

value, and we presume that further conditioning on model parameters would only

worsen the situation.

Due to all of these reasons, we rule out both cross-validation variants as suitable

comparators to mabt limits. Also, our findings in these experiments highlight the

need for a universally valid procedure that yields reliable confidence intervals for

conditional performance. mabt is such a procedure.

We acknowledge, however, that bbc-cv and ncv might potentially be useful

alternatives when the primary interest is not to obtain a valid interval estimate

for conditional performance.

6.3.3 Comparison to standard methods

In this section, we will present the results to the lasso and random forest simu-

lation experiments to compare mabt intervals to standard methods. As in Sec-

tion 6.3.1, in addition to the overall comparison, we will compute the differences

between the mabt and each of the competing lower limits on each simulated data

set in order to conduct per-data set comparisons.

LASSO overall results

We will begin with the lasso simulation experiments. To estimate the different

confidence limits here takes about 70 minutes on an amd Ryzen Threadripper

3960x cpu using 44 threads. Note, however, that this does not include model

training and selection. We will begin with an overall comparison across all 5000

simulated data sets. After that, we will compare the results on a per-data set

basis.
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Figure 6.4: Results to the lasso simulation experiments. The triangles and circles
in the upper right plot as well as the plain and dotted patterns in the remaining
boxplots represent the default and proposed pipeline, respectively. The shaded
area represents the acceptable coverage region
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Coverage probability The upper left plot in Figure 6.4 shows the observed

coverage probabilities of the five competing interval methods, obtained from the

default and proposed selection-evaluation pipeline, respectively. As we fix the

global significance level at five percent, the desired coverage probability is 95

percent.

In the default pipeline, the cp, Wald, and Wilson limits yield observed coverage

probabilities of 95.96, 92.84, and 95.34 percent. Hence, while the Wilson limits

are only slightly conservative, the cp limits are conservative, and the Wald limits

are anti-conservative.

In the proposed pipeline, the respective Šidák-corrected versions are moder-

ately to highly conservative at 98.38, 95.74, and 98.28 percent. The proposed

mabt confidence limits, though, turn out fairly accurate at 95.24 percent cover-

age probability.

Lower confidence limit The boxplots in the lower left pane in Figure 6.4 illus-

trate the lower confidence limits of the different interval methods for the different

selection-evaluation pipelines and evaluation sample sizes. The associated sum-

mary table is in Table C.10 in Appendix C.6.

In the default pipeline, the Wald limits are the largest, but they fall below the

desired coverage probability of 95 percent and, hence, make an unfair comparator.

Among the remaining three interval methods, the cp and the Wilson limits are

somewhat smaller than the Wald limits.

In the proposed pipeline, the Šidák-adjusted limits are all smaller than their

unadjusted counterparts. The mabt limits turn out largest among the proposed-

pipeline competition, and comparably large as the anti-conservative Wald limits

from the default pipeline.

Tightness In the lower right plot in Figure 6.4, we compare the tightness of

the different confidence limits, that is, the distance between the true prediction

performance of the respective model and the lower limit. The associated summary

table is in Table C.10, which can be found in Appendix C.6.

Our findings regarding the sizes of the lower limits can, in principle, be directly

transferred. In the default selection-evaluation pipeline, the Wald limits are tight-

est, but the method is anti-conservative. The limits from the cp and the Wilson

method are somewhat less tight.

Among the limits from the proposed pipeline, the ones from mabt are clearly

the tightest, and almost as tight as the default-pipeline Wald limits.
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Pipeline

Method Default Proposed

cp 67.0% 100.0%

Wald 34.0% 89.0%

Wilson 54.7% 100.0%

Table 6.1: Proportions of covering confidence intervals from mabt that are larger
than the comparator in the lasso simulation experiments

True performance Lastly, we will compare the true performance of the models

selected in the default and the proposed selection-evaluation pipeline, respectively.

The boxplots in the upper right pane in Figure 6.4 present the results, and the

corresponding summary table is Table C.11 in Appendix C.6. We see that the

gains regarding the true predictive performance in the proposed over the default

pipeline are small.

LASSO per-data set results

In addition to the overall comparisons, we will compare the limits on a per-data

set basis, as the confidence limits come in matched sets.

Lower confidence limit In Table 6.1, we report the proportion of covering

intervals in which the limit from mabt is larger than the comparator. In total,

4762 out of 5000 confidence intervals from mabt contained the true performance.

We observe that, overall, in the majority of cases, the limits from the pro-

posed mabt are larger than the comparators. In this regard, mabt loses only to

the Wald limits from the default selection-evaluation pipeline, but they are anti-

conservative, so this remains an unfair comparison.

True performance When we compare the true predictive performances of the

model selected from the proposed selection-evaluation pipeline to the one from the

default pipeline, we observe that in 70.48 percent of the 5000 simulated data sets

the final model is at least as good, and in 42.66 percent it is strictly better.
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Figure 6.5: Results to the random forest simulation experiments. The triangles
and circles in the upper right plot as well as the plain and dotted boxplots represent
the default and proposed pipeline, respectively. The shaded area represents the
acceptable coverage region

Random forest overall results

Next, we turn to the random forest simulation experiments. The estimation of

the confidence limits takes about 43 hours on an amd Ryzen Threadripper pro

5975wx cpu using 60 threads. Note that this does neither include data generation

nor model fitting or selection. Our findings on the random forest experiments are

largely consistent with our findings in the lasso experiments.

Coverage probability The plot in the upper left pane in Figure 6.5 presents

the observed coverage probabilities of the competing interval methods for the

different selection-evaluation pipelines. Again, we fix the global significance level

at five percent, and thus, the desired coverage probability is 95 percent.

In the default pipeline, the cp, Wald, and Wilson limits yield observed coverage

probabilities of 95.92, 93.48, and 95.12 percent. Therefore, the cp limits are

conservative and the Wald limits are anti-conservative, while the Wilson limits

yield very accurate coverage probability.

In the proposed-selection-evaluation pipeline, the respective Šidák-corrected
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variants are all conservative at 99.00, 96.42, and 99.08 percent coverage. The pro-

posed mabt limits are very slightly conservative with a coverage probability of

95.32 percent.

Lower confidence limit In Figure 6.5, the boxplots in the lower left pane

present the lower confidence limits of the different interval methods for the various

selection-evaluation pipelines. The associated summary table is in Table C.12 and

placed in Appendix C.7.

In the default pipeline, the Wald limits are the largest, but they are anti-

conservative, falling below the desired coverage probability of 95 percent. Thus,

again, they make an unfair comparator. Among the two remaining interval meth-

ods, the Wilson limits are slightly larger than the cp limits.

In the proposed pipeline, the mabt limits are considerably larger than all of

the Šidák-corrected intervals, and they are even larger than all of the limits from

the default pipeline, even though they are more conservative than both the Wald

and the Wilson limits.

Tightness The observations regarding the size of the lower limits can largely

be transferred to the tightness of the limits, which are presented in the lower

right pane in Figure 6.5. The corresponding summary table is in Table C.12 in

Appendix C.7.

In the default pipeline, the Wald limits are tightest, but the method itself anti-

conservative. The Wilson limits are somewhat less tight than the Wald limits, but

a bit tighter than the cp limits.

In the proposed pipeline, the mabt limits are evidently the tightest, and com-

parably as tight as the anti-conservative Wald limits from the default pipeline.

True performance In Figure 6.5, in the upper right pane we present the

true predictive performances of the model selected by the default and proposed

selection-evaluation pipeline, respectively. The associated summary table is Ta-

ble C.13 in Appendix C.7. The gains of the proposed over the default pipeline are

rather small.

Random forest per-data set results

After we compared the results to the random forest experiments across all 5000

simulated data sets, we will now draw per-data set comparisons.
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Pipeline

Method Default Proposed

cp 69.2% 100.0%

Wald 48.5% 98.1%

Wilson 59.6% 100.0%

Table 6.2: Proportions of covering confidence intervals from mabt that are larger
than the comparator in the random forest simulation experiments

Lower confidence limit Table 6.2 shows the proportions of the simulated data

sets in which the mabt limit turns out at least as large as each of the comparative

limits. In total, 4766 out of 5000 confidence intervals from mabt covered the true

performance, respectively.

In the majority of cases, the limits from the proposed mabt are larger than

the comparators. Only in comparison to the anti-conservative Wald limits from

the default selection-evaluation pipeline, the mabt limits are mostly smaller, but

this is an unfair comparison.

True performance Lastly, when we compare the true predictive performances

of the models selected from the proposed to the default pipeline, we observe that

in 63.8 percent of the 5000 simulated data sets, the final model is at least as good,

and in 59.0 percent it is strictly better.
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Applications to Real-World Data

In the previous chapters, we established mabt confidence limits as a viable alter-

native by both studying their theoretical asymptotic properties as well as their

goodness in finite samples via simulation experiments. In this chapter, we will

follow two objectives. The first is the application of the mabt confidence limits

to classification tasks on real-world data, and the second is to test and compare

them to standard methods.

While our first application to real-world data in Section 7.1 can be seen as in-

between simulation experiments and real-world application, in Section 7.2 we will

present an interesting issue when the default selection-evaluation pipeline is used.

In particular, even when repeated cross-validation is used, the default pipeline

might lead to the selection of prediction models with only subpar predictive per-

formance.

The considerations in this chapter resemble the real-world applications in our

publication Rink & Brannath (2025). The main difference between the publication

and the present work is the use of test statistics instead here, in accordance with

the theoretical results in Chapter 5.

The R code to these applications of mabt can be accessed via a public GitHub

repository at https://gitlab.informatik.uni-bremen.de/s_opbgf3/clfpp.

7.1 OpenML benchmark

In this first application, we compare the mabt confidence limits to standard meth-

ods on a number of different real-world experiments from the Openml platform

(Vanschoren et al., 2013). Openml is an open-source collaborative hub for ma-

chine learning research. It facilitates sharing, exploration, and analysis of machine

learning data, tasks, and experiments. All included data sets are uniformly for-

matted, have detailed descriptions, and can be used with a variety of machine

105
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Quantity Min Median Max

Sample size 522 1563 45 312

Majority class size 278 1280 39 922

Minority class size 46 356 19 237

Class imbalance 1 1.92 16.27

Number of features 5 21 971

Observations per feature 3.6 575.0 5034.7

Table 7.1: Minimum, median, and maximum values among the included Openml
data sets for binary classification. The class imbalance is computed as the quotient
of the majority class size by the minority class size. The number of observations
per feature is obtained by dividing the sample size by the number of features

learning environments and libraries such as R, Python, or Jupyter. Openml can

be freely accessed via http://openml.org.

An Openml experiment includes a real-world data set and a specific machine

learning task such as binary classification. Users can upload their results as well

as the detailed evaluation and algorithm pipelines they used.

For our purposes, we resemble Probst et al. (2018), who utilize Openml to

benchmark their tuneRanger function against other random forest tuning imple-

mentations, using the Openml100 benchmarking suite and the Openml R package

by Casalicchio et al. (2017).

As a first step, we exclude all Openml binary classification tasks that either

contain missing values in their respective data sets or are expected to take longer

than 10 000 seconds to run. Table 7.1 summarizes the basic characteristics of the 33

included data sets such as sample size, number of features, and related quantities.

A complete list with detailed information is placed in Table D.15 in Appendix D.

In an initial test, we observe that in some of the selected data sets, the random

forest classifier reaches near perfect prediction performance. We thus add a small

amount of noise to the true class labels in order to make the classification problems

more difficult.

We proceed in the same way as in our simulation experiments in Chapter 6. We

split the data randomly into 75 percent for learning and 25 percent for evaluation,

fit random forests to the learning set using the tuneRanger R function, and use

the evaluation data to obtain lower confidence limits for the prediction accuracy.

Note, however, that it will not be possible to answer the question whether the

estimated confidence intervals cover the true performance or not, or questions

derived from this information; we do not know the truth, as these are real-world
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samples.

In the proposed selection-evaluation pipeline, as we do not employ cross-

validation here, we cannot use the within one standard-error selection rule. In-

stead, we will use the top ten percent rule, as introduced in Section 6.2.1. In the

final selection stage, we will select the best-performing model in the evaluation set

and compute our proposed mabt confidence limits using 10 000 bootstrap sam-

ples. In case multiple models perform equally good, we prefer less complex models

over more complex ones; that is, models that take less computation time during

fitting.

For each of the considered Openml experiments, we will perform learning,

selection, and evaluation repeatedly with ten different allocations of the data to

learning and evaluation. We do this in order to account for possibly disadvanta-

geous allocation situations. This allows a fairer assessment of the performance of

the competing interval approaches.

Throughout, as the results come in matched sets, we will draw per-data set

comparisons on the basis of the lower limits averaged over the ten different allo-

cations of the data to learning and evaluation.

As mentioned before, we will consider both binary and multi-class classifica-

tion experiments. The comparative methods are the cp, Wald, and Wilson limits,

all obtained from the default selection-evaluation pipeline. The repeated exper-

iments run about seven hours on an amd Ryzen Threadripper 3960x cpu using

44 threads.

Figure 7.1 illustrates the results from the binary Openml classification exper-

iments. For each data set and each interval method, we average the confidence

limits over the ten repeated runs.

In the left-hand pane of Figure 7.1, we present the absolute differences be-

tween the limit obtained from mabt and the respective comparator, and in the

center pane we present the relative gains. In the right-hand pane, we show what

percentage of the maximum possible improvement we achieve by using mabt over

the comparator, that is,

{% of max. possible improvement} =
{mabt limit} − {comparator limit}

1− {comparator limit} · 100%.

In all these cases, positive numbers favor mabt. The associated summary tables

are placed in Table D.14 in Appendix D.

In addition to the quantified gains, we observe that the average lower limit

computed from mabt in the proposed selection-evaluation pipeline is larger than

the cp, Wald, and Wilson average lower limit from the default pipeline in 31,

17, and 30 out of the 33 data sets, respectively. Note, however, that the Wald
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Figure 7.1: Gains of the mabt limits in the Openml benchmark. From left to
right, we present the absolute differences, the relative gains, and the percentage
of the maximum possible improvement over the comparators

limits turn out anti-conservative in our simulation experiments in Chapter 6, so

this comparison may be unfair.

The gains are mostly small. However, strikingly, there are some instances in

which the average lower limit from mabt is considerably larger than the compara-

tors. Overall, the mabt limits appear very competitive.

7.2 Cardiotocography data

In this example we apply the proposed selection-evaluation pipeline and the mabt

confidence limits to the Cardiotocography data set provided by Ayres-de Campos

& Bernardes (2010), which can be downloaded from the University of California,

Irvine Machine Learning Repository Dua & Graff (2017) at https://archive.

ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic).

Westphal & Brannath (2020) used this data set to illustrate that the evalu-

ation of multiple methods may be beneficial as to final model performance, and

we resemble their setup in order to answer the question whether the potential

gains of the proposed method outweigh the losses suffered through the necessary

multiplicity adjustment, especially regarding the lower confidence limits.

The Cardiotocography data set contains medical data on unborn children dur-
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ing their mothers’ pregnancies. Cardiotocography is a common procedure used

to assess fetal well-being by measuring heart rate patterns, uterine contractions,

and other physiological parameters. The data set comprises 2126 complete car-

diotocograms, which were inspected for anomalies by three expert obstetricians.

Depending on the degree of the observed anomaly, the experts assigned a consen-

sus label to each cardiotocogram. More details on the data set can be found in

Ayres-de Campos et al. (2000).

For our purposes, we dichotomize the ordinal label into two classes, suspect

abnormal state and normal state. There are 471 observations in the former and

1655 observations in the latter class. Our goal is to predict the suspect abnormal

state from 23 features of fetal heart rate and report a lower confidence limit for

the performance of the prediction model.

For each cardiotocogram the date of measurement is recorded. We will use this

information to split the data set into a learning and an evaluation set that contain

the first 75 and the last 25 percent of the data according to the date, respectively.

Other than that, the date variable will not be used; in particular, it will not be

used for model training.

During model learning, we fit 100 models from the elastic net class, see Sec-

tion 2.3.1. Recall that the elastic net has two hyperparameters γ and λ, which

control the balance between the �1 and �2 penalty, and the overall strength of

regularization, respectively. For γ, we specify five equidistant values between zero

and one, and 20 equidistant values between zero and λmax(γ) for λ.

In order to obtain the validation performance for each of the candidate models,

we will perform ten-fold cross-validation and will compare results from single-run

and ten-times repeated cross-validation. To preselect models for evaluation, we

will use the within one standard-error selection rule in the proposed selection-

evaluation pipeline. In the default pipeline, we will select the model with the best

performance in the cross-validation.

After refitting the preselected models on the entire learning set, we predict the

classes in the evaluation set. Then, in the default pipeline, we estimate a lower

confidence limit using the cp, Wald, and Wilson method at the full significance

level of five percent.

In the proposed pipeline, we perform the final model selection, select the model

with the best performance in the evaluation set among the preselected models, and

estimate Šidák-corrected versions of the cp, Wald, and Wilson limits as well as

the proposed mabt limit, using 10 000 bootstrap samples.

For each of the following three scenarios, the computation time is about eleven

seconds on a single core of an M2 Apple MacBook Air.

Table 7.2 shows the prediction accuracies and ranks of the preselected models in
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the validation and evaluation phase. Across all models, there is a substantial per-

formance decrease when going from validation to evaluation. The best-performing

model in the validation has a prediction accuracy 94.54 percent and turns out the

worst-performing in the evaluation with only 72.93 percent accuracy. At the same

time, the second-worst model in the validation has accuracy 93.04 percent and

performs best in the evaluation with 83.46 percent accuracy.

Hence, in the default selection-evaluation pipeline, the user discovers a rela-

tively poor model, while in the proposed pipeline, the user is protected from this

subpar selection.

Validation Evaluation

Prediction accuracy Rank Prediction accuracy Rank

93.10% 7 83.46% 1

93.29% 4 74.06% 5

93.29% 5 79.51% 2

93.16% 6 73.87% 6

93.48% 2 78.57% 3

93.04% 8 73.87% 7

93.35% 3 78.57% 4

93.54% 1 72.93% 9

93.04% 9 73.68% 8

Table 7.2: Prediction accuracies and ranks of the prediction models in the Car-
diotocography example when only a single ten-fold cross-validation is performed.
When two models have the same prediction accuracy, the less complex one gets
ranked higher

Of course, this reflects in the confidence limits. In Table 7.3 we present the es-

timated lower limits for both, the final selection from the default and the proposed

pipeline. The subpar selection from the default pipeline leads to lower limits for

the prediction performance of about 70 percent, while the limits associated with

the proposed pipeline are at about 79 percent. Amongst those, the proposed mabt

limit turns out largest at 79.69 percent.

Admittedly, the presented situation may be a very unfortunate one; a different

allocation of the learning data set to the ten cross-validation folds might mitigate

the issue.

Indeed, when we use a ten-times repeated cross-validation scheme, that is,



7.2. Cardiotocography data 111

Pipeline cp mabt Wald Wilson

Default 69.58% – 69.76% 69.65%

Proposed 79.00% 79.69% 79.38% 78.99%

Table 7.3: Lower confidence limits for the prediction accuracy in the Cardiotocog-
raphy example when only a single ten-fold cross-validation is performed

repeatedly allocate the learning data to the ten folds and average the performances,

the evaluation estimates turn out much closer, as shown in Table 7.4.

In comparison to the single-run cross-validation, the performance drop between

validation and evaluation persists, but the selection appears much more stable; the

best-performing model in the validation is the second-best in the evaluation, and

the margin to the best is relatively small.

Nevertheless, we still observe some rather unexpected differences between the

validation and evaluation ranks such as the second-best model in the validation,

which turns out worst in the evaluation with a clearly inferior evaluation perfor-

mance.

Validation Evaluation

Prediction accuracy Rank Prediction accuracy Rank

93.18% 5 74.06% 4

93.24% 3 79.51% 1

93.07% 7 73.87% 5

93.46% 1 78.57% 2

93.12% 6 73.87% 6

93.23% 4 78.57% 3

93.39% 2 72.93% 8

93.07% 8 73.68% 7

Table 7.4: Prediction accuracies and ranks of the prediction models in the Car-
diotocography example when a ten-times repeated ten-fold cross-validation is per-
formed. When two models have the same prediction accuracy, the less complex
one gets ranked higher

Also, we observe that now there are only minor differences in the confidence

limits in both, the default and proposed selection-evaluation pipeline, and all the

methods yield a similar lower limit for the prediction accuracy of the respective
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selected model at about 75 percent.

cp mabt Wald Wilson

Default pipeline 75.44% – 75.65% 75.50%

Proposed pipeline 74.82% 75.67% 75.15% 74.83%

Table 7.5: Lower confidence limits for the prediction accuracy in the Cardiotocog-
raphy example when a ten-times repeated ten-fold cross-validation is performed

Now the question arises as to whether repeated cross-validation is the appro-

priate tool to prevent situations as presented in Table 7.2 from happening. It

turns out that this is not always the case.

Tables 7.6 and 7.7 present the results for another run of ten-times repeated ten-

folds cross-validation. The performance drop between validation and evaluation

remains. In contrast to the previous repeated cross-validation, here we cannot

observe a stabilizing effect on the model selection at all. Rather, we see the same

phenomenon as with the initial single-run cross-validation; the best-performing

model in the validation has a prediction performance of 93.49 percent and is the

second-worst in the evaluation, where it only scores 72.93 percent accuracy, and

the margin to the best-performing is rather large with a difference of 7.48 points.

Also, the subpar selection in the default pipeline leads to lower confidence

limits for the prediction performance of about 70 percent, whereas the limits from

the proposed pipeline are at about 75 percent, and among those, the mabt limit

is largest at 75.79 percent.

In such cases, the absolute gain of five points translates to a relative gain of

seven percent, and mabt achieves (0.75 − 0.70)/(1 − 0.70) = 17% of the maxi-

mum achievable improvement over the limits from the default pipeline, which is

substantial.

Because, still, these are only select cases, we additionally run the selection-

evaluation scheme 100 times, which takes about four minutes on an amd Ryzen

Threadripper 3960 cpu using 40 threads. In each instance, we use ten-times

repeated cross-validation with different allocations of the learning data to the

cross-validation folds, so we can investigate the average behavior of the different

interval methods in the two pipelines in this data set.

We observe that in 91 instances the lower confidence limit from mabt is larger

than the Wald limit, and in all 100 instances it is larger than both the cp and

the Wilson limit, independent from the pipeline. Also, in ten instances the user
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Validation Evaluation

Prediction accuracy Rank Prediction accuracy Rank

93.12% 6 74.06% 4

93.26% 3 79.51% 1

93.17% 5 73.87% 5

93.46% 2 78.57% 2

93.09% 8 73.87% 6

93.21% 4 78.57% 3

93.49% 1 72.93% 8

93.10% 7 73.68% 7

Table 7.6: Prediction accuracies and ranks of the prediction models in the Car-
diotocography example when another instance of ten-times repeated ten-fold cross-
validation is performed. When two models have the same prediction accuracy, the
less complex one gets ranked higher

cp mabt Wald Wilson

Default pipeline 69.58% – 69.77% 69.65%

Proposed pipeline 74.82% 75.79% 75.15% 74.83%

Table 7.7: Lower confidence limits for the prediction accuracy in the Car-
diotocography example when another instance of ten-times repeated ten-fold cross-
validation is performed

would have reported an unnecessarily small lower confidence limit that is about

six points lower than the mabt limit, if the Wald limit was used instead.

Overall, mabt produced the largest lower confidence limits compared to both,

the default and the proposed selection-evaluation pipeline, but the margin was

rather small. Perhaps more importantly, our proposed approach protected the

user from a subpar model selection, and thus, from reporting an unnecessarily

small limit. This way, mabt addresses an apparent problem: The information

whether the allocation of the learning data to the cross-validation folds will lead

to subpar selections remains hidden to the user. In addition, the results show

that there is a gain in using mabt for confidence interval estimation beyond the

gains of repeated cross-validation and the selection of a better model due to the

proposed pipeline.
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Chapter 8

Discussion

In this final chapter, we will discuss the key findings on our proposed mabt confi-

dence limits. We will begin the discussion in Section 8.1 by reviewing the results

from the simulation experiments and the applications to real-world data. In Sec-

tion 8.2, we will comment on the rules we used for model selection. Next, we will

discuss the consequences of our findings in the presence of distribution shifts in

Section 8.3. Ultimately, in Section 8.4, we will summarize the key properties of

the proposed mabt confidence limits and conclude the discussion.

8.1 Simulation results

In both the lasso and random forest simulation experiments, we found that the

mabt confidence intervals were highly reliable regarding their coverage proba-

bility. In contrast, Wald intervals were anti-conservative, while Clopper-Pearson

intervals were conservative. The Wilson intervals in the default pipeline proved

to be similarly reliable as mabt intervals in the proposed pipeline. The Šidák-

corrected versions of the Clopper-Pearson, Wald, and Wilson intervals were overly

conservative.

Overall, across simulated data sets, mabt yielded noticeable but rather small

improvements over the standard methods. We observed similarly small gains re-

garding the tightness of the lower limits and the true performance of the final

selected models from the proposed selection-evaluation pipeline compared to the

default pipeline.

In summary, when assessed across the respective simulated data sets, mabt

intervals were the most reliable. In addition, the mabt lower limits turned out at

least as large and similarly as tight as the best comparators, while the proposed

pipeline yielded slightly better final models.

The differences between the intervals and pipelines became clearer, though,
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when compared on a per-data set basis. Here, mabt yielded larger lower limits in

the majority of cases, except when compared to the Wald limits, which were anti-

conservative in our experiments, making this comparison unfair. In the random

forest simulations, the per-data set gains of mabt over the comparators were

even slightly larger than in the lasso experiments, suggesting that mabt may

offer more substantial improvements in more complex situations.

Furthermore, the gains in true model performance were also more apparent in

the per-data set comparisons, where the final models from the proposed pipeline

turned out strictly better in many, and at least as good in the majority of cases.

The results in the present work were consistent with the results in our pub-

lication Rink & Brannath (2025), where we directly employed the parameter of

interest to estimate the mabt lower confidence limit. In the present work, though,

we aligned the simulation experiments with our theoretical results by utilizing

test statistics, and observe that this results in coverage probabilities that are even

closer to the nominal level, in both the lasso and random forest experiments.

Additionally, the use of test statistics results in slightly larger lower limits.

In our publication, we also tested mabt confidence limits for auc within the

lasso experiments, and the results were promising. However, at this stage, we do

not have a theoretical justification for this application, which would require the

use of so-called u-statistics, see, for example, Shao & Tu (1995). Extending the

asymptotic theory to u-statistics is a potential line of future research.

8.2 Selection rules

The selection rules that we used in the simulation experiments and applications

to real-world data can universally be applied to various validation strategies. In

particular, the top ten percent selection rule can be employed in any model se-

lection problem, and the within one standard-error rule can be used whenever

cross-validation is used during learning, although the underlying idea of this rule

may be adapted to different validation strategies.

At the same time, however, these rules are relatively generic and, therefore,

maybe somewhat simplistic. More advanced selection rules that are tailored to the

specific selection problem could allow for a more efficient use of the significance

level, reducing the strength of multiplicity correction and, consequently, leading

to larger lower limits. Moreover, such problem-specific rules might result in the

final selection of models with better prediction performance.

A related issue arises when we need to compute simultaneous lower confidence

limits for multiple prediction performance measures. For instance, it is a common

task to find a model with both high sensitivity and high specificity. In such cases,
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model selection becomes less straightforward because there are two quantities

involved.

One possible option is to aggregate both measures into a single metric, such

as balanced or weighted prediction accuracy. Typically, though, the sensitivity

and specificity of a prediction model often differ considerably, and a model with

very high sensitivity but only average specificity could still be selected as the

final model. In this case, the max-t-type multiplicity correction in mabt may,

on the one hand, yield a relatively informative and acceptable lower limit for the

sensitivity, but, on the other hand, the lower limit for the specificity could be

overly conservative.

This issue can occur whenever we aim to estimate a lower confidence limit for a

specific performance measure, but use another for selection, as the selected model

is likely not the optimal choice in terms of both performance measures.

8.3 Distribution shifts and data allocations

We mentioned before that a relevant distribution shift can occur when features are

measured differently between the learning and the evaluation stages, or when the

target distribution itself changes. Potential reasons include selection bias or overly

strong relationships between the features and the labels in the learning data that

do not manifest in the evaluation set. Especially in such scenarios model selection

becomes highly sensitive to the allocation of the sample data to the learning and

evaluation sets.

While cross-validation and repeated cross-validation are often utilized to mit-

igate this issue, they apparently do not always resolve it. In particular, in the

distribution shift simulation experiments that we conducted to assess how well

bbc-cv and ncv confidence intervals track the conditional performance, we saw

a substantial drop in coverage probability for the two approaches, rendering the

respective confidence intervals almost useless. This happened even though only

ten percent of the data came from a different distribution than the learning data,

where the relationship between the features and the labels was more pronounced.

We encountered another issue when we used the default selection-evaluation

pipeline with real-world data, in particular in the Cardiotocography data set.

Here, we illustrated the potential problems of selecting only one model for evalu-

ation instead of multiple promising ones, and how the allocation of the learning

data to the cross-validation folds can severely harm model selection. Such an un-

favorable allocation can result in the selection of a subpar prediction model and,

thus, to the reporting of a subpar lower confidence limit. The consequences of this

can be severe, potentially leading to the premature abandonment of an otherwise
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promising study.

This raises a fundamental question about whether we should select models

based on their validation performance at all. In addition, the performance esti-

mates we obtain from cross-validation are estimates of unconditional performance,

while we actually aim for conditional performance. This distinction is particularly

critical because conditional performance and the estimates obtained from cross-

validation can be asymptotically uncorrelated, as Bates et al. (2024) showed; see

the discussion around corollary 2. In other words, the cross-validation estimate

may not be an indicator of a prediction model’s conditional performance at all.

In contrast, by using mabt confidence intervals in the proposed selection-

evaluation pipeline, shifting the final model selection to the evaluation phase, these

issues are mitigated. This way, the dependence on the specific data allocation is

reduced, which makes our proposed approach even more beneficial when data is

scarce. Moreover, it ensures the selection of a prediction model based on a true

estimate of conditional performance, and ultimately prevents the selection of a

subpar prediction model.

8.4 Conclusion

The proposed mabt confidence limits for conditional performance are universally

valid across various settings. Their favorable asymptotic properties hold true un-

der Hall’s smooth function model, which is sufficiently general to include a wide

range of common measures. Additionally, mabt confidence limits remain valid

regardless of the selection strategy employed, whether formal, such as stepwise

selection or the use of information criteria; informal, such as visual inspection and

other diagnostic methods; based on post-hoc considerations, such as retrospective

expert judgement; or any combination of those. Furthermore, mabt does not

require any additional model training, making it computationally undemanding.

It only needs to resample from the models’ predictions from the evaluation set.

Therefore, the primary computational effort lies in calculating the test statistics

across the bootstrap samples. Also, mabt is designed to work with any combina-

tion of prediction models within a single selection-evaluation task, whether they

are linear or non-linear classifiers.

In conclusion, mabt has practically no drawbacks, as it yields lower confidence

limits for conditional prediction performance that are often larger than those from

comparators, while reliably maintaining the desired confidence level in finite sam-

ples, and demonstrating solid theoretical properties.
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Appendices

A Appendix to Chapter 4

In this Appendix, which is based on Sections 2 and 3 in van der Vaart (1998)

and DasGupta (2008), respectively, we will provide the main concepts and results

on stochastic convergence to complement the theoretical considerations on mabt

confidence intervals in Section 5.3.

Let X = (X1, X2, . . . , Xm) denote a vector of random real-valued random

variables, and let the map x �→ P(X ≤ x) denote its distribution function, where

≤ is to be understood component-wise. Additionally, let d(x,x′) be a distance

function on Rm, for example, the Euclidian distance, which is given by

d(x,x′) = ‖x− x′‖2 =
√√√√ m∑

i=1

(xi − x′i)2,

and let (Xn)n denote a sequence of random variables.

The sequence (Xn)n is said to converge in distribution to X if P(Xn ≤ x) →
P(X ≤ x) as n → ∞ for all points x at which the limit distribution function

x �→ P(X ≤ x) is continuous. An alternative name is convergence in law, such

that we will denote convergence in distribution by Xn
L−→ X.

Another mode of stochastic convergence is convergence in probability. The

sequence (Xn)n is said to converge in probability to X if for all ε > 0 it holds that

P[d(Xn,X) > ε] → 0 as n→ ∞, and we will denote it by Xn
P−→ X.

The last type of stochastic convergence that we will mention here is almost

sure convergence. The sequence Xn is said to converge almost surely to X if

P[limn→∞ d(Xn,X) = 0] = 1, and we will denote almost sure convergence by

Xn
a.s.−→ X.

The next proposition is a simple, but very useful result. It states that the

mode of convergence persists under continuous mappings.

Proposition A.1 (Continuous Mapping Theorem). Let g : Rm → Rm′
be contin-

uous at every point of a set C such that P(X ∈ C) = 1. Then, the following hold
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true.

1. If Xn
L−→ X, then g(Xn)

L−→ g(X);

2. If Xn
P−→ X, then g(Xn)

P−→ g(X);

3. If Xn
a.s.−→ X, then g(Xn)

a.s.−→ g(X).

In the next proposition, we will record some of the relationships among the

three modes of stochastic convergence.

Proposition A.2. The relationships among the three modes of stochastic conver-

gence include the following.

1. Almost sure convergence implies convergence in probability, that is, from

Xn
a.s.−→ X it follows that Xn

P−→ X;

2. Convergence in probability implies convergence in distribution, that is, from

Xn
P−→ X it follows that Xn

L−→ X.

Next, we will shortly depart from Section 2 in van der Vaart (1998) and, in ad-

dition to the previous probabilistic results, record a classical mode of convergence,

that is, uniform convergence. Let (fn)n denote a sequence of functions. (fn)n is

said to converge uniformly to a limiting function f if for all ε > 0 there exists

N ∈ N such that for all n ≥ N it holds that |fn(x)− f(x)| < ε for every potential

value of x.

We return to Section 2 in van der Vaart (1998) and record the Multivariate

Central Limit Theorem, which is Theorem 2.18 in van der Vaart (1998). For

m = 1, the Central Limit Theorem directly follows from it.

Proposition A.3 (Multivariate Central Limit Theorem). Let X1,X2, . . . ,Xn

be i. i. d. m-dimensional random vectors with mean E(Xi) = μ and covariance

matrix Cov(Xi) = Σ. Additionally, let X̄n = n−1
∑n

i=1 Xi denote the sample

mean. Then, the random vector
√
n(X̄n − μ) converges in distribution to the m-

dimensional multivariate normal distribution with mean vector 0 and covariance

matrix Σ; that is,
√
n(X̄n − μ)

L−→ Nm(0,Σ).

Finally, we will present a version of the Multivariate Delta Theorem, which is

Theorem 3.7 in DasGupta (2008).

Proposition A.4 (Multivariate Delta Theorem). Under the conditions from Propo-

sition A.3, √
n[f(X̄n)− f(μ)]

L−→ Nm′ [0,Σ′],

provided g : Rm → Rm′
is a smooth function and Σ′ = ∇f(μ)TΣ∇f(μ) is positive

definite, where ∇ denotes the gradient.
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B Appendix to Chapter 5

The following proof resembles an argument that Prof. Dr. Werner Brannath gave

in his Statistics i lecture on November 1, 2022, at the University of Bremen. We

use it to prove Proposition 5.3.2.

Proof of Proposition 5.3.2. Before we prove the proposition, we observe the fol-

lowing.

1. For all ε > 0 we can find a finite grid on R,

−∞ ≡ t0 < t1 < t2 < · · · < tκ−1 < tκ ≡ ∞,

such that
κ−1
max
�=1

[Ψ(t�−)−Ψ(t�−1)] ≤ ε,

where Ψ(t−) ≡ limt′→t− Ψ(t′) is the limit from below. This is true due to

the following.

Since limt→−∞ Ψ(t) = 0 and limt→∞ Ψ(t) = 1, we can always find support

points t1 and tκ−1 such that both Ψ(t1)−Ψ(t0) ≤ ε and Ψ(tκ)−Ψ(tκ−1) ≤ ε.

This is obviously true if Ψ is continuous, and it also follows in general, as

we will argue next.

Let J(ε) = {t ∈ R | ΔΨ(t) ≡ Ψ(t) − Ψ(t−) > ε
2
} denote the set of jumps

of Ψ of at least ε
2
. Then, it follows that J(ε) needs to be finite, and we can

write

Ψ(t) = Ψcont(t) +
∑

t′∈J ′(ε,t)

ΔΨ(t′),

where J ′(ε, t) = J(ε) ∩ (−∞, t], and Ψcont(t) is a continuous version of Ψ by

shifting the function downwards at the jumps in order to connect the curve.

Then, we can define the grid using ε
2
, Ψcont, and J(ε).

2. From the first observation, it follows that

sup
t∈R

|Ψn(t)−Ψ(t)| ≤ κ−1
max
�=1

|Ψn(t�−)−Ψ(t�−)|+ κ−1
max
�=1

|Ψn(t�)−Ψ(t�)|+ ε.

This is true, because for t ∈ R and � ∈ {1, 2, . . . , κ−1} such that t ∈ [t�−1, t�],

it holds that

Ψn(t)−Ψ(t) ≤ Ψn(t�−)−Ψ(t�−)+Ψ(t�−)−Ψ(t�−1) ≤ Ψn(t�−)−Ψ(t�−)+ε,
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due the definition of the grid. Similarly, we obtain

Ψn(t)−Ψ(t) ≥ Ψn(t�−1)−Ψ(t�−) ≥ Ψn(t�−1)−Ψ(t�−1)− ε.

Consequently,

|Ψn(t)−Ψ(t)| ≤ |Ψn(t�−)−Ψ(t�−)|+ |Ψn(t�−1)−Ψ(t�−1)|+ ε.

This holds true for every t ∈ R, it follows that

sup
t∈R

|Ψn(t)−Ψ(t)| ≤ κ−1
max
�=1

|Ψn(t�−)−Ψ(t�−)|+ κ−1
max
�=1

|Ψn(t�−1)−Ψ(t�−1)|+ε.

We will now prove Proposition 5.3.2. Let ε > 0 and let t0 < t1 < t2 < · · · <
tκ−1 < tκ denote a grid on R as in observation (1) from above. Note that Ψn and

Ψ have the properties of a cumulative distribution function. Let Pn and P denote

appropriate probability measures.

From the Strong Law of Large Numbers, see, for example, van der Vaart (1998),

we obtain

|Ψn(t�−)−Ψ(t�−)| = |Pn{(−∞, t�)} − P{(−∞, t�)}| a.s.−→ 0,

and similarly,

|Ψn(t�)−Ψ(t�)| = |Pn{(−∞, t�]} − P{(−∞, t�]}| a.s.−→ 0.

Consequently, due to observation (2) from above,

κ−1
max
�=1

|Ψn(t�−)−Ψ(t�−)|+ κ−1
max
�=1

|Ψn(t�−)−Ψ(t�)| a.s.−→ 0,

and because this holds true for all ε > 0, we conclude that

sup
t∈R

|Ψn(t)−Ψ(t)| a.s.−→ 0.
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C Appendix to Chapter 6

C.1 MABT algorithm

Algorithm C.1 mabt lower confidence limit for prediction accuracy

Input: ŷij, yi, α

Output: L̂s

1: ỹij ← ŷij == yi � check whether prediction equals true label (1) or not (0)

2: θ̂j ← mean([ỹij]i=1,2,...,n)

3: s← argmax{θ̂j | j = 1, 2, . . . ,m}
4: T ∗

jb ← bootstrap([ỹij]i=1,2,...,m) � multivariate bootstrap along i
5: Mib ← boot.freq(ỹij, b)
6: for j = 1, 2, . . . ,m do
7: Ĥ

∗
j ← ecdf(T ∗

j1, T
∗
j2, . . . , T

∗
jB)

8: û∗jb ← [̂H]∗j(T
∗
jb)

9: end for
10: û∗max,b ← max{û∗jb | j = 1, 2, . . . ,m} for all b = 1, . . . , B

11: Ĝ
∗
max ← ecdf([û∗max,b]b=1,2,...,B)

12: Ui ← infl.func([ŷis]i=1,2,...,m) for all i = 1, . . . , n
13: pval ← 1 � initialize p-value
14: τ ← 0 � initialize tilting parameter
15: while pval 	= α do
16: if pval > α then decrease τ
17: end if
18: if pval < α then increase τ
19: end if
20: wi ← exp.tilt.weights(τ, Ui) for all i = 1, . . . , n
21: Wb ← rel.likelihood([wi]i=1,2,...,n,Mib) for all b = 1, . . . , B

22: Ĥ
∗
s,τ ← tilt.ecdf(Wb, [T

∗
sb]b=1,...,B) � reweighted ecdf for selected model s

23: T 0
s ← Ts(τ) � test statistic under null hypothesis

24: pval ← 1− Ĝ
∗
max[Ĥ

∗
s,τ (T

0
s )]

25: end while
26: L̂s ← weighted.mean([ŷis]i=1,2,...,m, [wi]i=1,2,...,n)

C.2 Additional simulation experiment scenarios

In this Appendix, we will provide a detailed list of the simulation experiments

considered in Rink & Brannath (2025), because, in the present work, we only

present a subset, since the general findings are consistent across the scenarios. In

particular, in Rink & Brannath (2025) we conducted the lasso and random forest

simulation experiment scenarios presented in Tables C.1 and C.2, respectively.

In addition, in Rink & Brannath (2025) we also considered the area under the

receiver operating characteristic curve, or, for short, auc, as another performance

measure in the lasso simulation experiments. Table C.3 shows the simulations
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Features Sample size Validation Selection rule

Normal 200 three-split within one standard-error

Normal 400 three-split within one standard-error

Normal 200 cross-validation within one standard-error

Normal 400 cross-validation within one standard-error

Normal 200 three-split top ten percent

Normal 400 three-split top ten percent

Normal 200 cross-validation top ten percent

Normal 400 cross-validation top ten percent

Caret 200 three-split within one standard-error

Caret 400 three-split within one standard-error

Caret 200 cross-validation within one standard-error

Caret 400 cross-validation within one standard-error

Caret 200 three-split top ten percent

Caret 400 three-split top ten percent

Caret 200 cross-validation top ten percent

Caret 400 cross-validation top ten percent

Table C.1: lasso simulation experiment scenarios in Rink & Brannath (2025).
The one scenario printed in italic letters was adapted to test statistics and its
results are presented in this work

Features Sample size Validation Selection rule

Caret 200 TuneRanger top ten percent

Caret 400 TuneRanger top ten percent

Caret 600 TuneRanger top ten percent

Table C.2: Random forest simulation experiment scenarios in Rink & Brannath
(2025). The one scenario printed in italic letters was adapted to test statistics and
its results are presented in this work
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Features Sample size Validation Selection rule

Normal 400 cross-validation top ten percent

Normal 400 cross-validation within one standard-error

Normal 600 cross-validation top ten percent

Normal 600 cross-validation within one standard-error

Caret 400 cross-validation top ten percent

Caret 400 cross-validation within one standard-error

Caret 600 cross-validation top ten percent

Caret 600 cross-validation within one standard-error

Table C.3: lasso simulation experiment scenarios for auc in Rink & Brannath
(2025)

conducted there. Note that we do not consider auc in the present work at all,

due to the lack of theoretical justification.

C.3 caret features

Here, we provide the details how we compute the class probabilities π in the caret

feature case. The multiplication of vectors is meant componentwise.

π = −5 · 1− 4x1 + 4x2 + 2x1x2 +
12∑
j=3

(−1)j(13− j)

4
xj + x3

13 + 2e−6(x13−0.3)2

+ 2 sin(x14x15) +
515∑
j=16

xj +
1000∑
j=516

xj, (C.1)

where

• x1,x2 ∼ N

⎛⎜⎝
⎡⎢⎣0
0

⎤⎥⎦ ,
⎡⎢⎣ 1 0.65

0.65 1

⎤⎥⎦
⎞⎟⎠;

• x3,x4, . . . ,x12 ∼ N(0, [1{i = j}]i,j);

• x13,x14,x15 ∼ Uni[0, 1] i. i. d.;

• x16,x17, . . . ,x515 ∼ N(0,E) i. i. d., where E is the unit matrix;

• and x516,x517, . . . ,x1000 ∼ N(0, [Ci,j]i,j), where [Ci,j]i,j = max(1{i = j}, 0.8)
is a compound symmetry covariance matrix.
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C.4 Two variants of multiplicity correction

Overall comparison

Distribution Min Q1 Median Mean Q3 Max

ecdf 0.544 0.680 0.711 0.708 0.740 0.821

N(0, 1) 0.545 0.676 0.706 0.704 0.735 0.819

Per-data set differences

Difference Min Q1 Median Mean Q3 Max

ecdf - N(0, 1) –0.003 0.003 0.005 0.005 0.008 0.02

Table C.4: Summaries on the lower confidence limits from mabt using the em-
pirical and normal distribution transformation, respectively (upper table), and
per-data set differences (lower table)

C.5 Conditional and unconditional performance

Regular experiments

Method Min Q1 Median Mean Q3 Max

bbc-cv 87.0% 89.5% 90.3% 90.4% 91.4% 94.7%

mabt 94.2% 94.9% 95.5% 95.5% 95.9% 97.1%

ncv 90.4% 92.9% 94.5% 94.4% 95.9% 97.1%

Distribution shift experiments

Method Min Q1 Median Mean Q3 Max

bbc-cv 83.4% 86.4% 87.2% 87.4% 88.4% 91.6%

mabt 95.3% 95.8% 96.1% 96.1% 96.5% 96.7%

ncv 85.7% 89.1% 91.0% 91.2% 93.5% 95.5%

Table C.5: Summaries on the estimated conditional coverage probabilities. The
upper table refers to the regular experiments, while the lower refers to the distri-
bution shift experiments
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Tuning parameter
(×10−3)

Proportion of
covering intervals

Tuning parameter
(×10−3)

Proportion of
covering intervals

1.04 94.7 2.00 96.6

1.14 95.9 2.09 95.4

1.20 95.1 2.19 94.6

1.26 95.3 2.30 96.7

1.32 95.7 2.41 94.8

1.38 96.0 2.52 95.5

1.44 94.6 2.64 95.7

1.51 94.9 2.77 95.8

1.58 95.2 2.90 96.1

1.74 94.9 3.04 95.0

1.82 94.2 3.18 95.9

1.91 97.1 3.33 95.7

Table C.6: Coverage probabilities in the conditional coverage probability simula-
tion experiments for mabt, aggregated by the value of the hyperparameter λ
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Figure C.1: Estimated conditional coverage probabilities of mabt confidence in-
tervals, aggregated by the value of the hyperparameter λ. The top pane shows the
results to the regular simulations experiments, the lower pane shows the results to
the distribution shift experiments. The shaded area corresponds to the acceptable
coverage region
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Hyperparameter
value (×10−3)

Proportion of
covering intervals (%) Hyperparameter

value (×10−3)

Proportion of
covering intervals (%)

bbc-cv ncv bbc-cv ncv

0.99 91.7 96.3 6.40 87.6 91.9

1.04 92.8 96.9 6.70 88.9 93.0

1.09 91.0 96.0 7.02 89.0 93.1

1.14 91.4 96.0 7.35 89.9 94.0

1.20 90.8 96.7 7.70 91.2 94.0

1.26 88.1 96.3 8.07 89.2 92.7

1.32 90.5 96.7 8.45 90.5 92.4

1.38 91.8 96.4 8.86 91.1 93.0

1.44 88.6 95.7 9.28 87.7 92.3

1.51 90.7 97.0 9.72 89.7 90.4

1.58 89.6 97.1 10.18 92.3 93.7

2.41 89.4 95.8 10.67 89.7 92.1

2.64 88.1 95.7 11.18 91.1 94.3

2.90 89.1 96.3 11.71 90.6 92.8

3.04 90.3 96.8 12.27 91.2 91.5

3.18 89.5 94.5 12.85 90.1 91.3

3.33 89.5 95.6 13.46 91.3 92.3

3.49 89.8 94.6 14.10 91.0 91.2

3.66 90.0 95.5 14.77 89.8 92.0

3.83 89.7 95.5 15.48 92.7 91.9

4.02 87.0 95.8 16.21 91.4 92.2

4.21 90.1 96.3 16.99 92.2 93.6

4.41 90.3 96.1 17.79 93.4 93.3

4.62 90.4 95.4 18.64 91.5 93.4

4.84 89.8 95.4 19.53 92.0 94.7

5.07 89.3 94.4 20.46 92.6 93.7

5.31 87.9 94.7 21.43 93.7 94.3

5.56 87.7 95.5 22.45 94.3 96.2

5.83 89.5 93.7 23.52 94.7 95.7

6.10 88.8 92.8

Table C.7: Estimated coverage probabilities for bbc-cv and ncv, aggregated by
the value of the lasso tuning parameter
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Figure C.2: Estimated conditional coverage probabilities of bbc-cv and ncv con-
fidence intervals against the selected hyperparameter λ. The top pane shows the
results to the regular simulations experiments, the lower pane shows the results to
the distribution shift experiments. The shaded area corresponds to the acceptable
coverage region
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Tuning parameter
(×10−3)

Proportion of
covering intervals

Tuning parameter
(×10−3)

Proportion of
covering intervals

0.99 96.5 1.91 95.4

1.04 97.1 2.00 95.8

1.09 96.8 2.09 95.9

1.14 96.3 2.19 95.8

1.20 96.8 2.30 95.9

1.26 95.3 2.41 96.2

1.32 96.5 2.52 96.1

1.38 96.7 2.64 96.0

1.44 96.9 2.77 95.5

1.51 96.3 2.90 96.7

1.58 95.5 3.04 95.7

1.74 96.1 3.18 96.2

1.82 95.8 3.33 96.0

Table C.8: Estimated coverage probabilities for the mabt confidence intervals in
the distribution shift experiments, aggregated by the value of the lasso tuning
parameter
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Hyperparameter
value (×10−3)

Proportion of
covering intervals (%) Hyperparameter

value (×10−3)

Proportion of
covering intervals (%)

bbc-cv ncv bbc-cv ncv

0.99 88.6 95.5 7.02 87.1 90.6

1.04 89.9 94.9 7.35 86.2 89.8

1.09 88.9 94.5 7.70 86.5 88.0

1.14 88.1 95.3 8.07 87.0 88.6

1.20 87.9 94.5 8.45 84.9 89.9

1.26 87.7 94.2 8.86 86.6 88.9

1.32 86.8 95.5 9.28 87.2 90.1

1.38 89.7 93.4 9.72 87.4 87.6

1.44 87.4 93.7 10.18 86.6 88.0

1.58 86.0 94.2 10.67 87.8 89.6

2.77 85.7 94.5 11.18 88.2 87.3

2.90 86.5 92.9 11.71 87.2 85.7

3.04 88.1 93.9 12.27 89.3 91.0

3.18 83.4 93.7 12.85 88.0 88.4

3.49 85.3 91.0 13.46 86.4 87.1

3.66 85.2 93.5 14.10 86.9 87.2

3.83 85.8 91.4 14.77 87.4 88.0

4.02 84.9 92.1 15.48 87.6 86.5

4.21 84.5 93.2 16.21 88.4 89.5

4.41 87.6 92.9 16.99 89.3 89.1

4.62 84.4 91.7 17.79 88.8 89.5

4.84 84.0 91.3 18.64 89.2 90.8

5.07 86.8 90.5 19.53 89.4 91.0

5.31 86.5 91.5 20.46 90.7 91.3

5.56 86.7 90.5 21.43 91.0 90.8

5.83 87.9 88.8 22.45 91.6 93.9

6.10 86.0 89.1 23.52 91.2 93.5

6.40 85.7 90.6 24.64 91.4 94.5

6.70 87.0 91.8

Table C.9: Estimated coverage probabilities for the bbc-cv and ncv confidence
limits in the distribution shift experiments, aggregated by the value of the lasso
tuning parameter
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C.6 LASSO simulation experiments

Lower confidence limits

Pipeline Method Min Q1 Median Mean Q3 Max

Default cp 0.503 0.669 0.701 0.701 0.734 0.813

Default Wald 0.509 0.679 0.712 0.709 0.745 0.815

Default Wilson 0.508 0.673 0.705 0.704 0.738 0.816

Proposed cp 0.494 0.654 0.688 0.686 0.720 0.817

Proposed mabt 0.544 0.680 0.711 0.708 0.740 0.821

Proposed Wald 0.504 0.668 0.701 0.699 0.734 0.816

Proposed Wilson 0.499 0.657 0.690 0.688 0.722 0.818

Tightness

Pipeline Method Min Q1 Median Mean Q3 Max

Default cp 0.000 0.052 0.080 0.083 0.110 0.265

Default Wald 0.000 0.044 0.071 0.074 0.101 0.258

Default Wilson 0.000 0.049 0.077 0.079 0.106 0.260

Proposed cp 0.000 0.068 0.097 0.099 0.128 0.284

Proposed mabt 0.000 0.047 0.074 0.077 0.103 0.247

Proposed Wald 0.000 0.054 0.083 0.086 0.115 0.275

Proposed Wilson 0.000 0.067 0.096 0.097 0.126 0.280

Table C.10: Summaries on the lower confidence limits (upper table) and tightness
(lower table) in the lasso simulation experiments

Pipeline Min Q1 Median Mean Q3 Max

Default 0.654 0.771 0.786 0.783 0.798 0.831

Proposed 0.697 0.773 0.787 0.785 0.799 0.831

Table C.11: Summaries on the true prediction performances of the final selected
models from the default and the proposed selection-evaluation pipelines in the
lasso simulation experiments
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C.7 Random forest simulation experiments

Lower confidence limits

Pipeline Method Min Q1 Median Mean Q3 Max

Default cp 0.443 0.626 0.658 0.658 0.690 0.767

Default Wald 0.448 0.635 0.668 0.666 0.701 0.768

Default Wilson 0.448 0.631 0.662 0.661 0.694 0.771

Proposed cp 0.440 0.607 0.640 0.639 0.672 0.772

Proposed mabt 0.480 0.640 0.670 0.669 0.699 0.773

Proposed Wald 0.446 0.621 0.655 0.653 0.689 0.774

Proposed Wilson 0.446 0.609 0.641 0.640 0.673 0.771

Tightness

Pipeline Method Min Q1 Median Mean Q3 Max

Default cp 0.000 0.055 0.083 0.085 0.114 0.248

Default Wald 0.000 0.046 0.075 0.078 0.106 0.242

Default Wilson 0.000 0.052 0.080 0.082 0.110 0.243

Proposed cp 0.000 0.077 0.107 0.107 0.138 0.263

Proposed mabt 0.000 0.048 0.076 0.078 0.103 0.224

Proposed Wald 0.000 0.060 0.091 0.093 0.123 0.257

Proposed Wilson 0.000 0.076 0.106 0.106 0.135 0.258

Table C.12: Summaries on the lower confidence limits (upper table) and tightness
(lower table) in the random forest simulation experiments

Pipeline Min Q1 Median Mean Q3 Max

Default 0.632 0.735 0.746 0.743 0.755 0.785

Proposed 0.628 0.738 0.748 0.746 0.757 0.790

Table C.13: Summaries on the true prediction performances of the final selected
models from the default and the proposed selection-evaluation pipelines in the
random forest simulation experiments
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D Appendix to Chapter 7

Absolute difference

Method Min Q1 Median Mean Q3 Max

cp –0.002 0.002 0.003 0.008 0.007 0.067

Wald –0.013 –0.002 0.002 0.004 0.004 0.059

Wilson –0.004 0.001 0.003 0.007 0.006 0.065

Relative difference

Method Min Q1 Median Mean Q3 Max

cp –0.002 0.002 0.004 0.010 0.010 0.087

Wald –0.014 –0.002 0.002 0.005 0.006 0.08

Wilson –0.004 0.001 0.004 0.008 0.009 0.083

Maximum achievable improvement

Method Min Q1 Median Mean Q3 Max

cp –0.016 0.007 0.023 0.049 0.042 0.298

Wald –0.118 –0.009 0.005 0.022 0.028 0.272

Wilson –0.033 0.003 0.017 0.043 0.039 0.291

Table D.14: Summaries on the absolute and relative differences (upper and central
table) between the mabt confidence limits and the comparators as well as on the
maximum achievable improvement (lower table) in the Openml benchmark



140 Appendix . Appendices

T
as
k
ID

D
at
a
ID

N
am

e
T
ar
ge
t
va
r

M
a
j
cl
as
s
si
ze

M
in

cl
as
s
si
ze

N
o
of

fe
at
u
re
s

S
am

p
le

si
ze

3
3

k
r-
v
s-
k
p

cl
as
s

16
69

15
27

37
31
96

31
31

cr
ed
it
-g

cl
as
s

70
0

30
0

21
10
00

37
37

d
ia
b
et
es

cl
as
s

50
0

26
8

9
76
8

43
44

sp
am

b
as
e

cl
as
s

27
88

18
13

58
46
01

49
50

ti
c-
ta
c-
to
e

C
la
ss

62
6

33
2

10
95
8

21
9

15
1

el
ec
tr
ic
it
y

cl
as
s

26
07
5

19
23
7

9
45
31
2

34
85

31
2

sc
en
e

U
rb
an

19
76

43
1

30
0

24
07

34
92

33
3

m
on

k
s-
p
ro
b
le
m
s-
1

cl
as
s

27
8

27
8

7
55
6

34
93

33
4

m
on

k
s-
p
ro
b
le
m
s-
2

cl
as
s

39
5

20
6

7
60
1

34
94

33
5

m
on

k
s-
p
ro
b
le
m
s-
3

cl
as
s

28
8

26
6

7
55
4

38
91

10
38

gi
n
a
ag
n
os
ti
c

la
b
el

17
63

17
05

97
1

34
68

38
99

10
46

m
oz
il
la
4

st
at
e

10
43
7

51
08

6
15
54
5

39
02

10
49

p
c4

c
12
80

17
8

38
14
58

39
03

10
50

p
c3

c
14
03

16
0

38
15
63

39
13

10
63

kc
2

p
ro
b
le
m
s

41
5

10
7

22
52
2

39
17

10
67

kc
1

d
ef
ec
ts

17
83

32
6

22
21
09

39
18

10
68

p
c1

d
ef
ec
ts

10
32

77
22

11
09

39
54

11
20

M
ag
ic
T
el
es
co
p
e

cl
as
s:

12
33
2

66
88

12
19
02
0

99
46

15
10

w
d
b
c

C
la
ss

35
7

21
2

31
56
9

99
52

14
89

p
h
on

em
e

C
la
ss

38
18

15
86

6
54
04

99
57

14
94

q
sa
r-
b
io
d
eg

C
la
ss

69
9

35
6

42
10
55

99
67

15
04

st
ee
l-
p
la
te
s-
fa
u
lt

C
la
ss

12
68

67
3

34
19
41

99
70

14
79

h
il
l-
va
ll
ey

C
la
ss

60
6

60
6

10
1

12
12

99
71

14
80

il
p
d

C
la
ss

41
6

16
7

11
58
3

99
76

14
85

m
ad

el
on

C
la
ss

13
00

13
00

50
1

26
00

99
78

14
87

oz
on

e-
le
ve
l-
8h

r
C
la
ss

23
74

16
0

73
25
34

99
80

14
67

cl
im

at
e-
m
o
d
el
-s
im

u
la
ti
on

-c
ra
sh
es

C
la
ss

49
4

46
21

54
0

99
83

14
71

ee
g-
ey
e-
st
at
e

C
la
ss

82
57

67
23

15
14
98
0

10
09
3

14
62

b
an

k
n
ot
e-
au

th
en
ti
ca
ti
on

C
la
ss

76
2

61
0

5
13
72

10
10
1

14
64

b
lo
o
d
-t
ra
n
sf
u
si
on

-s
er
v
ic
e-
ce
n
te
r

C
la
ss

57
0

17
8

5
74
8

14
96
5

14
61

b
an

k
-m

ar
ke
ti
n
g

C
la
ss

39
92
2

52
89

17
45
21
1

34
53
7

45
34

P
h
is
h
in
gW

eb
si
te
s

R
es
u
lt

61
57

48
98

31
11
05
5

34
53
9

41
35

A
m
az
on

em
p
lo
ye
e
ac
ce
ss

ta
rg
et

30
87
2

18
97

10
32
76
9

T
ab

le
D
.1
5:

O
ve
rv
ie
w

of
th
e
in
cl
u
d
ed

d
at
a
se
ts

fo
r
b
in
ar
y
cl
as
si
fi
ca
ti
on

fr
om

th
e
O
p
en
m
l
p
la
tf
or
m


