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Abstract

In dual-task experiments, overlapping response characteristics of two consecutive tasks

affect performance not only in Task 2 (T2) but also in Task 1 (T1). In particular, T1

responses are faster and less error-prone when the subsequent T2 response indicates the

same relative to a different response. This phenomenon is known as the response-based

backward crosstalk effect (BCE) and is often explained by pre-activated T2 response

information influencing T1 response selection. The present dissertation focuses on the

temporal development of T2 response activation during T1 response selection and its

fate thereafter. Three studies are presented, combining modern cognitive modeling with

more traditional experimental approaches. In Study 1, we used a diffusion model as a

first approach to investigate whether T2 response activation increases monotonically or is

rather transient. In this study, we also modeled to what extent (and if at all) T2 response

activation carries over into T2 response selection. In Study 2, we examined whether T2

response activation is always equally strong, regardless of whether the T2 and T1 responses

match or mismatch. In other words, we investigated whether T2 response activation

equally facilitates and interferes with T1 response selection, as was implicitly assumed in

Study 1. In a final Study 3, we re-examined the time course of T2 response activation,

exploring alternative activation functions with a more sophisticated methodology using

the developed R package dRiftDM (see ”Study” 4). Overall, the studies show that T2

response activation increases rather monotonically for most individuals, and that it equally

facilitates and interferes with T1 response selection. It also appears that T2 response

activation does not carry over into T2 response selection. Instead, T2 response selection

starts with a trace of all the response information accumulated during the T1 decision.
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Zusammenfassung

In Doppelaufgaben-Experimenten beeinflussen sich zwei aufeinanderfolgende Aufgaben

mit überlappenden Antwortmerkmalen gegenseitig, wobei nicht nur die Leistung in Auf-

gabe 2 (A2), sondern auch die in Aufgabe 1 (A1) beeinflusst wird. Genauer gesagt ist eine

Reaktion auf A1 schneller und weniger fehleranfällig, wenn die nachfolgende Reaktion auf

A2 konzeptuell mit der ersten Reaktion identisch ist, als wenn dies nicht der Fall ist. Diese

Beobachtung ist als ”response-based backward crosstalk effect (BCE)” bekannt und wird

häufig durch eine voraktivierte A2-Reaktion erklärt, die die Auswahl der A1-Reaktion

beeinflusst. Die vorliegende Dissertation spezifiziert diese voraktivierte A2-Reaktion, mit

Fokus auf ihre zeitliche Entwicklung während der A1-Reaktionsauswahl und ihren Einfluss

auf die nachfolgende A2-Reaktionsauswahl, sobald die A1-Reaktionsauswahl abgeschlossen

ist. Drei Studien werden vorgestellt, die moderne Ansätze der kognitiven Modellierung

mit traditionelleren Ansätzen der experimentellen Psychologie kombinieren. In Studie 1

haben wir in einem ersten Ansatz mittels eines Diffusionsmodells untersucht, ob die vo-

raktivierte A2-Reaktion in ihrer Stärke eher monoton ansteigt oder nur transient ist. In

dieser Studie haben wir auch modelliert, ob und inwieweit diese voraktivierte A2-Reaktion

die nachfolgende A2-Reaktionsauswahl beeinflusst. In Studie 2 wurde untersucht, ob die

voraktivierte A2-Reaktion immer gleich stark ist, unabhängig davon, ob die A1 und A2

Reaktionen konzeptuell übereinstimmen oder nicht. Mit anderen Worten, wir unter-

suchten, ob die voraktivierte A2-Reaktion die A1-Reaktion sowohl erleichtert als auch

erschwert, wie in Studie 1 implizit angenommen. In einer letzten Studie 3 griffen wir die

Frage des zeitlichen Verlaufs der voraktivierten A2-Reaktion erneut auf und untersuchten

alternative zeitliche Verläufe mit einer ausgefeilteren Methodik. Dazu verwendeten wir das

von uns entwickelte R Paket dRiftDM (siehe ”Studie” 4). Insgesamt zeigen die Studien,

dass die voraktivierte A2-Reaktion bei den meisten Personen eher monoton ansteigt und

die A1-Reaktionsauswahl gleichermaßen erleichtert wie beeinträchtigt. Außerdem scheint

die voraktivierte A2-Reaktion nicht in die nachfolgende, eigentliche A2-Reaktionsauswahl

überzugehen. Stattdessen beginnt die A2-Reaktionsauswahl mit einem Teil der gesamten

Antwortinformation, die während der A1-Verarbeitung akkumuliert wurde.
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1 General Introduction

On a daily basis, people face multiple task demands that require them to either inter-

leave tasks, perform multiple tasks more or less simultaneously, or switch back and forth

between tasks in relatively rapid alternation (Salvucci et al., 2009). For example, people

may drive a car while chatting with their passenger. Such behavior is generally referred

to as ”multitasking.” Although there is no precise definition of multitasking, it can be

summarized as all actions or cognitive processes aimed at accomplishing two or more tasks

within a limited amount of time, requiring the respective cognitive representations to be

present simultaneously (see also Koch et al., 2018, p. 558). Interestingly, while people

sometimes have to multitask, for example at work, they may also voluntarily seek to mul-

titask. Modern technology has made it easier than ever to engage in multiple activities

simultaneously, providing us with the opportunity, and perhaps even the temptation, to

engage in multiple tasks. For example, we may be tempted to respond to an email at

work just to avoid another, more frustrating task (e.g., Adler & Benbunan-Fich, 2013).

Given its ubiquity, it is not surprising that multitasking has attracted diverse research

from different areas of psychology. This research ranges from studies on interruptions on

work performance in more applied contexts (e.g., Foroughi et al., 2014; Mark et al., 2008)

to research addressing the underlying cognitive processes and structures in the context of

cognitive psychology (e.g., De Jong, 1995; Pashler, 1984; Rogers & Monsell, 1995).

Although some studies suggest that a subset of individuals may actually achieve per-

formance benefits from multitasking in certain cases (e.g., Brüning et al., 2020; Jersild,

1927), both applied and basic research regularly demonstrates that multitasking results

in reduced overall task performance and a variety of negative side effects. For example,

talking on the phone while driving significantly delays responses to important traffic sig-

nals (e.g., Levy et al., 2006; Strayer et al., 2006), making it a potential cause of traffic

accidents (Backer-Grøndahl & Sagberg, 2011). While the importance of multitasking re-

search can be easily highlighted with examples from complex task environments (such as

driving a car or operating an airplane), measures of performance in these contexts require

aggregating performance over long time intervals from less controlled tasks. As a result,

9
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performance measures in complex task environments lack the precision to pinpoint the

underlying cognitive mechanisms. To elucidate the basic cognitive structures and pro-

cesses during multitasking, we need to use simpler tasks with a well-defined relationship

between discrete stimuli and responses. An important approach in this regard are dual-

task experiments, in which participants perform two relatively simple but speeded tasks

sequentially or simultaneously within a single trial.

The present dissertation stands in the tradition of dual-task research and advances

the understanding of a specific interference effect, known as the Backward Crosstalk Ef-

fect (BCE), which occurs when individuals perform two tasks with overlapping response

characteristics. The dissertation is characterized by a theory-driven use of modern math-

ematical modeling approaches combined with classical experimental methods. In the next

Chapter 2, I will first present the assumptions, key results, and theoretical models rele-

vant to dual-task experiments. In Chapter 3, I will then discuss the BCE as an important

empirical phenomenon in the context of dual-tasking. In Chapter 4, I will turn to the

overarching goals of this dissertation and summarize how they have been addressed by

the enclosed studies. Finally, the answers provided by each publication will be discussed

in a larger context in Chapter 5.

2 Dual-Tasking: Research and Theoretical Models

The two most common paradigms in cognitive psychology to study multitasking are task

switching and dual-tasking (for reviews, see Fischer & Janczyk, 2022; Kiesel et al., 2010;

Koch & Kiesel, 2022; Koch et al., 2018). Whereas in task switching, all tasks are performed

in a more or less isolated but alternating manner, dual-tasking is characterized by an

overlapping presentation of tasks that are performed either simultaneously or in rapid

succession.1

A common approach in dual-task research are Psychological Refractory Period (PRP)

experiments, with one of the first PRP-like experiments conducted by Telford (1931).

By systematically varying the onset of two stimuli, PRP experiments provide a window
1This is only a rough distinction, and sometimes it is not easy to draw a clear line, for example when

participants switch between tasks that are presented simultaneously (Reissland & Manzey, 2016).

10
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into the processes and microstructures underlying dual-task performance (McCann &

Johnston, 1992; Pashler, 1984, 1994; Welford, 1952). In a typical PRP experiment,

participants perform two tasks (T1 and T2) in rapid succession. Specifically, participants

first respond (R1) to one stimulus (S1) and then respond (R2) to another stimulus (S2).

Typically, these tasks are arbitrary, albeit simple. In addition, to avoid perceptual and

motor interference, stimuli are often presented in different modalities and responses are

somewhat separated. For example, participants may first classify a tone as high or low in

pitch using their left hand (T1), and then classify a visually presented digit as smaller or

larger than five using their right hand (T2). The crucial manipulation in PRP experiments

is the time interval between S1 and S2, known as the Stimulus Onset Asynchrony (SOA).

A shorter relative to a longer SOA lengthens T2 response times (RT2s), while T1 response

times (RT1s) are often (though not always) unaffected. The increase in RT2 is known as

the PRP effect, and the label ”psychological refractory period” associated with its effect

and the experimental approach is an analogy to the refractory period of neurons from

physiology (Telford, 1931). It is a well-established and robust finding (although for some

exceptions, see Janczyk et al., 2014; Lien et al., 2006) that reflects a processing limitation

in the human cognitive system.

A prominent explanation for the PRP effect is provided by Pashler (1984, 1994) and his

famous Response Selection Bottleneck (RSB) model. A core assumption of this model is

that task processing proceeds in discrete stages of stimulus perception, response selection,

and motor execution (see Donders, 1868; Sternberg, 1969, for seminal work in this regard).

In line with earlier suggestions by Welford (1952), the model assumes that longer RT2s

with shorter SOAs result from a bottleneck at the response selection stage. Specifically,

peripheral processes of stimulus perception and motor execution can occur concurrently

with other tasks (i.e., they are ”capacity-unlimited”). However, the central process of

response selection, associated with the application of stimulus-response (S-R) rules (Fagot

& Pashler, 1992), is limited to one task at a time. Therefore, as long as T1 response

selection is currently ongoing, T2 response selection is delayed until T1 is released from

the bottleneck (see also Fischer & Janczyk, 2022; Janczyk & Kunde, 2020; Koch et al.,

11



RESPONSE ACTIVATION - BACKWARD CROSSTALK

Figure 1

Illustration of the Response Selection Bottleneck Model (A) and a Capacity-Sharing Model
(B)

RS1

(A) (B)

P1 M1T1

RS2P2 M2T2

cognitive slack

T1

T2

RS1

RS2

M1

M2

P1

P2

Note. Both models assume stimulus perception (P) and motor execution (M) to run in paral-
lel with processes of other tasks (i.e., to be capacity-unlimited). The RSB model (left panel)
assumes response selection (RS) to constitute a structural bottleneck. RS thus proceeds sequen-
tially, creating a period of ”cognitive slack.” Capacity-sharing models (right panel) assume RS
to be limited in capacity, leading to less efficient, but parallel RS. Note that the vertical size of
each box can be taken to reflect processing efficiency.

2018, for comprehensive summaries), and this idle waiting time is known as ”cognitive

slack” (see Figure 1A).2

Although the RSB model provides a parsimonious explanation for the PRP effect and

makes precise predictions that can be empirically tested, there are alternative models that

do not assume a seriality constraint at the response selection stage (Logan & Gordon, 2001;

Meyer & Kieras, 1997; Navon & Miller, 2002; Tombu & Jolicœur, 2003). Among these,

capacity-sharing models are prominent examples (Kahneman, 1973; Navon & Gopher,

1979; Norman & Bobrow, 1975; Tombu & Jolicœur, 2003; Wickens, 1984). They assume

that central processing capacity is limited, but can be flexibly shared like a common

resource among the respective central processes of multiple tasks. Thus, in the context of

the PRP effect, parallel response selection is possible, but because resources are limited,

the processing efficiency of each task is reduced during the time of shared processing

2There has been much debate about exactly which part of task processing constitutes the bottleneck,
and even multiple bottlenecks have been proposed (De Jong, 1993; Johnston & McCann, 2006; Jolicœur
& Dell’Acqua, 1998; Koch & Rumiati, 2006). Since the present dissertation is concerned with interfer-
ence at the response level, I will make the simplifying assumption that response selection is the core
central limitation of the human cognitive system. Furthermore, not all of the following models describing
processing limitations are as specifically concerned with the response selection stage as the RSB model
is. Thus, depending on the theory, I will sometimes use the broader term ”central processing” when
describing the core processes that ensure the correct translation of a stimulus into a response. For the
purpose of this dissertation, however, we can use the narrower term ”response selection” as a synonym
for the broader term ”central processing” without much loss in precision.

12
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(e.g., when the SOA is small, see Figure 1B). Capacity-sharing models gain plausibility

from the slight increase in RT1s for short relative to long SOAs that can sometimes

be observed (Tombu & Jolicœur, 2005). This is because capacity sharing reduces T1

processing efficiency, and the shorter the SOA, the longer the capacity is shared. In

contrast, the RSB model expects T1 processing to be independent of a particular SOA.

Note, though, that capacity-sharing models include the RSB model as a special case when

resources are allocated strictly sequentially (i.e., first 100% to T1, then 100% to T2).

An interesting notion in many capacity-sharing models is that participants have some

control over the allocation of resources (Navon & Gopher, 1979). In other words, there

is an executive component to the decision about how to schedule and process both tasks.

While in some situations participants may allocate resources more sequentially, in others

they may be more motivated to share them (e.g., Brüning et al., 2020; Fischer & Plessow,

2015). Such an involvement of executive control processes in dual-tasking is a prominent

assumption (see Logan & Gordon, 2001; Luria & Meiran, 2006; Meyer & Kieras, 1997),

and by far not unique to capacity-sharing models. For example, the Executive Control of

Theory of Visual Attention (ECTVA, Logan & Gordon, 2001) assumes that instructions

about tasks determine a set of control parameters that shape how stimuli are categorized,

selected, and translated into a response. Importantly, ECTVA allows attention to gradu-

ally shift between tasks by biasing the processing of each stimulus based on a particular

property (e.g., its location or color). Interestingly, given two sets of S-R rules (one for

each task) and two stimuli that can be categorized under both sets, ECTVA assumes that

it is impossible to determine which stimulus goes with which response, unless attention is

selectively directed to a particular stimulus feature of a given task (such as the stimulus’

location). Logan and Gordon (2001) refer to this problem as the dual-task binding prob-

lem, and suggest that focusing first on S1 until R1 and then on S2 until R2 in a serial

fashion naturally solves this problem. In other words, serial response selection, as shown

in PRP experiments, is not the result of a strict RSB, but rather a strategic choice (see

also Meyer & Kieras, 1997; Miller et al., 2009; Tombu & Jolicœur, 2003, for related ideas

and discussions).

13
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According to the original RSB model, T1 and T2 processing are largely independent.

However, if parallel central processing is possible, as proposed by capacity-sharing models

and alike, it is intuitive to assume that unwanted information exchange between tasks

may occur. In fact, such effects are regularly observed and summarized under the term

crosstalk.3 On a larger scale, crosstalk between tasks can occur for several reasons. One

reason is that their stimuli, responses, or associated sensory effects are represented in

overlapping modalities (Hazeltine et al., 2006; Ruthruff et al., 2006; Schacherer & Hazel-

tine, 2021; see also Wickens, 2002). For example, combining a task with visual stimuli

and manual responses with a task involving auditory stimuli and vocal responses results

in better performance than combining two tasks that both use only visual stimuli and

manual responses.

Crosstalk can also occur when tasks have a dimensional overlap at the stimulus or

response level, causing tasks (and their respective S-R rules) to rely on content that may

be either compatible or incompatible. For example, if R1 is a key press to the left and R2

is a key press to the right, simultaneous activation of both (incompatible) response codes

creates interference between tasks (i.e., crosstalk). Much research has been devoted to

crosstalk effects in dual-tasking, because they allow inferences about a task’s content being

present in parallel to processes of another task. For example, crosstalk at the response

level may affect not only T2 but also T1, suggesting that T2 response information must

be partially present during T1 processing. Clearly, such a (backward) crosstalk effect of

T2 on T1 is an important phenomenon to consider when theorizing about the mechanisms

underlying dual-tasking.

3 Backward Crosstalk

The following section delves into crosstalk effects that demonstrate an influence of T2

on T1 (i.e., BCEs). In a broader sense, there are various manifestations of BCEs, and

the scientific community is just beginning to classify and explain each of them (Durst &

Janczyk, 2019); ideally within a unified framework in the future. To set the stage, I will
3Analogous to the technical term ”crosstalk” in older telephone connections, where another conversa-

tion can be quietly heard through parallel circuits.

14
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first provide a more general overview of earlier studies on the BCE and briefly point out

the various conditions under which a BCE can be observed. Following this, I will then

focus on the so-called response-based BCE and discuss the conceptual models developed to

explain it. This then provides an entry point into the overarching goals of the dissertation

(Chapter 4).

3.1 Previous Studies and Different Types

One of the first systematic studies on the BCE was conducted by Hommel (1998), who

aimed to test whether T2 response information is indeed not present until T1 response

selection is complete, as proposed by the RSB model. In his first experiment, participants

were presented with colored letters. R1 was a left or right button press to the color (S1),

and R2 was the utterance of the word ”left” or ”right” to the identity of the letter (S2).

Since this implies a dimensional overlap at the response level in terms of spatial locations,

R1 and R2 could be either compatible (e.g., pressing the left button for T1 and saying

”left” for T2) or incompatible (e.g., pressing the right button for T1 and saying ”left” for

T2). The important finding was that not only R2s but also R1s were slower and more

error-prone in incompatible trials relative to compatible trials, and this net performance

difference constitutes the BCE proper. Moreover, Hommel (1998) showed that the BCE is

present even for the longest interresponse intervals and fastest R1s. This implies that T2

response information must be present during T1 processing, even before an R2 is actually

selected. In other words, an S-R translation for T2 appears to occur despite a putative

RSB.4

3.1.1 Compatibility-Based Backward Crosstalk

Following Hommel’s original result, many researchers have demonstrated influences of

T2 on T1 processing in different ways. BCEs created by the dimensional overlap at the

4An intuitive explanation for the BCE, which would still be consistent with an RSB, is that T2
response selection interferes with T1 motor execution. However, such an explanation is more difficult to
reconcile with the observation of a continuously decreasing BCE with larger SOAs. Additionally, studies
by Janczyk, Renas, and Durst (2018) and Thomson et al. (2015) provided evidence against a locus of the
BCE at the motor stage (see the next sections below).
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response level, as just introduced, can be referred to as response-based or R1-R2 BCEs.

They are well researched and have been demonstrated and replicated with many different

types of responses (Durst & Janczyk, 2019; Ellenbogen & Meiran, 2011; Huestegge et al.,

2018; Janczyk, 2016; Janczyk et al., 2014; Koob et al., 2020, 2024; Miller & Durst, 2014;

Naefgen et al., 2017; Renas et al., 2018; Röttger et al., 2021; Scherbaum et al., 2015;

Schonard et al., 2020, 2023; Thomson et al., 2010, 2015; Watter & Logan, 2006).

However, a BCE can also arise when R2 is conceptually (in)compatible with S1 (i.e., an

S1-R2 BCE; Durst & Janczyk, 2019; Ellenbogen & Meiran, 2008; Hommel, 1998; Hommel

& Eglau, 2002; Koob et al., 2020; Lien et al., 2007). Although this type of BCE has

received relatively little attention in recent years, Hommel (1998) already demonstrated

its existence. In his second experiment, participants were again presented with colored

letters. This time, however, they made a manual response to the color (S1) and a vocal

utterance of ”red” or ”green” (R2) to the letter identity. Thus, in Experiment 2, R2 was

either conceptually compatible or incompatible with S1. The results showed slower and

more error-prone responses in (S1-R2) incompatible trials compared to (S1-R2) compatible

trials.

S1-R2 and R1-R2 BCEs are summarized as compatibility-based BCEs (Durst & Janczyk,

2019; Janczyk, Renas, & Durst, 2018). They arise from the dimensional overlap of T1 and

T2 at the response and/or stimulus level, which results in both tasks operating on content

that may be conceptually compatible or incompatible. Although the BCEs as introduced

by Hommel (1998, Exp. 1 and 2) are prototypical examples of compatibility-based BCEs,

it is not uncommon for BCEs to involve overlap between tasks at multiple levels simulta-

neously (Fischer et al., 2014, 2018; Logan & Delheimer, 2001; Logan & Schulkind, 2000;

Naefgen et al., 2022). For example, both S1 and S2 might be digits, while R1 and R2

indicate magnitude and parity judgments, respectively. If both responses conceptually

overlap (e.g., both R1 and R2 refer to left- vs. right-oriented responses), a BCE may arise

because S2 is involuntarily evaluated under the S1-R1 rule, or because R2 interferes with

R1 at the level of response codes (see Rieger & Miller, 2020, for evidence favoring the

former as the primary cause of interference, at least in their particular setup).
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3.1.2 Backward Crosstalk of T2 Response Quality

In addition to these compatibility-based BCEs caused by dimensional overlap, another

set of qualitatively different BCEs has been demonstrated that crucially depends on the

characteristics of R2. For example, Miller (2006) used a go/no-go task for T2 and showed

that T1 responses are faster for T2 go relative to no-go trials (for replications, see Durst

& Janczyk, 2018, 2019; Durst et al., 2019; Janczyk & Huestegge, 2017; Ko & Miller,

2014; Mahesan & Fischer, 2024; Mahesan et al., 2021; Miller & Durst, 2014; Röttger &

Haider, 2017; Schonard et al., 2023). The standard interpretation is that the inhibition

of a prepared R2 spills over to T1, resulting in slower R1s (e.g., Miller, 2006). Similarly,

Miller and Alderton (2006) used force-sensitive keys with T2 requiring either a hard or

soft key press. R1s were harder when R2 was a hard compared to a soft key press (see

also Ruiz Fernández & Ulrich, 2010, for a similar influence of T2 movement distance on

T1). In short, a BCE can thus also refer to (qualitative) T2 response characteristics that

spill over to T1.

3.1.3 Interim Summary and Discussion

The previous elaboration has shown that, while all BCEs are characterized by an influence

of T2 on T1, they can arise from different manipulations and possibly for different reasons.

In fact, there has been a recent and still unsettled discussion about whether no-go BCEs

and compatibility-based BCEs fundamentally differ in their origin from T2 processes

and their locus during T1 processing (Durst & Janczyk, 2018, 2019; Janczyk, Renas, &

Durst, 2018; Mahesan & Fischer, 2024; Röttger & Haider, 2017; Schonard et al., 2023).

In the present dissertation, however, I am concerned only with the R1-R2 BCE, and

will therefore limit the discussion of the underlying mechanisms to this particular BCE.

Readers interested in the differences and similarities between no-go and compatibility-

based BCEs are referred to the literature just cited. Furthermore, unless explicitly stated

otherwise, I will use ”BCE” to refer to the R1-R2 BCE for simplicity.
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3.2 Conceptual Models for Response-Based Backward Crosstalk

Arguably, the BCE seems difficult to reconcile with a strict RSB at first glance, since some

R2-related information must be present and interacting with T1 even while T1 processing

is still ongoing. At the same time, experiments on the BCE still observe a PRP effect,

which is consistent with an RSB. In the literature, two classes of conceptual models are

typically considered that can simultaneously explain both the BCE and the PRP effect:

Models that distinguish between response selection and response activation, and models

that assume (central) capacity sharing. I will start with the former.

Some researchers have suggested extending the RSB model to include an additional

stage of response activation. Specifically, Hommel (1998) divided the response selection

stage into an initial stage of response activation and a final stage of response selection.

While response activation involves the activation of response codes via S-R rules (but not

beyond selection), response selection is concerned with the ”response activation pattern”

(p. 1381) of all S-R rules to guide the final decision. Importantly, according to this model,

response activation can occur in parallel (i.e., it is capacity-unlimited), causing crosstalk

when the temporal overlap between tasks is high (see Figure 2A, and also Lien & Proctor,

2002; Schubert et al., 2008, for similar descriptions). Consequently, a BCE would result

from a longer T1 response activation stage in incompatible relative to compatible trials.

Following the initial suggestion by Hommel (1998), other researchers have attempted

to further define the source and locus of the BCE. Although these studies agree with a

stage or phase of parallel, capacity-unlimited T2 response activation which runs prior to

T2 response selection, they found no evidence that the BCE occurs during T1 response

activation. Instead, they located the BCE during T1 response selection. For example,

Janczyk, Renas, and Durst (2018) conducted a series of experiments using the so-called

locus of slack and effect propagation logic, which, in combination, allows to locate the

origin of an effect either prior to, during, or after response selection (see Fischer & Janczyk,

2022, Figures 2 and 3, for instructive illustrations). In Experiments 1-3, they leveraged

the locus of slack logic by presenting a third, ”unrelated” task prior to T1 and T2, and

observed that the BCE remained constant when the SOA was varied between the unrelated
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Figure 2

Illustration of Three Conceptual Models Capable of Explaining the BCE
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Note. (A) A model as introduced by Hommel (1998). Crosstalk, and thus a BCE, occurs when
T1 and T2 response activation (RA) overlap in time. (B) A modified version by Janczyk, Renas,
and Durst (2018, see also, Miller, 2017; Thomson et al., 2015), where crosstalk occurs between
T2 RA and T1 response selection (RS). (C) A capacity-sharing model (identical to Figure 1B),
where crosstalk is a natural byproduct of parallel running RS. Note that the horizontal width
of the ”RS box” varies across panels A-C for illustrative purposes only.

third task and T1. This indicates that the BCE has its locus either during or after response

selection. In Experiment 4, Janczyk and colleagues then used the effect propagation logic

by reversing parts of the task order, presenting T1 and T2 (i.e., the BCE measurement

and induction tasks) simultaneously before the ”unrelated” third task. The BCE in T1

fully propagated to the third task, regardless of the SOA between them. This suggests

that the BCE has its locus either during or prior to response selection. Taken together,

Experiments 1-4 by Janczyk, Renas, and Durst (2018) provide compelling evidence that

the BCE occurs during T1 response selection, with its source in T2 response activation,

and other studies have reached similar conclusions (Durst & Janczyk, 2019; Miller, 2017;

Thomson et al., 2015). According to this conceptualization, when T1 and T2 are presented

in close temporal proximity, T2 response activation overlaps with T1 response selection,

thereby prolonging T1 response selection in incompatible relative to compatible trials (see

Figure 2B).

When conceptualizing the BCE as T2 response activation influencing concurrent T1
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response selection, then this bears a striking similarity to the mechanisms at work in

conflict tasks (B. A. Eriksen & Eriksen, 1974; Simon, 1969; Stroop, 1935), particularly

in the flanker task (B. A. Eriksen & Eriksen, 1974). In the flanker task, participants

respond to a central target that is flanked by irrelevant, distracting stimuli. In congruent

trials, the central letter and adjacent flankers indicate the same response, whereas in

incongruent trials they indicate opposite responses. As with the BCE, responses are slower

and more error-prone in incongruent relative to congruent trials; known as the congruency

effect.5 Importantly, the congruency effect is usually explained as an interaction between

controlled target processing and involuntary, automatic distractor (e.g., flanker) activation

(De Jong et al., 1994; Kornblum et al., 1990; Ridderinkhof, 2002). Thus, given this

similarity in the mechanisms at work for both the BCE and the congruency effect, and

given that T2 is not (yet) relevant during T1, it has previously been suggested that S2

may act as a distractor during T1 processing, similar to flankers in the flanker task (see

Durst & Janczyk, 2019, p. 133; Janczyk, Renas, & Durst, 2018, p. 273; and also Miller

& Alderton, 2006, p. 161).

It is important to note, however, that a simple explanation for the BCE might also

come from capacity-sharing models (see Chapter 2). Rather than insisting on a strictly

serial response selection process and separating it from T2 response activation, these

models allow for simultaneous T1 and T2 response selection. Conceptualized this way,

the BCE becomes a natural byproduct of parallel response selection (see Figure 2C).

Consequently, the more central capacity is shared between tasks, the more crosstalk occurs

on average.

Disentangling capacity-sharing models from those assuming T2 response activation is a

notoriously difficult task, and all the experiments reviewed so far are compatible with both

models. This is also partially true for the studies included in this dissertation. However,

resolving this debate is beyond the scope of the present dissertation. Furthermore, a

cornerstone of this dissertation is the specification of T2 response activation and how it

5While the term ”compatibility” is commonly used in the BCE literature, ”congruency” is often used
in the conflict task literature. I will use one or the other depending on the literature under discussion,
although both can be considered synonymous in the context of this dissertation.
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behaves differently in dual-task versus conflict tasks (such as the flanker task). As such, I

will only discuss and summarize the enclosed studies in Chapter 4 in terms of a model that

assumes T2 response activation. Nevertheless, I will later relate the overarching results

of this dissertation to capacity-sharing models in the General Discussion in Chapter 5.

4 Specifying T2 Response Activation: Overarching Research Questions and

Summary of Enclosed Manuscripts

In the following chapter, I will motivate three questions related to the R1-R2 BCE. I

will then introduce the mathematical framework of Drift-Diffusion Models (DDMs) that

will be fundamental for answering two of these three research questions. Finally, I will

summarize my findings with respect to each research question.

4.1 Overarching Research Questions

As reviewed above, many studies have investigated BCEs over the past decades, providing

conceptual models against the background of general processing limitations. Surprisingly,

however, while the idea of T2 response activation as the source of the BCE seems gen-

erally accepted, little is actually known about the temporal development of T2 response

activation and its subsequent influence on T2 response selection. The present dissertation

aims to provide some of these missing pieces, thereby contributing to a more accurate

understanding of the BCE within the context of human multitasking.

On a broader level, the present dissertation builds on the work by Janczyk, Renas,

and Durst (2018, see Figure 2B) and Durst and Janczyk (2019), posing the following

main question: What is the precise time course and influence of T2 response activation

during and after T1 response selection? This overarching question was related to three

subordinate research questions that were addressed in three studies (see also Figure 3 for

an illustration of how each study relates to the research questions):

• Q1: How does T2 response activation develop over time during T1 response selec-

tion? Is this activation more transient, since T2 is not (yet) relevant and potentially

detrimental to T1 performance? Or is it more monotonically increasing, as T2 will
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soon be relevant and is thus prepared? This question was addressed by explicitly

modeling different time courses of T2 response activation within a DDM framework

(Study 1 and Study 3).

• Q2: Regardless of its time course, can we expect T2 response activation to be

similar in compatible and incompatible trials? Or, put differently, does T2 response

activation facilitate T1 performance as much as it impedes T1 performance? To

this end, we conducted a series of experiments with a ”neutral” condition in which

R2 did not spatially overlap with any of the R1s (Study 2).

• Q3: What happens to T2 response activation when switching from T1 to T2 re-

sponse selection? Does T2 response activation contribute to subsequent T2 response

selection or is it reset once T1 response selection is complete? This question was

again addressed in a DDM framework by exploring different theory-driven T2 acti-

vation transmission mechanisms (Study 1).

As just outlined, DDMs served as the primary approach to tackle Q1 and Q3. The

methods required and developed in the course of this dissertation led to a collection of

programs that ultimately resulted in a tutorial paper and the R package dRiftDM for

fitting DDMs with time-dependent parameters. This tutorial paper is also included in

the current dissertation as ”Study” 4, although it is not directly related to the BCE.

In the next section, I will provide a short introduction to DDMs and quickly summa-

rize dRiftDM’s core features and advancements to the field of psychology. Afterwards,

each subordinate research question and its related studies will be discussed in separate

subsections.
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Figure 3

Illustration of the Main and Subordinate Research Questions
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4.2 Diffusion Models and the R Package dRiftDM

DDMs are stochastic models that describe the response selection process in binary choice

tasks as a noisy response evidence accumulation (i.e., diffusion) process (Ratcliff, 1978;

Ratcliff et al., 2016; Voss et al., 2013, 2015). Put simply, they assume that a decision

process {X(t), t ≥ 0} continuously evolves over a one-dimensional, real-valued time space,

accumulating response information for one response or the other. As an approximation,

a difference equation provides an accessible way to describe it. Starting from an initial

value X(0) = x0 (x0 ∈ R), the process evolves for each time step tn (n ∈ N) with step

size ∆t as follows:

X(tn+1) = X(tn) + v(tn) · ∆t +
√

∆t · σ(tn) · Z(tn), tn+1 = tn + ∆t (1)

Here, X(tn) represents the accumulated response information up to the current step,

which is then modified by two parts: First, a deterministic part, reflected by the drift

rate v(t), ”nudging” the process up or down (while taking into account the step size,
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see the term v(tn) · ∆t). Second, a random part, which in the context of a difference

equation, is a standard normal distribution (i.e., Z(t) iid∼ N(0, 1)). It will result in random

disturbances of the process at every time step. The size of this random disturbance is

controlled by the so-called diffusion coefficient σ(t), which is further appropriately scaled

with respect to the step size ∆t (see the term
√

∆t · σ(tn) · Z(tn)).6

When the process {X(t), t ≥ 0} hits an upper or lower (absorbing) decision boundary,

b(t) or −b(t), a decision for one or the other response is registered, and a corresponding

motor program is executed. While the boundaries may refer to response alternatives,

such as ”left” or ”right,” they often code accuracy (e.g., Durst & Janczyk, 2019; Fröber

& Lerche, 2023). In this case, the upper decision boundary b(t) usually reflects a correct

response, while the lower decision boundary −b(t) reflects an incorrect response.

It is important to note that the drift rate v(t), the diffusion constant σ(t), and the

decision boundary b(t) may be time-dependent, expressed by the ”(t)” in the notation.

For example, a common assumption in the context of conflict tasks is that the influence

of the irrelevant stimuli on the decision process diminishes, so that the drift rate of the

(overall) decision process varies over the course of a trial (Ulrich et al., 2015; White et

al., 2018). Oftentimes, however, especially outside the conflict task literature, the core

components of the decision process are assumed to be time-independent (Ratcliff, 1978;

Voss et al., 2013), in which case v(t) = v, b(t) = b, and σ(t) = σ follows. A visualization of

such a basic variant with time-independent parameters is given in Figure 4. Since Roger

Ratcliff (1978) was the first to introduce this DDM to psychology, it is sometimes called

the ”Ratcliff DDM.”

In a psychological context, the time it takes for a diffusion process to reach one of

the two (absorbing) boundaries reflects the duration of the response selection process.

Obviously, responding to a stimulus requires more than just central response selection.

Thus, to capture more ”peripheral” time requirements, such as stimulus perception and

response execution (see Figure 1), a non-decision time t0 > 0 (sometimes known as Ter)

6The term
√

∆t ensures that smaller step sizes lead to relatively smaller increments in the random
part. Otherwise, with ∆t → 0, the variance of the noise would run to infinity for any non-zero time
interval.
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is included.

Figure 4

Schematic Outline of a Basic Diffusion Model

b
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time t
v

Note. This diffusion model assumes all parameters to be time-independent, and is thus a special
case of the more general diffusion model framework introduced in Equation 1. The slope of
the black arrow shows the (constant) drift rate v(t) = v. The (constant) decision boundaries
b(t) = b and −b(t) = −b indicate correct and incorrect responses, respectively. Two exemplary
trajectories of evidence accumulation starting at x0 = 0 are shown by the jagged gray lines. The
time required for more peripheral processing is shown by the gray square and quantified by the
parameter t0. The gray distributions above and below the boundaries indicate the probability
density functions of correct and incorrect responses, respectively.

A key challenge in modeling data with a DDM is to derive a summary or full Probability

Density Function (PDF) of the model’s predicted RTs (see Figure 4), that is, the sum of

the time required for central response selection and peripheral processes. Including the

contribution of the latter, reflected by the non-decision time, is usually not a problem.

However, deriving the contribution of the stochastic response selection process is both

mathematically and numerically challenging. This is because the duration of the response

selection process results from the underlying diffusion process, and thus from the time

it takes for the (noisy) diffusion process to reach one of the two absorbing boundaries.

Technically, this problem refers to deriving the first passage time in the form of summary

statistics or a full PDF.

While closed-form solutions of the first passage time are available for some cases

(Schwarz, 2022), in most cases, especially when deriving the full PDF, such solutions

are unavailable. In these instances, complex numerical approximations are required, such
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as those implemented in fast-dm (Voss et al., 2013). However, previous, more advanced

”out-of-the-box” software solutions were limited to models with time-independent param-

eters and did not apply, for example, to models with time-dependent drift rates, which are

common in cognitive psychology (e.g., Ulrich et al., 2015; White et al., 2011). As a result,

psychology researchers have often resorted to Monte Carlo simulations (e.g., Evans & Ser-

vant, 2022; Luo & Proctor, 2022; Mackenzie & Dudschig, 2021; Mittelstädt et al., 2023;

White et al., 2018), where the model is explicitly simulated N times over the discretized

time interval in accordance with Equation 1. While this is the most flexible approach, it

has significant drawbacks, most notably its inefficiency and low accuracy.

Fortunately, the dynamics of diffusion models are well understood in mathematics

and physics, with origins dating back to the 19th century (Fick, 1855). Thus, there

are several sophisticated approaches for deriving the model’s first passage time, although

their implementation requires advanced mathematical and programming skills. One such

approach is based on the Kolmogorov Forward Equation (KFE), which relates changes

in the diffusion process over time t to changes in the evidence state x.7 A detailed

discussion of the KFE and its subsequent numerical discretization is beyond the scope of

this dissertation, but interested readers are referred to Richter et al. (2023) and Shinn

et al. (2020).

Over the course of my dissertation, an R package (dRiftDM ; Study 4) was developed

for fitting diffusion models based on a numerical discretization of the KFE provided by

Richter et al. (2023). It is tailored to the needs of (cognitive) psychology researchers

and serves as an entry point for applying DDMs with time-dependent parameters. While

similar packages have been released in recent years (e.g., PyDDM, Shinn et al., 2020, and

PyBEAM, Murrow & Holmes, 2024), which also rely on the KFE, these packages require

users to be familiar with Python. Additionally, common cognitive psychology models,

such as the Diffusion Model for Conflict Tasks (DMC) or the Shrinking Spotlight Model

(Ulrich et al., 2015; White et al., 2011), may first need to be implemented, and the results

7There is also its counterpart, the Kolmogorov Backward Equation. From a purely mathematical
perspective, the two are interchangeable, but the backward equation allows for highly efficient numerical
discretization when the parameters of a DDM are time-independent (which provides the basis for fast-dm
Voss et al., 2013).
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typically required by psychological researchers extracted manually. Nevertheless, both

PyDDM and PyBEAM represent significant advances in solving more complex DDMs.

A detailed introduction to dRiftDM can be found in our tutorial paper (see Study 4).

In short, it allows users to either select a pre-built model or build and customize their own.

The key to its flexibility is that each model depends on a set of functions that provide

the model’s ”components” (i.e., drift rate, boundary, etc.) and a set of parameters. By

swapping out the parameters and the underlying component functions, users can create

custom DDMs. Each model can then be passed to various functions to explore the model,

compute summary statistics, or fit individual data. Note that dRiftDM also served as the

basis for Study 3. A limiting factor, however, is that trial-by-trial variability in the drift

rate is not yet possible, and the time course of the drift rate and the decision boundary

must be calculable prior to a trial.

With this background on DDMs in mind, I will now address each research question and

study of this dissertation. A central goal related to Q1 was to jointly model T1 response

selection and T2 response activation as interacting evidence accumulation processes, with

a particular focus on the time course of T2 response activation.

4.3 Q1: Modeling the Time Course of T2 Response Activation

In many publications, the activation of the T2 response is often considered ”automatic”

(e.g., Hommel, 1998; Janczyk, Renas, & Durst, 2018; Miller & Alderton, 2006), meaning

that S2 automatically, and perhaps involuntarily, activates R2 via its associated S-R rule.

In fact, a BCE can be observed even when T2 does not (or no longer) require a response

(Hommel, 1998; Janczyk, Renas, & Durst, 2018; Miller & Durst, 2014), which supports

the ”automaticity” with which T2 information may be activated. From this perspective,

and as was already mentioned in Chapter 3, S2 may act similar as flankers do in the flanker

task (see Durst & Janczyk, 2019, p. 133; Janczyk, Renas, & Durst, 2018, p. 273; and

also Miller & Alderton, 2006, p. 161). In other words, the BCE arises because S2 serves

like a not (yet) relevant distractor, creating interfering response activation with respect to

the currently relevant T1. Consequently, the time course of T2 response activation might
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coincide with that of flanker response activation in conflict tasks.

A prominent model used to quantify the interaction between flanker and target re-

sponse activation is DMC (Ulrich et al., 2015). It conceptually follows the dual-route logic

(De Jong et al., 1994; Kornblum et al., 1990; Ridderinkhof, 2002), which proposes that the

target is processed via a controlled route and the flankers via an automatic route, while

the overall decision is based on a merger of both. Importantly, DMC explicitly models this

target and flanker processing as diffusion processes with distinct time courses. Response

activation resulting from the controlled process increases linearly, as in the Ratcliff DDM

(Ratcliff, 1978, see Figure 4). In contrast, response activation from the automatic process

is transient, rising, and then falling back to zero, resembling a pulse-like function. The

overall decision process, which reflects the interaction between controlled and automatic

processing, is the sum of both subprocesses.

Given the similarity between the BCE and the congruency effect in the flanker task,

it is reasonable to suggest that DMC, with its proposed interaction between automatic

and controlled processing, could effectively model the influence of T2 response activation

on T1 response selection. However, this would imply that the automatic process (i.e.,

T2 response activation in the dual-task context) is transient. In flanker tasks, this as-

sumption is easily justified, as flankers are inherently irrelevant, and their corresponding

response information may either passively decay or be actively suppressed (e.g., Hommel,

1994; Miller & Schwarz, 2021; Ridderinkhof, 2002). In contrast, T2 in any dual-task

will eventually require a response, making it never completely irrelevant. Indeed, ample

evidence suggests that T2 response activation is stronger and longer-lasting with greater

T2 relevance (Miller & Tang, 2021; Mittelstädt et al., 2023). Thus, instead of following a

pulse-like time course, T2 response activation may increase more monotonically, without

interruption or decay. As a first approximation, it may be considered linear.

In two studies (Study 1 and 3), we addressed the question of whether T2 response acti-

vation is transient or not. While Study 1 provided first insights, Study 3 provided further

results and addressed open questions using a more sophisticated modeling approach.

The DDMs considered in Study 1 relied heavily on DMC’s architecture. We assumed
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the expected (overall) decision process for T1, denoted as V (t), is the sum of two subpro-

cesses, each starting from zero:

V (t) = VT 1,rs(t) + VT 2,ra(t) with VT 1,rs(0) = VT 2,ra(0) = 0 (2)

Here, VT 1,rs refers to the expected time course of T1 response selection, which was always

assumed to be linear,

VT 1,rs(t) = vrs · t . (3)

The parameter vrs reflects the slope of expected T1 response selection. In contrast,

expected T2 response activation, VT 2,ra, was modeled as either linear,

VT 2,ra(t) = vra · t , (4)

or pulse-like,

VT 2,ra(t) = A · e
−t
τ ·

(︃
t · e

τ

)︃
, (5)

and both situations are visualized in Figure 5. For the linear function, vra represents the

slope of expected T2 response activation. For the pulse-like function, A and τ represent

the amplitude and peak latency of T2 response activation, respectively.8

Importantly, the sign of T2 response activation depends on the compatibility of a

trial. In compatible trials, T2 response activation contributes evidence for the same,

correct response (positive sign), while in incompatible trials, it provides evidence for the

8The pulse-like function is a scaled gamma-distribution density function. Equation 5 can be derived
from the original equation presented by Ulrich et al. (2015, Appendix B), by setting the shape parameter
of the gamma-distribution function to a = 2.
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other, incorrect response (negative sign):

V (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
VT 1,rs(t) + VT 2,ra(t) in compatible trials

VT 1,rs(t) − VT 2,ra(t) in incompatible trials
(6)

Therefore, regarding the overall T1 decision process, performance is better in compatible

relative to incompatible trials, as indicated by the solid gray line reaching the upper

boundary earlier in time than the dark gray line in Figure 5.

Figure 5

A Visualization of the Expected T1 Decision Process Modeled in Study 1
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Note. In all plots, the upper and lower limits indicate the constant decision boundaries b = 0.6
and −b = −0.6. Dashed lines refer to the (expected) time course of T2 response activation (RA;
VT 2,ra), which provides evidence for either the correct response (positive sign) or the incorrect
response (negative sign), depending on the compatibility of a trial (see Equation 6). While T2
response activation is linear in the left panel (see Equation 4), it is pulse-like in the right panel
(see Equation 5). The solid black line shows T1 response selection (VT 1,rs; Equation 3). The
solid gray lines describe the overall T1 decision process, derived by adding both subprocesses.
For simplicity, this figure does not show any random disturbances in the diffusion processes (see
Equation 2). Parameters underlying this plot (with time unit in seconds): vrs = 3, vra = 0.5,
b = 0.6, A = 0.1, τ = 0.1.

For completeness, we assumed a constant decision boundary and a normally dis-

tributed non-decision time for the remaining model components. Additionally, note that

the first derivative of V (t) refers to the drift rate v(t) as introduced in Equation 1 (see

also Janczyk et al., 2024, for a discussion on the interpretation of the drift rate).

To decide between the two models, we fitted them to five data sets from previously

published experiments focusing on R1-R2 BCEs (Durst & Janczyk, 2019; Hommel, 1998;
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Janczyk, Mittelstädt, & Wienrich, 2018; Janczyk et al., 2017; Koob et al., 2020). Surpris-

ingly, a qualitative comparison of the models revealed more similarities than differences,

especially for fast to moderate responses. Only for slow responses did the linear T2 re-

sponse activation function systematically overestimate the BCE, likely because the linear

function—and thus its associated activation—became too large. A closer examination of

the estimated pulse-like function revealed why the model predictions of both activation

functions were so similar: The pulse-like function peaked so late that activation increased

almost linearly early in the trial and remained fairly constant for the rest of the trial (see

Figure 6). In other words, the estimated pulse-like function exhibited an asymptotic na-

ture, even resembling a continuous linear activation function when considering the average

duration of T1 response selection. Thus, we concluded from Study 1 that T2 response

activation was not transient and that its temporal development differed from the typical

response activation pattern observed for flankers in a flanker task.

Figure 6

A Visualization of Study 1’s Results
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Note. The plot shows the average (expected) T1 response selection and T2 response activation
processes estimated in Study 1. The solid black line represents T1 response selection. The light
and dark gray dashed lines show T2 response activation in compatible and incompatible trials,
respectively. For simplicity, no overall T1 decision process is shown. Parameters underlying this
plot (with time unit in seconds): vrs = 2.8, b = 0.7, A = 0.25, τ = 0.8.

Although Study 1 provided first insights, there were several reasons to revisit Q1 in

Study 3. First, because the more sophisticated numerical discretization of the KFE by

Richter et al. (2023) was not yet available, model predictions in Study 1 were derived
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using Monte Carlo simulations. Consequently, models were compared only qualitatively.

Second, because the pulse-like function resembled an asymptotic function, it was worth

exploring whether it could actually be replaced by such a function. If so, this would offer

a more accurate model of T2 response activation. Third, in the original study, we noted

a peculiarity regarding the peak latency of the pulse-like function (Koob et al., 2023,

Footnote 6). For most participants, the parameter reflecting the peak latency was at the

upper limit of the parameter space, while for others it was near the lower limit. Clarifying

whether this bimodal distribution reflects individual differences or issues with the model

itself is crucial for future modeling efforts. Finally, we aimed to provide practical guidance

for quantifying the BCE using DDMs, particularly regarding the measurement properties

of each model.

With this in mind, we conducted several follow-up analyses in Study 3. In the first

part, we again compared a pulse-like and a linear T2 response activation function, but

this time we also included an asymptotic function. This asymptotic function mirrored

the charging curve of a capacitor from physics and is given by

VT 2,ra(t) = A ·
(︂
1 − e

−t
τ

)︂
. (7)

Here, A and τ have conceptually the same role as in the previous Equation 5 for the pulse-

like function. Larger values of A and τ lead to a higher and later-occurring asymptote of

T2 response activation (see Figure 7 for a visualization).

To formally compare the linear, pulse-like, and asymptotic T2 response activation

function, we employed the more sophisticated approach implemented in dRiftDM. This

allowed for maximum likelihood estimation and subsequent formal model comparison

using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion

(BIC) as fit statistics. Lower AIC and BIC values indicate a better relative fit, taking into

account both quantitative fit and the number of parameters in the model. The results

clearly favored the linear function, although it slightly overestimated the BCE for slow

responses as in Study 1. We reasoned that this was likely due to the small misfit not being

enough to outweigh the additional parameter required by the pulse-like or asymptotic
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Figure 7

A Visualization of Asymptotic T2 Response Activation Considered in Study 3
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Note. The basic structure of this figure follows that of Figure 5. The main difference is that both
panels show exemplary expected time courses of asymptotic T2 response activation according
to Equation 7. In the left relative to the right panel, the asymptote is reached earlier and the
maximum strength of T2 response activation is slightly smaller. Parameters underlying this
plot (with time unit in seconds): vrs = 3, b = 0.6, A = 0.15 (left panel), A = 0.2 (right panel),
τ = 0.04 (left panel), τ = 0.1 (right panel).

function. Interestingly, the asymptotic function performed well qualitatively, but almost

never outperformed the linear and pulse-like functions in terms of quantitative model fit.

This may be because the asymptotic function is less flexible than the pulse-like function,

while being too similar to the linear function, which requires one less parameter.

In the second part, we addressed the issue of individual differences in the peak latency

of the pulse-like function, which reemerged in Study 3. Although the majority of individ-

uals yielded lower fit statistics for a linear function, a subset (approximately 10 − 20%)

yielded lower fit statistics for a pulse-like function, indicating a more transient time course

of T2 response activation. This might suggest that some individuals treat S2—at least

to some extent—as not (yet) relevant, perhaps indeed similarly to a flanker stimulus. To

determine whether these differences were genuine or simply statistical noise, we gener-

ated synthetic data using a model with a linear T2 response activation function. This

model was chosen because it was the most appropriate for the majority of individuals

and, therefore, likely represents the ”true” population model in the absence of individual

differences. Subsequently, we fitted each model (with linear, pulse-like, or asymptotic

T2 response activation) once more to these synthetic data. Assuming that the observed
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individual differences are due to statistical noise resulting from noisy sampling under a

linear model, we would expect the relative frequency with which the pulse-like function

yields the smallest fit statistic (i.e., the ”best” fit) to be similar for both the observed

and synthetic data. However, this was not the case. The pulse-like function yielded the

smallest fit statistic more frequently for the observed than the synthetic data. This sug-

gests that individual differences in the time course of T2 response activation may indeed

exist. Importantly, more detailed analyses of individual model predictions revealed these

differences to be quantitative rather than qualitative. In other words, there is likely a

continuum from more pulse-like to more linear T2 response activation, with the observed

”subgroups” reflecting a dichotomization of this continuum.

In the third and final part of Study 3, we conducted a parameter recovery to evaluate

the measurement properties of the pulse-like and linear T2 response activation functions.

This is crucial because the parameters of any DDM should be reliable enough to allow

researchers to make valid inferences based on individual parameter estimates. Parame-

ter recovery also offers practical insights, such as the required number of trials, optimal

settings for discretizing the KFE, or whether less meaningful parameters can be fixed to

create more parsimonious models (e.g., fixing the standard deviation of the non-decision

time). Our main findings and recommendations were as follows: A DDM with a linear T2

response activation function exhibits very good parameter recovery properties, even with

as few as 100 to 200 trials per compatibility condition. In contrast, parameters associated

with the pulse-like function show relatively poor recovery properties in the context of the

BCE. Additionally, researchers can safely use a slightly coarser numerical discretization

of the KFE when deriving model predictions without compromising the model’s measure-

ment properties, which is useful when computational resources are limited. Finally, fixing

or dropping the standard deviation of the non-decision time to make the model more

parsimonious is not recommended when fitting BCE data.

Taken together, Study 1 and Study 3 suggest that for most individuals, T2 response

activation increases monotonically during T1 response selection, best described by a linear

function. Therefore, the BCE in dual-task experiments does not behave like the congru-
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ency effect in the flanker task, presumably because T2 always becomes relevant. However,

there may be a subset of individuals who treat S2 of T2 as not (yet) relevant, and thus

similar to a flanker stimulus. Yet, given the results of our parameter recovery study,

it seems challenging to reliably quantify these individual differences using a pulse-like

function.

While these results suggest that the BCE can be quantified using a DDM, our modeling

procedure assumed that the strength of T2 response activation is equal in both compatible

and incompatible trials (see Figures 5, 6, and 7). Whether this assumption holds was

explored with experimental methods in Study 2.

4.4 Q2: Symmetry of T2 Response Activation

When considering how T2 response activation influences T1 response selection, as shown

in Figure 2, it is intuitive to assume that T2 response activation is equally strong for both

compatible and incompatible conditions, albeit in opposite directions. In particular, if

S2 activates R2 upon onset, it should do so independently of the current compatibility

condition. Therefore, in the absence of additional control mechanisms or a compatibility-

dependent processing architecture, T2 response activation should equally facilitate and

interfere with T1 processing across conditions. In other words, T2 should enhance per-

formance in compatible trials and disrupt it in incompatible trials, producing symmetric

facilitation and interference effects in T1. Surprisingly, this ”symmetry assumption” has

received little attention, despite being a crucial factor when theorizing about the BCE.

To disentangle the unique contributions of facilitation and interference to the BCE,

we need a condition without any crosstalk as a baseline, as it is common in the conflict

task literature (e.g., T. L. Brown, 2011; Burle et al., 2002; Craft & Simon, 1970; C. W.

Eriksen & St. James, 1986; Ila & Polich, 1999; Mahani et al., 2019; Miller, 1991). In

these neutral trials, ideally, neither S2 nor its associated R2 overlap with the features

that distinguish the R1 alternatives. At the same time, a high degree of similarity with

the remaining response and stimulus sets of T1 and T2 has to be maintained. Given such a

neutral condition, the interference effect is then the difference in performance between the
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incompatible and neutral conditions, while the facilitation effect is the difference between

the neutral and compatible conditions. To my knowledge, only one study by Naefgen

et al. (2022) included a neutral condition in the context of R1-R2 BCEs. However, while

this study demonstrated a greater interference than facilitation effect in T1, it was not

explicitly designed to test the symmetry assumption. Notably, there were twice as many

neutral trials as (in)compatible trials in this study, so its implications should be treated

with some caution.

Besides addressing a neglected question in the BCE literature, an empirical investi-

gation of the relative contribution of the facilitation and interference effects is valuable

for two reasons. First, related experiments from the conflict task literature often reveal

asymmetric effects, where the neutral condition is not equally distant from the congruent

and incongruent conditions. For instance, P. Smith and Ulrich (2024) recently reviewed

52 studies and concluded that the interference effect is often larger than the facilitation

effect (see their Table 1). This aligns with the aforementioned findings of Naefgen et

al. (2022). Similarly, Evans and Servant (2022) used DMC to show that the amplitude

of the automatic process in Simon and flanker tasks tends to be larger for incongruent

than congruent trials. Thus, they argue that the automatic process primarily enforces

interference, rather than facilitation. Second, the simplified box-like figures commonly

used in the dual-task literature (see, e.g., Figure 2) do not account for the precise tem-

poral development of the interference effect, which may fundamentally alter a model’s

predicted facilitation and interference effects (cf. P. Smith & Ulrich, 2024). Given this,

we considered it worthwhile to empirically disentangle the contribution of facilitation and

interference to the BCE, as this not only helps to clarify how the BCE relates to conflict

tasks, but also provides a key data set for testing future conceptual and computational

models.

To create a neutral condition, we combined a two-choice T1 with a three-choice T2. In

each trial, participants were presented with a colored letter (S1 and S2) at the center of the

screen. For T1, participants made a left or right button press (R1) based on the letter’s

color, while for T2, they verbally indicated the letter’s identity by saying ”left,” ”middle,”
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or ”right” (originally in German). We argued that the response ”middle” for R2 serves

as the neutral condition because it does not match with either of the R1s. Additionally,

”middle” was conceptually equidistant from both the left and right responses for T1.

Our results from Experiment 1 revealed that the facilitation effect and the interference

effect equally contribute to the BCE. Specifically, for RT1s, the neutral condition was

equidistant from the compatible and incompatible conditions.9 Surprisingly, however, this

pattern did not hold for T2, where we only observed a facilitation effect but no interference

effect in RT2s. Given that T2 response activation influences the duration of T1 response

selection, these divergent results between T1 and T2 were puzzling. In particular, if T1

response selection is shorter in compatible trials and longer in incompatible trials, this

variation in T1 response selection should logically propagate to T2 (see, e.g., Kunde et al.,

2012; Pashler, 1994).

Given the unexpected result for T2, we conducted three additional experiments to

(a) replicate the effect and (b) explore possible explanations for it. In Experiment 2, we

introduced blocks in which the same colored letter was presented simultaneously in three

locations—left, center, and right. This addressed the possibility that presenting the letter

only in the center of the screen led to a particularly strong activation of the ”middle”

response, resulting in shorter RTs in the neutral condition (i.e., when participants uttered

the word ”middle”). In Experiment 3, we reversed the task order to determine whether

the lack of a facilitation effect for T2 was due to the task switch within a dual-task trial

or an inherent property of the task. Finally, in Experiment 4, participants performed the

vocal task (T2 from Experiment 1) as a single-task, allowing us to examine performance

for each response alternative in isolation.

Experiment 2 replicated the results of Experiment 1, even when the letter was pre-

sented simultaneously on the right, in the center, and on the left. Experiment 3 showed

that the missing facilitation effect for T2 in Experiment 1 was due to a task-specific

property rather than the task switch. Experiment 4 further demonstrated that this task-

9For T1 error rates, the facilitation effect was smaller than the interference effect, likely because overall
error rates were low and couldn’t be smaller than zero (i.e., we likely observed a ”floor” effect for the
neutral and compatible condition).
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specific property may, in part, originate from shorter RTs when uttering the word ”middle”

compared to ”left” or ”right.” This suggests that a confound between compatibility con-

ditions and response alternatives contributed to the absence of the facilitation effect for

T2 observed in Experiment 1. Unfortunately, this confound made it impossible to draw

conclusions about the facilitation and interference effects for T2, although it did not affect

the conclusions for T1.

4.5 Q3: The Fate of T2 Response Activation

The findings related to Q1 and Q2 suggest that T2 response activation increases almost

linearly during T1 response selection and that its influence (and likely its activation) is

similar for both compatible and incompatible trials. However, an important theoretical

question remains: Does T2 benefit from the previously accumulated response activation?

Since T2 becomes relevant after T1 processing, one might expect that any pre-accumulated

evidence would carry over and improve actual T2 response selection. Despite the signifi-

cance of this question, the BCE literature offers limited and inconclusive insights on this

issue (cf. Logan & Gordon, 2001; Schubert et al., 2008; Thomson & Watter, 2013). Yet,

exploring this topic could potentially clarify why compatibility effects in T2 are consis-

tently larger than the BCEs observed in T1 (e.g., Durst & Janczyk, 2019; Fischer &

Hommel, 2012; Fischer et al., 2014; Hommel, 1998; Janczyk, 2016; Logan & Schulkind,

2000). This question was already explored in Study 1, but in a second and independent

part of that particular study (which is why I discuss it under Q3).

To investigate the fate of T2 response activation, we explicitly modeled a second

decision (i.e., diffusion) process for T2 response selection, initiated after the (overall)

T1 decision is complete. We assumed that in compatible trials, T2 response selection

strives towards the same decision boundary as the preceding T1 response selection (i.e.

both processes have a positive drift rate). In incompatible trials, however, T2 response

selection strives toward the opposite decision boundary relative to T1 response selection

(i.e., T1 response selection has a positive drift rate and T2 response selection a negative

drift rate).
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Building on this framework, we examined five theoretically derived mechanisms of T2

response activation transmission (i.e., five model ”variants”), inspired by prior studies

(see Figure 8 for an illustration of all model variants). First, Thomson and Watter (2013)

suggested that T2 response activation could influence T2 response selection, and thus

bypass T1 response selection, but only in compatible trials. Thus, in Variant 1, we allowed

T2 response selection to start from its previously accumulated activation, but only in

compatible trials. In incompatible trials, T2 response selection started from zero, which

implies that T2 response activation has no influence in this case. In contrast to Thomson

and Watter (2013), Schubert et al. (2008) found no influence of pre-activated T2 response

information on T2 response selection, suggesting that it might always be reset to zero

(Variant 2; akin to the ”response flushing” idea proposed by Logan & Delheimer, 2001).

Thus, for Variant 2, T2 response selection never benefited from its previous activation.

Inspired by capacity-sharing models (see Chapter 2), a third variant was that T2 activation

always carries over into T2 response selection. This Variant 3 followed from the idea

that any prior T2 response selection accomplished during T1 processing should reduce

the remaining work required for final T2 response selection (Tombu & Jolicœur, 2003).

Fourth and fifth, we considered T2 response selection to start with a certain percentage

(e.g., 10%), either with respect to its previous response activation during T1 processing

(Variant 4), or, alternatively, with respect to the actual T1 decision (i.e., the decision

boundary reached by the overall T1 decision process; Variant 5). These latter two variants

were inspired by Logan and Gordon (2001)’s ECTVA model, proposing a reset of response

counters in dual-task situations to prevent response perseveration.
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Figure 8

Schematic Outline of All Five Model Variants Related to the Fate of T2 Response Acti-
vation
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Note. The general outline follows Figure 5. The newly introduced linear processes (dashed gray
lines), starting after T1 processing (solid gray lines), represent T2 response selection. Note that,
although we plot T2 response activation as in Figure 5 to illustrate its temporal development,
T2 response activation did not drive the actual T2 response. The actual T2 response was based
on the process for T2 response selection. Regarding the variants: T2 response selection may
benefit from previous activation only in compatible trials (Variant 1), in neither compatible
nor incompatible trials (Variant 2), or in both compatible and incompatible trials (Variant 3).
The two variants in the second row show mechanisms inspired by ECTVA, where T2 response
selection starts with a percentage of either the previously accumulated T2 response activation
(Variant 4) or the evidence accumulated for the T1 decision (i.e., relative to the decision bound-
ary reached by the T1 decision process, Variant 5). In the original Study 1 (Part 2), we explored
a model with a pulse-like function, as our primary focus at that time was on the qualitative
model behavior. Although the displayed function here for T2 response activation is not linear
(which might be preferable in light of Study 3), the parameters used in this plot are consistent
with those from the simulations in Study 1 (Part 2). Thus, the ”pulse-like” function used in our
simulation behaved almost like a linear function, with a theoretical peak occurring beyond the
x-axis limit. This figure is an adapted version of Figure 3 from Koob et al., 2023.

The subsequent analyses involved fitting all five model variants to both T1 and T2

data, followed by simulations to further explore their behavior. During these simulations,
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we also tested how varying the amount of activation transmission (e.g., whether T2 re-

sponse activation either fully or partially carried over) impacted the model predictions.

Overall, most activation transmission mechanisms produced unsatisfactory predictions

(see Table 1 for a complete summary): When T2 response activation carried over regard-

less of a trial’s compatibility (Variant 3), the predicted T2 compatibility effect decreased

with slower responses (i.e., we observed so-called negatively sloped delta functions; De

Jong et al., 1994). This directly contradicted the observed data, which showed increasing

T2 compatibility effects with slower responses. Additionally, variants without or with

only a small proportion of T2 response activation transmission failed to account for the

larger compatibility effect typically observed in T2 compared to T1 (Variants 2 and 4).

Furthermore, when T2 activation carried forward only in compatible trials (Variant 1),

the model predicted slightly more T2 errors for slow responses in compatible relative to

incompatible trials, which was not evident in the observed data.

Ultimately, this led us to conclude that Variant 5 was the most adequate model, fol-

lowed by Variant 1, although for the latter model one has to be willing to ignore the

predictions for T2 accuracy. In Variant 5, T2 response selection begins with a propor-

tion of the evidence accumulated during T1 processing, aligning with the ECTVA model

proposed by Logan and Gordon (2001).
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Table 1

Summary of Study 1’s Core Results in Part 2

Model fits Simulations
Variants Delta Function Delta Function CAFs ∆ Crosstalk

1 yes yes no yes
2 yes yes no no
3 no
4 yes yes no no
5 yes yes yes yes

Note. This table is an adapted version of Table 4 from Koob et al. (2023). In the original study,
each variant’s behavior was explored by fitting the respective model and through subsequent
simulations. ”Yes” and ”no” indicate whether a variant could or could not qualitatively cap-
ture the observed data, respectively. Specifically, we investigated whether a variant could pro-
duce increasing T2 compatibility effects with slower T2 responses (columns ”Delta Function”),
and whether T2 accuracy, conditioned on different levels of T2 response speed, were plausible
(column ”CAFs,” which stands for conditional accuracy functions). For CAFs, we considered
a variant plausible if it predicted higher (or at least similar) T2 accuracy in compatible rela-
tive to incompatible trials. Additionally, the column ”∆ Crosstalk” indicates whether a larger
compatibility effect was predicted for T2 relative to T1. Note that we did not perform model
simulations with Variant 3, as this variant already failed when fitting it to the observed data.

5 General Discussion

Humans frequently engage in multitasking on a daily basis. Despite our apparent ability

to perform multiple tasks in a more or less temporally overlapping manner, decades of re-

search have shown that multitasking is often associated with various costs (e.g., Janczyk

& Kunde, 2020; Kiesel et al., 2022; Koch et al., 2018; Pashler, 2000). In addition to

task-specific slowdowns caused by reconfiguration requirements or central processing lim-

itations, multitasking also leads to various crosstalk effects that arise as a byproduct when

tasks overlap in modality or content.

The present dissertation focused on providing a detailed account of the response-based

backward crosstalk effect, a specific type of crosstalk arising from a second task influencing

the processing of a first task. The goal was to deepen our understanding of the temporal

dynamics of T2 response activation during and after T1 response selection. The key to

addressing these questions was the combination of modern cognitive modeling approaches
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with traditional experimental methods.

To address the overarching question regarding the development and fate of T2 response

activation, I examined three subordinate research questions (see Figure 3 in Chapter 4.1):

(1) How does T2 response activation develop over time during T1 processing: Is this

activation more transient or monotonically increasing? (2) Is T2 response activation sym-

metric, i.e., is it equally strong in compatible and incompatible trials? (3) What happens

to T2 response activation after T1 response selection is complete? Does it contribute to

subsequent T2 response selection or not?

I will first briefly summarize the findings and then discuss their broader implications

for dual-task research. This will be followed by a discussion of the methodological contri-

butions of this dissertation to cognitive psychology and an outline of important limitations

that suggest directions for future research.

5.1 Summary of Results

To address whether T2 response activation is more monotonically increasing or transient

(cf. Durst & Janczyk, 2019), we explicitly modeled different T2 response activation func-

tions within a DDM inspired by DMC (Ulrich et al., 2015). The results clearly indicate

that T2 response activation is almost monotonically increasing for most individuals. In

particular, formal comparisons rendered a linear T2 response activation as the most ade-

quate function overall, even outperforming an asymptotic T2 response activation function.

However, an interesting observation was that a minority of individuals (approximately

10-20%) still displayed data more consistent with a pulse-like (i.e., transient) rather than

linear T2 response activation. Although further analyses indicated that these individuals

did not form a distinct subgroup, the apparent individual differences were unlikely to arise

by chance when noisily sampling a finite number of trials from a model with linear T2

response activation (which was clearly more appropriate for the majority of individuals).

In other words, there may be a continuum of individuals who process T2 in either a

more pulse-like or a more linear fashion. However, a follow-up parameter recovery study

showed that while the parameter estimates of the linear function were reliable, those of
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the pulse-like function were clearly not. Thus, there may be individual differences in the

time course of T2 response activation, but precisely quantifying these differences with a

DDM is challenging.

Regarding the symmetry of T2 response activation, we investigated whether T2 fa-

cilitates T1 processing in compatible trials to the same extent as it interferes with T1

processing in incompatible trials. In a series of experiments, we introduced neutral tri-

als in which R2 did not overlap with the features distinguishing the R1 alternatives. We

found strong evidence that the facilitation and interference effects to the BCE are of equal

magnitude, suggesting that T2 response activation is indeed equally strong in compatible

and incompatible trials. How this result relates to our modeling work is discussed further

below in Chapter 5.4.

The fate of T2 response activation was examined by modeling T2 response selection

within a DDM framework, focusing on whether previous T2 response activation affects

subsequent T2 response selection. We considered several models in which T2 response

selection either starts from previous T2 response activation (Logan & Gordon, 2001;

Thomson & Watter, 2013; Tombu & Jolicœur, 2003), always from zero (Schubert, 2008),

or with a trace of the previously accumulated T1 response information (Logan & Gordon,

2001). After fitting and simulating each model, our results indicate that only the latter

mechanism is consistent with empirical observations. Thus, T2 response activation does

not carry over to T2 response selection. Instead, T2 response selection starts with a trace

of the evidence accumulated during T1 processing. This then also explains the larger

compatibility effect in T2 relative to the BCE in T1.

In Figure 9, I present an updated version of Figure 2B to summarize the results of this

dissertation. I argue that this updated version has the advantage of explicitly formulating

assumptions with respect to the (R1-R2) BCE. Indeed, looking back at Figure 2B, one

might assume that T2 response activation is not continuously present during T1 response

selection, that T2 response activation does not influence T2 response selection, or that

T1 and T2 response selection are independent. The revised figure aims to convey a more

precise picture of the BCE and clearly states its assumptions.
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Figure 9

Illustration of a More Precise Conceptual Model for the BCE

RS1 M1T1

RS2RA2

P1

P2 M2T2

crosstalk + /

Note. This figure is an updated version of Figure 2B, with three major changes: (1) T2 response
activation is now shown to be continuously present during T1 response selection, emphasizing
that it does not fade. Here, the ”box-height” is also slightly smaller, to indicate that T2 response
activation is not as efficient in producing a T2 response as subsequent T2 response selection.
(2) The use of a plus and minus sign indicates that T2 response activation is comparable in
compatible and incompatible trials, equally facilitating and interfering with T1 response selec-
tion. (3) The combination of a downward pointing arrow, a lightning bolt, and a brief period
of T2 response selection colored identically to T1 response selection illustrates that T2 response
selection begins with a trace of the previously selected T1 response.

This Chapter provided a summary of the key findings. The following section discusses

how these fit with the existing literature and explores their implications for BCE and

dual-task research.

5.2 Interpretation of Results and Implications for Dual-Task Research

The monotonic and rather linear increase in T2 response activation suggests that the BCE

is phenomenologically different from the congruency effect observed in conflict tasks such

as the flanker task. In conflict tasks, activation of the task-irrelevant feature is typically

pulse-like (especially for Simon and flanker tasks, see López & Pomi, 2024; Ulrich et al.,

2015). The present findings thus contrast with the speculations by Janczyk, Renas, and

Durst (2018) and Durst and Janczyk (2019), stating that S2 might behave similarly to

flankers in a flanker task due to its ”automatic” activation of T2 response information.

Indeed, several authors have argued that shielding T1 from T2 by prioritizing T1

processing, separating task-specific S-R bindings, or inhibiting T2 response activation

might benefit performance by avoiding crosstalk, task confusion, or order reversal (Fischer

& Plessow, 2015; Fischer et al., 2018; Janczyk, 2016; Lehle & Hübner, 2009; Logan &

Gordon, 2001). From this perspective, it is reasonable to assume that participants treat
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S2 as a not yet relevant distractor during T1 response selection. The present results do

not necessarily contradict this idea, as there may be processes involved that keep T2

response activation in check. However, the results suggest that these processes do not

lead to a reduction in T2 response activation for the majority of individuals, as would be

expected if participants really treat S2 as a (currently irrelevant) distractor, for instance,

like a flanker stimulus.

The persistence of T2 response activation may be explained by a fundamental trade-off

between keeping tasks separate to avoid crosstalk and achieving high overall performance

on both tasks. Apparently, T2 is always relevant in dual-task scenarios, which means

that participants often prepare for both tasks and maintain (at least to some extent)

both S-R rules in working memory (De Jong, 1995; Ellenbogen & Meiran, 2008; Meyer

& Kieras, 1997; Schubert & Strobach, 2018). Indeed, De Jong (1995, Exp. 3) showed

that while participants primarily prepare for T1, they also prepare for T2 to ensure a

quick and well-timed task switch. Similarly, Ellenbogen and Meiran (2008) argued that

when T1 S-R rules are relatively simple, participants use their remaining working memory

capacity to prepare T2 S-R rules, even though this may induce crosstalk. As a result, S2

can continuously prime R2 via its associated S-R rules, which are part of active working

memory. Moreover, this continuous activation may neither decay (e.g., Hommel, 1994) nor

be actively inhibited (Ridderinkhof, 2002), as this would require T2 S-R rules to vanish

from working memory, which is detrimental to performance if these rules are needed

shortly thereafter. In essence, it thus appears that participants may be willing to accept

some performance decrements due to ongoing crosstalk in exchange for the benefit of a

faster task switch once T1 processing is complete.

Of course, the situation changes when T2 becomes less relevant, as is the case in the

prioritized-processing paradigm (Miller & Durst, 2014, 2015; Mittelstädt et al., 2023). In

this paradigm, participants don’t respond to T2 on every trial, but only when T1 requires

a no-go response. Because T2 is less relevant, it may be more beneficial to prepare

primarily for T1 and less for T2 (see also Durst et al., 2019; Lück et al., 2024; Miller &

Tang, 2021). Thus, although T2 response activation may be triggered through previously
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formed or memorized S-R rules stored in episodic memory (see also Hommel, 1998, Exp.

5; Janczyk, Renas, & Durst, 2018, Exp. 2; or Logan, 1988), this activation may be more

transient because T2 S-R rules are not (additionally) part of active working memory. This

would be consistent with the results of Mittelstädt et al. (2023), who explored the role of

T2 relevance, demonstrating that T2 response activation is more persistent the more T2

is relevant. In other words, it may be the specific prolongation of T2 response activation

following T2 preparation that drives the interference effect in dual-task situations, and

which also provides an important distinction from situations in conflict tasks (where the

stimulus causing the interference is always task-irrelevant).

Differences in the extent to which participants prepare for T2, or in other words,

how much they focus on T1 versus T2, may also contribute to the individual differences

observed in Study 3. Indeed, individual differences in multitasking have received more

attention in recent years (e.g., Broeker et al., 2022; Brüning & Manzey, 2018; Brüning

et al., 2020; Naefgen & Gaschler, 2024; Naefgen et al., 2023), although they have been

noted since the beginning of multitasking research (e.g., Jersild, 1927). However, before

delving into more detailed analyses of these individual differences, it is important to

first determine the extent to which they are reliable. While a few studies have examined

individual differences in the size of the BCE (Naefgen & Gaschler, 2024) and their relation

to other processing strategies (Brüning et al., 2022), none have examined the reliability

of the BCE both within and across sessions. Given the current pessimism regarding the

reliability of individual measures from well-established and robust cognitive paradigms

(Hedge et al., 2018; Rouder et al., 2023; Schuch et al., 2022), one might expect only

moderate reliability for the BCE. Yet, it remains to be seen whether this expectation is

justified. Furthermore, one has to keep in mind that the time course of a pulse-like T2

response activation function cannot be estimated with high precision in the context of the

BCE (see the parameter recovery properties presented in Study 3).

Another important finding of this dissertation is that T2 response activation likely

does not carry over into T2 response selection, matching with conclusions by Schubert

et al. (2008), and contrasting with results by Thomson and Watter (2013). Instead, T2
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response selection carries a trace of the previous T1 response, as proposed by Logan and

Gordon (2001). This fits well with findings of Naefgen et al. (2017, Exp. 3), who showed

that free-choice T2 responses are chosen in accordance with force-choice T1 responses,

indicating a bias of T2 response selection toward the elicited T1 response.

An interesting aspect arises when we consider the implications for capacity-sharing

theories and how we conceptualize the processing of both tasks. If we adhere to the typical

”box-like” processing scheme (see, e.g., Figure 2C in Chapter 3), both tasks appear to

be processed in relatively separate ”pathways” or ”channels.” In fact, a core assumption

of capacity-sharing models is that T1 and T2 response selection can occur in parallel,

and that prior T2 central processing reduces the amount of work required to complete

T2 response selection once it reaches full efficiency (Lehle & Hübner, 2009; Tombu &

Jolicœur, 2003). This requires the cognitive system to track the processing stages of

each task in separate channels, because otherwise, it would not be able to determine

how much work remains for T2. However, the present results contradict this notion

of separate channels, as any T2 response information accumulated during T1 response

selection vanishes from the system while T2 response selection somehow carries a trace of

the selected T1 response.

To make sense of this, we must abandon the idea of separate processing channels

and instead conceptualize task processing in accordance with ECTVA (Logan & Gordon,

2001), in which all stimuli (or their related categories, Ellenbogen & Meiran, 2008; Thom-

son et al., 2010) map to the same response counters via the instructed S-R rules. In this

framework, a clear separation of T1 and T2 processing becomes impossible, since any ac-

tivation pattern at the response level arises jointly from the stimuli of all tasks and their

associated S-R rules. Thus, the reason we generate a response to a given stimulus is not

because it has passed through a particular processing channel, but because attention has

been directed to that stimulus. Moreover, after selecting a response to T1, it is necessary

to reset the response counters to prevent response perseveration. In this sense, ECTVA

is more consistent with models that assume that only one task at a time can undergo re-

sponse selection, and that switching from T1 to T2 involves shifting the ”single-channel”
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bottleneck to the second task.

Of course, this does not necessarily contradict the concept of ”capacity sharing.” To

reconcile the concept of capacity sharing with ECTVA, one could redefine it in terms of

a relative preparation of S-R rules (as was already discussed above). Specifically, instead

of assuming that increased capacity sharing leads to more parallel central T1 and T2

response selection within separate channels, one could alternatively suggest that it leads

to stronger preparation of the S-R rules of both tasks. Consequently, greater capacity

sharing (i.e., S-R rule preparation for both tasks) would lead to a stronger influence of

T2 on T1, while yet improving subsequent T2 performance. In other words, attentional

resources are not necessarily distributed among processing channels for each task, but

rather in terms of an attentional weightening of each task’s S-R rules.

5.3 Methodological Advances and Remarks

The most significant methodological contribution of this dissertation to the field of (cog-

nitive) psychology is the R package dRiftDM (Study 4), which provides easy access to

the numerical discretization of the KFE introduced by Richter et al. (2023). The KFE

approach is more efficient than the commonly used Monte Carlo simulation approach

(e.g., Evans & Servant, 2022; Lee & Sewell, 2024; Luo & Proctor, 2022; Mackenzie &

Dudschig, 2021), and should be preferred when deriving the first passage time of DDMs

with time-dependent parameters. However, the package cannot replace Monte Carlo sim-

ulation in all cases, since the discretization of the KFE requires closed-form solutions for

the drift rate, boundary, starting point distribution, and non-decision time distribution.

For example, dRiftDM cannot be applied to DDMs such as the Dual-Stage Two-Phase

Model (Hübner et al., 2010), where the drift rate changes randomly as a function of a

second diffusion process. Similarly, the model in Study 1 (Part 2), which includes both

T1 and T2 response selection, cannot be modeled within dRiftDM because the second

diffusion process can only start once the first one reaches a decision boundary.

Although packages similar to dRiftDM have been developed for Python (see Murrow &

Holmes, 2024; Shinn et al., 2020), dRiftDM is accessible to researchers who primarily use
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R. In addition, it already includes models commonly used in cognitive psychology, such

as the Shrinking Spotlight Model (White et al., 2011) and DMC (Ulrich et al., 2015), and

provides functions to directly compute key statistics (e.g., delta functions that describe

congruency/compatibility effects as a function of response speed). In this sense, dRiftDM

aims to combine the accessibility of packages like DMCfun (Mackenzie & Dudschig, 2021)

or fast-dm (Voss & Voss, 2007) with the flexibility of more general packages like PyDDM

(Shinn et al., 2020), while being specifically tailored for psychology researchers. Future

versions will offer additional methods to efficiently derive the first passage time, such as

the integration method advanced by P. L. Smith (2000). This will allow users to choose the

most efficient method for a given model. In addition, we will extend the KFE approach

to incorporate trial-by-trial variability in the drift rate, providing access to additional

models.

A further advancement of this dissertation is a systematic understanding of the advan-

tages and limitations of DDMs in the context of dual-tasking. The results suggest that

DDMs can provide valuable insights into the processes underlying overt T1 and T2 per-

formance. However, Study 3 also revealed that while DMC, a common model for conflict

tasks, may adequately describe observed BCE data, it suffers from unreliable parame-

ter estimates in this case. Therefore, for dual-task data, we currently recommend using

the more classical DDM (Ratcliff, 1978) with a linear T2 response activation function

over DMC (Ulrich et al., 2015). Somewhat fortunately, previous dual-task studies have

primarily used the classical DDM (see Durst & Janczyk, 2019; Janczyk, Mittelstädt, &

Wienrich, 2018; Janczyk et al., 2017; Mattes et al., 2021), and the present dissertation

thus retrospectively supports the validity of its application. For future studies, I offer

new and more specific recommendations on how to apply DDMs in the dual-task con-

text, using the modern approach implemented in dRiftDM (see the practical suggestions

developed in Study 3).

However, researchers should be aware that the classical DDM may not perfectly cap-

ture all aspects of dual-task performance. For example, while a linear T2 response ac-

tivation function works well and outperforms a pulse-like or asymptotic function, it still
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slightly overestimates the BCE for slower responses. In addition, it does not fit all par-

ticipants equally well and may miss more subtle individual differences in the time course

of T2 response activation. On a larger scale, one might ignore the slight misfit if it is

not too severe, because Study 3 demonstrated that only a minority of individuals were

best described by a non-linear function. It is clear that models are always simplifications

and cannot capture every aspect of a dataset. In fact, complex cognitive models that ac-

count for many data patterns are often prone to overfitting and exhibit poor measurement

properties (cf. Lerche & Voss, 2016). Clearly, a model that could describe the activation

of the T2 response along a continuum from pulse-like to more linear would be desirable.

However, it remains uncertain whether such a model can be parsimoniously formulated

with acceptable measurement properties in the context of dual-tasking.

5.4 Open Issues and Future Avenues

Study 2 showed that both facilitation and interference contribute equally to the BCE,

suggesting that T2 response activation is similar in compatible and incompatible trials.

However, this assumption was not explored within a DDM, and I explicitly chose not to

do so. In the present dissertation, a linear T2 response activation function was found to

be the most appropriate for the majority of individuals. Yet, this function was found to

slightly overpredict the BCE for slow responses. The pulse-like function, in turn, did not

overpredict the BCE, but had mediocre parameter recovery properties. Thus, neither T2

response activation function was satisfactory in all respects. Importantly, however, the

predicted magnitude of the facilitation and interference effect differs significantly for both

activation functions.

In particular, if the activation decays relatively quickly, as modeled by the pulse-like

function for standard conflict tasks, a larger facilitation than interference effect emerges

(P. Smith & Ulrich, 2024). This is because the short-lived, interfering information is strong

in fast, compatible trials, while it has already decayed to a large extent in relatively slow,

incompatible trials. However, when the activation decays very lately (or not at all), as it is

the case for most individuals in BCE experiments, comparable facilitation and interference
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effects are predicted (see also Figure 2 in Koob et al., 2024). Yet again, when the activation

follows a linear time course, interference effects tend to be larger than facilitation effects.

Thus, given the uncertainty about the true T2 response activation function and given

that the conclusions with respect to facilitation and interference sharply depend on this

function, no respective modeling exercise was pursued. Nevertheless, future work should

of course try to address this gap in order to complement the experimental approach of

Study 2 (see also Evans & Servant, 2022, for a discussion in this regard). In doing so,

however, it is critical to ensure that the modeled neutral condition does not involve any

confounds that would otherwise make it not ”truly neutral” (see, e.g., T. L. Brown, 2011;

Jonides & Mack, 1984). In addition, any modeling approach that allows the strength of

T2 response activation to vary across compatibility conditions must be based on carefully

considered theoretical assumptions.

Another important issue for future research is to empirically test the proposed transi-

tion mechanism, where T2 response activation is reset and T2 response selection carries

a trace of the previous T1 response (see Figure 9, and Logan & Gordon, 2001’s ECTVA

model). Although such a mechanism produced the most plausible model predictions in

Study 1 (Part 2), this does not necessarily confirm it as true. However, the model does

offer specific, testable predictions. For example, as long as the amount of evidence accu-

mulated for T1 remains constant (i.e., as long as the decision boundary does not vary),

the bias in T2 response selection should remain relatively stable. Thus, the difference

in the compatibility effect between T2 and T1 should remain fairly constant as the SOA

varies between S1 and S2.

Some support for this prediction can be found in the summary statistics reported by

Janczyk (2016, Exp. 1), where the compatibility effect in T2 was consistently about 30 ms

larger than the BCE in T1 across SOAs of 50 ms, 150 ms, and 650 ms (see also the 40 ms

and 300 ms SOA condition in Röttger et al., 2021). In contrast to this finding, however,

Hommel (1998) reported that both the R1-R2 BCE and the corresponding compatibility

effect in T2 disappeared at an SOA of 650 ms. Thus, additional well-powered and carefully

designed experiments are needed to test the assumption that T2 response selection carries
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a trace of the previously selected T1 response. In the same vein, one might try to include

a neutral condition for T2 that is not confounded with R2 speed (as it was the case in

Study 2). With such a more ideal neutral condition, one can test for the absence of a

bias in T2 response selection when the previous T1 response does not overlap with the

subsequent T2 response.

Furthermore, it is important to examine how other BCEs, like the S1-R2 BCE, fit into

this framework. For the S1-R2 BCE, interference occurs between T2 response activation

and T1 stimulus classification (Koob et al., 2020). Interestingly, even in this case, larger

compatibility effects have been observed for T2 relative to T1 (e.g., Hommel, 1998; Koob

et al., 2020), although R1 and R2 do not conceptually overlap in S1-R2 BCE experiments.

Thus, at first sight, it seems difficult to reconcile the larger T2 compatibility effect in S1-

R2 BCEs with the proposed reset mechanism of ECTVA.

A final avenue of research could be to explore the similarities and differences between

the BCE and the congruency effect in task switching (Meiran, 1996; Rogers & Monsell,

1995). In task switching, trials can be ”bivalent,” meaning that a stimulus can be evalu-

ated under both the currently relevant and the currently irrelevant task set. For example,

digits can be classified as greater or less than five in one task and as odd or even in

another. If a digit maps to the same response in both tasks, the trial is considered con-

gruent; otherwise, it is incongruent. As with the BCE, performance on incongruent trials

is impaired relative to congruent trials. A common explanation for the congruency effect

in task switching is that the S-R rules of the currently irrelevant task are not completely

deactivated, allowing them to ”linger” in an active state even when not needed (see also

Allport et al., 1994). This bears a striking resemblance to the BCE, and several studies

have shown parallel findings for both phenomena, such as their susceptibility to the pre-

vious trial history (e.g., J. W. Brown et al., 2007; Janczyk, 2016) or the proportion of

congruent and incongruent trials (e.g., Bugg & Braver, 2016; Fischer et al., 2014).

Surprisingly, a comprehensive analysis that combines both effects within a common

framework is still lacking. Any such attempt, however, must take into account a key

difference: In a BCE experiment, both T1 and T2 require a response on every trial,
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whereas in task switching only one task per trial is relevant. Consequently, the degree

to which a task is perceived as (not yet) relevant may differ between the two paradigms,

potentially altering the time course of the interfering response information.

5.5 Conclusion

The primary question of this dissertation was: What is the time course of T2 response ac-

tivation during and after T1 response selection? The answer is twofold. First, T2 response

activation is nearly linear during T1 response selection for most individuals, resulting in

continuous and symmetrical interference in both compatible and incompatible conditions.

However, this activation presumably does not carry over to T2 response selection. Instead,

T2 response selection begins with a trace of the total response information accumulated

during the T1 decision, that is, T2 response selection is biased by the previously selected

response. This contradicts the core assumptions of capacity-sharing models and suggests

that the two tasks do not operate in separate channels. Rather, both T1 and T2 rely

on the same response codes and response selection acts serially on a shared architecture.

In addition, the results suggest that while a linear time course of T2 response activation

provides a good approximation, it slightly overestimates the BCE for slow responses and

may not capture more subtle individual differences in the time course of T2 response

activation.
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7 Appendices

Appendix A: Study 1

Official citation: Koob, V., Ulrich, R., & Janczyk, M. (2023). Response activation and

activation-transmission in response-based backward crosstalk: Analyses and simu-

lations with an extended diffusion model. Psychological Review, 130 (1), 102–136.

https://doi.org/10.1037/rev0000326.

Abstract:

In dual-task experiments, overlapping response characteristics of two subsequently

performed tasks may not only affect performance in Task 2, but also in Task 1. This

phenomenon is often explained through activated Task 2 response information influencing

Task 1 response selection, which then possibly propagates again into Task 2. So far,

however, only little is known about (a) the time-course of this Task 2 response activation

and (b) possible transmission/propagation mechanisms. The present study addressed

both issues by testing ten plausible drift-diffusion models with five datasets from dual-

task experiments. To this end, we first examined if the temporal course of the response

activation is linearly increasing or pulse-like. The pulse-like model turned out to be

superior, but the corresponding dynamics of the response activation often described a

monotonically increasing function that reached its peak late during Task 1 processing.

By extending the pulse-like model with an additional diffusion process, we then examined

whether and how the Task 2 response information could affect subsequent Task 2 response

selection. Concerning the transmission mechanisms, none of the assumed models proved

to be entirely satisfactory. However, additional simulations suggest that Task 2 response

activation-transmission does not occur at all. Instead, a model in which Task 2 started

with a trace of the previous Task 1 response (i.e., irrespective of the pre-existing Task 2

activation) turned out to be the most promising account.

Copyright ©2021 by American Psychological Association. Reproduced with permis-

sion.
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Appendix B: Study 2

Official citation: Koob, V., Sauerbier, C., Schröter, H., Ulrich, R., & Janczyk, M. (2024).

Separating facilitation and interference in backward crosstalk. Journal of Exper-

imental Psychology: Human Perception and Performance, 50 (3), 295–312. https:

//doi.org/10.1037/xhp0001184

Abstract:

When two speeded tasks have spatially overlapping responses, pre-activated Task 2

(T2) response information influences Task 1 (T1) response selection, a phenomenon known

as the backward crosstalk effect (BCE). Current models of the BCE implicitly assume that

T2 response information is equally present in trials requiring compatible or incompatible

responses, such that T1 performance both improves when T2 requires a compatible re-

sponse and deteriorates when T2 requires an incompatible response. Thus, T2 response

information should have a facilitatory and an interfering effect on T1. Interestingly, this

hypothesis has never been tested, and the present study (conducted between 2021 and

2023) attempts to fill this gap by using neutral trials in which T2 responses did not spa-

tially overlap with those in T1. The results suggest that the BCE (in T1) reflects both

facilitation and interference effects of comparable magnitude, thus corroborating current

conceptualizations of the BCE. We also observed an unexpected pattern of effects for T2,

with only an interference effect, but no facilitation effect. Additional experiments led us

to conclude that the T2 result was sensitive to the specific task characteristics. Conclu-

sions about how the crosstalk transfers from T1 to T2 when switching tasks are therefore

not possible.

Copyright ©2024 by American Psychological Association. Reproduced with permis-

sion.
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Appendix C: Study 3

Citation: Koob, V., Ulrich, R., Ahrens, A., & Janczyk, M. (under revision). The time

course of Task 2 response activation in dual-tasking: Modeling results, interindividual

differences, and practical recommendations.

Abstract:

In dual-task experiments, overlapping response characteristics of two successive tasks

affect performance not only in Task 2 (T2) but also in Task 1 (T1). This observation

is termed the backward crosstalk effect (BCE) and is often explained by activated Task

2 response information influencing Task 1 response selection. In the present study, we

describe and evaluate three diffusion models that specify T2 response activation as linear,

asymptotic, or pulse-like. Formal model comparisons and a parameter recovery suggest

that linear T2 response activation is most accurate for most individuals. However, we also

highlight the potential role of individual differences, as a pulse-like T2 response activation

function may better describe a subset of individuals. Finally, we provide practical recom-

mendations for researchers on how to fit the BCE in the larger context of dual-tasking.
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Appendix D: Study 4

Citation: Koob, V., Richter, T., Ulrich, R., & Janczyk, M. (in preparation). An intro-

duction and tutorial to fitting (time-dependent) diffusion models with the R-Package

dRiftDM. Pre-Print at https://osf.io/preprints/osf/3t2vf

Abstract:

Using mathematical models of human cognition has become an increasingly important

and valuable tool in many psychological research fields and neighboring areas. Widely

used are drift-diffusion models (DDMs) that can be used to predict probability density

functions (PDFs) of binary choice reaction tasks. Often, the parameters of such a model

are time-independent (i.e., they do not vary as a function of time within a trial). How-

ever, the more general case is that of time-dependent parameters. Several recent models,

for example, assume time-dependency for the drift rate and/or the boundaries. Such

time-dependent (or non-stationary) models increase mathematical complexity, but sev-

eral solutions to approximate the PDFs have been advanced. We here present dRiftDM,

an R package particularly designed to meet the needs of psychological research to es-

timate time-dependent models. Importantly, with dRiftDM, users can provide custom

drift rates, boundaries, starting points and non-decision times, unlocking a wide range

of DDMs. Fitting a model to data can be done participant-wise, and extracting model

parameters or calculating summary statistics is straightforward. Hands-on examples for

using pre-built and for developing own models are provided.
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