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Abstract

One of the main problems of performing ill-defined tasks is how to decide what
to do next, i.e., the problem of action selection. This especially applies if tasks are
not or only weakly constrained, such that the each action could be done in any order,
equating a multitude of possible solutions. In order to gain a deeper understanding of
the cognitive processes involved in human action selection, which in turn can inform
the development of artificial cognitive agents such as robots, this thesis focuses on
everyday activities as a subset of ill-defined tasks.

Previous research shows that even if no hard constraints exist, people exhibit
specific preferences for action orderings, which arise from bounded rationality, i.e.,
having limited knowledge and computational power (e.g., in the form of working
memory) available. As a result, people aim to minimize the required overall physical
and cognitive effort. In the context of spatial tasks, this can be achieved by taking
properties of the spatial environment into account and using them to one’s advantage
and by employing a stepwise-optimal action selection strategy. This thesis presents the
Opportunistic Planning Model (OPM), an explanatory cognitive model that instantiates
these assumptions.

To evaluate the OPM’s performance, several machine learning models are imple-
mented as benchmarks. Additionally, the OPM’s generalizability is tested by applying
it to new everyday activities. The OPM performs on a similar level to the machine
learning models on a singular task and outperforms them during generalization.
This success has several implications for human (spatial) cognition: People behave
consistently with a model that 1) uses a 2D (𝑥𝑦) representation of space, 2) plans
only 1 step ahead, and 3) implements a locally optimal problem solution.

To test the validity of the OPM as a cognitive model for robot agents, it has been
implemented as an action selection strategy in a pick and place scenario (table
setting). Comparing the simulation employing the OPM for action selection with a
baseline simulation choosing a random action ordering, the OPM simulation performs
slightly faster and reduces the required to-be-traversed distances.





Zusammenfassung

Eines der Hauptprobleme bei der Ausführung unterbestimmter Aufgaben ist die
Entscheidung, was als Nächstes zu tun ist, d. h. das Problem der Handlungsauswahl.
Dies gilt insbesondere dann, wenn die Aufgaben nicht oder nur schwach eingeschränkt
sind, so dass die einzelnen Handlungsschritte in beliebiger Reihenfolge ausgeführt
werden könnten, was eine Vielzahl möglicher Lösungen erlaubt. Um ein tieferes Ver-
ständnis der kognitiven Prozesse zu erlangen, die bei der Auswahl von Handlungen
von Bedeutung sind, und die wiederum in die Entwicklung künstlicher kognitiver
Agenten, wie z. B. Roboter, einfließen können, konzentriert sich die vorliegende
Dissertation auf alltägliche Aktivitäten als eine Teilmenge unterbestimmter Aufgaben.

Frühere Forschungen haben gezeigt, dass Menschen, auch wenn keine harten
Einschränkungen bestehen, spezifische Präferenzen für die Handlungsreihenfolge
zeigen, die sich aus der begrenzten Rationalität ergeben, d.h. aus der Tatsache,
dass sie nur begrenztes Wissen und begrenzte Rechenleistung (z.B. in Form von
Arbeitsspeicher) zur Verfügung haben. Infolgedessen streben die Menschen danach,
den erforderlichen körperlichen und kognitiven Gesamtaufwand zu minimieren. Im
Kontext räumlicher Aufgaben kann dies durch die Berücksichtigung und Ausnutzung
von Eigenschaften der räumlichen Umgebung sowie durch eine schrittweise optimale
Handlungsauswahlstrategie erreicht werden. In dieser Dissertation wird das Oppor-
tunistische Planungsmodell (OPM) vorgestellt, ein kognitives Erklärungsmodell, das
diese Annahmen instanziiert.

Um die Leistung des OPM zu bewerten, werden verschiedene Modelle des maschi-
nellen Lernens als Benchmarks implementiert. Zusätzlich wird die Generalisierbarkeit
des OPM getestet, indem es auf neue Alltagsaktivitäten angewendet wird. Das OPM
schneidet bei einer singulären Aufgabe ähnlich gut ab wie die maschinellen Lernmod-
elle und übertrifft sie bei der Verallgemeinerung auf neue Aufgaben. Dieser Erfolg
hat mehrere Implikationen für die menschliche (räumliche) Kognition: Menschen
verhalten sich konsistent mit einem Modell, das 1) eine 2D (𝑥𝑦)-Darstellung des
Raums verwendet, 2) nur einen Schritt voraus plant und 3) eine lokal optimale
Problemlösung implementiert.

Um die Validität des OPM als kognitives Modell für Roboteragenten zu testen,
wurde es als Handlungsauswahlstrategie in einem Pick-and-Place-Szenario (Tis-



List of Tables

chdecken) implementiert. Vergleicht man die Simulation, bei der das OPM für die
Aktionsauswahl verwendet wird, mit einer Basissimulation, bei der eine zufällige Ak-
tionsreihenfolge gewählt wird, so zeigt sich, dass die OPM-Simulation eine schnellere
Laufzeit aufweist und die erforderlichen zurückzulegenden Strecken reduziert.

x
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Chapter 1

Introduction

1.1 Motivation

“Cognition is the process by which an autonomous system perceives its environment, learns from

experience, anticipates the outcome of events, acts to pursue goals, and adapts to changing

circumstances.” — (Vernon, 2014)

“How do we use the space around us? (. . . ) In having a body, we are spatially located creatures;

we must always be facing some direction, have only certain objects in view, be within reach of

certain others. How we manage the space around us, then, is not an afterthought; it is an integral

part of the way we think, plan and behave, a central element in the way we shape the very world

that constrains and guides our behavior.” — (Kirsh, 1995)

Imagine a robot that is able to support people in their daily life by performing
everyday household tasks, such as setting a table, cleaning up a room, or preparing
meals – in short: Tasks that we as humans perform daily without putting a lot of
conscious thought into them, while at the same time still performing those tasks
efficiently and (in most cases) to satisfaction. In order to achieve the same level of
competence, our imagined household robot needs a variety of skills and capabilities,
ranging from perception to action planning, execution of motions, failure handling,
spatial memory, navigation, and many more. In order to be able to develop cogni-
tive agents capable of mastering everyday tasks, one possible first step is trying to
understand the underlying cognitive processes that influence how people perform
everyday activities.

The term everyday activities describes tasks such as setting a table, cleaning up, or
preparing a meal, that are performed on a regular, often daily, basis. These activities
are seemingly simple, as they typically require only limited attention to the specific
task. One distinguishing feature of everyday activities is that most activities do not
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Chapter 1. Introduction

have any hard constraints on the order of actions. This means that, e.g., when setting
a table, we could theoretically do all actions in any order, as long as all required
items end up on the table eventually. One of the main questions when trying to
understand how cognitive agents deal with these kinds of task then is: How does
the agent, be it human or robot, decide what to do, and in particular, what to do
next? The first question refers to planning and decision-making in general, while the
second question addresses the process of action selection, which is the focus of this
thesis.

While planning and action selection are crucial cognitive abilities for successfully
performing everyday tasks, little is yet known about the process of human action
selection, i.e., how people choose what to do next, if the overall task is not or only
weakly constrained. Existing research either assumes each possible action sequence
to be equally likely to occur (Botvinick & Plaut, 2004) or treats the observation
of specific action sequences as idiosyncrasies of the person or situation (Cooper &
Shallice, 2000). To better understand how human cognitive agents pursue their
daily goals and adapt their behavior to a dynamic environment such as a household
environment, the study of everyday activities promises a deeper understanding of
the cognitive skills involved in daily tasks as well as how these skills interact and are
combined in the human mind. A deeper understanding of the cognitive processes
underlying learning and mastery of everyday tasks can be used to improve the design
of artificial cognitive agents and, in turn, allowing to better support people to live
independently, who would otherwise require professional aid to master their everyday
life.

This thesis aims to shed light on the issue of action selection by considering every-
day activities, as they provide a unique window for investigating human cognitive
skills and abilities. Everyday activities are in fact highly complex and involve many
different cognitive abilities. Setting the table, for example, requires navigation, action
and motor control and planning, spatial memory, and error monitoring, among others.
Evidence for this complexity is provided by the facts that a) already mild cognitive
impairment may negatively impact the performance of routine naturalistic actions,
such as highly familiar everyday tasks (Gold et al., 2015), b) even healthy adults
exhibit occasional errors such as action slips, i.e., unintentionally omitting an action
in the sequence (Cooper & Shallice, 2000), and c) artificial cognitive systems able to
master everyday activities in unstructured environments have not yet been achieved
(Ersen et al., 2017).

One crucial factor for human performance in daily life is the impact of the spatial
environment on decision-making and action selection processes, as this is the back-
ground setting for all human activity. Spatial properties of the environment, such as
distance or containment, and their mental representation are considered to be impor-
tant influences on how people deal with everyday activities, as all human activity is
inherently spatially grounded. The efficient use of the environment and its properties

2



1.1. Motivation

is one possible method to minimize the effort necessary for task success in everyday
activities. While the importance of spatial cognition is obvious for successful task
performance in large-scale environmental spaces that are subject to change (i.e., navi-
gation and wayfinding), the importance of spatial representation and the associated
cognitive processes becomes less clear in highly familiar, small-scale vista spaces (i.e.,
one’s own home) (Montello, 1993), especially when dealing with highly automated
tasks such as everyday activities. So far, research has focused little attention on the
influence of spatial features on routine activities that take place in small-scale spaces.

Classical planning theory distinguishes between well-defined and ill-defined do-
mains of problem-solving: While well-defined tasks are characterized by all the
necessary information for solving the problem (initial state, goal state, and the means
to reach the goal state) being clearly specified, ill-defined tasks lack specification in
at least one of these areas (Simon, 1973), which makes it infeasible to compute all
possible solutions. Little is yet known about how humans achieve action selection
in ill-defined tasks, whereas well-defined tasks have received considerable attention
(Botvinick & Plaut, 2004; Botvinick & Weinstein, 2014; Cooper et al., 2014; Kachergis
et al., 2016; Morris & Ward, 2005; Newell & Simon, 1972). While several approaches
exist that specifically consider ill-defined tasks (Firby, 1987; Jiménez et al., 2012),
they are ill-suited to explain the cognitive processes involved in human planning
and action selection as they are either unfeasible or inefficient in real-world settings
(Georgievski & Aiello, 2015). There are several data sets available that consider
everyday activities, but without focusing on human action selection behavior, but
instead considering motion segmentation and action recognition (Damen et al., 2018;
Rohrbach et al., 2016; Rybok et al., 2011; Tenorth et al., 2009), collecting biosignals
of everyday activities (Meier et al., 2018), and understanding causal dependencies of
actions (Uhde et al., 2020).

According to the concept of bounded rationality, human behavior can be explained
through rational analysis if limitations in knowledge and processing capacity are
taken into account (Jones & Love, 2011; Sargent, 1993; Simon, 1955). Identifying
effective mechanisms to achieve task success that can plausibly be implemented
by a resource-bounded human brain can then be achieved by using computational
modeling methods as an analysis tool for specific cognitive functions. One preference
that has consistently been shown to influence human behavior is the tendency to
minimize physical and cognitive effort (Hull, 1943; Kool et al., 2010). Combining
existing limitations of the human mind with the law of less work, stating that effort
tend to be avoided (Hull, 1943), makes it reasonable to assume that people do not
deal with everyday activities by using computationally expensive methods. Instead,
based on limitations in time, computation, and communication, people prefer simpli-
fied strategies (heuristics) that exploit the information structure of their environment
(Griffiths, 2020).

In the context of a spatial environment reducing the required effort not only

3
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includes minimizing the traversed distance, but also using the spatial environment to
one’s advantage by using methods of external scaffolding (Clark, 1996; Kirsh, 1995),
such as grouping ingredients in a kitchen to simplify the selection process, or using
an external medium such as post-it notes or a notebook to store intermediate results
when multiplying large numbers. Scaffolding strategies have been shown to be used
particularly often while performing spatial tasks (Wilson, 2002). Even in small-scale
spatial environments, reducing the required effort includes both minimizing the
traversed distance, and using the spatial environment to one’s advantage, e.g., by
applying methods of external scaffolding.

Taking these considerations into account, this thesis proposes the Opportunistic
Planning Model (OPM), an action selection model for everyday activities that takes
specific spatial properties of the environment (distance and containment) and rela-
tional dependencies between items into account in order to reduce the necessary
cognitive and physical effort, making it a plausible computational model for the
resource-bounded human mind. The OPM is based on the assumption that context
knowledge is of high importance when trying to explain human behavior as it al-
lows people to use action selection strategies that are highly adapted to the specific
situation and environment, rendering them efficient and resource-bounded.

1.2 Research Questions & Objectives

Considering the importance of space and its mental representation for all human
activity, this thesis addresses the following questions:

1. How do people cope with ill-defined problems in everyday life?
2. How do spatial properties of the environment influence action selection when

performing routine tasks such as everyday activities?
3. Which spatial properties are considered to facilitate everyday tasks? (e.g.

distance, topology, dimensionality, relational dependencies)
4. What does the success of a computational model based on preferences in

everyday activities tell us about human (spatial) cognition?
5. How well can the computational model be transferred to artificial cognitive

agents?

In providing insights on these questions, this dissertation aims to develop a deeper
understanding of how spatial properties affect and contribute to action selection
in routine everyday activities. Gaining a better understanding of human cognitive
processes may inform building artificial cognitive agents, such as robots, and enhance
their capability of independently performing spatial reasoning and assisting people
in everyday life.

4



1.3. Contributions

1.3 Contributions

This thesis has three main contributions:

1. An explanatory computational model for human action selection in everyday
activities (OPM) that is optimized for ill-defined, weakly constrained tasks by
employing an opportunistic approach.

2. Insights on human (spatial) cognition and action selection strategies based on
the OPM’s simulation results.

3. Application of the OPM in simulation to assess its applicability as a cognitive
model for robot agents.

The contributions have been published at several conferences in the fields of
cognitive science and artificial intelligence, as well as the Cognitive Science journal.
Chapter 7 lists the relevant publications.

Computational Model The opportunistic planning model (OPM) for action se-
lection everyday activities addresses the gap between well-defined and ill-defined
domains of problem-solving. While multiple approaches in the existing literature
consider action selection in well-defined domains, action selection in ill-defined
domains has not yet received sufficient attention. Existing approaches are often
ill-suited for everyday activities that are only weakly constrained (i.e., all actions
could be done in any arbitrary order) and ill-defined (multiple possible solutions exist,
which makes it infeasible to compute all possible solutions under the assumption of
bounded rationality).

Insights into Human (Spatial) Cognition Analysis of model performance indicates
preference mechanisms that allow to explain observed human behavior during
complex everyday tasks without a fixed order of actions. Consistent with previous
study results, the results of the model simulations indicate that people seem to prefer
the cognitively less costly options during action selection: People behave consistently
with a model that uses a two-dimensional horizontal representation of space (𝑥𝑦)
instead of a three-dimensional representation, implements a locally optimal task
solutions instead of a globally optimal one, and plans only one step ahead.

Model Application in Simulation By providing an action selection strategy that
implements a stepwise heuristic, the OPM also addresses the question of how robotic
agents can improve their performance in everyday (household) activities, with the
goal to achieve human-like performance levels. The OPM remains computationally
tractable even in large problem spaces and eliminates the need to implement prede-
fined action selection strategies or precedence rules for specific possible scenarios.

5
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Given spatial information (about the required items and the agent performing the
task) and context knowledge (parameters for relational dependencies and contain-
ment) about the task environment as input, it is able to generate an efficient action
sequence for known as well as new tasks.

1.4 Methodology

1.4.1 Data Annotation

To parameterize and test the OPM, spatial information on the task environments is
required. If not already provided by the data sets, all data sets employed for model
generation and testing have been annotated with spatial information (locations of all
items and the participant during each step of the task) and action sequences of the
individual actions (the order in which all actions in the activity were performed). This
includes the TUM Kitchen data set (Tenorth et al., 2009), episodes containing table
setting sequences from the EPIC-KITCHENS data set (Damen et al., 2018, 2022), a
subset of the EASE-TSD data set (Meier et al., 2018), episodes containing clearing of
a table of dishes from the KIT Robo-Kitchen Activity data set (Rybok et al., 2011),
and the MPII Coooking 2 data set (Rohrbach et al., 2016). For the VR data sets
(VR data set, HAVE data set (Uhde et al., 2020)), spatial annotations for items and
participants were already included in the data sets.

1.4.2 Model Development & Parametrization

The OPM has been developed and parameterized in several steps: To identify
which cognitive processes might be of importance in action selection tasks, pattern
mining was used to explore a subset of the available data. Based on the results of this
preparatory exploration, indicating which sequences of items in a table setting task
were most likely to occur independent of individual preferences of the participants,
possible influences on action selection were determined in accordance with theories
of related work.

The validity of the proposed parameters has been verified by comparing several
versions of the OPM (with one, both, or none of the parameters set). Additionally,
several steps were taken to ensure that the selection of parameter ranges was not
detrimental to model performance: To eliminate the possibility that the chosen
parameter ranges for and functional form of the OPM affected the observed results,
alternative parameter ranges and alternative functional forms for the OPM have
been explored. How the chosen parameters, their ranges, and the functional form of
the OPM were selected will be described in Chapter 3. Subsequently, the influence
of planning depth and dimensionality on model performance were investigated,
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determining the most plausible model. The results of this investigation additionally
provides insights into human (spatial) cognition.

1.4.3 Quality Assessment & Performance Evaluation

The ecological validity of the OPM has been demonstrated by applying it to five
different data sets for table setting (Damen et al. (2018), Meier et al. (2018), Tenorth
et al. (2009), and Uhde et al. (2020), VR data set). Whereas existing approaches
are often applied in lab settings with a finite number of task solutions and are not
able to generalize to other tasks, the OPM is applicable in a variety of settings, as
it implements a flexible action selection strategy. The ability to generalize has been
verified by employing the OPM to two new everyday activities, cooking (Rohrbach
et al., 2016) and cleaning up (Rybok et al., 2011).

Three machine learning baselines have been implemented to gauge the OPM’s
explanatory power based on the encoded knowledge about the task environment.
To evaluate how much of the OPM’s prediction accuracy is based on underlying
patterns and how much is due to the encoded knowledge about the task environment,
two machine learning models optimized for sequence prediction (a Recurrent Neural
Network [RNN], and a Compact Prediction Tree [CPT]) without situational context
knowledge (i.e., receiving just the action sequences as input without any knowledge
about the spatial environment etc.) were implemented and compared to the OPM’s
performance. Additionally, a Feed-forward Neural Network (NN) trained on the same
knowledge as the OPM (action sequences, spatial information about the items and
subject) was implemented to provide an upper bound for model performance. Lastly,
OPM and machine learning model performance have been compared averaged over
all data sets.

1.4.4 Employing the OPM as a Cognitive Model

In addition to providing insights on (human) cognitive processes during action
selection, the OPM was also intended to be employed as a cognitive model for
artificial cognitive agents such as household robots. Based on the assumption that
using human behavior as a modeling baseline would provide an ecologically valid
action selection strategy that is feasible even under computational constraints, the
OPM has therefore been implemented as a ROS service to be called from a robot
planning framework.

To test the OPM’s applicability as a decision heuristic for action selection, it has
been implemented in a robot task planning framework (PyCRAM) on a pick and
place scenario (table setting). Running the simulation with the OPM as an action
selection module was compared to running a baseline simulation which selects the
next action based on a given random action sequence. Program runtime and the
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overall to-be-traversed distance were employed as comparison metrics.

1.5 Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents approaches to action selection in everyday activities, focus-
ing on problem-solving strategies for well- and ill-defined domains in general and
approaches to action selection for everyday tasks in particular. Subsequently, the
cognitive concepts that are assumed to be of influence on action selection processes
are introduced: Bounded rationality, cognitive effort and the goal to minimize it, and
preferences in spatial cognition, which arise from bounded rationality and the goal
to minimize (cognitive) effort. This chapter also introduces current approaches in
robot task planning and discusses the challenges of weakly constrained task planning
in everyday tasks.

Chapter 3 presents a computational model accounting for human action selection
behavior in everyday tasks, the OPM. Additionally, the data sets employed in the
subsequent model simulations are described, before the methodology and results
of several model simulations are presented. In a first simulation for model and
parameter verification, the validity of the model and its parameters are established
(see Subsection 3.3.1). Second, several models are compared that either plan one
step only, two steps ahead, or try to find a globally optimal solution (see Subsec-
tion 3.3.3). The third simulation evaluates the influence of dimensionality on model
performance, comparing several models with different spatial representations (see
Subsection 3.3.2). Subsequently, three machine learning baselines are implemented
in order to provide performance baselines for the OPM (see Subsection 3.3.4). In
the following, the generalizability of the OPM to new everyday tasks is evaluated
in comparison to the machine learning models (see Subsection 3.3.5). Lastly, the
overall performance of the OPM (averaged over all considered everyday activities)
is compared to the machine learning models’ performance (see Subsection 3.3.6),
before the implications of the results are discussed. For each simulation, the implica-
tions regarding human (spatial) cognition obtained from the simulations results are
discussed in the corresponding section. In particular, the results indicate preferences
for a 2D representation of space, locally optimal planning of action sequences in
everyday tasks, and stepwise optimization instead of planning ahead.

Chapter 4 presents the implementation of the OPM as a cognitive model for an
artificial agent, providing a proof of concept for the action selection strategy. First, the
employed planning framework (CRAM) and the task scenario used for the simulation
are described. Second, the results from comparing the OPM to a baseline simulation
that does not implement a specific action selection strategy, but just follows a random
predefined action order, are presented. Subsequently, the implications of the results
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are discussed.

Chapter 5 discusses the simulation results with respect to the OPM’s performance.
The chapter provides an overview over the implications regarding the generalization
performance of the OPM compared to the machine learning models, mental repre-
sentation of space, differences between the OPM and previous approaches to action
selection and robotic task planning, as well as the limitations of the OPM.

Chapter 6 concludes this thesis.

9





Chapter 2

Related Work

In the following, an overview is given on previous research in the areas that are
relevant to the problem of action selection. This includes previous approaches to
action selection in everyday activities (Section 2.1), influences on action selection
(Section 2.2), and from the perspective of applying the OPM as a cognitive model,
previous approaches to task planning in robotics (Section 2.3). For influences on
action selection, bounded rationality, cognitive effort, and preferences in spatial cog-
nition are considered. Bounded rationality takes the limitations of human knowledge
and computational power into account, which is of high importance when trying to
explain human behavior. An overview of classical versus bounded rationality is given
in Subsection 2.2.1. Related to this, cognitive effort is a crucial factor, as people in
general tend to be aversive to effort, which is detailed in Subsection 2.2.2. Lastly,
spatial properties of the environment can be employed to reduce the required effort
of everyday tasks, which is why specific preferences in spatial cognition have been
shown in previous research (see Subsection 2.2.3).

2.1 Action Selection Strategies in Everyday Activities

One of the most basic problems of cognitive science and artificial intelligence is the
question of action selection, i.e., what to do next. Action selection mechanisms thus
enable an agent to choose the next step in their activity from multiple possible actions.
Choosing the next action is a difficult problem because a) the environment the agent
is acting in is typically dynamic and unpredictable (especially when interacting with
humans), b) performance of actions should be in real time, i.e., without delay, and
c) when performing several different tasks at once, resource allocation may lead to
conflicts. In the case of everyday activities, task instructions are additionally often
underspecified, resulting in a multitude of options to choose from. Considering
a table setting activity comprising five different items that need to be brought to
the table, there are 120 possible permutations of the sequence (5! = 120), i.e.,
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120 options of how to perform this rather simple activity. This high combinatorial
complexity makes it impossible to consider all possible options. While for humans,
the question of action selection is how people constrain their search and why they
use these specific strategies, for artificial intelligence the question is how to best
constrain the search (Brom & Bryson, 2006). Action selection can be considered a
problem-solving strategy in the sense that the goal is to find the best possible solution
for an intractable search space.

Action selection mechanisms can be categorized in two domains: Classical planning
and dynamic planning. Classical planning approaches compute an optimal plan, e.g.,
a full sequence of actions, before executing it, which is criticized for being slow in
real-time and unlikely to actually produce “optimal” plans due to the complexity
of reality. In contrast, dynamic (also called reactive) planning systems require no
memory and do a simple look-up at each step for the best next action to perform.
This approach reduces combinatorial complexity, but is sometimes criticized as being
too rigid, as dynamic planning often relies on pre-computed plans and decision rules
(Brom & Bryson, 2006). An example for a planning architecture that allows to build
both classical and reactive planning agents is Soar, which is based on condition-action
rules, often referred to as productions.

Classical planning theory differentiates between well- and ill-defined tasks, which
will be detailed in Subsection 2.1.1. Previous approaches to action selection in
everyday activities, both from the classical planning and the dynamic planning
domain, will be presented in Subsection 2.1.2.

2.1.1 Problem-Solving Strategies in Everyday Activities

Classical planning theory divides the domain of problem-solving into two sub-
domains: well-defined and ill-defined domains of problem-solving. Well-defined do-
mains are characterized by the subject having all the information available that is
required to solve the problem, i.e., the initial start state, the desired goal state, and
the rules or methods to reach the goal state (such as in games like Tower of Hanoi
that have been used in several previous studies). For problems of this kind, it is
therefore possible to represent the underlying structure in terms of its abstract state
space, showing all the different possible states connected by different methods (or
operators). Finding a solution can then be described as searching the state space
for a pathway that connects the start state to the goal state by using some kind
of algorithm or heuristic. Planning strategies aim to minimize the extent of this
search while providing a good chance of solving the problem or carrying out the task
successfully (Morris & Ward, 2005).

Ill-defined problems are characterized by one or more of the components of the
problem space being not fully specified, i.e., some parts of the problem are under-
specified (e.g., when the action order is only weakly constrained and there are no
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clear “rules” on possible moves). If the goal state is underdetermined, heuristics
aiming to evaluate the progress towards the goal state are therefore not in the same
way applicable as for well-defined problems, as a test for the final state is difficult to
describe. In other tasks, the start state may be hard to visualize, or the constraints
may depend upon prior knowledge and beliefs. In such cases, planning is the only
strategy to successfully solve the problem. Contrary to solutions for well-defined
problems, solutions for ill-defined problems require heuristics instead of strategies
such as hill climbing or means-end analysis (Morris & Ward, 2005).

Everyday activities such as cooking, cleaning up, or setting the table are ill-defined
problems in the sense of Simon (1973): According to his definition, any problem or
task with a large base of knowledge potentially relevant to the solution is ill-defined,
as it becomes computationally intractable to consider all possible solutions. Whereas
certain actions may be crucial to achieve task success, the action order is often only
partially, or not at all, determined, which allows for multiple ways to carry out the
task (e.g., when setting a table or cleaning up a room).

The type of everyday activity considered in this thesis is defined by a lack of
information on how to solve them: While the start and goal state will in most cases
be clearly defined (e.g., no items on the table as the start state, all required items
on the table, and if specified, in their corresponding positions as the goal state),
an instruction such as “set the table” is underspecified. To successfully perform the
task, knowledge about what the solution entails needs to be inferred, which in turn
leads to greater variability between the initial and final state compared to, e.g., a
Tower of Hanoi game. While the game may have varying start state, the final state
is always the same (all game objects stacked on top of each other as defined by the
game rules). Everyday activities are also underspecified in the sense that, while
the (spatial) environment itself may well-known and unchanging (e.g., one’s home
kitchen), the specific items in the environment which are required for successful
task completion are subject to change (regarding their location, e.g., when being
misplaced or left somewhere after usage).

Additionally, most household tasks can entail a large number of actions to be
performed. While one might argue that the initial state (no items on the table), the
“legal moves” (put required item on the table), and the goal state (required items
on the table) are all fully specified in a task such as table setting, the task can be
solved with a multitude of potential solutions, considering that a task can comprise
of a very long action sequence. While for tasks with only a small number of actions,
it would in theory be possible to compute all possible solutions to choose the best
option, this becomes infeasible once the number of actions to be performed increases
(e.g., 5! = 120, if all possible permutations of a task comprising of performing five
different actions are to be considered). The multitude of possible solutions makes
it reasonable to assume that people rely on heuristics to solve everyday tasks, as
it would be computationally intractable to compare all possible solutions (Simon,
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1973). Some everyday tasks may have some constraints (e.g., following a recipe
when cooking), but in many cases the actions can be performed in any order because
all of them are unrelated. Existing research either treats them as idiosyncrasies of
the person or situation (Cooper & Shallice, 2000) or assumes each possible sequence
to be equally likely (Botvinick & Plaut, 2004).

Successfully performing everyday tasks thus requires cognitive or mental effort,
which will be detailed in section Subsection 2.2.2.

2.1.2 Previous Approaches to Action Selection

Looking at existing approaches to planning and action organization reveals that
they are mostly tailored to well-defined problems and therefore not suited for ill-
defined tasks: Models of classical planning theory, such as the General Problem Solver
developed by Newell and Simon (1972), define problem-solving as a systematic
search of the problem space by heuristics such as means-end analysis, which suggests
that problem-solving is a rational, goal-directed, top-down approach.

In existing models of sequential action organization, such as the recurrent connec-
tionist approach of Botvinick and Plaut (2004), the assumption seems to be that the
to-be-controlled sequence (making coffee or tea) is completely known from the outset,
i.e., finding a task solution consists in specifying the order of a fixed set of actions.
Building on this work, the goal circuit model implements an additional goal system
next to the basic habit or routine system, which allows to perform action sequences
in a flexible, goal-directed manner (Cooper et al., 2014), but while there is no fixed
action set (sugar may or may not have to be opened dependent on the specific start
state), all necessary subgoals for the action sequence are known in advance. In the
case of the hierarchical model-based reinforcement learning approach of Botvinick
and Weinstein (2014), the start and goal states of the to be solved navigation task are
also fully specified, such that the problem solution is to find the lowest-cost pathway
between both states (Botvinick & Weinstein, 2014). Similarly, for the reinforcement
learning model of (Kachergis et al., 2016), a fixed action sequence is defined (but not
made known to the participants) that needs to be learned by the participant, where
the goal state (maximize the score) and the way to reach it (select the correct target
in each time step) are also fully specified.

In the sense of Simon (1973), these models – both with and without a hierarchical
structure – are all situated in a well-defined problem context: All elements in the
problem space are clearly specified (initial state, goal state, and legal moves to
achieve the goal state), and there is a finite number of possible solutions for each
task. While existing models explicitly consider everyday tasks, they only include
well-defined tasks. In contrast, in ill-defined everyday tasks such as table setting, a
multitude of possible task solution exists if all possible permutations of an activity
consisting of several actions is to be considered, and it is computationally intractable
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to choose the “best option” from start to goal state by computing all possible options.
Instead, it is beneficial to implement an action selection strategy that does not try
to plan the whole sequence choosing from a multitude of options, but that focuses
on each step individually. Choosing the next step opportunistically allows changing
subsequent decisions based on each interim decision, taking arising constraints or
opportunities into account (Hayes-Roth & Hayes-Roth, 1979), thereby acting in a less
planful and more situated manner (Patsenko & Altmann, 2010).

Hierarchical Task Network (HTN) planning in artificial intelligence decomposes
complex tasks into primitive subtasks and compound tasks to deal with tasks in
ill-defined domains. The remaining compound tasks are in turn decomposed into
subtasks until a solution is found (Jiménez et al., 2012). HTN planning however
requires well-structured domain knowledge about the specific task, i.e., part of the
solution needs to be known in advance and to be encoded. For real-world problems,
this is often unfeasible, as knowledge about the environment may be partial and
goals may be underspecified (Georgievski & Aiello, 2015). Humans are able to
perform everyday tasks efficiently even in unknown environments and without
specific instructions, which makes it reasonable to assume that they rely more on
general contextual knowledge (e.g., plates are normally stored in cupboards) than on
specific knowledge about a given environment. As the model presented in this thesis
aims to be applicable also in unknown environments, encoding specific contextual
knowledge into the model itself is considered infeasible.

Another model aiming to provide an agent model for ill-defined domains under
the assumption of bounded rationality is the Belief, Desire, Intention (BDI) model of
Bratman et al. (1988). The BDI model is intended to be applicable in cases where it is
infeasible to compute all possible solutions to find the best option, i.e., the one with
the highest expected utility. The BDI architecture’s key feature is a filtering process
that aims to constrain the amount of practical reasoning necessary to solve a task.
The filtering process eliminates choices inconsistent with current intentions of the
agent to achieve this goal. One of the limitations of the architecture is how to weigh
options in case of arising conflicts, which requires a filter override mechanism that
needs to be designed by the programmer (Bratman et al., 1988). Contrary to this
solution, the OPM implements a “weighted cost” of each possible action, which can
be calculated and employed to decide which action to perform next.

Another potential solution are reactive or dynamic planning strategies that con-
tinually monitor the world state and choose actions accordingly. One of the first
papers using the term is Firby (1987), defining a reactive planning as plan selection
being done entirely at execution time, without predicting any future states. This
approach enables reactive planners to cope with dynamic environments and adapt
to changes at execution time. The disadvantage is, that while reactive planning
is very flexible, its inability to plan ahead may render it inefficient in some cases,
as strategic planning is required to detect and prevent potentially negative future
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states. Planning reactively may also be ineffective, if required resources can only
be obtained at a specific point during task performance, for which in turn, planning
would be necessary. Another advantage of reactive planning methods is that they
compute just the next action with a minimal internal state, and therefore do not
suffer from combinatorial explosion, which enables them to cope well with dynamic
environments. However, reactive planning methods often rely on hard-coded plans
to define the priorities of their system (Brom & Bryson, 2006) (i.e., what to do under
which conditions). While the inability to plan ahead and its potential fallacies are
also true for the OPM, it does not require predefined decision rules.

Examples for dynamic planning approaches are deterministic condition-action rules
that specify if-then rules and assign priorities or preferences to these rules to be
able to solve potential conflicts. Rules can be organized either in flat structures,
such as simplified subsumption architectures, or in hierarchical structures such as
decision trees. Another approach are deterministic Finite State Machines (FSM),
consisting of states and transitions between these states, with the transitions being
condition-action rules. Being in a specific state, the FSM performs a specific sequence
of actions that have been predefined in a script, until the transition activates a new
state, after which the process is repeated with a new script. In this way, FSMs are
similar to a structured dynamic plan, with the difference that all possible states need
to be enumerated. In case of complicated scripts, the states can be broken down
into several substates (and correspondingly, the script into several scripts), using
a hierarchical approach (hierarchical FSM). Less discrete approaches include fuzzy
approaches in which states and actions are no longer Boolean or deterministic, but
probabilistic (Brom & Bryson, 2006).

An alternative to FSMs are Behavior Trees (BTs), which were originally developed
to model autonomous behavior of non-player characters in computer games (e.g.,
Halo). BTs are mathematical models of plan execution, structuring the switching
between different tasks, and are graphically represented as directed trees. The nodes
of a BT are classified as root, control flow (non-leaf nodes), or execution nodes
(leaf nodes). Executing behavior is achieved by sending a tick from the root node
in a specified frequency, which then traverses the BT according to he control flow.
Whenever a node receives a tick, its corresponding behavior (either control-flow or
a specific robotic task) is executed, after which the status is returned to the parent
node (success, failure, or running). By allowing to return control to the parent node,
BTs use a two-way control transfer (i.e., control can be passed from parent to child
node and vice versa), ensuring modularity of sub-behaviors (Colledanchise & Ögren,
2018). Contrary to FSMs, the state of execution is not explicitly represented in BTs.
As the BT is regularly re-executed in the frequency in which the ticks are sent, actions
can be re-executed, allowing for more reactive control. Additionally, the modularity
of BTs makes it easier to maintain them even if tasks grow in complexity (Ghzouli
et al., 2023).

16



2.2. Influences on Action Selection

Reactive planning is reminiscent of the opportunistic strategy of Hayes-Roth and
Hayes-Roth (1979), as both strategies only compute the next action based on the
current world state in each step. Both are well-suited to everyday tasks taking place in
a dynamic environment, without needing predefined action plans. The OPM follows
a similar opportunistic or reactive approach, as it only considers the next actions in
each step instead of focusing on the whole action sequence.

Compared to reactive/dynamic planning strategies, the novelty of the OPM’s
approach is that it has no need for pre-scripted plans or deterministic rules, as its
action selection mechanism adapts to the given (spatial) circumstances.

The OPM has similarities with affordance theory in regard to its opportunistic
approach, as both rely on the individual making use of action opportunities provided
by the environment (Gibson, 1979). However, whereas affordances can be directly
perceived and therefore render mental representation unnecessary in the original
Gibsonian interpretation (Chong & Proctor, 2020), the OPM assumes at least some
kind of mental representation of the spatial environment.

2.2 Influences on Action Selection

Bounded rationality and cognitive effort are limiting factors that constrain the
possibilities of how people cope with the problem of action selection. In contrast,
preferences in spatial cognition are specific inclinations shown in human behavior
that are assumed to arise from these limitations, with the (implicit) goal to make the
process of action selection as well as the actions themselves less effortful.

2.2.1 Bounded Rationality

Russell and Subramanian (1995) differentiate between several different versions
of a rational agent, of which two are of interest for this thesis: The perfect rational
agent assumed by classical rationality, such as in economics or philosophy, and an
agent that is limited in its computational resources, exhibiting bounded rationality
(sometimes also called bounded optimality).

While the perfect rational agent aims to maximize the expected utility given
the information acquired from the environment.The system becomes increasingly
complex with a more complex environment, which makes them of limited value in
practice. Choosing the right action will have a very high computational complexity,
therefore requiring a high amount of computational power and runtime. In contrast,
the boundedly optimal agent aims to achieve the best course of action given its limit
in computational resources (Russell & Subramanian, 1995).

In the following, a short overview will be given over the assumptions and different
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approaches of classical (universal) rationality (see Subsubsection 2.2.1.1) as well as
bounded rationality (see Subsubsection 2.2.1.2).

2.2.1.1 Classical (universal) rationality

Classic approaches to rationality, such as in behavioral economics, assume an ideal
rational agent. In order to choose from possible actions, the agent considers the
expected utility of each outcome, choosing the option with the highest expected
utility. As already stated, the complexity of this process is directly linked to the
complexity of the environment.

Since the potential scope of probabilistic models has been widened by technical
progress, probabilistic models have gained relevance for cognitive science, being
used in different areas, such as modeling knowledge and beliefs of cognitive agents
using probability distributions or modeling learning and reasoning processes using
methods from statistics and information theory. Human cognition may, therefore,
be explicable in rational probabilistic terms (e.g., Bayesian models), connecting
the modeling of human cognition with optimality theory by assuming that human
cognition approximates an optimal function (Chater et al., 2006).

Optimality theory in human cognition Bayesian theories of cognitive science
often describe human perceptual behavior and decision-making as (close to) optimal
compared to a mathematically determined ideal behavior (based on a given set of
assumptions), i.e. a Bayesian optimal model (Rahnev & Denison, 2018). While
this form of optimality model is criticized particularly in the light of many findings
of suboptimality, Bayesian modeling remains an important tool for benchmarking
human performance as well as computationally understanding human behavior
(Chambers & Kording, 2018; Howes & Lewis, 2018).

Constructing a Bayesian model consists of two steps: First, the set of possibilities
for the state of the world is specified (hypothesis space); each hypothesis representing
a prediction by the subject about what empirical information will be observed in the
future. In a second step, the initial belief of the subject regarding the probability
of each hypothesis is determined (prior distribution), independent of any actual
empirical data. The goal of the model, determined by hypothesis space and prior
distribution, is to compute the final belief in each hypothesis by combining prior
distribution and observed data, expressed in the form of a probability distribution
over the hypothesis space (posterior distribution).

Jones and Love (2011) make a strong case against using forms of Bayesian mod-
eling, which they characterize to belong to “Bayesian Fundamentalism”, to explain
human cognition and behavior. This approach is based on the assumption that once
a given task is correctly characterized, i.e. the environmental properties and the goal
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of the learner have been identified, human behavior can be explained solely in terms
of probabilistic inference. While Jones and Love (2011) agree that Bayesian models
may have the potential to explain very complex aspects of human cognition, such as
reasoning under uncertainty, they argue that trying to explain human behavior solely
through rational analysis after identifying the correct probabilistic task environment,
but without taking, e.g., knowledge representation and cognitive processes into
account, can achieve only limited results. According to Jones and Love (2011), such
models focus only on the computational level in the sense of Marr (1982) and offer
no explanation of how cognition is carried out on the mechanistic level. Furthermore,
in most cases they fail to compare alternative models of the same task in order to see
which is most consistent with existing empirical data.

Instead, Jones and Love (2011) propose to decouple knowledge and beliefs encoded
in the brain from ground truth in the environment, treating the generative model
(i.e., the choice of hypothesis space) as a psychological construct. This approach
categorized as “Bayesian Enlightenment” or probabilistic model not only allows
to analyze subjects’ biases in beliefs and expectations, but may also give insights
into knowledge representation and learning processes. By emphasizing what the
models do and do not explain (e.g., by justifying which kind of prior knowledge
is incorporated into a model), psychological mechanisms and biases can be taken
into account, which allows to complement mechanistic approaches with probabilistic
modeling instead of treating them as an alternative.

Rational analysis (Anderson 1991) Anderson (1991) presents a rational analysis
method for human cognition that assumes a kind of evolutionary optimism, i.e., that
human cognitive behavior is nearly optimally adapted to its environment (optimal
adaptation theory). Developing a model for human cognitive behavior therefore
consists of five iterative steps (Anderson, 1991, p. 473):

(1) Specify the goals of the cognitive system.
(2) Develop a model of the environment to which the system is adapted.
(3) Make minimal assumptions about computational limitations, such as memory

storage and computation time.
(4) Derive the optimal behavior given in (1)-(3) above.
(5) Finally, test empirically whether the predictions of the optimal behavior derived

in (4) are confirmed by human cognitive performance; if not, then the task-
environment model developed in (1) + (2) has to be revised.

This method has been criticized due to different reasons: First, evolutionary selec-
tion does not always result in optimal behavior, but sometimes produces suboptimal
or even dysfunctional adaptations (Ridley, 2003, ch. 10.7). Second, while genetic
evolution optimizes biological reproduction, the relation of this process to cognition
is less clear (Schurz & Hertwig, 2019). While the fact that evolutionary selection
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finds a local instead of a global optimum has been acknowledged by Anderson, there
is still a large difference between the two comprising all the constraints on cognitive
processes resulting from the biological architecture of the human brain (Jones &
Love, 2011).

Sample-based approximation Vul et al. (2014) propose that, while humans tend to
act consistently with ideal Bayesian inference in building optimal models of the world,
decisions for “simple” situations like two-alternative choice tasks are often made
based on a very limited number of samples and not the full probability distribution.
These sample-based approximations are commonly used to implement Bayesian
inference, but seem to be insufficient to approximate the full (exact) probability
distribution.

Taking into account the cost of producing samples (both in cognitive cost and
time), for two-alternative forced-choice tasks locally suboptimal decisions based on
probability sampling are nearly as good as optimal decisions based on a full Bayesian
inference, making them globally optimal by maximizing the long-run utility. When
the cost of making a wrong decision increases, probability matching is substituted
by maximizing payoff, resulting in adopting the optimal response strategy under
favorable conditions such as training and cognitive feedback (Shanks et al., 2002).
Choice behavior will then again support rational choice theory, suggesting that
anomalies such as the locally suboptimal behavior described above are limited to
certain behavioral contexts in which the obtained decisions are indeed globally
optimal for the given task.

2.2.1.2 Bounded rationality

While the paradigm of classical rationality postulates that prediction strategies for
human behavior should be as general as possible, thus being applicable to (almost)
all cognitive goals and environments (which is why classical rationality is sometimes
also referred to as universal rationality), the paradigm of adaptive (or ecological)
rationality argues that good prediction methods are adapted to the structure of a
given local environment, providing highly efficient solutions for a specific task (Schurz
& Thorn, 2016). Adaptive rationality was pioneered by Simon (1955) and has been
further developed by more recent research. The paradigm of adaptive rationality
assumes that all successful cognitive methods used by humans are (more or less)
local, which means that simple heuristics are often more successful for solving a
specific task than computationally costly general reasoning mechanisms – as long as
the locally adapted method is being applied to its corresponding “right” environment.
A short overview of different approaches that can be subsumed under locally adapted
methods of rationality will be given in the following.
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Bounded rationality (Simon 1955) and optimization under constraints (Sargent
1993) Reimagining the claims of optimality theory in the light of the discussed
criticism, the concept of bounded rationality was introduced by Simon (1955), which
takes limitations in knowledge, memory and processing capabilities into account,
thus no longer assuming a global form of rationality proposed by classical theories.
It was later refined in the theory of optimization under constraints, claiming that
while humans may not perform optimally on a general level, they might be per-
forming optimally given their limited capacities and knowledge (Sargent, 1993).
The proposition of shifting from classical rationality to computationally bounded
rationality is also substantiated by other authors, e.g. Icard (2018) – since the goal is
to identify realistic but effective mechanisms that can plausibly be implemented by
a resource-bounded human brain, a kind of “optimistic Bayesianism” is assumed to
offer a useful analysis tool for specific cognitive functions.

Simon (1956) coined the cognitive heuristic of satisficing, a combination of “satisfy”
and “suffice”, that describes the process of analyzing available alternatives until an
acceptability threshold is met. Contrasting classical rationality, Simon’s approach
assumes that – since many natural problems are characterized by computational
intractability – the aim of human adaptive behavior in decision-making is not to
search for an optimal solution, but instead to settle for a solution that satisfies certain
acceptability conditions.

“[I]t appears probable that, however adaptive the behavior of organisms in learning and choice

situations, this adaptiveness falls far short of the ideal of ’maximizing’ postulated in economic

theory. Evidently, organisms adapt well enough to ’satisfice’; they do not, in general, ’optimize.’ If

this is the case, a great deal can be learned about rational decision making by taking into account

(. . . ) the limitations upon the capacities and complexity of the organism (. . . ).” — (Simon, 1956)

To emphasize the importance of the two constraints on rationality of human behav-
ior (environmental and cognitive constraints), Simon uses the metaphor of “a scissors
whose two blades are the structure of task environments and the computational capa-
bilities of the actor” (Simon, 1990, p. 7). Understanding human behavior therefore
requires understanding both the context (environment) and the agent’s cognitive
abilities.

Ecological rationality (Todd and Gigerenzer 2012) Proceeding from Simon’s
scissors analogy, Todd and Gigerenzer (2012) and the ABC research group focus on
investigating the fit between the two blades in their approach of ecological rationality.
The research focuses on analyzing two main components corresponding to the
respective blades of Simon’s scissors: 1) the adaptive toolbox of cognitive decision-
making mechanisms in order to understand heuristics for preference and inference,
such as categorization and choice tasks, as well as what information and which
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cognitive abilities are used, and 2) the ecological rationality of decision mechanisms
in order to identify under which environmental conditions a given heuristic will be
successful (Todd & Gigerenzer, 2007).

Ecological rationality is based on the research tradition of judgment and decision-
making and examines the degree of fit between environment, strategy and (compu-
tational) capacities of the agent. In contrast to classical rational analysis, Todd and
Gigerenzer (2012) assume that human decision-making is based on fast and frugal
heuristics, i.e., heuristics that are not based on computation and search for or use
only the available information. The main goal is to analyze which pairs of cognitive
and environmental structures fit together in order to identify successful cognitive
strategies for decision-making under uncertainty.

Heuristics derive their advantage over optimization strategies from the fact that
they generalize well to new situations (environments), i.e., that they are robust to
change, and therefore achieve more accurate inferences than statistical optimization
methods which can become intractable very quickly in a complex real-world environ-
ment. In contrast to optimization strategies, ecological rationality focuses on “what
is good enough or better”, not necessarily aiming for the optimal solution (Todd &
Gigerenzer, 2012, p. 25), which is consistent with Simon’s theory of satisficing.

Computational rationality (Lewis et al. 2014) Another application of bounded
rationality is proposed by Lewis et al. (2014) with their computational rational-
ity framework, which aims to explain human behavior as generated by cognitive
mechanisms that are adapted both to the structure of the environment and the mind.

This approach is based on the definition of bounded optimality by Russell and
Subramanian (1995), which states that “a bounded optimal agent behaves as well as
possible given its computational resources”. According to Lewis et al. (2014), what
sets their approach apart from “standard” rational approaches (aiming to answer
the question what an agent should do in a given environment) is that it includes
processing bounds, i.e., the question is no longer what the agent should do in a
particular environment, but what the agent should do in a particular given their
available information-processing mechanisms.

Unifying top-down rational approaches and bottom-up mechanisms, optimality-
based theories are defined as optimal program problems, which – determined by
given input criteria (environment, cognitive structure, utility function) – yield a
set of behavioral predictions that enable the agent to solve the specific problem.
Computational rationality uses utility maximization to formulate optimal (behavioral)
programs (mechanisms) executing on bounded cognitive architectures derived from
cognitive structures, which then determine behavioral predictions of the cognitive
agent.

The framework is intended to formulate and test different theoretical assumptions
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of optimality-based theories of human behavior, with the goal to yield explanatory
psychological theories. Specifying a theory requires three inputs: An adaptation
environment, a bounded machine, and a utility function. A set of optimal programs is
then derived from the input, providing a solution to the given problem and answering
the question “What should an agent with some specific information-processing
mechanisms do in some particular environment?” (Lewis et al., 2014).

Examples for theory development the framework has been tested on include
eye movements in a reading task, response ordering, and a model of the Wason
selection task (a deductive reasoning task, see Wason (1968)). The first two examples
demonstrate how theories of human information-processing mechanism can be
informed by bounded rational analysis, whereas the third example explores the
implications of different utility functions and ecologies (Lewis et al., 2014).

Rational task analysis (Neth et al. 2016) Neth et al. (2016) define the methodol-
ogy of rational task analysis (RTA) which is based on bounded rationality and aims
to provide a framework that can be used to design more conclusive experiments
in the field of rational analysis. RTA is supposed to prevent premature conclusions
regarding the (ir)rationality of cognitive agents by offering a tool to specify rational
norms and to provide realistic benchmarks for human performance in a specific task
environment. Core components for conducting a rational task analysis are defined as
follows:

1. State the research question and rational behavior to be addressed.
2. Define the task, and key features of the agent and task environment (goal,

motivation, resources and constraints, criterion for task performance).
3. Bracket the range of possible performances by mathematical modeling or agent-

based simulations. Relevant benchmarks to be determined are: Lower bounds
of baseline performance, upper bounds of optimal performance, and optional
benchmarks for specific strategies.

4. Collect data and contrast actual performance with the benchmarks.
5. Consider interventions to the task environment and repeat Items 2–4.
6. Conclude or iterate.

Optimality norms and corresponding knowledge are differentiated in three levels:
Certain knowledge (all relevant aspects of the task environment are known to the
agent), behavior under risk (future outcomes are probabilistic and relevant probabili-
ties can be estimated or are known) and acting under uncertainty (possible results
of actions are unknown or assigning probabilities to different outcomes is difficult
or impossible). Depending on different perspectives on a task (e.g., experimenter’s
perspective with certain or risk knowledge versus participant’s perspective with risk
or uncertain knowledge) the definition of optimality varies, which is why benchmarks
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for realistic performance expectations taking into account the given knowledge level
are important.

Using three case studies that had been used to study (ir)rational behavior, Neth et
al. (2016) show that – using the RTA framework to formalize models of both minimal
and optimal task performance – claims regarding agents’ irrational behavior had to be
qualified or revoked, since human performance improved drastically when compared
to realistic baseline and optimal benchmarks. The results also demonstrate that
strategies such as melioration (choosing the alternative with the highest immediate
utility, which may lead to negative outcomes regarding future utility) may, in fact,
be the most rational behavior available to the agent given limited experience with
the task environment: For the first thousands of trials the melioration strategy was
also chosen by an optimal Bayesian learning agent as this strategy represented the
globally optimal choice under uncertainty.

Cognitive success (Schurz & Hertwig 2019) Taking the criticism regarding An-
derson’s approach (Section 2.2.1.1) into account and modifying steps 4 and 5 of
the model, Schurz and Hertwig (2019) propose a method of cognitive success which
predicts human cognitive behavior for a given task and is based on a theory of
evolutionary selection as defined by Simon:

“The theory of natural selection is not an optimizing theory for two reasons. First, it can, at

best, produce only local optima, because it works by hill-climbing up the nearest slope. It has no

mechanism for jumping from peak to peak. (. . . ) Second, it selects only among the alternatives

that are available to it.” — (Simon, 1991)

While their consequentialist approach of cognitive success is consistent with steps
1-3 of the model of Anderson (1991) (changing minimal assumptions to realistic
assumptions about computational limitations in step 3), steps 4 and 5 are revised
in order to achieve a model that does not require strong adaptationist assumptions.
Referring to Wolpert’s no free lunch theorem (Wolpert & Macready, 1995; Wolpert
& Macready, 1997), which states that any search (Wolpert & Macready, 1995) or
optimization algorithm (Wolpert & Macready, 1997) is adapted to a specific task,
i.e., while its high performance on one task is offset by low performance on all other
tasks, Schurz and Hertwig (2019) propose a model that has no need to derive an
optimal method from the description of the task and the environment. Instead, it
chooses the method or behavior with the highest cognitive success from all available
competing methods (opposed to all possible competing methods). Cognitive success
is defined as the product of ecological validity (the system’s validity in conditions
it can be applied to, computed as the sum of scores divided by the number of all
given predictions) and applicability (the scope of conditions under which the method
is applicable, computed as the percentage of targets for which the method gives a
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prediction). For each prediction, the respective method earns a score consisting of
the maximally achievable score (max) minus its distance to the observed value of
the event variable (loss), max and loss being specified by type and context of the
current task. Cognitive success can then be measured as sum of scores divided by the
number of all intended targets of prediction.

According to Schurz and Hertwig (2019), the main advantage of their approach is
the ability to compare different cognitive methods on the same scale by comparing
their cognitive success in the context of the given task. Their approach is related
to approaches of ecological rationality since cognitive success is dependent on the
cognitive task as well as a specific environment.

Bounded rationality in action sequence planning What all the presented ap-
proaches of bounded rationality have in common is that they assume human behavior
to be locally optimal and to rely on heuristics rather than searching for globally
optimal solutions. This is also consistent with findings on sequential information
search and planning strategies: According to Meder et al. (2019), people prefer
stepwise-optimal strategies to planning ahead when searching for information. As
they only plan to optimize for each action step rather than for the action sequence
as a whole, stepwise-optimal strategies can be considered locally optimal. Further-
more, previous research shows that when modeling the computational constraints of
the human mind as part of the problem to solve, human planning behavior can be
considered resource-rational for a sequential planning problem, i.e., the observed
planning strategies are close to optimal when taking resource constraints into account
(Callaway et al., 2018, 2022).

Considering the limited amount of computing power and knowledge the human
mind possesses, strategies such as satisficing (i.e., finding a strategy that meets a
required threshold) and heuristics in general offer an explanation how a resource-
bounded agent can feasibly make decisions in a situation with multiple possible
options, e.g., when selecting the next action. In the scope of this thesis, bounded
rationality is therefore assumed to have a strong impact on the preferences exhibited
by people performing everyday tasks.

The second important influence on how people decide for their next action is
cognitive effort, which is described in the following section.

2.2.2 Cognitive Effort

So far, cognitive effort (sometimes also called mental effort) does not have a single
well-defined meaning, as there are a lot of competing definitions of the concept
(for an overview see Thomson & Oppenheimer, 2022). This makes it difficult to
compare different approaches due to them potentially focusing on different aspects
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of the problem. For the scope of this thesis, the focus will be on the aspect of limited
computational resources of the human brain, i.e., the limited capacity of working
memory, which leads to the impossibility to compute all possible solutions given a
complex everyday task such as cleaning up or cooking.

One possible definition of cognitive effort refers to the degree of engagement with
a demanding task. According to Westbrook and Braver (2015), cognitive effort is
thus linked to attention to, motivation for, and difficulty of a task. Another function
resembling cognitive effort that is also resource-limited is cognitive control: Both are
complex and non-automatic, involve sequential and capacity-limited processes and
require controlled responses. In contrast to control, effort is assumed to be primarily
implicated in decision-making processes, referring to the degree of engagement with
a task. As such, effort can be understood as a variable in decision-making processes
regarding task engagement.

In general, cognitive effort tends to be avoided if possible, which has been formu-
lated in Hull’s ”law of less work”:

“If two or more behavioral sequences, each involving a different amount of energy consumption or

work, have been equally well reinforced an equal number of times, the organism will gradually

lean to choose the less laborious behavior sequence leading to the attainment of the reinforcing

state of affairs.” — (Hull, 1943)

While Hull’s principle primarily addressed physical effort, the concept has since
then been extended to include cognitive effort, proposing that physical and mental
effort are equally aversive (Kool et al., 2010). In the field of decision-making,
the concept of an internal cost of cognitive effort has been particularly influential
as it explains the suboptimal decisions frequently observed in humans. Favoring
simplifying strategies (e.g., heuristics, see Section 2.2.1.2), humans routinely fall
short of optimal outcomes, which can be explained by taking the trade-offs between
effort-related costs and accuracy-related benefits of computationally costly strategies
into account. A simpler strategy for decision-making could be subjectively optimal
when reducing the internal cost of mental effort outweighs the benefit of a more
accurate decision strategy. A “law of least mental effort” has therefore been proposed
by different researchers and substantiated by a number of studies focusing on the
role of cognitive effort in decision-making, establishing that preferences with regard
to effort are systematic (Kool & Botvinick, 2014; Kool et al., 2010), and do not seem
to be influenced by affective states (González-García et al., 2021).

Cognitively demanding tasks have also been shown to have a negative effect on
subsequent physical performance (Brown et al., 2020) and lead to an increase in
subjective perceived effort, which may in turn influence decision-making regarding
whether to perform physically demanding tasks such as exercising (Harris & Bray,
2021). Cognitive effort is thus not independent from physical effort, but has an
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impact on (the motivation for) physical performance as well.

Causes and costs of cognitive effort Zénon et al. (2019) propose a framework
on cognitive costs and their respective computational measures that focuses on the
causes of cognitive costs and how to quantitatively specify them. The difference in
the cognitive effort necessary to perform habitual as opposed to novel, unfamiliar
tasks accordingly stems from the divergence between a person’s prior knowledge
(corresponding to their internal mental representation) and the updated knowledge
necessary to solve a specific task. Cognitive cost can then be expressed as the amount
of information necessary to update an initial belief state after obtaining new data,
which explains why unfamiliar tasks are associated with higher mental effort since
the gap between prior and updated knowledge is bigger than in habitual tasks.

Benoit et al. (2019) analyze the correlation between cognitive fatigue (the subjec-
tive feeling of cognitive effort) and the cost of cognitive effort in two experimental
study setups, assuming that cognitive fatigue would increase the cost of cognitive
effort. Fatigue is measured in terms of reported subjective self-assessment of the
participants as well as decrease of performance; effort is assessed in terms of subjec-
tive perception and task avoidance. Both experiments show a correlation between
variations in task avoidance with fatigue-induced performance decline, while task
avoidance itself does not change systematically due to fatigue manipulation. Contrary
to the hypothesis, effort cost does not increase with subjective fatigue but changes in
proportion to fatigue-induced performance decline, showing a dissociation between
subjective feeling and behavioral consequences of fatigue and effort. These findings
can be explained by proposing a anticipatory regulation theory, according to which
cognitive fatigue develops independently of task avoidance and functions as a protec-
tion mechanism that urges subjects to stop task execution in anticipation of future
adverse consequences.

The theory of cognitive (self-control) capacity as a limited resource that is depleted
over time, e.g., by identifying self-control capacities on a physiological level with
resources such as blood glucose (Gailliot et al., 2007), has been criticized due to a
lack of supporting empirical evidence (see, e.g., the meta-analysis of Dang, 2016).
A related view is that the issue in question is not resource limitation, but resource
allocation (Beedie & Lane, 2012). Contrasting these theories, Kurzban et al. (2013)
propose an opportunity cost model of cognitive effort and task performance. The
opportunity cost model is based on the assumptions that a) the brain is function-
ally organized to generate adaptive behavior, b) the mind is considered to be an
information-processing system, c) and qualia (subjective experience) can be under-
stood as information that influence decision processes that motivate the individual
to behave adaptively. Therefore, the adaptive problem of simultaneity, i.e. that not
all possible goals can be pursued simultaneously, can be solved by prioritization, i.e.,
choosing what to do while discarding other options.

27



Chapter 2. Related Work

The problem of how to prioritize can in turn be solved by computing and compar-
ing costs and benefits of the possible behavioral options. The allocation of mental
processes to a specific task A thus entails opportunity costs: The costs of perform-
ing task A include the potential benefits of all other tasks (B, C, D), which cannot
be done at the same time because the required computational cognitive systems
are already allocated to task A. As in the self-control theory, mental resources are
regarded as finite, but instead of being depletable over time, they are defined as
dynamic and divisible, allowing for allocating resources to different mental tasks
simultaneously (assuming that they don’t require the exact same mental resources at
full capacity). The sensation of cognitive effort (or cost) can thus be defined as the
output of monitoring processes measuring the opportunity costs of performing the
current mental task. Dividing cognitive capacity between two mental tasks should
only occur if the utility gained from reallocating resources to the next-best task is
greater than the utility lost by doing so. According to Kurzban et al. (2013) the
sensation of cognitive effort functions as a signal telling the individual that switching
tasks would be beneficial in terms of achieving maximum utility.

Especially in the spatial domain, a number of behavioral strategies have been
observed that aim to employ spatial properties to reduce the required cognitive effort
to successfully perform everyday tasks, which will be discussed in the following.

Strategies to minimize cognitive effort Human action control in routine situations
comprises a combination of task-dependent serial ordering constraints (horizontal
level), intentional control processes (top-down) and environmentally triggered affor-
dances (bottom-up), modulated by learning mechanisms. Emergent task represen-
tations developed by learning in the routine system can with increasing experience
allow for transferring control from the goal-based (non-routine) system to the routine
system, i.e., the need for top-down control decreases over time. A computational
model capturing these properties and able to perform habitual action sequences
in a flexible, goal-directed manner was proposed by Cooper et al. (2014). Habits
(defined as learned sequences of actions) can be executed in a fast and efficient
manner, which makes them ideal to minimize cognitive effort. Dezfouli and Balleine
(2013) suggest that interactions between habitual and goal-directed action control
follow a hierarchical structure (first the objective is selected by the goal-directed
system; in a second step the appropriate habit to reach that objective is determined),
corresponding to a hierarchical model of reinforcement learning.

A study by Zhu and Risko (2016) finds that spatial history, i.e., the initial con-
figuration of objects, may result in a kind of habit formation that competes with
considerations to minimize effort and maximize performance. A more efficient spatial
configuration is only chosen when the cost of performance efficiency for maintaining
the original spatial configuration is higher than the cognitive effort to replace the
existing habit with a new one. Zhu and Risko (2016) show that this occurs, e.g.,
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when the physical effort to complete the task is increased (by increasing the physical
distance that needs to be traversed). Increasing the required effort is shown to in-
crease the likelihood of people changing the spatial arrangement in order to decrease
the necessary (physical) effort.

The organization of objects in physical space generally aims to minimize cognitive
effort and to facilitate the performance of everyday activities (Kirsh, 1995). Spatial
arrangements can be used to serve as cues what to do next in a sequence of actions,
which simplifies the deliberation (e.g., by arranging vegetables in the kitchen in a
way that makes it obvious which of them need to be cut, washed, or peeled in the
next step). Minimizing the cognitive effort of tasks by employing the properties of
the spatial environment to facilitate one’s actions is also consistent with the theory
of strong spatial cognition (Freksa, 2015; van de Ven et al., 2018). Strong spatial
cognition employs object affordances to complement the knowledge level of problem
solving in spatial domains, such as when finding the shortest path between two
nodes. By using a physical representation of the problem (e.g., a 3D printed version
of the routes represented by strings and their connections represented by nodes), the
shortest path between two nodes can be found by pulling the two nodes apart to see
the shortest connection between them.

Consistent with Kirsh’s intelligent use of space (Kirsh, 1995), Clark (1996) further
develops the idea of external scaffolding to reduce cognitive effort, stating that “we
may often solve problems by ‘piggybacking’ on reliable environmental properties” (Clark,
1996, ch. 2.5). Exploiting external structures facilitates human problem-solving and
allows for reducing the cognitive effort required to successfully perform a specific
task by offloading (part of) the problem solution to external scaffolds such as tools or
memory aids, which can also be used as standardized solutions to recurring problems.
Structuring the environment to optimize performance, such as laying out objects for
the task at hand in a specific order that helps to remember the steps of the process,
releases memory resources and enables the individual to be more efficient in their
task. Cognitive processes are distributed between the subject and their environment,
with the latter facilitating and structuring the cognitive process (Fiske & Macrae,
2012, ch. 8).

Risko and Gilbert (2016) define cognitive offloading as “the use of physical action
to alter the information processing requirements of a task so as to reduce cognitive
demand”. Cognitive offloading comprises actions that offload cognition either onto
the body of the agent (e.g., by turning one’s head to better be able to read a tilted
book) or into the world (e.g., by writing something down to not have to remember
it). In the first case, instead of performing internal normalization (transforming the
rotated text mentally), external normalization (rotating the head, thus normalizing
the orientation of the text) is often preferred since it reduces the cognitive effort of
the action for the individual. An example for the second case is offloading prospective
memory, which is necessary to execute intended behaviors in the future, to the world
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by setting environmental cues to remind oneself of the intended action (e.g., by
writing a post-it note), which is also referred to as intention offloading. Both forms of
cognitive offloading are influenced by the internal demands that would otherwise be
necessary, i.e., individuals are more likely to rely on cognitive offloading when their
memory load increases or interruptions are encountered (which leads to decreased
performance). Another deciding factor is metacognitive confidence: Individuals
with a lower confidence in their memory capabilities are more likely to set external
reminders. For an overview on how cognitive effort and metacognition influence
cognitive offloading, see also Gilbert et al. (2023).

According to Wilson (2002), strategies to offload cognition into the world seem
to be used particularly often in the context of spatial tasks. Apart from using the
environment as a long-term archive (offloading to avoid memorizing), the cognitive
workload can also be reduced by making use of the environment in a strategic way
to avoid having to encode or actively represent present stimuli or tasks. Examples for
this strategy include laying out the pieces of an object to be assembled in roughly
the order and spatial relationship they will have in the finished state or, when giving
directions, first turning oneself and the listener in the appropriate direction.

Referencing an experiment from Kirsh and Maglio (1994), cognitive offloading is
also used in the game Tetris, where falling block shapes must be rotated and checked
for their optimal fit with the already fallen shapes in a short amount of time (before
the block has fallen to far for the decided upon transformation to be executed) – the
data from the study suggests that players use actual rotations to simplify the process
of finding the best fit instead of cognitively computing a solution by transforming the
blocks mentally, which is consistent with the concept of external normalization as
defined by Risko and Gilbert (2016).

Another example from Ballard et al. (1997) shows that the most commonly used
strategy in a task for which randomly scattered colored blocks had to be arranged
in order to reproduce a given pattern under time pressure is a minimal memory
strategy: Recorded eye movements showed that the blocks in the model pattern were
repeatedly referenced, each time gathering different information (e.g. first color, then
location within the pattern, thus breaking up the required memory load into smaller
parts).

2.2.3 Preferences in Spatial Cognition

The preference to minimize physical as well as cognitive effort is strongly linked
with preferences in spatial cognition: Since the spatial environment is the background
in which all human activity takes place, spatial cognition is of key importance during
everyday activities.

For the scope of this thesis, spatial cognition can be defined as how people acquire,
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organize, and employ knowledge about their spatial environment. This knowledge
can also be revised, linking it directly to spatial memory. Movement within the spatial
environment is a necessary requirement in order to perform the respective everyday
task. As already described in the previous section, people employ multiple strategies
to minimize cognitive effort that rely on using properties of the environment to one’s
advantage.

While some spatial properties are directly related to the required effort (i.e.,
distance is directly proportional to physical effort), the impact on everyday behavior
of other properties is more indirect. When determining the action sequence for
performing a specific activity, the setup of items in the spatial environment may
impose certain constraints, such as having to move one object first before being able
to reach the one behind it. Even if there are no hard constraints, there are a number
of reasons to believe that action selection in weakly constrained action sequences is
influenced by the spatial environment and its mental representation.

As already described in Section 2.2.2, people use spatial arrangements to simplify
internal computation, i.e., by arranging items in a way that serves as a memory aid
on what to do (Kirsh, 1995) or use strategies of cognitive offloading to minimize
effort (Clark, 1996; Risko & Gilbert, 2016; Wilson, 2002). Both of these strategies
focus on reducing the cognitive effort by limiting the number of choice points in
the environment, thus streamlining the process of choosing the next action for
the current task (e.g., when laying out the required ingredients prior to cooking).
Another possibility is to make the action itself easier, e.g., by reducing the time
or physical effort required to access or interact with an object. Kirsh and Maglio
(1994) distinguish between two categories of organizational actions: Epistemic
and pragmatic actions. While epistemic actions focus on reducing the cognitive
effort by arranging the environment in a way that simplifies information seeking,
pragmatic actions aim to reduce the effort of an action itself. Rearranging the spatial
environment to provide cues on what to do next and thus minimizing the cognitive
effort required for planning or action selection (Kirsh, 1995, 1996, 2001; Malone,
1983) falls into the category of epistemic actions.

On the side of pragmatic actions, people seem to be sensible to access demands
even in 2D environments, which results in rearranging the objects in space if the
physical demand that can be reduced by the rearrangement occurs frequently enough
to justify the additional effort (Zhu & Risko, 2016). Similar to this, Solman and
Kingstone (2017) found that organizational actions are based on the frequency with
which items are used in the specific scenario: More frequently used items tend to
be organized centrally in a way that makes them easily accessible. If the items
are also clustered into subsets, those subsets are selectively centralized, which also
correlates to higher performance in the task. Reorganizing objects in this way can
be understood as long-term pragmatic action, i.e., instead of reducing the cognitive
effort or addressing the immediate needs of a task, the organizational behavior aims
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to reduce the expected effort for current as well as future predicted needs (Solman &
Kingstone, 2019).

In this context, the mental representation of space is of high importance. Previous
research shows that the nature of mental representations of space has a marked
influence on peoples behavior. Jeffery et al. (2013) propose that three-dimensional
space is not represented in a single three-dimensional mental model by vertebrates,
but in a “bicoded” way that splits the representation in a metric planar representation
of the plane of locomotion (2D) and a separate, possibly non-metric representation of
the orthogonal space. People perform significantly worse when navigating in a vertical
three-dimensional environment than in a horizontal two-dimensional environment
(Zwergal et al., 2016). This is also consistent with research on wayfinding strategies in
multilevel buildings, where a people prefer a horizontal plane strategy over a vertical
floor strategy (Hölscher et al., 2006). While when learning spatial layouts visually
without locomotion, horizontal and vertical space seem to be represented equally
accurate (isotropy) (Hinterecker, Leroy, et al., 2018), when using real physical self-
motion in open spaces, representations of traveled distance in horizontal and vertical
space show a difference in the encoding accuracy (anisotropy) (Hinterecker, Pretto,
et al., 2018). Traveled distance perceived by self-motion is represented with higher
accuracy along the horizontal than the vertical axis, which suggests that the process
of distance estimation of path integration is subject to horizontal-vertical anisotropy –
i.e., three-dimensional space seems to be encoded less accurate than two-dimensional
space.

Spatial representation has also been studied in the form of cognitive maps, the
idea of which was first developed by Tolman (1948). Cognitive maps describe how
humans (and animals) represent information about relative locations and properties
of their spatial environment, allowing them to perform tasks such as navigation
and wayfinding. One such possible representation of the spatial environment are
topological maps, which follow a graph-like structure, with nodes denoting relative
locations of places on the map and edges denoting paths or trajectories between those
places (such as, e.g., a subway map). The places of the map can then be grouped into
regions, allowing for more efficient reasoning about spatial knowledge (Remolina &
Kuipers, 2004). The qualitative nature of topological maps makes them biologically
more efficient than a metric map, as even if the environment changes, the relations
between the invariant locations of the map do not change and only require projecting
the existing stable (neuronal) map into a morphing environment (Babichev et al.,
2016). Topological mapping has also been used in robotics for global navigation
tasks (see, e.g., Fredriksson et al. (2023)).

Their organization by regions is an important characteristic of mental spatial repre-
sentations (McNamara, 1986). Spatial information about places encountered on a
daily basis, e.g., one’s home or city, seem to be represented separately (Brockmole
& Wang, 2003). Entities lying in the same regions are more likely to be explicitly
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represented than relations between entities lying in different regions. Relations of
entities in different regions therefore often have to be inferred from the relation
between regions and the relation of the entities within those regions. Several studies
demonstrate the relevance of regionalized representations for everyday activities:
When planning a route in a regionalized environment, people prefer routes that
cross fewer region boundaries (Wiener & Mallot, 2003) or allow entering the target
region more quickly, even if shorter routes exist (Hochmair et al., 2008). Such a
regionalization of mental spatial representations can also be considered as a repre-
sentational preference, regarding which spatial relations are represented explicitly
and how space is carved up into regions.

In order to clarify how bounded rationality, minimization of effort, and spatial
preferences can be incorporated in a cognitive model that is applicable to household
robotics, we first need to understand how task planning is implemented in robotics.
The following section thus introduces some of the most common approaches to
robotic task planning.

2.3 Task Planning Approaches in Robotics

According to Li and Ding (2023), the main challenges of robot task planning in
household or everyday scenarios are: a) Reliable planning in a dynamic environment
with uncertain and/or incomplete information (i.e., how to adapt to a changing
environment and be able to re-plan in case of task failure), b) efficient planning
for complex tasks (i.e., to simplify the complexity of task planning), and c) scalable
planning for task generalization. While reliability is outside the scope of this thesis
as it falls more under the general planning domain, the focus of this thesis will be on
efficiency and scalability, as both of these demands are relevant for the process of
action selection.

The classical approach to how an agent interacts with its environment is the
sense-think-act paradigm, which is based on a fixed policy. In order to enable
robotic agents to perform tasks autonomously, basic capabilities such as motion
planning, localization, and navigation have to be combined by employing planning
strategies. Task planning (sometimes also called automated planning) combines basic
actions to achieve high-level goals (such as “clean up the living room” or “set the
table for dinner”), using a model-based approach. Karpas and Magazzeni (2020)
differentiate between classical planning, temporal and numeric planning, planning
with uncertainty, and encoding knowledge into the control plan. As the influence of
uncertainty and the duration of actions are not considered in the scope of this thesis,
the following section focuses mostly on classical planning approaches, methods to
encode knowledge into plans (HTN planning), and reactive planning strategies.
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2.3.1 Classical Task Planning

Task planning in general requires a model of the world and a definition of how an
agent can interact with the world, i.e., a state and actions with which to transition
from one state to another. Several approaches for robotic task planning exist that
can be employed to find a feasible sequence in which to execute the required actions,
assuming the search for a possible course of actions can be constrained, i.e., if the
action order has hard constraints, such that some action can only be done after
another action has been performed.

The first task planning language was the Stanford Research Institute Problem Solver
(STRIPS), used to plan actions of the Shakey robot. STRIPS aims to find a sequence
of operators that transforms a given initial world model into one that satisfies a
stated goal condition (Fikes & Nilsson, 1971). As the original implementation of
STRIPS was computationally expensive, several successor models tried to reduce the
complexity by, e.g., introducing problem-independent parameter to generalize plans
(Fikes et al., 1972), including hierarchical planning (ABSTRIPS, Sacerdoti (1973);
NOAH, Sacerdoti (1975)), or introducing a method to backtrack plans (NONLIN,
Tate (1977)).

One of the most common languages in task planning today is the Planning Domain
Definition Language (PDDL) (McDermott et al., 1998). PDDL defines a domain to be
used to solve a corresponding problem comprising specific objects, the initial state,
and the goal specification (Jiang et al., 2019). Problem specifications in PDDL are
purely declarative.

Generally, task planning can be considered a state-space search, in which different
strategies can be employed to search for an optimal problem solution (e.g. A* or the
Traveling Salesman Problem (TSP)). State space planning can either implement for-
ward search, where the algorithm searches forward from the initial state of the world
until it finds a state that satisfies the goal definition, or backward search, where the
algorithm starts from the goal state and backtracks to the original state. Commonly
employed strategies for automated task planning problems include Forward-Chaining
Partial-Order Planning (POPF) (Coles et al., 2021), a satisficing solution for temporal
partial order planning (not optimal), and Fast-Downward (Helmert, 2006), which
builds a causal graph to decompose the task hierarchically.

POPF is based on partial order planning, which was the most popular approach to
planning until the late 1990s, when forward state-space search strategies gained in
importance. Partial-order planning is an automated planning approach, where the
partial ordering between actions is maintained as long as there are no constraints
that force a commitment (least-commitment approach). The partial-order approach
in POPF is supported by a forward-chaining state-based search strategy, thereby
retaining elements of a least-commitment approach and providing more flexibility
than a purely state-based strategy. The least-commitment approach allows to delay
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deciding for a sequence of actions until constraints emerge (Coles et al., 2021).

Fast-Downward is a classical planning system that is based on heuristic search,
using a multi-valued representation instead of the PDDL representation of a planning
task. The multi-valued representation makes implicit constraints of the planning task
explicit, which can then be decomposed hierarchically using a causal graph (Helmert,
2006).

2.3.2 Encoding Knowledge: HTN Planning

In addition to classical planning approaches, several methods for HTN planning
exist for the robotics domain. As already described in Subsection 2.1.2, HTN planning
decomposes the given to be performed task(s) into subtasks. Similar to classical
planning approaches, the state of the world is represented by a set of atoms and state
transitions (actions). Instead of a goal description, the problem specification includes
a totally ordered set of tasks to accomplish as well as methods that describe how to
decompose a tasks into its subtasks. Tasks are decomposed into their subtasks until
the planner has arrived at a set of primitive tasks that can be performed directly with
the given planning operators (Nau et al., 2003).

The Continuous Planning and Execution Framework (CPEF) by Myers (1999)
is a framework that provides plan generation, execution, monitoring, and repair
capabilities for complex tasks in dynamic environments. CPEF relies on a HTN
structure for plans. In case of failure, the root nodes which are the source of the
failure are identified and removed, before generating new subplans for each root. To
successfully identify failures and generate valid plans, the system requires user input
defining the types of plan that should be generated, plan-repair strategies, and the
number of options to be considered.

Nau et al. (1999) introduced SHOP (Simple Hierarchical Ordered Planner), which
is a domain-independent HTN planning system. In order to avoid goal-interaction
issues and to know the current state at each step of the planning process, SHOP plans
for tasks in the same order that they will later be executed. SHOP uses extensive
domain knowledge to increase performance and reduces the given problem state by
implementing HTN methods. SHOP’s successor, SHOP2, allows tasks and subtasks
to be partially ordered, thus allowing for interleaving subtasks from different tasks.
Additionally, SHOP2 incorporates features from PDDL, such as temporal operators,
and allows to sort the alternative action sequences according to a user-specified
criterion (Nau et al., 2003). Several systems based on the SHOP2 system or similar
to it have been developed subsequently (see e.g., JSHOP2 (Weser & Zhang, 2009);
the framework of Janssen et al. (2013); RACE (Stock et al., 2014); CHIMP (Stock
et al., 2015)).

The Hierarchical Agent-based Task Planner (HATP) extends the traditional HTN
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approach by treating agents as “first-class” entities in the language, and by allowing
social rules to be defined which specify acceptable behavior, intended to be used in
human robot interaction scenarios (Lallement et al., 2014). The planning mechanism
of HATP relies on a user-defined cost function of executing actions. These user-defined
rules are taken into account when searching a solution, such that the algorithm
returns an optimal (least-cost) solution instead of the first arbitrary solution that
satisfies the goal. HATP is based on totally-ordered HTN planning, with the cost
of each partial plan being computed via cost functions supplied by the user. As
HATP aims to find the least-cost solution, in the worst case this may result in looking
through all possible solutions for the given task.

2.3.3 Reactive Planning

In contrast to automated plans, reactive plans allow the agent to react flexibly in
dynamic situations at execution time (Firby, 1987), allowing for dynamic responses
to changes in the environment (Kaelbling, 1986).

One of the first reactive languages to specify planning scenarios was introduced
by Derksen et al. (1972) with the QA4 (Question Answerer 4) language. The prob-
lem formulation includes a representation of the world (positions and relationships
between objects, locations of rooms), operators for each possible action based on pre-
conditions (requirements that must be satisfied), and a goal that has to be achieved.
The problem solver backtracks from the solution to satisfy the goal condition, re-
peating this process until the conditions of the first operator in the plan are met.
Other than in PDDL, the specification of a planning problem in QA4 contains both
declarative and procedural specifications. QA4 provides the operators of a planning
problem with as much information as possible, such that the system already knows
the ordering in which subtasks have to be performed to achieve task success (e.g.,
the box must be brought up to the light switch before the robot mounts the box).
Instead of finding a solution in a large (global) search space, QA4 programs rely on
locally stored strategic “advice” (i.e., domain knowledge) in order to make decisions.

Firby (1987) proposed the RAP reactive planner, which was intended to be used as
the executive part of a planning system that includes both a reactive and a strategic
layer, but can also be used independently. RAP derives its name from Reactive Action
Packages, which make up the planning system. A RAP is an autonomous process
that aims to fulfill a planning goal by selecting each next action based on the current
world state until the planning goal has been achieved. If there is more than one goal,
each one will be represented by an independent RAP. Similar to HTN planning, the
reactive planner has a hierarchical structure, limiting the necessary search effort by
adding constraints. Like HTN planning methods, the RAP planner requires predefined
condition-action and precedence rules in order to prevent conflicts between multiple
applicable action packages.
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The Procedural Reasoning System (PRS) by Georgeff and Lansky (1987) is a
framework that can perform complex tasks in dynamic environments based on the
belief-desire-intention model of human cognition (Bratman, 1987). A PRS system
encompasses a set of knowledge areas, each of which contains procedural knowl-
edge specifying how to perform a task, such as picking up an object or navigating
somewhere. The current belief state of the robot, its desires (goals), and intentions
(current plans for achieving the goals) are explicitly represented, which enables
the system to reason about them. Since the plans do not need to be fully formed
before execution, the system avoids overcommitment to a specific belief or course
of action, which allows for high flexibility. Additionally, as PRS interleaves planning
and execution, replanning is possible at any point.

Kaelbling (1986) presented the REX language, which allows to build an archi-
tecture for an intelligent reactive system, focusing on modularity, awareness, and
robustness. To avoid inflexibility during plan generation, REX plans incrementally,
and implements a control loop to check whether the intended goal has changed, thus
requiring a change in the plan. Complex behaviors are decomposed hierarchically
into levels of competence. If a specific behavior doesn’t know what to do in the
current situation, it is mediated by the next lower level, such that if a more competent
level fails or has insufficient information available to decide for an action, the less
competent levels able to work with less detailed information take over control until
the higher level behavior has recovered. In most cases, this leads to a graph structure,
with high-level behaviors being constructed from a few low-level behaviors.

REX has later been extended with symbolic goal-reduction rules that could be
recursively applied, resulting in a formalism called GAPPS (Kaelbling, 1988). GAPPS
allows to do actions in parallel and generates reactive runtime programs. A GAPPS
program consists of a finite set of condition-action pairs supplied by the programmer
and is intended to be used to specify the action component of a robotic agent,
mapping a top-level goal and a set of goal-reduction rules into a program.

The Reactive Plan Language (RPL) is a domain-specific language based on the
RAP notation that can be applied to high-level robot planning (McDermott, 1991).
RPL implements fluents, which allow behavior to be controlled by temporal changes.
Executing an RPL plan constructs a task network, creating a new task for every step
of a plan. While steps are executed, the corresponding expressions are evaluated,
choosing an action based on the outcome. An active task normally ends once it
is finished successfully, or the system replans if a failure occurs. In order to do
so, failures have to be sufficiently described by the programmer in order to be
recognizable by the system. Another way to implement constraints is to define
policies, such as picking up the object again in case the gripper is empty. RPL allows
to specify action sequences by providing the do-in-sequence, do-every-n-seconds, and
try-in-sequence operators.

RPL is a predecessor of the CRAM Plan Language, the planning executive of which
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has been used in the implementation of the OPM as a cognitive model for robot
agents (see Chapter 4). The RPL system has been extended by Beetz (2001) to
integrate automatic planning processes and to allow to reason about and revise plans.

2.3.4 Task Planning in Weakly Constrained Tasks

The problem with existing approaches is that, for most everyday tasks, all actions
could be done in any arbitrary order if no hard constraints exist, such that each
solution would be “equally optimal”. Existing approaches to task planning in robotics,
same as existing approaches to action selection (see Subsection 2.1.2) typically
rely on pre-defined precedence rules, such as hard-coded plans for action selection
methods (Brom & Bryson, 2006) or user input or policies defined by the programmer
for task planning strategies in robotics. Examples for this include the user-specified
criterion for decision-making for SHOP2, the user-defined rules of HATP, or the
pre-defined condition-action rules required by the RAP planner. While the presented
approaches could be implemented to be applied to weakly constrained cases, user-
specified condition-action rules or decision criteria in case of conflict would need
to be provided first to allow them to successfully carry out tasks that have no hard
constraints on action ordering.

Additionally, most of the presented frameworks in robotic task planning do not
seem to consider action selection as a separate problem from task planning in general,
but subsume the decision of what to do next under the general planning domain.
To overcome the challenges of efficient and scalable planning that are relevant for
action selection, a model is required that is not computationally expensive and can
generalize to new tasks (task independence).

Using the presented approaches as inspiration for a cognitive model for action
selection in everyday activities, the OPM introduced in this thesis is intended to
provide a strategy for cases in which no hard constraints exist and where no user
input on condition-action rules or policies is given. In order to provide an efficient
solution for action selection in everyday tasks that are only weakly constrained, such
as setting a table, human behavior is employed as a modeling baseline, as people are
able to solve everyday tasks quickly and efficiently even in unfamiliar environments.
Additionally, the opportunistic approach reduces the necessary computational effort,
rendering the OPM efficient even if an everyday activities has many actions that need
to be performed and therefore many possible problem solutions. Generalizability is
achieved by focusing on general principles of human cognition and preferences for
action orderings that are independent of the specific task.

38



Chapter 3

The Opportunistic Planning Model
For Everyday Activities

3.1 The Opportunistic Planning Model (OPM)

Consistent with previous research indicating that the spatial environment is often
used to facilitate task performance, i.e., strong spatial cognition (Freksa, 2015; van
de Ven et al., 2018), intelligent use of space (Kirsh, 1995), external scaffolding (Clark,
1996; Wilson, 2002), and mental representation of space (Hinterecker, Pretto, et al.,
2018), an action selection model for everyday tasks is presented that takes spatial
properties of the environment into account. As physical and cognitive effort are
typically considered aversive (Hull, 1943; Kool et al., 2010) and stepwise-optimal
strategies seem to be preferred over planning ahead (Meder et al., 2019), it is
reasonable to assume that people prefer specific orderings of actions that take these
preferences into account.

The OPM minimizes the required effort by optimizing stepwise: The next item to
be picked up or interacted with is based on the current location of the subject and the
perceived cost of each possible next action, with the lowest-cost action being chosen
in each step. While individual preferences between persons might exist (Cooper &
Shallice, 2000), the OPM aims to find the common ground between these preferences
to shed light on the underlying cognitive processes that play a role in selection an
action. The model thus abstracts from individual personal preferences and tries to
identify the general preferences and principles that guide action selection in everyday
human behavior.

The OPM takes the influence of the following three spatial aspects of the task
environment on action selection into account:

1. Distance: Minimizing the overall distance the person is required to traverse.

2. Relational dependencies: E.g., when setting the table, a relational dependency
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between saucer and cup exists, as the saucer goes below the cup (once on the
table). Assuming only one item can be transported at a time, the saucer should
therefore be taken first, so both items have to be moved to and placed on the
table only once. In the reverse ordering, the cup would be brought to the table
first, the saucer second, and the cup would then have to be moved again to
assume its correct position on the saucer.

3. Containment (topology): Picking up items from a directly accessible location,
such as a counter top, is considered less effortful than picking up items stored
in a not directly accessible location, such as a drawer or cupboard that has to
be opened first.

The presented aspects have been chosen based on a preliminary examination of
the data, which will be presented in Section 3.3.

The OPM implements an opportunistic action selection strategy by identifying the
lowest-cost next action for each step from task start (no actions have been performed,
and the subject is standing at the starting position for the task to be carried out) to
task success (all required actions have been performed, e.g., for table setting, all
items have been brought to the table, and if specified, the subject is standing at the
target position). For an example of how the OPM works for choosing the sequence of
items to be picked up and brought to the table in a table setting task, see Figure 3.1
(numbers represent the notional weighted cost of each possible action). During each
step in the activity (table setting), the option with the lowest cost is chosen (i.e., first
the plate, second the cutlery, and as there are no other options left at this point, the
cup is brought to the table as the last item).

5.20

5.40

5.40

6.92

7.59

Figure 3.1: Example for stepwise-optimal item choosing based on weighted cost

The cost of each possible action 𝐶𝑝,𝑞 is calculated by determining the Euclidean dis-
tance between two item locations 𝑝 (𝑥1, 𝑦1, 𝑧1) and 𝑞(𝑥2, 𝑦2, 𝑧2) in a 𝑛D representation
of the specific task environment, where 𝑛 is either 1, 2, or 3.

The physical distance is further qualified by considering the relevant relational
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dependencies (parameter 𝑘) and the containment of items (parameter 𝑐), yielding a
weighted cost computed as given in Equation 3.1, where 𝑑 is the Euclidean distance.

𝐶𝑝,𝑞 = 𝑑 (𝑝, 𝑞)𝑘 · 𝑐 (3.1)

The functional form was chosen with the intention to represent a proportional
change in weighted cost depending on the additional parameters for dependencies
and containment. While the default parameter of 1.0 results in only the physical
distance being considered, increasing or decreasing 𝑐 and 𝑘 increases or decreases the
weighted cost by up to one hundred percent of its base value, respectively, creating a
symmetrical interval around the base value. For 𝑘 < 1.0, 𝑐 has a stronger impact on
the weighted cost, which is reversed for 𝑘 > 1.0.

Two additional simulations with linear models were run to test whether the func-
tional form had an impact on model performance: (1) using addition/subtraction as
operators (see Equation 3.2), and (2) using multiplication for both parameters (see
Equation 3.3). The alternative functional forms were applied on the table setting data,
since this subset of the available data was also employed for the initial parameter
recovery of the OPM, which will be described in Subsection 3.3.4. A prequential
approach using the Accumulative Prediction Error (APE) was employed to compare
the results. APE considers functional form, sample size, and number of parameters,
i.e., all three factors affecting model complexity (Dawid, 1984; Myung et al., 2009).

For each step, the OPM generated the next action in the sequence (i.e., which item
to pick up or interact with next), with the model-generated action being based on
the given parameters and the incorporated context knowledge (locations of items
and subject, item parameters). The model-generated action was then compared to
the observed action, resulting in a prediction error of either 0 (model-generated
= observed action) or 1 (model-generated ≠ observed action). The input for each
next step was based on the observed data, not the prediction, i.e., regardless of the
model’s predicted action, the input for the participant’s location was the observed
location, not the one the participant would have been at based on the prediction. This
process was repeated for each sequence until 𝑙𝑒𝑛𝑔𝑡ℎ − 1 for the observed sequence
was reached, as that is the last point in the sequence where the OPM can choose
between at least two actions. This process resulted in a list of prediction errors for
each step in each sequence, which were then summed up to generate the overall
error measure. Assuming a list of prediction errors for a five-item sequence that is,
e.g., [1, 0, 0, 1, 1], i.e., the OPM predicted two out of five actions correctly, would
result in an accumulated prediction error of 3.

Comparing the results using a Wilcoxon signed-rank test shows a significant dif-
ference for the initial version of the OPM compared to the addition/subtraction
one, with the initial functional form outperforming the linear one (mean: 4.04 vs
4.94, 𝑊 = 1038.000, 𝑝 < 0.01). There is no significant difference between model
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performance of the initial vs the multiplication functional form (mean: 4.04 vs
4.13, median for both: 4.0,𝑊 = 496.000, 𝑝 = 0.60084). Based on these results, all
subsequent analyses use the functional form presented in Equation 3.1.

𝐶𝑝,𝑞 = 𝑑 (𝑝, 𝑞) − 𝑘 + 𝑐 (3.2)

𝐶𝑝,𝑞 = 𝑑 (𝑝, 𝑞) · 𝑘 · 𝑐 (3.3)

Building on previous research on strong spatial cognition (Freksa, 2015), which
indicates that people use object affordances of the environment to simplify the
required spatial computation, relational dependencies are defined as constraints that
favor interacting with a specific item earlier or later in the action sequence based on
either its relation to other items or its relevance for the task in general. Considering a
table setting task, this could mean that an item is used to define the place setting (e.g.,
a place mat or a plate), that the first item is supposed to be placed below a second
item (saucer and cup, place mat and plate, etc.), or that the item is reserved for a
specific function that can only be performed after one or several other actions have
been done, e.g., if a plate is reserved for food prepared during the action sequence
and can therefore only be taken to the table once the food has been prepared or
cooked. For an activity such as clearing a table full of dishes, these dependencies
apply in reverse: Considering the necessary effort, it is less costly to pick up the
silverware from a plate first than removing the silverware, then taking the plate, and
afterwards picking up the silverware (assuming only one item can be transported at
a time).

Item sequences with relational dependencies could in theory be considered to be
constrained in the sense that the order of actions should be more efficient in most
cases. Despite this, it is still possible that other considerations negate the effect of the
relational dependency, such as the combination of topology and distance resulting in
the “less efficient” action order being observed more frequently, e.g., when a saucer
should be taken first, but is stored in a cupboard farther away, which results in
additional effort that leads to doing other actions first. As there are no imperative
dependencies between actions, i.e., there is no fixed order in which actions must be
performed, all actions are considered individually without any strong constraints
between them. How items were determined to have relational dependencies will be
described in Section 3.3.

Containment (topology) indicates whether an item can be accessed directly (e.g.,
when it is stored on a counter top) or if it is stored in a closed storage location, such
as a drawer or cupboard, that has to be opened first before picking up the item.

While in a first simulation for model parameterisation the parameters were set to
fixed values (see Subsection 3.3.1), in the subsequent simulations (Subsection 3.3.3,
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Subsection 3.3.2, Subsection 3.3.4) all parameters are treated as free parameters and
are estimated from the data. Subsection 3.3.5 employs the best parameter fit from
Subsection 3.3.4 to test for generalization.

3.2 Data

Seven data sets were used for the development and evaluation of the OPM. The
data sets contain recordings of people performing different everyday tasks (one
cooking data set, one cleaning up data set, five table setting data sets). Four of
the five table setting data sets were collected in laboratory settings and one in a
real-world setting. The cooking as well as the cleaning up data set were recorded in
a laboratory setting. Since demographic data was not provided in all data sets, this
could not be evaluated and has been omitted in the following information on the
data sets.

All data sets have one important commonality: Performing the task in a solely
habitual way was not possible, as the participants either were in a new environment
or performed several everyday tasks during one episode, resulting in actions of several
tasks being interleaved with one another. Action sequence organization therefore
had to be adapted to the changed environment and/or conditions.

Episodes with fewer than three actions in a sequence were excluded, as the OPM
would not have any choices for prediction if the first item is given and the second
item then is the only choice left. While all individual action sequences of the TUM
data set were used for model parameterisation, only unique action sequences were
considered for the subsequent analyses, i.e., if multiple trials existed that had the
same sequence of actions, with item and participant positions also being identical,
only one of those sequences was kept. Pooling identical trials in this way resulted
in 186 table setting episodes, 123 cooking episodes, and 17 episodes of cleaning up.
Table 3.1 gives an overview of the data sets employed in the simulations, their type
of everyday activity, and the IDs of the sequences used. Additionally, information on
how many trials were performed are provided for each data set, as well as how many
of these were unique action sequences.

TUM Kitchen

The TUM Kitchen Data Set (Tenorth et al., 2009) contains data from four partici-
pants setting a table in different ways, each time using the same items in the same
lab environment. Each trial starts with the participant standing between locations A
and B facing the kitchen (see Figure 3.2) and ends with all required items being on
the table at either location C or D. Items are stored in location A (tray, napkin), in
the drawer between A and B (silverware), and B (plate, cup). The 𝑥 axis represents
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Data set Activity
Partici-
pants

Trials
(total)

Unique
seq. Episode IDs

TUM Kitchen table setting 4 20 4 T1, T14, T16, T18

EPIC-KITCHENS table setting 9 26 26 P01_01, P01_03, P01_05, P01_09,
P10_01, P12_01, P12_06, P21_01,
P21_03, P21_04, P22_12, P22_16,
P24_02, P24_04, P24_05, P26_11,
P01_103, P01_12, P01_14, P02_128,
P22_01, P22_104, P22_117, P26_104,
P26_115, P35_105

HAVE table setting 83 83 80 a1, a3, a5, a11, a13, a16, a19, a22, a26,
a29, a31, a35, a37, a39, a40, a43, a45,
a47, a51, a55, a56, a59, a60, a61, a69,
a73, a76, a77, a80, a85, a87, a89, a93,
a99, a100, a102, a106, a108, a109,
a114, a116, a118, a120, a128, a131,
a137, a142, a149, a152, a153, a156,
a158, a161, a164, a172, a174, a177,
a178, a180, a185, a187, a191, a195,
a198, a201, a205, a209, a212, a215,
a218, a220, a222, a223, a226, a229,
a231, a233, a235, a239, a240

EASE-TSD table setting 1 68 68 h0-h67

VR table setting 1 39 8 v1, v2, v3, v4, v6, v7, v8, v9

KIT Robo-Kitchen cleaning up 17 17 17 k01, k04, k06, k08, k11, k12, k14, k16,
k17, k18, k19, k20, k21, k22, k23, k24,
k25

MPII Cooking 2 cooking 30 124 123 s13-d21, s13-d25, s13-d28, s13-d31,
s13-d40, s13-d45, s13-d48, s13-d52,
s13-d54, s14-d26, s14-d27, s14-d35,
s14-d43, s14-d46, s14-d51, s15-d26,
s15-d35, s15-d70, s17-d42, s17-d48,
s17-d53, s17-d55, s17-d69, s21-d21,
s21-d23, s21-d28, s21-d35, s21-d39,
s21-d40, s21-d42, s21-d43, s21-d45,
s21-d55, s22-d25, s22-d26, s22-d29,
s22-d34, s22-d35, s22-d43, s22-d46,
s22-d48, s22-d53, s22-d55, s23-d21,
s23-d31, s23-d34, s23-d39, s23-d42,
s23-d45, s23-d46, s23-d51, s23-d54,
s24-d23, s24-d28, s24-d34, s24-d40,
s24-d41, s24-d48, s24-d53, s25-d23,
s25-d35, s25-d51, s25-d52, s25-d69,
s26-d23, s26-d26, s26-d69, s26-d70,
s27-d21, s27-d29, s27-d45, s27-d50,
s27-d54, s27-d70, s28-d25, s28-d27,
s28-d39, s28-d46, s28-d51, s29-d31,
s29-d39, s29-d42, s29-d50, s29-d52,
s30-d26, s30-d29, s30-d40, s30-d41,
s30-d43, s30-d52, s30-d53, s31-d25,
s31-d28, s31-d31, s32-d27, s32-d52,
s32-d55, s32-d69, s32-d70, s33-d27,
s33-d45, s33-d50, s33-d54, s34-d28,
s34-d34, s34-d41, s34-d69, s35-d40,
s35-d41, s35-d48, s35-d55, s36-d23,
s36-d27, s36-d31, s36-d42, s36-d43,
s36-d50, s36-d70, s37-d21, s37-d25,
s37-d29, s37-d39, s37-d46

Table 3.1: Overview of data sets
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3.2. Data

the traversable space between table and storage locations (cupboards, drawers) and
kitchen appliances (stove, fridge), while the 𝑦 axis represents the axis of movement
along storage locations and kitchen appliances (fridge, cupboard, stove, etc., see
Figure 3.2).

Of the 20 video episodes, video 18 contains only repetitive movement and therefore
was excluded from the analysis. The 19 remaining sequences, of which four are
unique sequences, were employed to parameterize the OPM. In the subsequent
simulations after the initial model parameterization, only the unique sequences were
employed.
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Figure 3.2: Layout of the TUM kitchen

EPIC-KITCHENS

EPIC-KITCHENS (Damen et al., 2018, 2022) is a large-scale egocentric vision data
set collected by 37 participants in their native kitchens. As each participant recorded
their activities in their home kitchen, spatial environments, tasks and task items vary
between participants. Episodes from both the EPIC-KITCHENS-55 (initial data from
2018) and the EPIC-KITCHENS 100 (extended version from 2021) data sets were
used, selecting only episodes that contained the desired action type (table setting). In
total, the data contains 45 different kitchen setups, as some participants had moved
between the initial and the second study. For the table setting scenario, 9 participants
recorded 26 trials, of which all were unique action sequences.
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Chapter 3. The Opportunistic Planning Model For Everyday Activities

Participants recorded footage of their kitchen activities over several consecutive
days, using a head-mounted GoPro. The goal was to record action sequences contain-
ing natural occurrences of multi-tasking (e.g., cleaning up during cooking). Due to
the multi-tasking nature of many of the episodes, specific items can fulfill different
functions, such as a plate being used as container for a meal or as an empty (eating)
plate. To account for such differences, items are not categorized according to item
type but according to function (e.g., a plate can be considered to either have strong
𝑘 or food 𝑘 as a parameter, depending on how it is used in the sequence). This
categorization has been carried out by students of the DFG Collaborative Research
Center (Sonderforschungsbereich) 1320 “EASE – Everyday Science and Engineering”
(University of Bremen), and verified by me, employing the two-person rule.

Household Activities from Virtual Environments (HAVE) Dataset

The HAVE data set (Uhde et al., 2020) was recorded at the Automatica Trade
Fair 2018 and consists of recordings for three scenarios, including 83 instances
of table setting in a virtual environment. Each visitor could record one instance
for each scenario, with each recording being limited to a maximum of 5 minutes.
Each scenario was designed inside a 2-by-2-meter square environment and recorded
using HTC Vive systems. All participants were new to the scenarios and had a brief
adaptation phase before being given the scenario-specific activity goal. The virtual
environment consisted of a table with two chairs and a cupboard in which the items
were stored (see Figure 3.3).

As participants received only vague instructions (”please set the table”) and due to
the exploratory setting, the data set contains a variety of performances, e.g., setting
the table for one or two persons, or bringing just a subset of items to the table.
For the subsequent analyses, 3 of the 83 sequences had to be discarded, as too few
(𝑛 < 2) items were on the table in the final state (see Table 3.1). The 80 remaining
sequences are unique sequences.

EASE Table Setting Dataset (EASE-TSD)

EASE-TSD (Meier et al., 2018) consists of table setting instances that have been
collected in a subproject of the DFG Collaborative Research Center (Sonderforschungs-
bereich) 1320 “EASE – Everyday Science and Engineering”, University of Bremen.
Participants were instructed to set the table while being recorded with a variety of
sensors under varying conditions (e.g., for a different number of people, different
meals, and adhering to different degrees of formalism). Sensors include biosignal
sensors (such as motion-capture systems) and video cameras. For the simulations, a
subset of the recorded data consisting of 68 table setting trials with unique sequences
was used. This subset was from an experiment aimed at generating a broader variety
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Figure 3.3: HAVE virtual environment

of action sequences by varying the setup. The initial setup of items as well as the par-
ticipant’s starting position were varied in order to test whether this had an influence
on the observed behavior.

Participants were given the task to transfer a predefined set of items (plate, spoon,
knife, fork, cup, glass, bowl, bottle) from the source table to the target table, which
was placed at approximately 2.5 meters distance (see Figure 3.4). Items had to be
transferred individually, but no other constraints, e.g., the order of items or a time
limit, were specified. The initial location of the items on the source table as well as
the starting position of the participant were randomized, thus each action sequence
instance was unique in its parameters.

Virtual Reality Dataset

The data set contains table setting sequences in a VR environment from a single
participant, where the virtual kitchen consisted of three separate regions (fridge, tray
area, island area, each of which had to be visited at least once, see Figure 3.5).

The participant was asked to set the table for one person having breakfast, was
familiar with the kitchen and thus knew the location of all required items well. The
task was to first assemble all necessary items on a tray before carrying them to the
table. For action orderings we considered the order in which items were grasped and
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target table

12345678

item positions on starting table

possible starting positions for subject

Figure 3.4: EASE-TSD layout

put on the tray. Data from 39 trials was collected, of which 8 unique action sequences
were used in the simulations (see Table 3.1).

KIT Robo-Kitchen Activity Dataset

Recordings for the KIT Robo-Kitchen Activity Dataset (Rybok et al., 2011) were
conducted in a kitchen setup (see Fig. 3.6) with multiple stereo cameras with the
goal to capture complex, realistic kitchen activities. Participants only received a
short instruction of what to do (e.g., for how many people to set the table or which
activity to perform). Each activity was performed by 17 different participants with
a variety of demographic characteristics and backgrounds to increase the variation
between individual performances. For the scope of this analysis, the episodes where
participants cleared a set table by bringing all items to the dishwasher were employed
(17 trials with unique sequences).

MPII Cooking 2 Dataset

The MPII Cooking 2 data set (Rohrbach et al., 2016) combines data from the
MPII Cooking and the MPII Composites data sets and consists of recordings of 30
participants performing a cooking activity. Each video contains a single participant
preparing a certain dish. Participants were shown the kitchen (see Figure 3.7) and

48



3.2. Data

cupboard

target table

item locations

starting position

kitchen island

kitchen counter
fridge

drawer 3

drawer 1
drawer 2

sink
tray

Figure 3.5: Layout of the VR environment

       kitchen

table

target locations

item locations

sink

dishwasher

Figure 3.6: KIT kitchen layout
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places of tools and ingredients before the recordings to make themselves familiar with
the environment. Recordings always started with the participant entering the kitchen,
with the kitchen workspaces being empty and clean. Instructions only specified which
dish to prepare, but no specific actions or recipes, which resulted in larger variety
of how the participants prepared the food and which tools they used. Considering
only episodes with more than two actions per sequence, 123 unique action sequences
could be employed in the analysis, with each person performing several different
cooking activities (i.e., a different one each trial).

cupboard 1

kitchen counter

item locations

starting position

fridge

drawer 1 drawer 2

sink

cupboard 2 cupboard 3 cupboard 4

kitchen
counter

stove
top

Figure 3.7: MPII kitchen layout

3.3 Model Simulation and Evaluation

Several simulations were performed in order to parameterize, test, and evaluate
the OPM. Input for the model simulations included the spatial layout for the given
task with item coordinates, the task description (required items or actions to be
performed in order to achieve task success), and a sequence of spatial locations the
participant was standing at (i.e., the current start position for each action). For each
next action to predict, the prior location was given as the current starting location,
regardless of whether the corresponding action belonged to the task sequence: i.e.,
when performing actions in-between that were not actions of the current task, such as
cleaning up the kitchen during cooking, the previous location of the participant was
always considered the current starting location for the next action in the sequence,
even if this previous action was not part of the given task.

Spatial locations for the participant and the items were either provided in the data
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set (EASE-VR, HAVE) or determined by overlaying the kitchen environment with
a grid layout. Each item was then assigned a spatial location based on this grid,
resulting in a location such as 𝑥 = 0, 𝑦 = 2. Additionally, the height was determined
in a range from 0 (shortly above the floor) to 4 (shortly below the ceiling) (see
Figure 3.8). For the participant, the spatial location of the hand currently in usage
when interacting with an item was employed to determine the location in vertical
space (e.g., 𝑧 = 2).

Figure 3.8: Schema used to determine the spatial location in the vertical dimension

Generating a full sequence of actions is conducted as follows: First, the model
receives a list of possible actions (i.e., objects to interact with as well as their
parameters) that have been observed in the specific action sequence (based on
the video recordings of human behavior). The initial spatial position of the subject
performing the action sequence serves as the input for the spatial location from which
the weighted cost for all possible actions is calculated. Possible actions include all
actions that have not been completed already, e.g., assuming a table setting sequence
that consisted of fetching a cup, a spoon, and a bowl, the list of possible actions at
the start of the sequence would be: “fetch a cup”, “fetch a spoon”, and “fetch a bowl”.
Once the first item has been brought to the table, this task is removed from the list of
possible actions. Thus, if the bowl was fetched first, the list now only contains “fetch
a cup” and “fetch a spoon”.

Second, the model chooses the action with the lowest associated cost (or, if several
actions share the lowest cost, a random lowest-cost action), after which the completed
action is removed from the list of possible actions. Random choices occur in the case
that several actions share the same weighted cost, such that the OPM cannot choose
a single lowest-cost action. This happens if multiple items are stored in identical
spatial locations and their parameters for relational dependency and containment
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are also identical. Primarily, this concerned the manually annotated data sets, since
they had less fine-grained spatial annotations than the VR data sets. Once multiple
items have an identical weighted cost, they are equally likely to be performed from
the OPM’s perspective.

The next starting position is the spatial location of the participant prior to per-
forming the next action in the considered sequence, which may not be the same
position they were in after completing the previous action (e.g., when cooking actions
have been mixed with cleaning actions, the cleaning actions are disregarded for the
cooking sequence). The OPM repeats these steps until all required actions have been
completed. All actions are considered to be independent from each other, i.e., while
relational dependencies make it reasonable to assume that a specific order of some
actions is more efficient, all actions can still be performed in any arbitrary order.

In each step, the action with the lowest associated cost is chosen as the predicted
next action, until the end of the sequence is reached. A visualization of the process is
shown in Algorithm algorithm 1.

Algorithm 1: Pseudocode of the OPM’s action sequence generation
Input: list of actions in the sequence; coordinates of corresponding items;

start coordinates of participant before each action; k for all items; c
for all items

Output: generated action sequence

1 generate possible_actions dictionary from action list;
2 coordinate_index := 0;
3 prediction := empty list;

4 while possible_actions ≠ empty do
5 for action ∈ possible_actions do
6 position := start_coordinates[coordinate_index];
7 possible_actions[obj] := 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖𝑡𝑒𝑚, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)𝑘 [𝑖𝑡𝑒𝑚] · 𝑐 [𝑖𝑡𝑒𝑚];
8 end

9 minval := list of action(s) with minimum value;

10 if length of minval = 1 then
11 minval := minval;
12 else
13 randomly choose an action from the minval list;
14 end

15 append minval to prediction;
16 remove minval action from possible_actions;
17 coordinate_index + = 1;
18 end
19 return prediction
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To evaluate the match between model-generated and observed action sequences,
the Damerau-Levenshtein distances (Damerau, 1964) were computed. The Damerau-
Levenshtein distance is a type of edit distance used to quantify the similarity of
two strings (e.g., two words). To determine the similarity, the minimum number of
operations required to transform string A into string B is identified. Four types of
operations are allowed for this distance measure: Insertions (of a new character into
the string), deletions (of an existing character from the string), substitutions (of a
single character by another character), and transposition (swapping two adjacent
characters). Thus, transforming the string “TC” into “CAT” requires a minimum
of two operations: TC → CT (transposition) → CAT (insertion of A), i.e., the edit
distance is 2.

The Damerau-Levenshtein distance was then normalized by sequence length to
make the results comparable across sequences of different length. The resulting
distance measure 𝐷𝐿𝑛 (see Equation 3.4) ranged from 0 (i.e., identical) to 1 (i.e.,
maximally different). This normalized Damerau-Levenshtein will simply be called
edit distance in the following.

𝐷𝐿𝑛 =
edit distance

maximum edit distance
(3.4)

Determining Relational Dependencies Sequential pattern mining using the Gener-
alized Sequential Pattern (GSP) algorithm (Srikant & Agrawal, 1996) was employed
to determine which types of objects demonstrate relational dependencies during
table setting. The GSP algorithm identifies frequently occurring patterns based on a
user-specified minimum support (e.g., must occur in at least 60% of all sequences)
by first finding the most frequently occurring singleton items, and then recursively
identifying sets of candidate 2-, 3-, ..., n-sequences. Candidates that do not meet
the required support level are eliminated. In contrast to the Apriori algorithm, the
GSP algorithm also considers the order of items and sliding windows, and is there-
fore able to identify frequently occurring subsequences (Srikant & Agrawal, 1996).
An overview of the most frequently occurring subsequences (patterns) is given in
Table 3.2.

The results clearly demonstrate that preferences for specific action orderings during
table setting exist: Items that define the place setting (e.g., a tray or a napkin) and
items that define the spacing between other items (e.g., a plate) tend to be picked up
and brought to the table earlier in the action sequence. Subsequently, all other items
can be placed on the table in relation to the first items (e.g., putting the plate on the
tray and the silverware next to the plate). These dependencies between items and
their corresponding actions were implemented in the model by defining categories of
relational dependencies with different parameter ranges. The ranges indicate that
the corresponding action for an item (e.g., pick up the plate and place it on the table)
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Pattern Minimum support (in %) Nr. of sequences

napkin - cup 100 19

plate - cup 100 19

napkin - plate 100 19

napkin - plate - cup 100 19

napkin - silverware 90 18

tray - cup 80 17

tray - napkin 80 17

tray - plate 80 17

tray - silverware 80 16

plate - silverware 80 16

tray - napkin - cup 80 17

tray - napkin - plate 80 17

tray - napkin - silverware 80 16

tray - plate - cup 80 17

napkin - plate - silverware 80 16

tray - napkin - plate - cup 80 17

Table 3.2: GSP results of most frequent subsequences (TUM data, n=19)

is preferred to take place earlier in the action sequence.

To evaluate the model, six types of simulations were conducted, which will be
presented in the following. Three of these simulations helped to parameterize the
OPM, while the other three were employed to apply and evaluate the OPM.

Model Parameterisation For model parameterisation, the OPM was employed
on the TUM Kitchen data set (Tenorth et al., 2009), a small lab-based everyday
activitiy data set, to verify that the proposed parameters (relational dependencies
and topology) improved the OPM’s performance compared to only considering the
physical distance (see Subsection 3.3.1). The simulation corroborates the validity of
the model as well as its (spatial) parameters. The influence of both parameters was
verified by comparing several models that included either none, only one or both of
the parameters (see Subsection 3.3.1). Second, planning depth was considered as a
factor. For this, several models that planned only 1 step ahead, 2 steps ahead, or tried
to find a globally optimal solution, were compared (see Subsection 3.3.3). Third,
as previous research indicates that distances are more accurately encoded distances
in 2D (𝑥𝑦) space (Hinterecker, Pretto, et al., 2018) and that human performance is
better in 2D space (Zwergal et al., 2016), several models of spatial representations
were compared (see Subsection 3.3.2), in order to verify that a 2D representation
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achieves the best results compared to all other possible mental representations of
space. All of the table setting data sets (see Section 3.2) were employed to compare
multiple simulations based on different mental representations of space. Ignoring
the vertical dimension is consistent with the goal to minimize cognitive effort. It
therefore seems plausible to assume that a 2D mental representation of space is
preferred in everyday tasks. The implications of these results for human (spatial)
cognition are discussed for each simulation in their corresponding section.

Model Application and Evaluation To apply and evaluate the OPM, three machine
learning baselines were implemented to evaluate the OPM’s performance in compari-
son to models optimized for pattern recognition (see Subsection 3.3.4). Similar to
the benchmarks for rational task analysis defined by Neth et al. (2016), the machine
learning models provide a baseline of how well the observed human behavior can be
explained from patterns in the data, and how much of the OPM’s prediction accuracy
is based on the encoded context knowledge. Subsequently, the model was applied to
two new everyday tasks (cooking and cleaning up) to test its generalizability to other
tasks (see Subsection 3.3.5), using the machine learning models as a baseline. Testing
the generalizability ensures that the OPM is not (over)fitted to one specific everyday
task, but instead provides a general cognitive model of action selection in everyday
activities, validating that the proposed cognitive processes are of importance in other
everyday tasks as well. Lastly, the overall performance of the OPM (averaged over
all data sets and everyday activities) was compared to the machine learning models’
performance (see Subsection 3.3.6).

3.3.1 Model and Parameter Verification

3.3.1.1 Method

Several models were compared on a subset of the table setting data in order to
verify that including parameters for relational dependencies and topology actually
improved the OPM’s performance compared to just considering the traversed distance.
The simulation compared model-generated and observed action sequences under
different conditions (using both, only one, or none of the parameters). The TUM
data set was employed for a first estimation of the parameters, in order to obtain
a reliable estimate under relatively stable conditions. The TUM data set has stable
conditions in the sense that the variance between sequences is low and the spatial
properties of both environment and items do no change between episodes.

The parameters for relational dependencies and topology were estimated by grid
search – parameter 𝑘 was estimated per item (see Table 3.3), whereas parameter
𝑐 was estimated to be 1.2 for all items stored in closed storage locations, such as
cupboards or drawers.
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Item Value of k

tray, placemat 0.9

plate (empty), napkin 0.95

all other items 1.0

Table 3.3: Model parameterisation: Parameter estimates for relational dependencies

A goodness of fit measure was used, as all of the models have the same functional
form, number of parameters, and draw on identical sample sizes. Under these
conditions, a goodness of fit measure is equivalent to more complex measures of
generalizability (Pitt & Myung, 2002). To provide a baseline for model performance,
the mean edit distance for 𝑛! samples generated without replacement for observed
sequences of length 𝑛 was calculated. To calculate the mean edit distance, all possible
permutations of a given sequence of length 𝑛 were generated. In a second step, the
normalized edit distances of each pair of permutations were calculated, computing
the mean error of all edit distances. For a sequence of 𝑛 = 5 actions (or items), e.g.,
this results in a mean edit distance of 0.666.

3.3.1.2 Results

Comparing the edit distances between observed sequences and model-generated
sequence predictions clearly demonstrates that both factors have a strong influence
on the order of subtasks (i.e., when specific items are picked up) in a table setting
scenario (see Figure 3.9). The model-generated and observed action sequences match
for nearly all episodes, but only if both parameters are set. This corroborates the
assumption that the decision which item to interact with next is not only based on
physical distance, but is strongly influenced by the perceived cost of each possible
next action. This influence of the perceived cost on action selection is consistent with
the goal to minimize the overall effort.

3.3.2 Mental Representation of Space

Previous work (Hinterecker, Pretto, et al., 2018; Zwergal et al., 2016) indicates
a preference for a two-dimensional mental representation of space. This in turn
is consistent with the preference to minimize cognitive effort (Kool et al., 2010),
as representing as well as calculating distances in 2D instead of 3D might reduce
the required cognitive effort. In order to verify this in simulation, all five table
setting data sets were employed. As the intention was to test whether a general
preference for a specific spatial representation exists regardless of task environment
and individual preferences, the sample size was increased to include all table setting
data sets.
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Figure 3.9: Model performance based on included parameters (TUM data set, 2D, n=19),
baseline shown as line

3.3.2.1 Method

Parameters 𝑘 and 𝑐 were estimated by grid search, using all unique action sequences
of the employed data sets to find the best-fitting model. Values ranges in which
parameters were tested (steps of 0.1) are given in Table 3.4. The value ranges for
the grid search were selected with the intention to represent a proportional increase
or decrease of the weighted cost of an action, which in turn results in an increased or
decreased likelihood of the corresponding action being performed early or late in an
action sequence. To demonstrate this, consider 2.0 as an example initial cost for the
physical distance. The value ranges for relational dependencies (𝑘) either increase
the likelihood of the action being performed early in the sequence (strong 𝑘 and mid
𝑘) by decreasing the weighted cost by up to half of its value (e.g., 20.1 = 1.0718),
or increasing the likelihood of the action being performed late in the sequence by
increasing the weighted cost (food 𝑘, e.g., 21.9 = 3.7321). Strong 𝑘 and mid 𝑘 both
follow the same logic regarding increase/decrease of the weighted cost, though mid
𝑘 represents a slightly lower dependency than strong 𝑘. For the topology parameter
(𝑐) the same reasoning applies. Selecting a parameter value between 1.1 and 1.9 that
the initial cost is multiplied with intends to represent the higher effort of opening
a cupboard or drawer first (e.g., 2 ∗ 1.9 = 3.8). The ranges of the parameter values
were chosen in this way to create a symmetric interval around the default value of
1.0, with zero as the lower limit.

Since it is possible that the selection of value ranges for the parameters has a
significant impact on the OPM’s performance results, an additional simulation with
alternative value ranges were run on the table setting data sets (which were also
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Parameter Type of item Value range

relational

dependencies (k)

strong k

table setting: tray, place mat, table cloth

cooking: cutting board

cleaning up: silverware

0.0 - 0-9

mid k plate (empty), napkin 0.1 - 1.0

food k plate with food prepared during sequence 1.1 - 2.0

default all other items 1.0

topology (c)
c

items stored in closed locations

(e.g., in a cupboard)
1.1 - 2.0

default items stored in open locations 1.0

Table 3.4: Parameter categories for items based on scenario

Parameter Items

strong k tray

mid k plate, small plate

food k

Table 3.5: Item categorization for relational dependencies (table setting)

used for initial parameter recovery for the OPM). The value ranges for this simulation
were −1 to −0.1 for strong 𝑘, −0.9 to 0 for mid 𝑘, 2.1 − 2.9 for food 𝑘, and 2.0 − 2.9
for 𝑐. They still fit the intended goal of increasing or decreasing the weighted cost.
Again, APE was employed to compare the results. Using the best fitting parameters
for the initial simulation (with the value ranges from Table 3.4) (strong 𝑘 = 0.2, mid
𝑘 = 0.3, food 𝑘 = 1.2, 𝑐 = 1.7, mean: 4.04, median: 4.0) and the new simulation
(strong 𝑘 = −0.8, mid 𝑘 = −0.7, food 𝑘 = 2.1, 𝑐 = 2.4, mean: 4.08, median: 4.0),
comparing the results employing a Wilcoxon signed-rank test showed no significant
difference in performances (𝑊 = 2138.000, 𝑝 = 0.56940)

While parameter 𝑘 is estimated per item category (see Table 3.4), parameter 𝑐 is
estimated for all objects in closed storage locations (e.g., all items stored in cupboards,
drawers, etc. receive the same value for 𝑐). Model accuracy was evaluated for multiple
trials (𝑛 = 100) for each parameter combination, taking the median prediction error
over all iterations into consideration to remove outliers of random choice. This was
primarily intended to reduce the possibility of outliers in cases of random choice (if
multiple items had the same weighted cost).

Which items were categorized as which class of relational dependencies is shown
in Table 3.5.

In order to verify the assumption that a 2D spatial representation is preferred for
action selection in everyday activities, several models were compared that assumed
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spatial representations along the 𝑥,𝑦, 𝑧, 𝑥𝑦, 𝑥𝑧,𝑦𝑧, 𝑥𝑦𝑧 axes, respectively. Same as for
the previous simulation, a goodness of fit measure was used, as all of the models
have the same functional form, number of parameters, and sample size (all table
setting data). The normalized edit distance (Equation 3.4) between model-generated
and observed sequences was employed as performance measure, using the median
distance over 𝑛 = 100 trials.

Figure 3.10: Model fit based on dimensionality (k = strong k), baseline shown as plane

3.3.2.2 Results

Prediction accuracies show a highly significant difference between simulations
(𝜒2(6) = 507.748, 𝑝 < 0.001) using the Friedman test. This corroborates the
idea that dimensionality strongly influences action selection in everyday tasks. The
distribution of individual data points in relation to parameters 𝑘 and 𝑐 shows that
the edit distance is lowest for dimensions 𝑥𝑦 and 𝑥𝑦𝑧 (see Figure 3.10), regardless of
the values of 𝑐 and 𝑘. The baseline error based on randomly guessing the next action
is shown as plane. The model considering 𝑥𝑦 space performs slightly better than
the one considering 𝑥𝑦𝑧 space (mean: 0.447 vs. 0.453). The mean was calculated
by averaging the error value over all possible parameter combinations for 𝑘 and 𝑐,
in order to demonstrate that 𝑥𝑦 and 𝑥𝑦𝑧 performed best regardless of the specific
parameters chosen for 𝑐 and 𝑘.

In a pairwise comparison of the 2D (𝑥𝑦) versus the 3D spatial representation
using a Wilcoxon signed-rank test, the model performance also differs significantly
(𝑊 = 1561.000, 𝑝 = 0.05). Accordingly, no evidence was found that the third
dimension plays any role in the distance computations, which is also consistent
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with the assumption that a 2D (𝑥𝑦) representation would be less effortful and thus
preferred. For better visual comparison of the results, Figure 3.11 shows the error
distributions. As seen in Figure 3.11, the performance difference comparing a 2D (𝑥𝑦)
with a 3D representation of space is relatively small. Nonetheless, ignoring the third
dimension in a task during which the information gain stemming from including the
third dimension is not crucial for task success is consistent with the goal to minimize
effort.

Figure 3.11: Distributions of model fit based on dimensionality (k = strong k)

As the importance of single (1D) axes might be dependent on how much influence
they have on the calculation of the physical distance in total, i.e., the actual span
in which movement is possible during the task, the spans for each axis (𝑥,𝑦, 𝑧) were
compared in an additional simulation, again using the table setting data sets. 𝑦 has
the highest average span over all task environments with 3.17 meters, compared
to a span of 1.89m and 1.833m for 𝑥 and 𝑧, respectively. The average edit distance
and the average volume of the task environments show a strong negative correlation
(𝜌 = -0.708, 𝑝 < 0.001), i.e., the prediction error increases when the volume or
movement span of the corresponding task environment decreases (Figure 3.12).

In order to account for the possibility that people assign different importance to
the individual spatial axes depending on the span of movement possible in their
respective environment, a further simulation of the model was run. This simulation
incorporates a weight criterion for each axis. The axis weight 𝑤𝑛 was defined as in
Equation 3.5.
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Figure 3.12: Correlation between average edit distance and volume/span of task environ-
ments for each spatial representation

𝑤𝑥 =
𝑠𝑝𝑎𝑛𝑥

𝑠𝑝𝑎𝑛𝑥 + 𝑠𝑝𝑎𝑛𝑦 + 𝑠𝑝𝑎𝑛𝑧
(3.5)

To incorporate this different weighting of axes based on their span, the weighted
Euclidean distance between spatial locations of items and subject was calculated
by multiplying the partial difference for each axis as shown in Equation 3.6. For
example, assuming an environment with axes spans 𝑥 = 3, 𝑦 = 2 and 𝑧 = 1, this
would result in 𝑤𝑥 = 0.5, 𝑤𝑦 = 1

3 , and 𝑤𝑧 = 1
6 .

𝑑 (𝑝, 𝑞) =
√︃
(𝑝𝑥 − 𝑞𝑥 )2 ·𝑤𝑥 + (𝑝𝑦 − 𝑞𝑦)2 ·𝑤𝑦 + (𝑝𝑧 − 𝑞𝑧)2 ·𝑤𝑧 (3.6)

In the new model, considering the 𝑧 axis still results in the highest prediction
error (0.60 median edit distance, which is very similar to the baseline), whereas
𝑥𝑦𝑧 performs slightly better, but still has a higher average edit distance than 𝑥𝑦 (𝑥𝑦:
0.509, 𝑥𝑦𝑧: 0.514; median: 0.51 for both). Comparing the 𝑥𝑦 and 𝑥𝑦𝑧 representations
with a Wilcoxon signed-rank test indicates a significant difference (𝑊 = 1348.000,
𝑝 = 0.005). Thus, 𝑥𝑦 achieves the best fit in both model simulations (i.e., with normal
vs weighted Euclidean distance). The results confirm the assumption that people
prefer a 2D (𝑥𝑦) representation of space over a 3D one based on the computational
effort required to calculate distances, independent of the volume of the task space.

Additionally, all dimensions involving the 𝑧 dimension perform poorly, which lends
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support to the assumption that people only consider 2D (𝑥𝑦) space if the third
dimension does not add any information that is required to solve the task successfully,
as is the case in everyday activities. While the 2D (𝑥𝑦) representation corresponds
to the plane of locomotion, the third dimension does not provide information that
is relevant to solving the task successfully. Therefore, it seem favorable to reduce
the mental model of space to two dimensions, reducing the required computational
effort in turn. Consistent with this assumption, previous research indicates that 2D
(𝑥𝑦) spatial representations are constructed in a metrically flat way, with the vertical
dimension being represented non-metrically (Jeffery et al., 2013).

While this might differ in significantly larger spaces, such as multiple-story buildings
(for a more in-depth discussion, see Section 5.2), at least for relatively small task
environments of everyday tasks (e.g., a single room), the information of the vertical
dimension seems to be disregarded in favor of minimizing effort. Accordingly,
distances were calculated in 𝑥𝑦 space in subsequent model simulations.

3.3.3 Planning Ahead

Based on previous research regarding bounded rationality and cognitive effort,
planning ahead would be considered cognitively costly, which makes a 1-step planning
approach more reasonable to assume. To verify this hypothesis, several model
simulations were compared: 1) 1-step vs 2-step planning, and 2) a globally optimal
vs a locally optimal model.

3.3.3.1 1-step vs 2-step Planning

Method To test whether human action selection behavior matches a model more
closely that plans only one step ahead or a model that plans two steps ahead, model
simulations were run for one and two steps of planning ahead (see Figure 3.13). The
one-step model works as described in Section 3.3. The two-step model chooses a
second action directly when performing the first action, based on the same weighted
cost calculation as described before. The second action is then performed next
regardless of whether it is the lowest-cost action for the next starting point, repeating
this process until all required actions have successfully been performed. Again,
goodness of fit was employed as comparison measure, since both models have the
same number of parameters, functional form, and sample size.

Both models consider a 2D environment for distance calculation (see Equation 3.1).
The best fit for the one-step model is achieved with parameters strong 𝑘 = 0.2,
medium 𝑘 = 0.3, and 𝑐 = 1.4, resulting in an average edit distance of 0.369 (median:
0.37). The best fit for the two-step model is achieved with the same parameters
(strong 𝑘 = 0.2, medium 𝑘 = 0.3, and 𝑐 = 1.4), with an average edit distance of
0.378 (median: 0.38). Both results are lower than the baseline prediction error of
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0.603 (see Section 3.3).

Figure 3.13: Model fit based on planning depth (k = strong k)

Results Although the models generate different action sequences, they seem to
perform equally well in accounting for observed human behavior (see Figure 3.13
and Figure 3.14). To investigate further, the average edit distances across all possible
parameter value combinations were computed. Considering these distances as a
performance measure, the models also performed very similar (1-step planning:
0.418, median: 0.4; 2-step planning: 0.419, median: 0.41). Comparing their pre-
diction accuracy using the Wilcoxon signed rank test shows no significant difference
(𝑊 = 1211.000, 𝑝 = 0.368).

Consistent with research indicating that cognitive offloading seems to occur partic-
ularly often in spatial tasks (Wilson, 2002), these results corroborate the assumption
that people plan only one step ahead. As the process of keeping the second action in
mind can be considered cognitively effortful, and as adding a second step of planning
ahead does not achieve a better fit when comparing model-generated and observed
behavior, it seems to be more plausible that people only plan one step ahead, which
is the option that requires the least cognitive effort.
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Figure 3.14: Error distribution based on planning depth, dimension: xy

3.3.3.2 Globally vs Locally Optimal

As described in Subsection 2.2.1, optimality theory presumes that human behavior
approximates an optimal function when compared to mathematically modeled ideal
behavior (Chater et al., 2006). While according to the approach of classical rationality,
prediction strategies for human behavior should be as general as possible, adaptive
rationality proposes that good prediction methods are adapted to the structure of
a given local environment. Locally optimal methods are optimized for the specific
task context and thus provide highly efficient solutions for this specific task (Schurz
& Thorn, 2016). According to adaptive rationality, all successful cognitive methods
used by humans are locally optimal.

Therefore, mechanisms such as knowledge representation and cognitive processes
have to be taken into account when trying to explain human behavior through ratio-
nal analysis, (Jones & Love, 2011). This is consistent with the concepts of bounded
rationality (Simon, 1955), which takes limitations in knowledge and processing
capacity into account. Research on sequential information search and planning indi-
cates that people typically favor heuristic stepwise-optimal strategies over planning
ahead (Meder et al., 2019). Stepwise-optimal strategies can be considered locally
optimal in the sense that they only try to optimize for each action step rather than
for the whole action sequence in advance.
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Method To test the locality of action selection strategies in everyday tasks, the OPM
was compared to a globally optimal model that plans ahead, determining the overall
lowest-cost action ordering from the start instead of choosing the lowest-cost action
in each step.

While the OPM only plans one step ahead, the globally optimal model plans the
whole action sequence in advance by determining the overall lowest-cost action
ordering. This is determined by finding the overall shortest path, while assuming
each item is brought to the table first before picking up the next one. Both models
assume that each single item is brought to the table first before picking up the next
item.

Figure 3.15: Locally vs globally optimal model fit (TUM data, 2D, n=19)

Results The OPM performs better than the globally optimal model (see Figure 3.15),
which is confirmed by comparing the results with a Wilcoxon signed-rank test (𝑊 =

0.000, 𝑝 < 0.01). The results support the assumption that human behavior is adapted
to specific situations or tasks, i.e., locally optimal. This is consistent with previous
research showing a preference for opportunistic stepwise-optimal strategies, and
corroborates the assumption that human behavior is locally optimal.
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3.3.4 Providing Performance Baselines for the OPM

Marr (1982) defines three levels of analysis: The computational, algorithmic, and
implementation level. While on the computational level, the what and why of a
given system are defined, the algorithmic level specifies how the given computational
problem can be solved. For this, both the representation of information and the
process(es) to manipulate the representation are considered. Lastly, the actual
physical implementation is described on the implementation level. In the case of
humans, this could, e.g., be the biological structures implementing the considered
system (such as the cognitive process of action selection). The OPM is a model
on the computational level in the sense of Marr (1982), since its goal is to explain
how people select their actions during everyday tasks and why this results in the
observed behavior patterns. The computational functions can be implemented on the
algorithmic level by machine learning models, such as neural networks, by providing a
representation of the available information as well as their transformation processes.

Machine learning models provide an estimate of how much variance in a certain
type of behavior can be predicted from the data. Continuously critiquing an inter-
pretable cognitive model in regard to machine learning algorithms allows to generate
cognitive models that are both interpretable and accurate (Agrawal et al., 2019).

To provide performance baselines for the OPM, three machine learning models
were implemented and compared to the OPM’s performance.

Method

All table setting data sets were used as a sample. Data from the cleaning up and
cooking data sets was kept back to test for generalizability later on (see Subsec-
tion 3.3.5). Same as for the comparison of different functional forms and value
ranges for the OPM, APE (Dawid, 1984) was employed to compare the OPM’s perfor-
mance to the machine learning baselines and evaluate its prediction accuracy. APE
was used instead of a simple goodness-of-fit comparison as the functional forms and
number of parameters of the machine learning models are unknown. APE provides a
better performance measure in such cases, as it considers all three factors impacting
model complexity.

The models were given the current observed action (e.g., “picking up the plate”) as
an input to predict the next action in each time step. The next action predicted by the
models was then compared to the observed next action (same as for the OPM). These
steps were repeated until the observed sequence length was reached. Depending on
the type of machine learning model, additional input was given to the models (see
the following section for a detailed description which model received which input).

For each individual sequence, the median accumulated error over all trials was
calculated (see Section 3.3) to identify the parameter combination achieving the most
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ML model Input example Output example

RNN p (plate) c (cup)

CPT p (plate) s (silverware)

NN

p.x = 0, p.y = 1, p.seen_before = false,
p.strong_k = 0.3, p.c = 1.2,
[info for all other items + parameters],
participant.x = 3, participant.y = 4

plate

Table 3.6: Input and output examples for the machine learning models

accurate prediction. Subsequently, the median error over all sequences was used find
the best-fitting parameter combination for the OPM. To calculate the median error
over all sequences, first the median edit distance for each individual sequence was
calculated for 𝑛 trials. Second, the median of all these edit distances was calculated
(e.g., if there were three sequences with edit distances 3, 5, and 4, the median
error over all sequences would be 4). The median prediction error was also used to
compare the OPM’s performance to the machine learning baselines.

Performance Baselines

Three machine learning models were implemented as baselines for the OPM’s
performance: a) a Recurrent Neural Network (RNN) generating text predictions from
the encoded action sequences (with just the action sequences as input), b) a Compact
Prediction Tree (CPT) receiving the same input as the RNN, and c) a Feed-forward
Neural Network (NN) generating a class prediction for each next step in the action
sequence based on the previous step. Additionally, this second neural network
also received context information. All of these models are optimized for sequence
prediction and are thus able to provide high prediction accuracy for sequential data.

While the RNN and the CPT received just the action sequences as input without
any additional information (each item being represented by a single letter, e.g., “p”
for plate), the NN also received spatial and parameter information for all items of
each sequence, spatial information for the subject performing the task (i.e., where
the person was standing before each next action step), and which items relevant
for the sequence had already been seen in the previous action steps (i.e., a Boolean
value for each item indicating whether it had been seen before the current step). An
example of which model received which type of input and produced which type of
output is given in Table 3.6.

Having multiple models predicting the same action sequences based on different
input information allows to gain an estimate of how much of the prediction accuracy
is based on underlying patterns in the data, such as human preferences for a specific
ordering of actions, and how much of it is due to the encoded knowledge about
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the task environment. The two different types of neural network architectures
were intended to provide a lower bound for model performance with the RNN,
which received just the sequences without additional context knowledge, and thus
provides an estimate of how much of the underlying patterns in behavior can be
explained solely from pattern mining without context knowledge. The NN serves
as an upper bound that aims to explain how well the observed behavior can be
explained by taking context knowledge, such as the spatial location of items and
their dependency/topology parameters, into account, without relying too much on
patterns.

CPT A CPT is a prediction model that compresses the training sequences without
information loss by exploiting similarities between subsequences. In order to predict
a sequence, the CPT measures the similarity of a sequence to the training sequences.
The similarity measure is tolerant for noise, which means that sequences can also
be predicted if the subsequences have not been previously seen in training. Training
requires a set of training sequences as input, and generates a) a prediction tree
containing all training sequences, b) a lookup table to locate the training sequences
with constant access time, and c) an inverted index storing in which set of sequences
each item is contained. For predicting a sequence, the CPT relies on a count table that
stores the frequency of each item and returns the most supported (frequent) item for
the next position in the sequence. The CPT implementation was based on Gueniche
et al. (2015), whose implementation (called CPT+) employs two new compression
strategies that reduce the tree size and a strategy to improve accuracy and prediction
time.

RNN architecture The RNN consisted of one layer of Gated Recurrent Units (GRU),
which outperform Long Short-term Memory (LSTM) cells for low sample sizes and
are less susceptible to overfitting (Gruber & Jockisch, 2020). In comparison with
an LSTM, GRUs reduce the gating signals to two (an update and a reset gate),
using backpropagation through time to update their weights (Dey & Salem, 2017).
The RNN consisted of three layers: 1) An embedding layer that encodes the input
action (represented as a character) into an internal state, 2) the GRU layer operating
on the internal state and a hidden state (hidden_size = 100), and 3) a decoder
layer outputting the probability distribution (see Figure 3.16). While the input
(embedding) and output (decoder) layer sizes were set to the number of items
occuring in the data set, the hidden layer’s size was estimated by grid search, aiming
to balance performance on the train and the test set. The network received one
priming action as an input at a time to build up the hidden state, from which the
next action was generated. The RNN used Adam optimization, and cross-entropy
as the loss function. The previously seen action (represented as a single character)
was employed as the priming character, except if the action to be predicted was the
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first action in the sequence, in which case the newline character was the priming
character (as sequences were represented in text mode, with newlines indicating the
start of a new sequence). To reduce the risk of overfitting, the probabilistic output
was divided by a factor of 0.4, enabling some variety of the output while at the
same time maintaining that higher probabilities remain the more likely output. The
RNN was trained on a random sample of 70% of the data for 300 epochs, with the
remaining 30% being split equally in a validation and a test set.

Figure 3.16: Recurrent neural network architecture

NN architecture The NN was trained on a subset of 70% of the data, while 15%
were used as a validation set and another 15% as a test set. To generate the
corresponding subsets of the data, a stratified shuffle split was employed. The NN
consisted of a feature layer representing the input data, two dense and two dropout
layers (to reduce the chance of overfitting), and an output layer. Categorical data
(such as action classes) were transformed into multi-hot encoded tensors for the input
layer. The network was trained for up to 300 epochs, using categorical cross-entropy
(softmax) as the loss function and Adam optimization. An early callback condition
was defined in case the accuracy didn’t increase for more than five training episodes.
Parameters for the number of neurons in each layer and dropout rates were estimated
by grid search, aiming to balance train and test accuracy in a way that a high(er)
training accuracy did not correspond to a lower test accuracy, indicating overfitting on
the training data. The dense layers have 512 and 256 neurons respectively, both with
a dropout rate of 0.5. Figure 3.17 shows an abstract version of the NN architecture.

Results

For the OPM’s performance the best fit (with parameters strong 𝑘 = 0.2, mid 𝑘 = 0.3,
food 𝑘 = 1.2, 𝑐 = 1.7, mean: 4.04, median: 4.0) was considered and compared to the
machine learning models using a Wilcoxon signed-rank test. Comparing the results
from employing the different models on the table setting data with a Wilcoxon signed-
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Figure 3.17: Neural network architecture, neurons marked in red symbolize the dropout rate
of 0.5 between layers

rank test shows that, while the OPM outperforms the RNN (𝑊 = 2729.000, 𝑝 < 0.001,
mean RNN: 4,70, median RNN: 5.0) and the CPT (𝑊 = 112.000, 𝑝 < 0.001, mean
CPT: 6.09, median CPT: 6.0), which had both been trained on action sequences
without additional information, the NN trained on action sequences with context
information (spatial locations of items and participant in each action step, parameter
information, and previously seen actions) is better able to capture the underlying
patterns of a single everyday activity than the OPM (𝑊 = 1596.000, 𝑝 < 0.001, mean
NN: 2.48, median NN: 2.0). This also becomes evident when looking at the median
accumulated prediction errors for the three models, where the neural network with
spatial information achieves a significantly lower accumulated median prediction
error (see Figure 3.18, leftmost subplot).

The results lend support to two assumptions: First, situational context knowledge
is highly important when trying to explain human behavior. This explains why the
OPM outperforms the RNN and CPT in making accurate predictions, as they both do
not receive this additional context knowledge. Second, there are other potentially
influential factors to consider that may improve the predictive power of the OPM
for cases that cannot be fully explained yet. Such cases occur if items do not have
relational dependencies and are all stored in closed storage locations, which nullifies
the influence of parameters 𝑘 and 𝑐.
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While the NN performs better than the OPM in a single task instance, the OPM’s
power is proposed to lie in its ability to generalize to a variety of everyday tasks, as
it does not rely on learned patterns in the data (other than the NN), but instead on
general principles of human cognition.

As the RNN performed better than the CPT when prediction sequences without
additional context information, the CPT has not been used for the subsequent sim-
ulations that tests the generalization ability of the OPM compared to the machine
learning models and compare model performance averaged over all everyday tasks.
For these simulations, only the RNN and the NN have been employed as upper and
lower performance benchmarks for the OPM.

3.3.5 Generalization to Other Everyday Activities

Method

In order to test the generalizability of the OPM, the model was applied to two
new everyday activities: Cleaning up (i.e., clearing a table of dishes) from the KIT
Robo-Kitchen data set (Rybok et al., 2011) and cooking from the MPII Cooking 2
data set (Rohrbach et al., 2016). While the model parameterization on table setting
data (see Subsection 3.3.1)) was intended to develop the model and tweak the
parameters, the subsequent simulations aim to test the generalizability of the OPM
to new activities and environments.

Similar to table setting, cooking and cleaning up are only weakly constrained in
regards to the ordering of actions. While table setting and cleaning up are both
only very weakly constrained, cooking provides at least some constraints in the
form of recipes or dependent subtasks (e.g., the pan needs to be on the stove first
before putting oil in it). Thus, the cooking data set is employed for this simulation
to verify that the OPM is also able to predict action sequences with at least some
inherent constraints. While the chosen activities share similarities in terms of the
actions that need to be performed, the new tasks (cooking and cleaning up) represent
a switch in task context. Compared to table setting, they follow different goals,
which results in the prioritization of specific actions (e.g., because they need to be
completed first before other actions can be performed, such as cutting vegetables
before boiling them). Additionally, the new activities increase the variety of task
contexts by incorporating new environments and subjects. To sum up, both cooking
and cleaning up represent new tasks context to test the OPM’s performance in, and
allow to check whether the chosen parameters are also applicable in household
contexts other than table setting.

Table 3.7 shows which items were categorized into which class of relational depen-
dencies. Depending on the task context, relational dependencies occur in the reverse
ordering than for other contexts. E.g., while for table setting, a tray or place mat is
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Parameter Items

strong k

tray, place mat (table setting)
plate (table setting, if no tray or place mat existed)
cutting board (cooking)
silverware (cleaning up)

mid k napkin, plate, small plate

food k plate (cooking)

Table 3.7: Item categorization for relational dependencies based on everyday activity

categorized as having strong relational dependencies (both are used to define the
place setting), the same category is given to silverware lying on top of the plates in
case of cleaning up, as the silverware has to be moved first in order to be able to
move the plates (assuming only one item can be transported at a time).

Instead of using grid search to determine the best fitting parameters for the OPM
(as seen in Subsection 3.3.2), here the already fitted model was employed to verify
that the parameters obtained from table setting data could also successfully be
applied to other everyday activities.

Figure 3.18: Comparison of OPM and machine learning model performance based on type
of activity, lines showing quartiles
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Activity OPM vs NN OPM vs RNN

cooking

𝑊 = 319.500,
𝑝 < 0.001
mean NN: 4.96, median: 4.0
mean OPM: 2.78, median: 2.0

𝑊 = 0.000,
𝑝 < 0.001
mean RNN: 3.42, median: 3.0
mean OPM: 2.78, median: 2.0

cleaning up

𝑊 = 0.000,
𝑝 < 0.001
mean NN: 7.41, median: 8.0
mean OPM: 3.82, median: 4.0

𝑊 = 0.000,
𝑝 < 0.001
mean RNN: 6.59, median: 7.0
mean OPM: 3.82, median: 4.0

Table 3.8: Wilcoxon signed rank test results

Results

The model with the lowest prediction error (model parameters: strong 𝑘 = 0.2, mid
𝑘 = 0.3, food 𝑘 = 1.2, 𝑐 = 1.7) as determined in Subsection 3.3.4 was applied to the
new data sets in order to test the generalizability of the OPM. To determine the lowest
prediction error, the median error of 𝑛 = 100 iterations was calculated and then
averaged over all sequences. Physical distances were calculated in 2D (𝑥𝑦) space,
based on the reasons mentioned in Subsection 3.3.2. For both new activities, the
OPM outperforms the machine learning models in both simulations (see Figure 3.18,
middle and rightmost subplot).

To compare the OPM’s performance with the machine learning models’ perfor-
mance, a Wilcoxon signed-rank test was employed. Statistical analysis confirms that
the model outperforms both the text prediction RNN and the neural network with
spatial information on a significant level in each of the simulations (see Table 3.8).

The results lend support to the assumption that the OPM is able to adapt to new
environments and everyday tasks as it does not rely on learning patterns to predict
them correctly. Instead, it takes the spatial arrangement into account to predict
the lowest-cost next action independently of previously seen sequential patterns,
operationalizing the underlying determinants. While the NN receives the same
information about the task context as the OPM (locations of items and participant,
item parameters in terms of relational dependencies, items seen previously in the
action sequence), the variety in task structure between different everyday activities
makes it impossible to solely rely on learned patterns when generalizing to a new
everyday activity. This variety includes, e.g., different required items that might not
have been seen before, which in turn represent new subtasks with different priorities.
Simulation results from the cooking data set confirm that the OPM is also able to
accurately predict human behavior in task contexts with constraints.

While the OPM outperforms both machine learning models, there are still some
sequences that can not yet be fully explained, such as in cases where spatial distances
are very similar, e.g., because the physical environment is small, and where relational
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dependencies between items as well as topological circumstances are irrelevant
(i.e., there are no relational dependencies and all or no items are stored in closed
locations). In such cases, the prediction power of the OPM could be improved by
considering other potentially influential factors.

3.3.6 Comparing Overall Performance of the OPM vs Machine Learning
Baselines

Figure 3.19: Comparison of OPM and machine learning model performance averaged over
all activities, lines showing quartiles

To verify the OPM’s performance in general and not only on subsets of the available
data, the performance was averaged over all data sets, i.e., table setting, cooking,
and cleaning up. Again comparing the OPM’s performance to the machine learning
baselines, the OPM outperforms the RNN (mean performance over all data sets: 3.56
OPM vs 4.32 RNN, median: 3.0 OPM vs 4.0 RNN), and performs on a similar level
than the NN (mean performance over all data sets: 3.56 OPM vs 3.67 NN, median:
3.0 for both, see also Figure 3.19). A Wilcoxon signed-rank test of the results confirms
this eye-level interpretation of the results, as the OPM significantly outperforms the
RNN (𝑊 = 6074.500, 𝑝 < 0.001), but there is no significant performance difference
between OPM and NN (𝑊 = 19895.500, 𝑝 = 0.29742).

Averaged over all data sets, the OPM performs equally well as the NN. This
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indicates that the parameters proposed to be of influence on human action selection
in everyday activities are able to explain human behavior equally well as a neural
network trained on (spatial) context information. Whereas the learned patterns of
the NN are context-specific and cannot be generalized to new tasks or environments,
by implementing common patterns of behavior independent of one specific task, the
OPM is able to generalize to new everyday activities.

The implications of these findings are further discussed in the following section and
well as Chapter 5, along with possible explanations for the performance difference
between the OPM and the machine learning models.

3.3.7 Discussion

In summary, six different model simulations have been performed to parameterize
the OPM (see Subsection 3.3.1), test which dimensions are likely to be considered
when calculating distances (see Subsection 3.3.2), compare several models with
different planning depths (see Subsection 3.3.3), provide machine learning baselines
and compare the OPM’s performance to them (see Subsection 3.3.4), test the gen-
eralizability of the OPM (see Subsection 3.3.5), and compare the performance of
the OPM and the machine learning models averaged over all everyday activities (see
Subsection 3.3.6).

The results lend support to the assumption that the proposed parameters (distance,
relational dependencies, and containment) are of importance when trying to explain
action selection behavior (see Subsection 3.3.1), as they improve the prediction
accuracy of the OPM compared to only considering distance. Furthermore, people
seem to only consider a 2D (𝑥𝑦) mental representation of space (see Subsection 3.3.2)
when performing the types of everyday activities considered in the scope of this thesis,
as there is no evidence to the contrary (i.e., while a 3D model performs equally well, it
is reasonable to assume a preference for the less costly representation). Additionally,
the findings indicate that a locally optimal model planning only one step ahead is the
most plausible (Subsection 3.3.3), and that the OPM is better able to generalize to
new activities than machine learning models (see Subsection 3.3.5).

While the NN outperforms the OPM on a singular activity (table setting), its
performance worsens when applied to new task contexts (cleaning up and cooking),
which indicates that the NN overfitted on the original task and did not learn the
common underlying principles of cognition, but patterns in the table setting data.
In contrast, the OPM aims to generate action selection behavior based on general
principles of human (spatial) cognition that show common patterns over different
everyday tasks. While in the sense of Marr (1982), the machine learning models
provide implementations of the computational functions on the algorithmic level, the
OPM provides a model on the computational level, aiming to explain how people
select their actions. Based on this intention, the results have several implications for
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human (spatial) cognition, which will be discussed further in Chapter 5.

In the following chapter, the application of the OPM as a cognitive model for
robot agents will be presented, along with the implications of integrating an action
selection model into a robot planning framework.
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Model Performance in Simulation

There are several aspects of employing human cognition as a modeling baseline that
are of importance when applying cognitive models to artificial agents: First, human
cognition is embodied, i.e., cognition is dependent on the experiences resulting
from having a physical body with specific (sensorimotor) capabilities and limitations,
while these capacities are at the same time embedded in the biological, cultural,
and psychological context (Varela et al., 1992). Second, processes such as decision-
making or action selection, as well as their resulting behavior, are executed in real
time, which means that problem solutions in terms of classical rationality (computing
the best possible solution from all possible solutions) are not feasible under the
assumption of limited computational resources (e.g., working memory) and time.
Both of these aspects are consistent with one of the requirements for cognitive agents
in robotics, i.e., being able to act flexibly and adapt to a dynamic environment,
while solving problems within the time constraints given by the environment and the
problem itself (Kurup & Lebiere, 2012). Another requirement for intelligent agents
as stated by Kurup and Lebiere (2012) is to interact with humans in a natural way,
which is also addressed by the OPM and will be discussed further in Section 4.5.

Due to the presented considerations, purely theoretical models based on results
from experimental settings are often not ecologically valid in real-world scenarios.
While the concept of ecological validity has been criticized as being to general and not
addressing the problem of generalizability (Holleman et al., 2020), the requirement
to state the specific context for which the discussed cognitive processes or behaviors
apply remains the same. Formulated in these terms, many cognitive models are based
on theoretical assumptions without grounding them in physical experience as well
as their situational context. The problem with these approaches is that while they
do provide a theory of the underlying principles of cognition they study, they lack
generalizability to practical applications such as artificial cognitive agents.

In order to test the feasibility of the OPM as a cognitive model for artificial cognitive
agents, the OPM was applied as a decision heuristic in robot task planning. Based
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on the assumption that modeling robot behavior to more closely resemble human
behavior would increase efficiency in and mastery of everyday tasks, as people
are able to perform everyday activities with ease even in unfamiliar environments
and without clear instructions of what to do (next), the OPM aims to implement
underlying processes of human cognition relevant for action selection. Aside from
the goal to identify the underlying cognitive processes that inform human action
selection behavior, the OPM was therefore also intended to be used as a cognitive
model that can be transferred to and employed by artificial cognitive agents (i.e.,
household robots). Additionally, robot behavior that more closely matches human
behavior has been shown to increase trust in human-robot interaction (de Visser
et al., 2012), whereas unexpected behavior decreases trust in robot systems (Lyons
et al., 2023). The implications of this will be further discussed in Section 4.5.

In order to test whether applying the OPM as an action selection model for house-
hold robots actually increases their behavioral autonomy and results in better mastery
of everyday activities, the OPM has been tested in simulation. The OPM has been
implemented as a ROS service that can be called directly from any robot planning
framework, which ensures the transferability of the system when switching to another
planning framework. For the simulation described in the following, the planning
executive of the CRAM cognitive architecture was employed as a robot planning
framework.

4.1 The CRAM Framework

CRAM (Cognitive Robot Abstract Machine) (Beetz et al., 2010) is a framework
that enables the implementation, design, and deployment of software on cognition-
enabled autonomous robots. CRAM as a term is used to describe both the CRAM
cognitive architecture and its planning executive. The CRAM cognitive architecture
combines multiple modules for different aspects of robot control, such as motion
planning or reasoning. The orchestration of these different modules is achieved
with the CRAM planning executive. Additionally, the CRAM cognitive architecture
provides a variety of libraries, including geometrical reasoning mechanisms and a
fast simulation environment (BulletWorld). The simulation environment enables
testing of possible robot executions while using the same code as in the real world,
which makes it ideal for testing robot behavior for effectiveness and safety.

The CRAM cognitive architecture uses the ROS middleware for communicating
with the robot and different software components for robot control. For the feasibility
study described in this chapter, a pick and place task was implemented in PyCRAM,
which is the Python3 re-implementation of the CRAM framework.

One of the key components of the CRAM planning executive are designators, which
are objects that describe abstract robot behaviors or properties and can derive missing
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information from previously set logical internal rules. Currently, CRAM supports four
different types of designators:

1. Location designators describe specific locations in the world (e.g., cupboard)
and associated properties such as reachability. While the location in the world
can be described, the specific pose required to interact with an object in that
location needs to be determined during runtime.

2. Object designators are abstract representations of objects in the world, including
information about their intended use. Usually, an object designator specifies
the name or type of an object for which a corresponding object can then be
identified in the world state (e.g., cup).

3. Motion designators describe simple robot movements that can be executed using
process modules. Other than object, location, or action designators, motion
designators do not need to be resolved, since they describe atomic movements
(e.g., grasping).

4. Action designators are used to describe high-level, complex actions that cannot
be executed in a single motion, such as cutting (which entails, e.g., picking
up the knife, picking up and placing the object to be cut, and then moving the
knife downwards with a specific pose and force, etc.). Action designators are
the most high-level designators available, i.e., they need to be resolved into
motion designators and parameterized with the objects and locations specified
by the object and location designators in the plan.

CRAM uses generalized plans that are applicable to numerous variations of the
same task (e.g., pick and place in different scenarios with different objects). The
generalized plan is automatically contextualized for each individual action, i.e., the
robot control framework infers the body motions required to pick up and transport
each object depending on the type and state of the object, its original location (e.g.,
the cupboard or the kitchen counter), and the task context (in this case, setting the
table) (Kazhoyan et al., 2021).

An example for a simple action designator can be seen below:

PickUpAction ( b r eak f a s t _ ce r ea l ,
arms = [arm ] ,
grasps = [ grasp ])

PickUpAction indicates the action to be performed (pick up something), with the
object (breakfast cereal) and which arm and grasp to use being specified in the form
of specific designators. While designator descriptions (e.g., arms, grasps) describe
the designators, specific designators are the result of reasoning about the (missing)
parameters. In order to translate the general plan into specific motions, the designator
descriptions are resolved into specific designators, after which the reasoning system
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determines the parameters required to reach the specified goal (i.e., how the robot
needs to move its arm to reach and pick up the breakfast cereal).

4.2 Task Scenario

For testing the OPM, a pick and place scenario (table setting) was employed with a
defined set of items (spoon, breakfast cereal, milk, cup, bowl) that were supposed to
be picked up from different locations and brought to the table by the PR2 robot. For
the setup of the simulation environment, see Figure 4.1. In such an everyday task,
the robot control system typically performs the actions in the predefined order from
a given list of actions (i.e., which objects to pick up and place on the table in which
order). If the planning system does not implement specific precedence rules on the
action ordering due to given constraints, this means that the robot control system
receives a list of items to be fetched and processes this list in the respective order.

In the simulation, the OPM ROS module is called with an unsorted list of items
that need to be brought to the table. The list contains the names of the objects and
their relative poses (spatial location and orientation) in the kitchen, and the robot’s
pose which is used as the starting point from which to calculate the weighted costs

Figure 4.1: Task environment: Initial kitchen setup
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of all possible actions. The OPM evaluates this list (as described in Chapter 3) and
returns the next action to be performed based on Equation 3.1 (which item to fetch
next). After performing the respective action, i.e., picking up the item and delivering
it to the target location (see Figure 4.2) on the kitchen island, the robot repeats this
process until only one item is left to be picked up. The final item can then be fetched
without calling the OPM first, since there are no more options to choose from.

4.3 Simulation

To evaluate the impact of integrating the OPM as an action selection module in the
CRAM system, a series of tests were run in BulletWorld, the internal physics simulation
of CRAM. The simulation is intended to be a proof of concept, demonstrating the
feasibility of employing the OPM as an action selection module in a robot planning
framework, as well as a benchmark to gauge whether using the OPM affects the
outcome of the simulation in any way (runtime, failures, overall distance to be
traversed). Therefore, the efficiency of the OPM regarding runtime of the simulation
as well as to-be-traversed distance was compared to the baseline simulation (same
setup, but without using the OPM for action selection).

Figure 4.2: Task environment: Target location
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In the baseline simulation, the robot was required to transport the items from point
A (various kitchen surfaces where the items were stored) to point B (the kitchen
island) in the given order (no constraints on the ordering). The order of actions was
in this case provided by the robot control program as a simple list to be processed
in sequence by the robot. This simulation served as a baseline for robot behavior
without using a specific action selection strategy, but instead relying on the action
sequence being predefined by the user or programmer.

To test whether the order of actions changed compared to the baseline simulation,
the OPM was employed as an action selection strategy that chose the next action
based on the weighted cost of each action. The robot’s current pose served as the
starting position before each action step. Parameters for the OPM were set as follows:
Strong 𝑘 = 0.2 (items: none), mid 𝑘 = 0.3 (items: bowl), 𝑐 = 1.7 (items: none). Food
𝑘 was not set due to the type of activity (table setting), and 𝑐 had no impact as all
objects were stored in open locations.

Five simulations were run to gauge the runtime and the variation in action se-
quences comparing the baseline simulation with the OPM simulation. Each simulation
was run for 𝑛 = 10 trials, to reduce the impact of any outliers in simulation durations.
Simulation times may vary due to the time it takes for the system to spawn the Bul-
letWorld setup (environment, items, robot) before running the task scenario, which
is why multiple trials were run. Planning and execution times for each simulation
were recorded from the start of the demo (ROS and PyCRAM already running) until
the simulation environment was shut down again after transporting the last item to
the table.

In order to increase the variance between the environment setups of the simulations,
the locations of the objects were randomized from a fixed set of possible locations,
with four items always being located on the kitchen counter next to the sink, and
one item always being located on the kitchen island near the table setting location.
The specific item locations were switched between variations of the simulation (v1-
v5), such that each item was located on the kitchen island for one simulation, and
located in one of the four spots next to the sink in the other simulations. For each
variation, 𝑛 = 10 trials were run, which in total results in 𝑛 = 50 trials for the baseline
simulation and 𝑛 = 50 trials for the OPM simulation.

While the OPM simulation’s order of actions varies between the five possible setups
as changing the locations of the items influences the weighted cost calculation and
thus changes the order of objects to be picked up and brought to the table, the
baseline simulation follows a predefined order of actions. To add some more variety
to the baseline simulation in case of this having an impact on the runtime, the order
of actions was randomly chosen. As running all possible variations (5! = 120) was
not feasible due to time constraints, five random samples for action orderings were
chosen corresponding to the five location setups (see Table 4.2). The order of actions
determined by the OPM for the same setup of item locations is given in Table 4.3.
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The simulation numbers given in both tables indicate the corresponding setups, i.e.,
the object locations were the same in simulation v1 of the baseline simulation and
simulation v1 of the OPM simulation.

Results show that the order of objects from the baseline simulations 𝑂1 differ from
the ordering of items using the OPM as an action selection strategy 𝑂2, indicating
that the action selection process was adapted to the environment, thereby creating a
permutation of the set 𝑂1 (for an example, see Table 4.1). The action sequences for
all five simulations are shown in Table 4.2 (baseline simulation) and Table 4.3 (OPM
simulation).

Permutation Order of actions/objects

𝑂1 { breakfast-cereal, cup, bowl, spoon, milk }

𝑂2 { bowl, breakfast-cereal, cup, spoon, milk }

Table 4.1: Object list order for simulation v1

Simulation Order of actions/objects

v1 { breakfast-cereal, cup, bowl, spoon, milk }

v2 { spoon, breakfast-cereal, milk, cup, bowl }

v3 { cup, milk, breakfast-cereal, bowl, spoon }

v4 { bowl, milk, cup, spoon, breakfast-cereal }

v5 { bowl, cup, breakfast-cereal, spoon, milk }

Table 4.2: Object list order: Baseline simulation (number of trials: n=10 for each simulation)

Simulation Order of actions/objects

v1 { bowl, breakfast-cereal, cup, spoon, milk }

v2 { bowl, cup, milk, breakfast-cereal, spoon }

v3 { bowl, spoon, breakfast-cereal, cup, milk }

v4 { bowl, spoon, milk, cup, breakfast-cereal }

v5 { bowl, milk, breakfast-cereal, spoon, cup }

Table 4.3: Object list order: OPM simulation (number of trials: n=10 for each simulation)

To calculate how similar the original random action sequences were from the ones
generated by the OPM based on the spatial and parameter information, normalized
edit distance (see Equation 3.4) was employed. The average edit distance for v1-v5 is
0.56 (median 0.4, for individual simulations see Table 4.4), indicating that the OPM
ordering differs from the random ordering in each simulation.

To factor in the time required to traverse the physical distances, which is not
provided by BulletWorld, the velocity of the PR2 robot (3.6 𝑘𝑚/ℎ) was considered for
calculating movement times. The overall simulation times were then calculated by
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Simulation Normalized edit distance

v1 0.4

v2 0.8

v3 0.8

v4 0.4

v5 0.4

Table 4.4: Normalized edit distances between OPM and baseline simulation (number of
trials: n=10 for each simulation)

adding the driving times based on the calculated distances to the logged planning and
execution times. For a traversed distance of 3.2 meters, this means that an additional
3.2 seconds were added to the total duration time of the corresponding trial.

4.4 Results

On average, the simulation using the OPM as an action selection model runs
slightly faster than the baseline simulation (379.69 seconds for the OPM simulation
vs 385.03 seconds for the baseline simulation, for the distribution of results see
Figure 4.3), but the difference is not significant (Wilcoxon signed-rank test results:
𝑊 = 533.000, 𝑝 = 0.31832).

Grouped by simulation, the baseline simulation is slower (on average) than the

Figure 4.3: Simulation duration in seconds (n=50), lines showing quartiles
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OPM simulation in three of five cases (see Figure 4.4).

To check whether employing the OPM resulted in a more efficient order of actions
based on the physical distance that had to be traversed, the distances between the
storage locations of the items and their placing locations on the kitchen islands were
calculated and summed up for each simulation (see Figure 4.5 for the results). As
expected, distances on average were shorter when employing the OPM (4.98 meters
in total for the OPM simulation vs 5.39 meters in total for the baseline simulation),
but without showing a significant difference (Wilcoxon signed-rank test results:
𝑊 = 3.000, 𝑝 = 0.31250). Overall aggregated distances for the baseline simulation
versus the OPM simulation are shown in Figure 4.6.

4.5 Implications

As current task planning methods are only applicable if hard constraints on the
action ordering exist, the OPM provides a model for action selection in weakly
constrained task sequences. Employing the OPM as an action selection strategy in
a robot control framework provides two advantages: First, it reduces the required
effort when designing robot control programs for specific tasks, as there is no more
need to predefine a specific order of subtasks. Instead of devising a suitable order of
subtasks for the given task scenario when developing a robot plan, the OPM chooses
the next lowest-cost option from the given possibilities, modeling human behavior in
everyday settings. The heuristic employed by the OPM is independent of environment
and task structure, allowing it to be applied to any everyday task. As a result, robot

Figure 4.4: Simulation duration in seconds, grouped by simulation (n=10 for each variation),
lines showing quartiles
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Figure 4.5: Distances in meters (n=10 for each variation), grouped by simulation

Figure 4.6: Distances in meters, aggregated by simulation type (n=50), lines showing quar-
tiles
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behavior can be generated more autonomously, without the need to design task- or
environment-specific control programs. While this could also be achieved by choosing
a random order of actions that does not have to be predefined, employing the OPM
leads to shorter overall distances. Especially for larger environments where items are
stored in significantly different locations (e.g., in a multi-story building), choosing a
random order could lead to travel lengths that are inefficient (e.g., visiting the same
room twice even if multiple items can be transported at once).

Second, as mentioned in the beginning of this chapter, artificial cognitive agents
such as robots are supposed to interact naturally with other agents, especially humans.
Previous studies show that unexpected behavior decreases trust in human-robot
interaction (Lyons et al., 2023), whereas predictability of robot behavior is positively
correlated with trust and increasing the humanness of a machine increases trust
calibration and appropriate compliance (de Visser et al., 2012). Additionally, trust is
less likely to be lost for a more anthropomorphic agent, even if they perform poorly,
i.e., adding human features or behavior increases trust resilience on the human side
(De Visser et al., 2016). Mignone et al. (2023) showed that for a movement task
(handwriting), people are not able to consistently differentiate between artificial and
human-generated motions, but behavior that seems more human-like still increases
user acceptance of the robot. In summary, robot behavior that more closely matches
human expectations is beneficial for user acceptance.

In order to increase user friendliness, it is thus desirable to achieve more naturalistic
behavior patterns for robot agents. Since the OPM is modeled on human behavior,
it should more closely resemble human behavior than, e.g., just choosing actions
randomly or following a global shortest-path approach. This improved match between
people’s expectations and robot behavior could in turn lead to higher user acceptance,
as the robot’s behavior being in line with expectations will make people interacting
with the robot feel more at ease.

As shown by the comparison of the two simulation variants (baseline vs OPM),
there is no significant difference in program runtime. However, the to-be-traversed
distances are slightly reduced when employing the OPM as an action selection
strategy compared to the baseline simulation that follows a given random action
order. While the time to traverse distances was also considered during the simulation,
the difference in distances might be of more importance in a real-world trial, since
runtimes in a real-world scenario may be slightly different due to the sim to real gap.
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Discussion

To set the scene for the subsequent discussion, the following gives a short summary
of the results seen in Section 3.3.

The results of the simulations lend support to the assumption that human behav-
ior in everyday settings relies on situational context knowledge to perform tasks
efficiently, and that action selection in such tasks is strongly influenced by spatial
cognition. The results demonstrate that the proposed parameters (relational de-
pendencies and topology) improve the prediction accuracy of the OPM compared
to using only the physical distance, which emphasizes the importance of context
knowledge when choosing which action to perform next. The simulation results have
several implications regarding the cognitive processes involved in action selection in
everyday tasks: a) People aim to minimize physical and cognitive effort, b) they rely
on stepwise optimization and external scaffolding based on spatial cognition (i.e.,
by using spatial properties of the task environment to their advantage), and c) the
mental representation of physical space seems to be in 2D.

These results are consistent with findings from previous studies: People prefer
to plan opportunistically rather than planning ahead when dealing with tasks that
have a large problem space (Meder et al., 2019), and due to being more accurately
encoded, a 2D mental representation of space seems to be preferred over a 3D
representation including the vertical domain (Hinterecker, Pretto, et al., 2018). The
results are also consistent with the law of less work, according to which physical
and cognitive effort are considered aversive (Hull, 1943; Kool et al., 2010). In the
context of spatial tasks, this leads to relying on methods of cognitive offloading
(Clark, 1996; Freksa, 2015; Kirsh, 1995; Wilson, 2002). Additionally, due to the
limited availability of knowledge and processing power, people typically employ
heuristics that exploit the information structure of the environment instead of using
more complex planning or action selection strategies, as has been shown by previous
studies (Griffiths, 2020; Todd & Gigerenzer, 2007). Considering that the results from
Section 3.3 demonstrate that the OPM is able to explain human behavior well under
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the assumptions of bounded rationality and limited planning ahead, this is consistent
with the findings of this thesis. In summary, the parameters implemented in the OPM,
i.e., distance, relational dependencies between items, and topology, are assumed to
be highly relevant for human behavior in everyday tasks.

5.1 Generalization Performance Compared to Machine Learn-
ing Models

The OPM’s strength is that it provides a universal action selection mechanism which
can be applied to new data and tasks, where previously learned patterns of behavior
are inapplicable. Therefore, it generalizes well to new everyday tasks of the studied
domain, outperforming machine learning models optimized for pattern recognition.
While a neural network given the same information as the OPM performs better
on a single task (e.g., only table setting), it is unable to capture the underlying
general patterns. While the NN outperforms the OPM on the initial table setting
task (see Subsection 3.3.4), the OPM performs better on the generalization tasks
(see Subsection 3.3.5). This difference in performance likely stems from the fact
that the NN learns the underlying patterns of a single task (table setting), allowing
it to outperform the OPM in this task. The downside of relying on pattern learning
shows when generalizing to new tasks: The NN, having overfitted on the table setting
task, cannot transfer the learned patterns successfully to the new tasks, whereas the
OPM, being based on common cognitive processes between the different tasks, is
able to generalize well. The machine learning models are not able to abstract from
the specifics of a particular task and are not able to transfer the learned regularities
to new task contexts, whereas the OPM does not rely on learning patterns. The
considered parameters (distance, relational dependencies, topology) seem to be able
to explain observed behavior in several different household tasks reasonably well.

The change of task context, such as switching from a table setting tasks to a cooking
task, explains why the machine learning models fail to perform equally well when
being employed on a new everyday task, even though they are optimized for pattern
recognition. As they rely on previously learned patterns instead of a general model
of human action selection when being faced with a multitude of possible options, the
machine learning models are unable to capture the underlying cognitive processes
of action selection, which is why they cannot generalize to new tasks with the same
level of performance. The OPM, on the other, generates action sequences based on a
general model of human action selection, including preferences that are not limited
to one specific task.

In the sense of Marr (1982), the OPM provides a model on the computational
level, which defines the problem of action selection without claiming to understand
how the proposed factors influence action selection on a neurological level. Based
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on the findings of this thesis, the goal to reduce effort influences how people deal
with everyday tasks. One of the mechanisms to achieve this goal is to take spatial
properties of the environment into account and to employ them effectively. This
seems to be a viable heuristic for human action selection behavior, as evidenced
by the fact that the OPM is able to approximate human behavior. Contrary to the
neural network models that were employed as performance baselines for the OPM,
the OPM is an explanatory model, i.e., it aims to make the factors influencing human
action selection explicit. In doing so, it provides insights on the interplay of different
cognitive processes that are important for the types of everyday activities considered
in the scope of this thesis.

5.2 Mental Representation of Space

Based on the results of Subsection 3.3.2 there is no clear indication of better
or worse performance when comparing a 2D with a 3D representation of space.
Since there is no evidence that corroborates the use of a 3D representation, it is
reasonable to assume that the less effortful method of internal computation is used,
i.e., that space is represented in 2D (𝑥𝑦). Previous research shows that this preference
for a 2D representation as well as a performance decline in 3D environments are
also apparent in other tasks, such as during wayfinding (Zwergal et al., 2016).
Additionally, the horizontal and the vertical domain seem to be encoded in a different
way in the human brain (Hinterecker, Leroy, et al., 2018; Hinterecker, Pretto, et al.,
2018). The vertical domain seems to be encoded less accurately, which might explain
why it is often neglected when considering distances. When navigating vertically,
people lose their orientation, as shown by previous research (Ohno et al., 1999).
These results corroborate the assumption that the vertical dimension is encoded
less accurately than the horizontal one. Based on these findings and the simulation
results, it seems reasonable to assume that people generally tend to represent space
two-dimensionally (in 𝑥𝑦) whenever the vertical dimension does not have a huge
influence on the respective task.

This difference in influence might result from the different types of movement
that take place in the vertical versus the horizontal domain: Assuming that the task
environment is relatively small, which means movement only takes part on one plane
(e.g., in a kitchen environment), horizontal movement is reserved for locomotion,
whereas vertical movement typically only contains reaching for objects that are stored
higher up or further down. In such a task environment, movement of the whole body
is only performed on the horizontal plane, as there is no need to move on the vertical
axis (except for the arms). If the task environment is larger, e.g. when performing a
task in a two-story building with movement required between both levels, the mental
representation of space might change. This also holds in cases where the distance to
be traversed requires detours, such that linear distance cannot be used.

91



Chapter 5. Discussion

Furthermore, the same reasoning applies for other tasks during which the mental
representation of space in a specific way is of higher importance: If a task requires
all three dimensions, such as performing surgical operations or controlling air traffic,
supposedly a 3D representation of space is employed, as it is required to perform the
given task successfully. If the third dimension provides additional, but not crucial
information, it is reasonable to assume that people use the less detailed representation
in order to reduce the necessary mental effort and computational costs. In cases such
as setting a table or navigating on foot, a 2D (𝑥𝑦) representation of space is therefore
sufficient.

5.3 Previous Approaches to Action Selection

The main difference between previous work on sequential action control and the
OPM is that models such as the one of Botvinick and Plaut (2004) consider different
cognitive mechanisms compared to the OPM. Botvinick and Plaut (2004) present
a non-hierarchical model of sequential action that is able to account for normal
human behavior in everyday tasks as well as for action slips, i.e., the main focus is to
explain how routine sequential action can be controlled in a finite problem space to
either reduce or recreate errors such as action slips. Opportunistic action selection
focuses on preference mechanisms instead: The OPM aims to provide an explanatory
computational model of human behavior in everyday activities that clarifies the
underlying cognitive processes of (spatial) cognition that have an influence on action
selection. Action control thus has a less prominent role, as the goal is a) to narrow
down the search space from a multitude of possible options, and b) to make the
factors influencing the action selection process explicit.

Cooper et al. (2014) extend the approach of Botvinick and Plaut (2004) by imple-
menting a routine and a non-routine system. The focus is on control and learning
of goal-directed actions, demonstrating how the learning of emergent task repre-
sentations results in a shift from the non-routine to the routine systems, as action
selection becomes routine behavior over time. Similar to Botvinick and Plaut (2004),
the model focuses on action control, whereas the OPM aims to explain underlying
preferences of spatial cognition and how they influence action selection.

Botvinick and Weinstein (2014) present a model of hierarchical reinforcement
learning in a navigation task. While their model also focuses on decision-making
in a sequential task, the goal is to find the lowest-cost pathway between start and
end node that is globally optimal. In contrast, the OPM uses an opportunistic
stepwise approach that is locally instead of globally optimal. Another approach to
reinforcement learning in a sequential action selection task is the one of Kachergis
et al. (2016). Here, the agent receives feedback for their response in each step,
whereas the OPM requires no feedback. Additionally, both Botvinick and Weinstein
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(2014) and Kachergis et al. (2016) explicitly focus on learning strategies, while the
OPM does not consider learning mechanisms.

While these existing models can be applied to everyday activities with a finite
number of ways to perform the activity (e.g., making coffee, which only requires
a few actions), a problem arises once no such constraints exist: If the means to
compare all possible solutions are not given, what is the role of control in the task?
How can appropriate means to reach the desired goal state be extracted from a
potentially infinitely large search space? The success of the OPM corroborates the
assumption that problem-solving in ill-defined domains requires an opportunistic
planning strategy, for which the presented models of action sequence control have
no mechanism. Instead, they focus on how sequential (routine) action with a finite
search space for the problem solution is controlled. The goal of the presented
approaches is not to explain how human action selection behavior arises from specific
preferences, but how to minimize errors such as action slips during fixed sequences
of actions.

Previous opportunistic approaches (Hayes-Roth & Hayes-Roth, 1979; Patsenko &
Altmann, 2010) also take environmental cues and opportunities into account, which
is similar to the way the OPM considers the current spatial setup when choosing the
next-best option from all possible actions. Hayes-Roth and Hayes-Roth (1979) focus
on planning extended sequences of actions, such as a full day of errands, whereas
the OPM only considers short-termin action selection for a single task. The situated
control routine model of Patsenko and Altmann (2010) based on selective attention
is intended for more well-defined tasks, such as the Tower of Hanoi, and focuses on a
different cognitive mechanism than the OPM (selection attention instead of bounded
rationality).

To develop a model that is capable of planning a sequence of everyday activities
and selecting the next action during each activity, a combination of the model of
Hayes-Roth and Hayes-Roth (1979) and the OPM might be beneficial. While Hayes-
Roth and Hayes-Roth (1979) focus on the high-level view of how to combine different
activities efficiently during the day (e.g., how to minimize the required effort when
having to run errands), the OPM could provide a decision heuristic for choosing
the action ordering for each of these activities. For some decisions that are mainly
based on distance considerations, both models might come to the same conclusion
independent of each other (e.g., it is more efficient to visit place A first, assuming
place B is farther away and there is no requirement to visit place B before place A).

Implementing a dynamic action selection strategy, the OPM does of course show
similarities to other dynamic planning models. Instead of having a predefined set
of deterministic condition-action rules that specify if-then rules and assign priorities
to these rules to be able to solve potential conflicts (Brom & Bryson, 2006), the
OPM relies on an opportunistic strategy. In consequence, the OPM does not require
hard-coded action rules or plans. While relational dependencies between specific
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items could be considered to be such hard-coded rules, they are not deterministic.
Even if according to relational dependencies, the saucer should be picked up before
the corresponding cup, there are several ways in which this order could be overruled:
First, the order could be reversed if the influence of the other relevant factors
(distance and topology) supersedes the influence of the relational dependency, and
second, picking up the saucer does not determine what to do next specifically, i.e.,
there is no associated if-then rule. Once the saucer has been picked up, the next
action can be chosen from all other not yet done actions, as there are no hard
constraints on any action orderings.

5.4 Previous Approaches to Task Planning in Robotics

As described in 2.3, existing approaches to task planning can be categorized into
classical task planning, HTN planning, and reactive planning. In contrast to the
OPM, classical planning strategies tend to look for a feasible solution to a task
before execution, which increases computational complexity and does not consider a
dynamically changing world state (see Coles et al. (2021), Fikes and Nilsson (1971),
and Helmert (2006)).

As already seen for HTN planning and reactive planning strategies in the context of
action selection strategies, both planning strategies are similar to the OPM’s approach,
as all of them consider a dynamically changing state of the environment and the
robot, and are thus able to react flexibly to changed conditions. Contrary to the
OPM, HTN strategies require well-structured domain knowledge to be encoded in the
task scenario, which allows them to produce feasible solutions in a short time (see
Lallement et al. (2014), Myers (1999), and Nau et al. (1999)). However, encoding
domain-specific knowledge into the model is not possible when the model is supposed
to be task-independent and able to generalize to new situations.

Reactive planning strategies, while in theory also similar to the OPM, require
partial orderings of actions to be known, or precedence rules to be defined (see Firby
(1987), Georgeff and Lansky (1987), and Kaelbling (1988)). Most of the presented
systems have been tested in a relatively narrow application field, without testing for
generalizability of the proposed strategy. Disregarding this, the problem still remains
that the presented frameworks require user input to define precedence rules and
if-then conditions in order to generate acceptable action sequences for the given task.
Without predefining these rules, multiple “equally feasible” solutions will exist as
long as no hard constraints on the action ordering are given. The advantage the OPM
provides is thus that it is able to narrow down the search for the next best action
even in cases with only weak constraints on the action order.

One of the goals when developing robotic systems that are capable of autonomous
behavior is to reduce the required effort, that is, to minimize the number of cases
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during which a decision from the programmer or user is necessary. Considering this,
the OPM provides a modular extension for robotic systems that offers a decision
heuristic during everyday activities that does not need any predefined condition-
action or precedence rules. Instead, selecting the next action during an activity can
be done by the robot autonomously. The OPM’s action selection strategy can be
implemented into any planning executive or language and does not require a complex
reasoning engine. It should thus be possible to combine the OPM’s opportunistic
action selection strategy with the presented previous approaches: Instead of using
predefined precedence or condition-action rules, the next action can be chosen
opportunistically, assuming that spatial information is included in the given context
information. While the OPM still requires to define parameter categories for relational
dependencies, this is only required once for each type of activity (e.g., cooking or table
setting) and can then be generalized for all similar activities. Some dependencies,
such as the saucer belonging under the cup, are also generally applicable across
various everyday task scenarios and thus do not require redefinition for new activities.

5.5 Limitations

There are several cases the OPM does not account for. By intention, the OPM does
not consider hierarchical tasks, as the OPM is intended to be applicable to weakly
constrained tasks, in which the order of actions could be arbitrarily chosen, instead
of tasks with hard constraints. In order to also consider tasks with a hierarchical
structure, an integration with HTN planning could be beneficial in order to incorpo-
rate a structure able to represent the hierarchical character of a task and its subtasks.
This could, e.g., be achieved by constraining the order of actions based on their
dependencies. Integrating such a hierarchical structure that is able to decompose
tasks into subtasks might be interesting for future work, in order to test whether
such an approach improves the performance for tasks with hard constraints (such as
following a recipe while cooking).

Another limitation of the OPM is that it does not account for individual preferences
during action selection in everyday activities. Since the OPM aims to illustrate general
preferences, individual preferences that might result in different action orderings,
e.g., resulting from learned behavior or cultural differences, cannot be explained
with the current model.

Similarly, the role of learning in routine behavior and mechanisms of goal-directed
vs habitual behavior are not considered, to name a few cognitive mechanisms that
may influence action selection during everyday tasks. Consequently, some of the
observed behavior that the OPM cannot fully explain yet may indicate that there are
other cognitive processes that have not yet been considered during model generation,
the identification and integration of which might improve the OPM’s performance.
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While the data sets employed for the simulations aimed to present novel environ-
ments to the subjects, i.e., not the home environment, but instead a lab kitchen, with
the goal to reduce the possibility to fall back on learned behavior, it is still possible
that learned strategies have a strong influence on people’s behavior. Similar to learn-
ing in video games, where relations are learned in one game and then generalized
across domains to new games (Doumas et al., 2022), the observed behavior could
be the result of transferring learned strategies to new task environments. The only
experiment explicitly intending to implement more variety in the trials by varying the
initial setup of object and subject locations was the EASE-TSD data set (Meier et al.,
2018), but since the experiment was performed in a relatively small environment,
the impact might have been negligible.

Lastly, this thesis only considers highly routinized types of everyday activities. While
other everyday activities such as decision-making in general could be considered
similar in the sense that features of the situation could be modeled spatially and
mentally represented in some way, and that using (software) tool qualifies as cognitive
offloading, such tasks do not necessarily follow the same approach. Thus, while
it is possible that other tasks could also be modeled using the OPM, they are not
considered in the scope of this thesis. Similarly, any household tasks that are not
highly routinized are also disregarded.
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Conclusion

6.1 Summary

This thesis presents an explanatory action selection model for everyday activities
(OPM) that fills the gap between well-defined and ill-defined problem-solving strate-
gies, providing a strategy for tasks in which the order of actions is not or only weakly
constrained. Additionally, results from the OPM’s simulations provide insights on
human (spatial) cognition. The OPM is applicable as a cognitive model in household
robotics even in large problem spaces and can be implemented in any robot planning
framework.

Addressing the research questions that this thesis set out to answer, the following
section gives a short overview of the main results.

1. How do people cope with ill-defined problems in everyday life?

People cope with ill-defined problems in everyday life by employing an oppor-
tunistic strategy, which is consistent with previous research indicating that people
tend to use satisficing solutions (heuristics). Additionally, this is consistent with the
assumptions of bounded rationality and the theory that effort tends to be minimized
wherever possible.

Previous models of action selection mainly focus on controlling errors in finite
problem spaces (i.e., well-defined problems). Contrary to this, the OPM considers
a different cognitive mechanism: It focuses on preferences, shedding light on how
people choose their actions in complex ill-defined tasks such as everyday activities.
The current state of the art does not yet include an action selection model for ill-
defined tasks with a potentially large problem space and without requiring predefined
condition-action or precedence rules. The same reasoning applies to previous ap-
proaches in robotic task planning, as most of them require precedence rules defined
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by the user to deal with possible conflicts arising during action selection. Thus, by
providing a an opportunistic action selection strategy that is applicable to such tasks
and does not require predefined plans or well-structured domain knowledge, the
OPM closes this research gap.

2. How do spatial properties of the environment influence action selection when performing routine

tasks such as everyday activities?

Spatial properties influence action selection in everyday tasks by providing the
means to minimize the required physical and cognitive effort by considering spatial
properties opportunistically. The goal to minimize cognitive and physical effort, based
on the “law of less work” (Hull, 1943; Kool et al., 2010) and bounded rationality
(Simon, 1955), results in specific preferences regarding action orderings that are
based on spatial properties of the environment.

3. Which spatial properties are considered to facilitate everyday tasks? (e.g. distance, topology,

dimensionality, relational dependencies)

Spatial properties that are considered in this way are distance, containment, di-
mensionality of the mental representation, and relational dependencies between
items.

Simulation results confirm the validity and generalizability of the model, demon-
strating that the proposed factors are also of importance in other everyday tasks
than table setting, which was used to parameterize the OPM. The OPM outperforms
machine learning models optimized for pattern recognition if the machine learning
models are not given the spatial information of the environment, which corroborates
the idea that the task context is of high importance when trying to explain human
behavior in everyday settings.

4. What does the success of a computational model based on preferences in everyday activities tell

us about human (spatial) cognition?

The success of the OPM has several implications for human (spatial) cognition
that have been detailed in Section 3.3. Based on simulation results, it is plausible to
assume that people prefer a) a locally optimal task solution over a globally optimal
one (e.g., shortest path), b) a 2D representation of space over a 3D one, and c) 1-step
planning over 2-step-planning.

5. How well can the computational model be transferred to artificial cognitive agents?
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The OPM has successfully been implemented as a cognitive model for an artificial
agent and tested in simulation. While a statistical comparison shows no significant
difference between the baseline simulation (without OPM) and the OPM simulation
in regards to the considered measures (traversed distances and program runtime),
the OPM simulation does decrease the to-be-traversed distances and speed up the
runtime of the simulation.

6.2 Future Work

The difference in performance between the OPM and the neural network with
spatial information indicates that there may still be room for improvement, as the NN
outperforms the OPM in specific cases, such as when spatial distances are very similar
or relational dependencies and containment do not apply. For these cases, future
work should focus on increasing the predictive power of the OPM by considering
other potentially influential factors. Recent research on cognitive effort indicates
that categorizing items in visual working memory may reduce the required cognitive
effort (Zhou et al., 2022). People might therefore rely on categorical representations
more frequently than encoding single items.

Future work also includes comparing the OPM’s performance to other action
selection algorithms for everyday activities currently used in robotics to verify its
validity as a cognitive model for artificial agents. The BDI architecture (Bratman
et al., 1988) would be one possible comparison, as it is also intended for ill-defined
problem domains. The architecture provides a filtering mechanism to constrain how
much reasoning is necessary to choose between possible options, i.e., actions that
are compatible with the current intentions of the cognitive agent. One framework
based on the BDI architecture is the Procedural Reasoning System (PRS) (Georgeff
& Lansky, 1987). PRS was designed as a planning model for usage in household
robotics, rendering it a good candidate for a model to compare the OPM to. To
improve the benchmark validity of the machine learning models, a neural network
could be implemented that receives all the given information (sequence patterns and
task context information such as spatial and other parameters). Such a NN would
then serve as an upper bound of how well the observed data can be explained when
all available knowledge is considered.

Another potential improvement is increasing cross-domain generalization. To
achieve this, the OPM needs to be applied to more everyday activity data sets,
increasing the variety of tasks. Doing so might provide an estimate of whether the
underlying cognitive processes of the OPM are also of importance in other domains
(e.g., navigation), allowing for applying the OPM to other tasks than household tasks.

To increase the advantages of employing the OPM as a cognitive model for artificial
cognitive agents as well as the match with human action selection behavior, a
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future version of the OPM could include the option to pick up multiple items at
once, depending on the item properties (e.g., size and weight) and the available
arms/grippers of the agent.
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Prior Publications

This thesis is in parts based on prior work that has been published in different
international conferences and journals. The parts of this work drawing on content
from prior publications referenced the prior works where appropriate. For the sake of
completeness, this section contains a complete list of my prior publications relevant
to this thesis.

Journal Papers

Wenzl, P., & Schultheis, H. (2024). Action Selection in Everyday Activities: The
Opportunistic Planning Model. Cognitive Science, 48(4), e13444.
https://doi.org/10.1111/cogs.13444

Conference Papers

Wenzl, P., & Schultheis, H. (2020a). Optimality and Space in Weakly
Constrained Everyday Activities. In S. Denison, M. Mack, Y. Xu, &
B. Armstrong (Eds.), Proceedings of the 42nd Annual Conference of the Cognitive
Science Society (pp. 1866–1872). Cognitive Science Society

Wenzl, P., & Schultheis, H. (2020b). Spatial Representation in Sequential
Action Organization of Weakly Constrained Everyday Activities. In J. Šk, ilters,
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