
Un ive r s i ty o f B remen

In s t i t u t e f or A r t i f i c i a l I n t e l l i g ence

Neurosymbolic Robot Programming

A Framework for AI-Enabled Programming of Robot

Manipulation Tasks

Benjamin Alt

Vollständiger Abdruck der vom Fachbereich 3 (Mathematik und Informatik) der Universität
Bremen zur Erlangung des akademischen Grades eines

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Nico Hochgeschwender
Universität Bremen

Erster Prüfer: Prof. Michael Beetz, PhD
Universität Bremen

Zweite Prüferin: Prof. Aude Billard, PhD
École Polytechnique Fédérale de Lausanne

Beisitzerin: Prof. Dr. Tanja Schultz
Universität Bremen

Die Dissertation wurde am 25.10.2024 bei der Universität Bremen eingereicht.
Das Kolloquium fand am 20.02.2025 statt.

Abstract

The vision of robots as intelligent assistants, capable of solving manipulation tasks
in domains ranging from household assistance to industrial manufacturing, requires
methods for humans to endow them with the cognitive and physical abilities to
understand our intents and competently act in accordance with them. The need
for capable robot behavior is accompanied by an equal need for control: Pervasive
use of robots carries significant safety implications, implying a need for humans
to understand robot behavior. This work introduces a neurosymbolic framework
for robot programming that combines neural, subsymbolic representations that
afford learning and first-order optimization with symbolic representations that
afford human interaction and understanding. It introduces Neurosymbolic Robot
Programs (NRPs), a dual robot program representation that associates a skill-based,
symbolic robot program with a differentiable, predictive model of robot behav-
ior. NRPs bridge the representational divide between symbolic and subsymbolic
program representations and serve as a data structure for program synthesis and
optimization algorithms that offer powerful artificial intelligence (AI) assistance
to human programmers, while ultimately leaving the human in control of robot
behavior. This work introduces a family of first-order program optimization algo-
rithms that optimize robot program parameters and low-level motion trajectories
with respect to near-arbitrary task objectives and constraints. It also introduces
a family of program synthesis systems that generate executable robot programs
by leveraging structured representations of task and domain knowledge. Taken
together, they form a neurosymbolic programming framework capable of addressing
major challenges in programming robots to solve complex, real-world manipulation
tasks. The framework and its components are evaluated on tasks ranging from
retail and household fetch-and-place to industrial surface treatment and electronics
assembly.

Zusammenfassung

Die Vision von Robotern als intelligente Assistenten, die in der Lage sind, Ma-
nipulationsaufgaben in allen Bereichen des Lebens und der Arbeit zu lösen, hat
eine lange Tradition. Ihre Umsetzung erfordert Methoden, Robotern ermöglichen,
die Absichten menschlicher Programmierer zu verstehen und diese kompetent
in Handlungen in der echten Welt zu übersetzen. Die Notwendigkeit fähigen
Roboterverhaltens geht einher mit einer ebenso großen Notwendigkeit von Kon-
trolle: Der flächendeckende Einsatz von Robotern birgt erhebliche Risiken im
Hinblick auf physische Sicherheit, und erfordert, dass Menschen das Verhalten
von Robotern verstehen und gezielt beeinflussen können. Diese Arbeit stellt einen
neurosymbolisches Framework für die Roboterprogrammierung vor, der neuronale,
subsymbolische Programmrepräsentationen mit symbolischen Darstellungen kom-
biniert – mit dem Ziel, sowohl datengetriebenes Lernen und Programmoptimierung,
als auch Kontrolle durch den Menschen zu ermöglichen. Es werden Neurosym-
bolische Roboterprogramme (NRPs) vorgestellt, eine duale Programmdarstellung,
die ein fähigkeitsbasiertes, symbolisches Roboterprogramm mit einem differenzier-
baren, prädiktiven Modell desselben Programms verbindet. NRPs überbrücken die
Kluft zwischen symbolischen und subsymbolischen Programmrepräsentationen und
dienen als Datenstruktur für Programmsynthese- und Optimierungsalgorithmen,
die dem menschlichen Programmierer eine leistungsstarke Unterstützung bieten,
während der Mensch letztendlich die Kontrolle über das Roboterverhalten behält.
In dieser Arbeit wird eine Familie von Programmoptimierungsalgorithmen erster
Ordnung vorgestellt, die in der Lage sind, Roboterprogrammparameter und Bewe-
gungstrajektorien im Hinblick auf nahezu willkürliche Ziele hin optimieren, und
gleichzeitig vorgegebene Einschränkungen einzuhalten. Zudem werden Systeme
für die Programmsynthese vorgestellt, die unter Nutzung strukturierter Aufgaben-
und Domänenrepräsentationen ausführbare Roboterprogramme erzeugen. Zusam-
men bilden sie ein neurosymbolisches Rahmenwerk, das die Herausforderungen
bei der Programmierung von Robotern zur Lösung komplexer, realer Manipulation-
saufgaben adressiert. Das Framework und seine Komponenten werden anhand von
Szenarien evaluiert, die von Hol- und Bringdiensten im Einzelhandel und Haushalt
bis hin zur industriellen Oberflächenbehandlung und Elektronikmontage reichen.

Acknowledgments

This work would not have been possible without the support of my mentors, col-
leagues, collaborators and companions. Their brilliance, guidance and criticism
have shaped the way I think. For this, and for their direct and indirect contributions
to this work, they deserve my highest acknowledgments.

I would like to express my deepest gratitude to my supervisor, Michael Beetz,
for the intellectual inspiration and invaluable feedback he has given me over the
course of my work. His vision of cognitive robotics shaped my approach to robot
intelligence and was a steady guidance in a fast-changing field.

Over the last five years, my colleagues at ArtiMinds Robotics have provided me
with invaluable support. I would like to thank Darko Katic for having been a good
mentor, kind critic and an example in leadership and scientific thinking. I thank
Rainer Jäkel for letting me stand on his shoulders and giving me feedback and
direction at crucial times, and Sven Schmidt-Rohr for providing me with the trust
and room to grow. I would like to thank Andreas Hermann and Gerhard Dirschl
for their wealth of technical expertise and personal kindness; Claudius Kienle for
being the best office mate, coauthor and brainstorming partner; Oliver Karrenbauer,
Felipe Alves, Jens Ochsenmeier, Daniel Kosinski, Michael Weiß and Johannes Zahn
for teaching me how to write, build and ship good software, and for joining me in
the endeavor to make AI-enabled robot programming a reality; Stefan Fuß and his
automation engineers for their help with experiments and all things hardware; and
Florian Aumann, Sven Kiesser, Alexander Heilig, Tobias Moritz and the rest of the
ArtiMinds team for their feedback and support on and off the clock.

I am grateful to Aude Billard, Tanja Schultz, Nico Hochgeschwender, Daniel
Beßler and Luca Krohm for kindly agreeing to serve on my thesis committee,
as well as my colleagues at the Institute for Artificial Intelligence (IAI) for their
support, feedback and inspiration. I would like to thank my co-authors and scientific
collaborators for their contributions to this research, especially Asil Kaan Bozcuoğlu,
Andrei Haidu, Franklin Kenghagho Kenfack, Julia Dvorak, Florian Stöckl, Silvan
Müller, Julian Raible and Christopher Braun; and I would like to thank my students,
who have brought many insights and new perspectives to my thinking and provided
invaluable help with programming and experiments, notably Martin Hetz, David
Lerch, Anika Gieringer, Urs Keßner, Lukas Ringle, Tobias Winter, Cristian Gorun
and Xavier Bustamante.

Finally, I would like to express my gratitude to my parents, Manfred Alt and
Anne Plein-Alt, for always having supported my growth and learning; as well as to
Ryan, Tamara, Titus, Yael and Marta for being anchors in a dynamic time.

Karlsruhe, 25 October 2024
Benjamin Alt

This work has received funding from the German Ministry of Education and
Research (BMBF) as part of the projects ILIAS (grant #01DR19001B) and KARL
(grant #02L19C255); from the German Ministry for Economic Affairs and Climate
Action (BMWK) as part of the projects GANResilRob (grant #01MJ22003B), EASY
(grant #01MD22002B) and VADER (grant #13IK026A); from the German state
of Baden-Württemberg as part of the project RoboGrind (grant #BW1 0079/01);
from the German Research Foundation DFG as a part of the EASE Collaborative
Research Center (CRC #1320); and from the European Union as part of the project
euROBIN (grant #101070596).

vi

Contents

List of Figures ix

List of Tables xiii

1 Introduction 3

1.1 AI-Enabled Robot Programming 5
1.2 Contributions . 11
1.3 Outline . 12

2 A Neurosymbolic Robot Program Representation 15

2.1 A Question of Representation . 15
2.2 Neurosymbolic Robot Programs: Overview 20
2.3 Source Program Representations 27
2.4 Differentiable Shadow Programs 34
2.5 Differentiable Motion Planning 54
2.6 Related Work . 64
2.7 Discussion . 79
2.8 Conclusion . 85

3 First-Order Robot Program Parameter Optimization 87

3.1 Optimization of Robot Program Parameters via Inversion of Differ-
entiable Shadow Programs . 89

3.2 Lifelong Learning and Optimization in Stochastic Environments . . 109
3.3 Joint Optimization of Task Parameters and Motion Trajectories . . 129
3.4 Discussion . 144
3.5 Conclusion . 146

4 Interactive AI-Enabled Robot Program Synthesis 149

4.1 Knowledge-Driven Robot Program Synthesis 152
4.2 An Interactive Robot Programming Assistant 186
4.3 Prompt-based Program Synthesis with Large Language Models . . 206
4.4 Discussion . 215
4.5 Conclusion . 217

vii

5 A Framework for Neurosymbolic Robot Programming 219

5.1 A Framework for Neurosymbolic Robot Programming 220
5.2 Related Work . 230
5.3 Discussion . 233
5.4 Conclusion . 235

6 Conclusion 237

6.1 Summary . 237
6.2 Discussion . 239
6.3 Outlook . 243
6.4 Conclusion . 245

Bibliography 247

Appendix 299

A Differentiable Shadow Programs: Predicted Trajectories 301

B Dialogue Transcripts 303

C Prompts 305

D List of Publications 311

List of Abbreviations 315

viii

List of Figures

1.1 Robot programming as bidirectional communication 4
1.2 Examples for retail fetch-and-place and industrial peg-in-hole tasks 6
1.3 Neurosymbolic robot programming 11

2.1 Neurosymbolic Robot Programs 16
2.2 A dual representation of neurosymbolic robot programs 25
2.3 Task tree of a peg-in-hole task and examples for two industrial peg-

in-hole applications . 32
2.4 Structure of a robot source program for a peg-in-hole task 32
2.5 Batched tensor representation of trajectories 36
2.6 Stacked GRU sequence-to-sequence neural architecture 39
2.7 Shadow skill DCG for a spiral search 41
2.8 Prior, predicted and ground truth Cartesian spiral trajectories . . . 41
2.9 Ground truth, prior and posterior Cartesian end-effector trajectories 43
2.10 An NRP for an industrial peg-in-hole task 49
2.11 An NRP for a tactile probe search task 50
2.12 The DGPMP2-ND motion planner 58
2.13 Collision model by cylindrical approximation for a UR5 arm 60
2.14 Computation of the DGPMP2-ND collision error vector for a robot link 60

3.1 The SPI program parameter optimization algorithm 88
3.2 Optimization of force-controlled contact with SPI 95
3.3 Empirical process metrics for different SPI task objectives, relative

to oracle and random baselines 98
3.4 Spiral search motions optimized by SPI for different task objectives 99
3.5 Exemplary baseline and optimized spiral trajectories 100
3.6 VR human demonstration for a household pick-and-place task . . . 101
3.7 Optimization of pick-and-place program parameters with respect to

a human VR demonstration . 103
3.8 Posterior trajectory during optimization of pick-and-place program

parameters with respect to a human VR demonstration 104
3.9 Real-world execution of a fetch-and-place task optimized with re-

spect to a VR human demonstration 104

ix

3.10 Closed-loop SPI for lifelong robot program parameter optimization
in nonstationary environments 111

3.11 Robot program and hardware setup for search-based valve assembly 115
3.12 Optimization of spiral search parameters in the presence of stationary

process noise . 116
3.13 Robot program and hardware setup for THT assembly 120
3.14 Optimization of probe search patterns for nonstationary noise pro-

cesses (linear drift and Brownian motion) 123
3.15 The SPI-DP program parameter and motion trajectory optimizer . 130
3.16 SPI-DP performs joint parameter and trajectory optimization by

double-loop gradient descent over the shadow program DCG . . . 132
3.17 RGB and depth images of a human demonstration of a household

pick-and-place task . 134
3.18 10 human demonstrations and 4 exemplary trajectories planned by

SPI-DP for a household pick-and-place task; real-world execution of
the optimized robot program . 135

3.20 4 exemplary trajectories planned by SPI-DP for placing a wine glass
into a cupboard; real-world execution of the optimized robot program136

3.21 Collision, prior trajectory and start pose factors during DGPMP2-ND
optimization for four different target poses, given the same human
demonstration . 137

3.19 Source program for a household pick-and-place task 138
3.22 Trajectory planned by SPI-DP for a poka-yoke QA task; real-world

execution of the optimized robot program 139
3.23 Source program for a poka-yoke QA task 139

4.1 The MetaWizard family of robot program synthesis systems 151
4.2 High-level overview of the MetaWizard system for knowledge-driven

program synthesis . 153
4.3 Semantic maps of VR and real-world supermarket environments . 156
4.4 The semantics of events, tasks and situations modeled by SOMA . . 160
4.5 Event timeline of a VR NEEM . 165
4.6 Grounded object designators and ARTM robot program for “inverse”

peg-in-hole . 170
4.7 Object designator grounding with RoboSherlock 171
4.8 VR human demonstrations for force-controlled fetch-and-place and

peg-in-hole . 173
4.9 Laboratory and realistic supermarket environments 175
4.10 Simulated and real-world execution of a generated robot source

program for force-controlled fetch-and-place in a lab environment 176
4.11 Simulated and real-world execution of a generated robot source

program for force-controlled peg-in-hole in a lab environment . . . 178

x

4.12 Simulated and real-world execution of a synthesized robot program
for a supermarket fetch-and-place task in a realistic environment . 179

4.13 Simulated and real-world execution of a synthesized robot program
for a force-controlled peg-in-hole task in a realistic environment . . 180

4.14 MetaWizard2 co-creates executable robot programs by interactive
dialogue with a human programmer 187

4.15 The MetaWizard2 metatask representation 190
4.16 MetaWizard2 grounds symbols in its knowledge base by natural-

language interaction with a human programmer 193
4.17 The RoboGrind experiment for robot program synthesis for a wind

turbine sanding task . 194
4.18 Scanned point cloud and annotated defect regions of a wind turbine

blade section and planned tool path for sanding 195
4.19 Measured force trajectories for different controller parameterizations197
4.20 Surface roughness before and after sanding for two different, filled

blade segments . 198
4.21 Hardware setup for wind turbine refabrication with MetaWizard2 . 199
4.22 Simulated and real-world experiment setup for gear deburring with

MetaWizard2 . 200
4.23 Simulated and real-world experiment setup for sanding of rotational

molds with MetaWizard2 . 201
4.24 The MetaWizardLLM robot program synthesis system 207
4.25 The CAD grounding module of MetaWizardLLM 209
4.26 Experiment setup and generated underspecified plan for a gear

assembly task . 211
4.27 Execution of the robot program generated by MetaWizardLLM . . 212

5.1 Lifecycle of an industrial robot program 220
5.2 The BANSAI conceptual framework for neurosymbolic robot pro-

gramming . 222
5.3 An explanation user interface for the SPI program optimization

workflow . 224
5.4 SPI XUI: Visualization of dataset and data quality 225
5.5 SPI XUI: Visualization of optimized trajectories in guided and expert

modes . 226
5.6 A software framework for AI-enabled robot programming 230

A.1 Ground-truth, prior and posterior Cartesian end-effector trajectories
predicted by shadow skill p̄ for a spiral search task 301

A.1 Ground-truth, prior and posterior Cartesian end-effector trajectories
predicted by shadow skill p̄ for a spiral search task 302

xi

List of Tables

3.1 Optimization of contact motions for different skill frameworks and
surfaces . 96

3.2 Comparison of sequential transfer learning with meta learning alter-
natives for NRP training . 119

3.3 Failure rates for different regularizers and stochastic processes . . 124
3.4 Success rates and cycle times for force-controlled poka-yoke testing

of screw holes before and after optimization 138

4.1 Quantitative program synthesis results for a force-sensitive fetch-
and-place task . 175

4.2 Quantitative program synthesis results for a force-controlled peg-in-
hole insertion task . 177

4.4 Root MSE between the planned tool path and the detected surface
point cloud . 197

4.3 Evaluation of the surface roughness after filling (Ra1) and after
sanding (Ra2) for four different parameter sets 198

xiii

List of Code Listings

2.1 Differentiable implementation of a Cartesian spiral generator . . . 38
2.2 Forward pass through a differentiable shadow skill 42
2.3 Differentiable inverse kinematics for serial N -degree of freedom

(DoF) manipulators . 46
2.4 Forward pass through a differentiable shadow program 53
2.5 The DGPMP2-ND optimization loop 63
3.1 SPI iteratively optimizes the input parameters x of a DCG p with

respect to task objectives phi by gradient descent 91
4.1 Example for a KnowRob knowledge base in RDF Turtle syntax . . . 154
4.2 Dynamic knowledge assertion and retraction in the KnowRob knowl-

edge base . 157
4.3 Predicates defined with KnowRob’s projection and retrieval operators157
4.4 Definition of a soma:PickingUp task in terms of pre-, runtime and

postconditions . 161
4.5 Definition of an artm:InsertHoleOntoPeg task in terms of pre-,

runtime and postconditions . 162
4.6 Semantic reasoning routines in the Knowrob query language . . . 162
4.7 The predicate interprets_to enables the abstraction from a given

action to the intended task via the Prolog unification algorithm . . 167
4.8 Abstraction from a demonstrated sequence of action to a candidate

task sequence via the Prolog unification algorithm 168
4.9 PyCRAM description of a designator for “inverse” peg-in-hole . . . 169
4.10 Metatask definition of a sanding task via Prolog predicates in the

semisymbolic knowledge base . 190
4.11 Transcript of a dialogue between MetaWizard2 and a human pro-

grammer for a deburring task . 200
4.12 High-level pseudocode for the MetaWizardLLM program synthesis

and task grounding steps . 208
B.1 Transcript of a dialogue between MetaWizard2 and a human pro-

grammer for a wind turbine blade refurbishing task 303
B.2 Transcript of a dialogue between MetaWizard2 and a human pro-

grammer for sanding a rotational mold 303

xv

LIST OF CODE LISTINGS

B.3 Transcript of a dialogue between MetaWizardLLM and a human
programmer for a gear assembly task 304

C.1 Prompt for extracting numerical parameters from Llama3 305
C.2 Prompt for parsing chosen options with Llama3 306
C.3 Generated prompt for gear assembly with MetaWizardLLM 307

1

CHAPTER 1

Introduction

From the inception of the field, one of the central visions driving research and
development in robotics has been that of an embodied universal assistant, capable of
performing open-ended tasks in real-world environments. Modern robot hardware
– accurate manipulators with redundant kinematics, high-resolution 3D cameras,
flexible and precise end-effectors – provide robots with wide-ranging physical
abilities to interact with their environment and make this vision appear, increasingly,
within our grasp. As improved physical capabilities permit engineers to apply robots
to increasingly complex tasks, however, the demands on robot software increase
correspondingly. Robots must be endowed with the cognitive abilities to make sense
of unstructured environments, plan motions to solve challenging manipulation
problems or learn from past experience to improve their own behavior over time.
At the same time, humans must have a way to instruct robots what to do, at a level
of abstraction that allows the expression of increasingly abstract goals – “clear the
table” rather than “put the blue cup into the dishwasher” – for increasingly complex
tasks, in a way that remains simple and concise. Robot programming involves the
dual problem of instructing the robot how to use its sensors and actors to perform a
task, as well as specifying what the robot ought to do – what goals it should pursue
and what constraints it must respect.

Programming is bidirectional communication between the human programmer
and the programmed system: The programmer communicates an idea to the system
in the form of a program, describing a problem to be solved (thewhat) and a strategy
to achieve them (the how), with the aim of letting the system perform the work
of actually solving the problem. The system, in turn, performs work to produce
a result, which is communicated back to the programmer and can be interpreted
by them in light of the program (Abelson et al. (1996) and Sussman (2005); see
Figure 1.1). In the context of robot programming, the programmer provides the
robot with a program containing some representation of the task at hand as well
as knowledge, such as a set of robot skills, that enable the robot to solve it; they
(or someone else) then observe the behavior of the robot and interpret it, using
the program to understand what the robot has just done, and how it has done

3

CHAPTER 1. INTRODUCTION

Robot Program

Approach

Move to Contact

Sand Surface

Depart

describes
intent

describes
behavior © 2024 IEEE

Figure 1.1: Robot programming as bidirectional communication between program-
mer and robot (Alt et al., 2024c).

it (Knuth, 1984). For complex tasks, humans cannot fully specify the intended
robot behavior. Instead, real-world robot programs are generally underspecified,
requiring some degree of intelligence on the part of the robot to “understand”
the human intent, infer missing information from past experience or available
sensory data, and plan a sequence of low-level actions to materialize the intended
behavior in the world (Nyga et al., 2018). Conversely, interpreting the observed
behavior of an intelligent robot is challenging for human programmers, as the
robot’s behavior is the result of cognitive processes such as learning or planning
that operate on representations that afford tractable computation, but may not
afford human interpretation. Particularly in embodied domains such as robotics,
where the programmed system interacts with the physical world, a causal, or at
least mechanistic, understanding of robot behavior is crucial to ensure safety and
foster trust – doubly so in applications in which the robot faces novel situations that
have not been part of its training regime. Beyond understanding, safe operation
of robots requires humans to be in control of robot behavior, able to predict and
modify it to prevent and correct errors.

Research question ▷ This work, then, addresses the following fundamental research question: How
can robots be programmed to tractably solve complex tasks in real-world

environments, while leaving humans in control of robot behavior?

One core observation made in this work is that the difficulty in programming
artificially intelligent robots arises from the fact that humans and robots require
seemingly incompatible program representations: Implicit, subsymbolic represen-
tations have proven essential for capable robot learning and planning, but explicit,
symbolic representations facilitate human interpretability and control. Based on
this observation, this work proposes a new paradigm of AI-enabled robot program-
ming which rests on the fundamental hypothesis thatWorking

hypothesis
▷ bridging the apparent divide

between implicit and explicit program representations can enable robots to

learn and optimize their behavior, while allowing humans to understand and

control it. This work presents a framework which realizes this paradigm by com-

4

1.1. AI-ENABLED ROBOT PROGRAMMING

bining technologies that facilitate data-driven learning and optimization with a
fundamentally human-centric model of robot programming.

1.1 AI-Enabled Robot Programming

The challenges facing robot programmers in complex real-world manipulation tasks
– endowing robots with an understanding of what they ought to do, and how they
can go about doing it – can be addressed by leveraging AI as an integral part of the
programming process. From a programmer’s perspective, AI promises to simplify
programming via learning and optimization, but also imposes new challenges,
such as ensuring the safety of robot behavior resulting from AI-generated robot
programs.

1.1.1 Learning and Self-Optimization

Recent advances in deep learning (DL) have enabled breakthrough improvements
in a wide array of domains ranging from machine translation (Scao et al., 2023)
and creative writing (Wang et al., 2024a) to image generation (Betker et al., 2023),
computational law (Chalkidis et al., 2020), medical diagnostics (Swanson et al.,
2023) and academic research itself (Truhn et al., 2023). There is mounting evidence
that the algorithms and data structures which enable disembodied digital systems to
represent vast bodies of latent knowledge, and learn to use that knowledge to solve
complex problems, can also provide the foundations to endow embodied digital
systems – robots – with powerful cognitive abilities. Learning, the “ability for a
system to improve its performance over time through the acquisition of knowledge
or skill” (Vernon, 2022) has been identified as a core component of artificially
intelligent systems (Russell and Norvig, 2021). All general-purpose robot cognitive
architectures incorporate learning mechanisms (Laird et al., 1987; Vernon et al.,
2011; Sun, 2017; Kotseruba and Tsotsos, 2020; Peller-Konrad et al., 2023; Beetz
et al., 2023). Advances in deep unsupervised and Reinforcement Learning (RL),
combined with general-purpose neural architectures, have shown to be applicable to
problems in robotics such as manipulation, navigation and task planning (Kroemer
et al., 2021). They promise an avenue toward robots capable of autonomously
learning how to perform complex tasks by inferring task semantics and dynamics
from data, robustly perceiving and understanding their environment, and planning
long-horizon manipulation sequences to achieve their goals. At the same time,
recent advances in multimodal learning and generative AI permit digital systems
to parse and output natural language with near-human performance (Sejnowski,
2023) and jointly reason over data combining multiple modalities, such as vision
and language (Li et al., 2024). Multimodal DL models promise natural human-
robot interaction through language or demonstration, allowing for novel interactive
programming paradigms that permit humans to intuitively specify what tasks are
to be performed.

5

CHAPTER 1. INTRODUCTION

Figure 1.2: Examples for retail fetch-and-place (left, Alt et al. (2023)) and industrial
peg-in-hole tasks (right, Alt et al. (2022b)), which serve as running examples in
this work.

1.1.1.1 Case Study: Retail Assistance

Consider a robotic shopping assistant for people with restricted mobility, such
as the elderly, that fetches objects from supermarket shelves and places them
in a shopping basket (see Figure 1.2, left). Under real-world conditions, this is
a deceptively complex task. Typical supermarkets feature a variety of different
products, each of which have different appearances, affordances and physical
properties. To competently solve this task, a robot must be capable of robustly
perceiving objects of various sizes and materials and grasping objects of different
shapes and weights. Moreover, retail environments are semi-structured: While
the locations of most objects are a priori known, objects are frequently misplaced
and often not immediately reachable. Retail fetch-and-place requires perception
and manipulation capabilities that are robust against uncertainty, occlusions and
the presence of unexpected objects. Lastly, retail environments are dynamic, with
humans, shopping carts or pets moving in the scene. Dynamic environments require
flexible cognitive mechanisms for replanning motions and actions in the moment.
Programming an assistance robot for retail fetch-and-place requires endowing it
with perception, cognition and action abilities that are highly generalizable and
can be applied to a large variety of objects and surroundings, but afford sufficiently
precise perception and manipulation for the concrete objects and environment at
hand (Alt et al., 2023). DL approaches permit agents to learn perception, motion
and planning skills for complex manipulation tasks in semi-structured environments,
taking the burden of explicitly programming such skills off the human programmer.

1.1.1.2 Case Study: Electronics Assembly

Service robotics tasks such as retail fetch-and-place are challenging due to the
unstructured nature of the environment. In industrial robotics, the core challenges

6

1.1. AI-ENABLED ROBOT PROGRAMMING

often lie in the task itself. Many industrial tasks have low tolerances which are due
to product requirements (such as maximally permissible gap sizes in automotive
assembly tasks). Printed circuit board (PCB) assembly serves as an illustrative
use case, as sensitive components must be placed with submillimeter tolerances
(see Figure 1.2, right). Particularly for through-hole technology (THT) processes,
components must not only be placed so that the pins align with the holes on the PCB,
but any contact, search or insertion motions must not cause forces exceeding given
thresholds to avoid bending the pins or damaging the surface of the board. Beyond
manufacturers’ tolerances, industrial applications generally have high robustness
requirements with respect to cycle time and task success. In high-volume processes,
subsecond delays, such as waiting for I/O signals or searching for a hole on a
PCB, can cause large costs to the producer. In PCB assembly, recovery from errors
is impossible or incurs time costs, as damaged components must be discarded.
Programming intelligent industrial robots chiefly consists of solving multicriterial,
constrained optimization problems such as minimizing cycle time and maximizing
the probability of task success subject to smoothness or collision constraints. DL
approaches permit robots to learn models of robot tasks from production data (Alt
et al., 2021). With learned models, robots can automatically generate behavior to
solve manipulation problems or optimize their own behavior over time to improve
efficiency and robustness (Alt et al., 2022b).

1.1.2 The Role of the Human Programmer

Deep learning owes its success to the leveraging of highly general learning al-
gorithms and data structures that give rise to implicit, latent representations of
knowledge and skills (Sutton, 2019). The capabilities of DL models have been
shown to scale with the amount of computation and data available for training
and inference (Kaplan et al., 2020). Recent large models are capable of solving
challenging robot programming tasks, such as program synthesis for manipula-
tion in unstructured environments (Zitkovich et al., 2023). Integration of DL into
robot programming profoundly changes both the roles of the human and the robot
in robot programming: Instead of mechanistically specifying robot behavior, the
programmer acts as a teacher and guide, providing a general-purpose learning
algorithm with data and constraints. Instead of automating the human program-
mer out of the programming process, practical AI-enabled robot programming
requires the human to assume a crucial role in robot programming. Empirical
studies of neural scaling laws suggest that model performance increases as a power
law with diminishing returns relative to model size, dataset size, and computational
resources (Kaplan et al., 2020; Hoffmann et al., 2022; Thompson et al., 2022).
Embodied domains face the additional challenge of acquiring real-world training
data, limited by physical constraints. Integrating the human into the learning
process can help provide higher-level semantic examples (Mosqueira-Rey et al.,
2023), reduce the amount of required data (Monarch, 2021), and guide learners

7

CHAPTER 1. INTRODUCTION

toward solutions aligned with human preferences (Christiano et al., 2017). The
scalable and sustainable building and deployment of learning systems requires
principled ways of leveraging human expertise as a resource to support and guide
the learning process (Brooks, 2019).

1.1.3 Control

When robot behavior is, at least in part, a learned function of current sensory
input, past experience and latent knowledge, the programming of intelligent robots
requires robust mechanisms to ensure that that behavior is safe, particularly when
robots operate in proximity to humans. In the context of intelligent systems, safe
behavior can be defined by the following characteristics (Rueß and Burton, 2022):

1. Correctness: The behavior of the system must comply with its specification.
In the case of a retail assistance robot, this implies that the robot reliably
performs the tasks it is instructed to perform, and exclusively these tasks: If
the robot is instructed to pick up three cans of soup from a shelf and place
them in a shopping cart while avoiding collisions with other objects or itself,
correct robot behavior implies that after completion of the task, three cans
of soup have been transferred from the shelf into the cart, and no collisions
occurred in the process.

2. Intent: The specification of the system’s behavior must reflect the intent of the
user. For a retail assistant, this implies the need for a mechanism to translate
the desire of a human user to have three cans of soup transferred from a shelf
to a shopping cart into a program that accurately captures this intent, and
permits the robot to take actions to fulfill it.

3. Acceptability: The behavior of the system must be acceptable to the human
user. In particular, the system must not cause unacceptable harm (Rueß and
Burton, 2022). A retail assistance robot, for example, must not injure humans
or damage itself or objects in its environment while performing a task.

Recent AI safety research has shown that AI systems whose behavior is governed
by subsymbolic, implicitly represented policies face significant safety challenges
(Raji and Dobbe, 2023). In particular, placing guarantees on system behavior –
ensuring correctness – is challenging, as deriving formal proofs about the behavior
of deep neural networks may be computationally intractable (Cooper and Marques-
Silva, 2023). The alignment problem – ensuring that implicitly represented policies
encode the intents of human users – has likewise proven challenging on algorithmic
(Ngo et al., 2023) and philosophical grounds (Gabriel, 2020), even for comparatively
small DL systems (Shah et al., 2022). In response to these challenges, AI safety
research has proposed that AI systems must exhibit two central characteristics:
They must be explainable to human users, and they must afford humans control
over the system.

8

1.1. AI-ENABLED ROBOT PROGRAMMING

Explainability Explainability has been identified as a central property of safe AI
systems. Gilpin et al. (2018) define explainability via the concepts of interpretability
and completeness: An interpretable AI system affords the description of “the internals
of [the] system in a way that is understandable to humans” – interpretable systems
afford explanations – and an explanation is is “more complete when it allows the
behavior of the system to be anticipated in more situations” (Gilpin et al., 2018).
Explainability fosters AI safety by allowing humans to understand, verify or certify
that the system’s behavior is correct and respects the user’s intent. Moreover,
explainability has been considered a requirement for AI use in applications with
physical safety implications such as industrial robotics (Sofianidis et al., 2021) and
to foster acceptance of intelligent robots by human colleagues (Theis et al., 2023).
Due to their reliance on subsymbolic, implicit representations, robot programs
generated by deep learning methods are generally not explainable (Burkart and
Huber, 2021). For many practical robot applications, however, it is sufficient for the
resulting robot behavior to be explainable, even if the mechanisms by which it was
generated are not. A framework for programming intelligent robots should then
ensure that the resulting robot behavior is explainable, even if it was generated by
opaque learning, optimization or synthesis mechanisms. Chapter 5 proposes such
a framework.

Control In the AI safety literature, AI control refers to “ensuring that AI systems
try to do the right thing, and in particular that they don’t competently pursue the
wrong thing” (Christiano, 2021). While black-box approaches for controlling exist-
ing AI systems have been proposed (Bowman et al., 2022), the degree of control
afforded by an AI system is largely determined by architectural choices made during
the design and implementation of the AI system: “How to design AI systems such
that they do what their designers intend” (Bostrom, 2017). For embodied systems
such as robotic retail assistants or industrial robots operating in real-world environ-
ments, the AI control problem takes on a physical dimension with immediate safety
implications for the humans or objects they interact with. From this perspective, it
becomes paramount that the methods by which intelligent robots are programmed
enable humans to ensure that they do “the right thing”. Explainable systems greatly
facilitate control, both by human programmers during the development process
(Burkart and Huber, 2021) as well as by automatic or manual validation and verifica-
tion before or during deployment or operation (Hurault and Marques-Silva, 2023).
In robot applications, a crucial aspect of control is the ability of humans to influence
the behavior of the AI system after deployment, particularly in response to errors or
unforeseen circumstances. A framework for programming intelligent robots should
therefore allow for reprogramming or reparameterization at runtime by human
users. Chapter 5 introduces a robot programming paradigm which allows for the
learning and optimization of robot programs while allowing humans to understand
and control robot behavior. On the often-cited continuum between AI capability
and control (Yampolskiy, 2022; Jensen et al., 2023; Wolf et al., 2024), it proposes

9

CHAPTER 1. INTRODUCTION

an equilibrium which allows for data-driven, first-order, DL-based learning and
optimization, while using an explainable program representation for execution.

1.1.3.1 AI Control in Service and Industrial Robotics

Many service robots, such as retail assistants, share physical spaces with humans.
This imposes strict safety requirements on the programs governing the robot’s
behavior, as hurting humans must be avoided under all circumstances. To safely
deploy robotic shopping assistants, robot programmers must be able to make
hard guarantees about the robots’ behavior. To this end, they must be able to
interpret the policies driving the behavior of the robot, which is challenging, if
not intractable, with most DL-based policy representations. Beyond the immediate
safety aspects, interpretability of the rules governing the robot’s behavior is essential
for fostering trust, which in turn is a requirement for the adoption of embodied,
intelligent assistants in the immediate surroundings of humans. For these reasons,
safely programming and deploying robots in real-world service contexts requires
a novel paradigm of robot programming that permits human involvement in the
programming process for scaffolding and safety assurance while at the same time
leveraging powerful, subsymbolic learning and planning approaches.

Like service applications, many industrial applications have high safety require-
ments due to the use of fast industrial end effectors, possibly dangerous tools such
as lasers, or the need for safe human-robot collaboration. These requirements
imply AI-based robot programming solutions to provide a high degree of control
over robot behavior. Human programmers must be able to modify industrial robot
programs in a targeted way, e.g. when changes to the hardware setup are made in
the context of maintenance, and human auditors must be able to ensure the safety
of the robot program after initial creation and modification. Moreover, industrial
robot applications in high-risk industries such as the aerospace or automotive sectors
must undergo strict certification before production can begin. To facilitate certifi-
cation and safe maintenance after deployment, large corporations often impose
company-wide robot programming standards (Akcay, 2016). Safety certification
and compliance with industry standards require robot programs to afford some
degree of explanation, and to afford making some verifiable statements about robot
behavior.

1.1.4 A New Robot Programming Paradigm

It appears, then, that the subsymbolic, implicit representations that facilitate learn-
ing and self-optimization of robot behavior seem ill-suited to human understanding
and control. A good programming paradigm should afford the highest degree of
capability possible without sacrificing control, and vice versa: “[I]t should be easy
to conceive programs, it should be easy to convince oneself that a program is correct
and that the machine working under its control will indeed produce the desired
result” (Dijkstra, 1971). A framework for programming intelligent robots should

10

1.2. CONTRIBUTIONS

Training Data
Collection

Neurosymbolic

Robot Programs
Chapter 2

Knowledge-Driven

Robot Program Synthesis
Chapter 4

First-Order Robot

Program Optimization
Chapter 3

First-Order
Optimization

Real-World
Execution

Surrogate Model
Learning

repeat

Linear

+

...

...

tanh

-1

...

Duplication

Pointwise
operation

VR Human
Demonstration

Task
Abstraction

Task
Grounding

Program
Execution

A Framework for Neurosymbolic Robot

Programming
Chapter 5

Figure 1.3: Neurosymbolic robot programming: Program synthesis and optimiza-
tion algorithms operating on a neurosymbolic program representation permit to
integrate AI assistance into the robot programming process, while leaving the
human programmer in control of robot behavior.

combine the advantages of both subsymbolic end-to-end learning and textual pro-
gramming, while avoiding as many of their shortcomings as possible. This work
introduces neurosymbolic robot programming, a robot programming framework
that leverages a neurosymbolic program representation as well as AI algorithms for
program synthesis and program optimization operating on it.

1.2 Contributions

Neurosymbolic robot programming approaches the problem of creating, deploying
and operating safe and capable intelligent robots from two central premises: That
programming as an activity and the program as an artifact are highly useful concepts
in AI creation and human-AI interaction, and that a practical resolution of the
capability-control-tradeoff requires bridging the representational divide between
human and machine. This work introduces neurosymbolic robot programming from
a conceptual perspective, proposes a framework of algorithms and data structures
to realize it in the context of robotic manipulation, and validates it on several
real-world applications from industrial and service robotics. It makes the following
contributions:

1. ◁ RepresentationNeurosymbolic Robot Programs (NRPs), a robot program representation
that combines the advantages of both symbolic and subsymbolic, particu-

11

CHAPTER 1. INTRODUCTION

larly neural, program representations. NRPs are a dual representation that
enforces an isomorphism between a symbolic program and its subsymbolic,
differentiable “shadow”. They combine the compositionality and human
interpretability of symbolic programs with the learnability and optimizabil-
ity of neural representations: The symbolic representation affords explain-
ability and human interaction, while its subsymbolic counterpart enables
self-learning and first-order optimization.

2.Optimization
algorithms

▷ A first-order robot program optimizer capable of optimizing NRPs with
respect to a wide range of task objectives, subject to motion-level constraints
such as collision-freeness. Shadow Program Inversion (SPI) (Alt et al., 2021)
and its variants perform iterative gradient-based optimization over learned
models of robot programs. It enables efficient optimization without requiring
real-world program rollouts, as well as the interpretation of optimization
results by human experts. SPI is evaluated in several real-world industrial and
household use cases such as mechanical assembly, industrial quality control
and table cleaning.

3.Program
synthesis systems

▷ A family of hybrid symbolic-subsymbolic robot program synthesis sys-

tems that combine Knowledge Representation & Reasoning (KR&R) over
explicit sources of knowledge with learned, neural, subsymbolic modules.
MetaWizard (Alt et al., 2023) and its variants facilitate the bootstrapping of
program structures to achieve tasks given high-level human specifications,
and refine these program skeletons through interactive dialogue with human
domain experts. The proposed systems are evaluated in the context of re-
tail and industrial robotics on surface finishing, mechanical assembly and
shopping assistance tasks.

4.Framework ▷ A framework for AI-enabled robot programming that combines the pro-
posed neurosymbolic robot program representations as well as the algorithms
for program synthesis and optimization operating on it, and integrates them
into a programming framework that balances the need to achieve high degree
of capability with the need for retaining control of robot behavior. It takes a
holistic view of the process of developing, deploying and operating robots
and realizes a robot programming workflow that provides AI assistance at all
stages of the programming process.

1.3 Outline

The remainder of this work is organized as follows:

Chapter 2 presents NRPs, a dual representation of robot programs that bridges
the gap between symbolic, explicitly represented programs and neural, subsymbolic,

12

1.3. OUTLINE

learned policies. It introduces the concept of Shadow Programs in the context of
surrogate models, and presents a mathematical formulation of a robot program as a
parameterized function predicting robot behavior. It then presents an architecture
for robot programs as differentiable computation graphs (DCGs) and illustrates how
the combination of neural networks and differentiable programming techniques can
realize Shadow Programs as differentiable, predictive models of robot programs. It
presents Differentiable Gaussian Process Motion Planning for N-DoF Manipulators
(DGPMP2-ND), a differentiable collision-free path planner, and its integration as an
algorithmic prior for bootstrapping smooth, kinematically feasible and collision-free
robot motions.

Chapter 3 introduces SPI, a first-order optimizer for parameterized robot pro-
grams, which leverages NRPs to jointly optimize program parameters with respect
to a wide range of task objectives, as well as variants of SPI that enable lifelong
learning and joint parameter and trajectory optimization. A comprehensive evalua-
tion of SPI and its variants on tasks ranging from industrial peg-in-hole, search and
assembly tasks to household fetch-and-place tasks is presented.

Chapter 4 presents the MetaWizard family of program synthesis systems. It
motivates and explores the use of both symbolic and neural methods for KR&R
on human expertise and task knowledge, as well as intuitive modalities for inter-
acting with AI-enabled program synthesis algorithms, such as via virtual reality
(VR) demonstrations or natural-language dialogue. MetaWizard is evaluated in
three real-world applications comprising retail fetch-and-place tasks, wind turbine
refabrication and industrial peg-in-hole assembly.

Chapter 5 integrates the proposed representations and algorithms into a prin-
cipled framework for AI-enabled robot programming. It proposes a conceptual
framework for robot programming aimed at resolving the capability-safety-tradeoff
in a way that facilitates the solution of complex applications, as well as a software
framework for learning, synthesizing, optimizing and maintaining neurosymbolic
robot programs.

Chapter 6 provides a summary of this work, contextualizes it within the field of
AI-enabled robot programming from both applied and scientific perspectives, and
proposes avenues of further research.

13

CHAPTER 2

A Neurosymbolic Robot Program

Representation

A central thesis of this work is that explicitly represented robot programs can
serve as a bridge between robot and human intelligence, and facilitate AI-enabled
programming through robot learning and optimization, while leaving humans in
control of robot behavior. Chapter 1 introduces robot programming as bidirectional
communication between programmer and robot. In this communication, the robot
program serves a dual role: To instruct the robot what to do and how to do it, and
to inform the programmer what the robot is doing and how it is doing it. This
bidirectional communication hinges on a shared data structure – the robot program
– that describes robot behavior. This chapter motivates the use of neurosymbolic
representations for robot programming and introduces NRPs, a robot program
representation that combines the advantages of symbolic and subsymbolic programs
(see Figure 2.1).

2.1 A Question of Representation

A core tenet of this dissertation is that the way robot programs are represented
informs and constrains the ways in which robots can be programmed, and that a
well-designed program representation is key to the realization of a robot program-
ming framework that satisfies the needs of real-world robotics applications.

2.1.1 Symbolic and Subsymbolic Representations

Symbolic representations As a central claim of classical cognitive science is that
the human brain is a physical symbol system, operating on symbolic representations
of the perceived environment, possible actions, and knowledge about the world
and itself (Fodor, 1980; Newell, 1994; Deacon, 1998). ◁ SymbolsNewell (1980) defines
symbols as entities “which are physical patterns that can occur as components of
another type of entity called an expression (or symbol structure).” Rougier (2009)

15

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

Knowledge-Driven
Robot Program Synthesis

VR Human
Demonstration

Task
Abstraction

Training Data
Collection

First-Order Robot
Program Optimization

First-Order
Optimization

Real-World
Execution

Surrogate Model
Learning

repeat

Linear

+

...

...

tanh

-1

...

Duplication

Pointwise
operation

Task
Grounding

Program
Execution

Neurosymbolic
Robot Programs

Figure 2.1: Neurosymbolic Robot Programs (NRPs) combine a symbolic, skill-
based program representation (left, red) with a neurosymbolic, differentiable
surrogate (right, grey). NRPs afford first-order learning and optimization while
being composable and editable by human programmers.

proposes a more concrete definition: “Symbols are [...] defined as a functional
regularity where a signifier stands for a signified but this function is grounded on
an arbitrary conventional rule established by some entity.” Symbols are patterns,
or “regularities”, that signify other entities: Things in the real world, such as cups
or cats, or abstract notions, such as efficiency or safety. The relation between
signifier and signified is “grounded on an arbitrary conventional rule established
by some entity” (Rougier, 2009): The semantics of symbolic representations follow
rules of interpretation on which all producers or consumers of a given symbolic
representation must agree. The archetypical example of a symbolic representation
is natural language (Chao, 1968): Words are symbols for real-world or abstract
concepts. The word “table” is a symbol which our brains can ground in the abstract
concept of a table, i.e. an item of furniture with a flat surface that affords the
placing of objects on it, or in a particular physical entity that we perceive with our
senses, such as the desk that is currently in front of me. Words are combined to

Symbolic
structures

▷ symbolic structures such as sentences to represent complex concepts (Newell, 1980;
Chaudhuri et al., 2021; Rosenbloom, 2023). Pitt (2022) offers a concise definition:
“Symbolic structures [...] have semantically evaluable constituents.” Symbols are
typically considered atomic in that they cannot be further subdivided; discrete in
that they can be enumerated; static in that the signifier does not change, though
the signified may change; and arbitrary in that the value of the signifier does not
carry meaning in itself (Blank et al., 1992).

16

2.1. A QUESTION OF REPRESENTATION

Symbolic representations and algorithms operating on them have been the
focus of AI research throughout most of the 20th century. “Classical AI”, in which
learning, inference, optimization and related cognitive tasks are realized chiefly via
symbol manipulation, rested on the Physical Symbol System Hypothesis (PSSH):
“A physical symbol system has the necessary and sufficient means for general intelli-
gent action” (Newell, 1980). The PSSH has been critiqued from many directions
(Brooks, 1990; Russell and Norvig, 2021), and I refer to the literature for detailed
accounts of its criticisms (Rosenbloom, 2023; Nilsson, 2007). Programming lan-
guages, i.e. symbolic, textual representations, have been the default choice for
representing programs, both in robotics and in general computing. From an AI
perspective, ◁ Symbolic

program
representations

symbolic program representations have several advantages. High-level
programming languages are syntactically sufficiently similar to natural language to
facilitate the composition and editing of programs by human programmers, while
simultaneously facilitating algorithmic synthesis or optimization by virtue of their
rigid grammar (Summers, 1977; Alur et al., 2018; Sobania et al., 2023). The
composition of symbol structures permits the efficient use of recursive divide-and-
conquer algorithms to computationally manipulate programs (Smith, 1985; Alur
et al., 2017) or formally verify them by theorem proving (Manna and Waldinger,
1971; D’Silva et al., 2008).

Subsymbolic representations As opposed to symbolic representations, which
are “generally characterized by hard-coded, explicit rules operating on discrete,
static tokens”, subsymbolic processing is “associated with learned, fuzzy constraints
affecting continuous, distributed representations” (Blank et al., 1992). Subsym-
bolic representations of percepts or knowledge underpin connectionist or hybrid
approaches to AI (Vernon, 2022), which emphasize that “to build a system that
is intelligent it is necessary to have its representations grounded in the physical
world” (Brooks, 1990). The Physical Grounding Hypothesis (PGH) proposes that
“the world is its own best model” (Brooks, 1990), and that physical symbol systems
will necessarily misrepresent the real world due to the approximation errors and
oversimplifications introduced by atomic, discrete, static and arbitrary symbols.

Subsymbolic representations are often characterized as distributed, in that
information is represented by the interplay between multiple signifiers, rather than
individual symbols; continuous; and emergent, in that representations form over
time (Blank et al., 1992). Unlike symbolic representations, in which the signifiers
are arbitrary, their concrete representation of information is often a function of
the use of the representation (Blank et al., 1992). Deep neural networks (DNNs)
are archetypical examples for subsymbolic representations. The representation of
information is distributed across the continuous-valued weights of the network,
and emerges during training. The precise nature of this distributed representation
reflects the training algorithm and objective function.

The division between symbolic and subsymbolic representations is not clear-
cut; rather, there is a continuum between the two, and most representations lie

17

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

somewhere between the extremes (Blank et al., 1992). Smolensky (1988) pro-
poses a hierarchical model of representation, in which subsymbolic representations
form the representational foundations from which symbolic representations are
constructed: They are “cognitive descriptions built up of entities that correspond to
constituents of [...] symbols.” Program representations such as Dynamic Movement
Primitives (DMPs) and similar modular representations are subsymbolic in the
sense that robot behavior is represented as continuous-valued functions; however,
at the program level, they act as symbols, affording e.g. sequential composition to
form more complex program graphs.

Subsymbolic program representations avoid the need to specify a priori a set of
symbols and a shared convention of interpreting them. Given a generic data struc-
ture, such as a neural network architecture or a parameterized ordinary differential
equation (ODE), the representation of robot behavior manifests automatically, e.g.
by running a learning algorithm on a dataset of human demonstrations. Subsym-
bolic program representations afford grounding of physical percepts and learning of
visuomotor policies in a biologically plausible way (Brooks, 1990; Rombouts et al.,
2013; Pogodin et al., 2021). However, subsymbolic program representations lack
the interpretability of symbolic programs (Rudin, 2019; Chaudhuri et al., 2021)
and establishing hard guarantees about the represented behavior, let alone formally
verifying behavior, is challenging (Narodytska, 2018; Shi et al., 2023).

2.1.2 Explicit and Implicit Representations

When discussing AI systems and the algorithms and data structures they oper-
ate on, a distinction must be made between explicit and implicit representations
(Rougier, 2009). A representation is more explicit, the more immediately readable
it is (Kirsh, 1990). The amount of time (Kirsh, 1990) or computation (Kirsh, 2006)
required to extract the represented information serves to quantify the explicitness
of a representation. The distinction between explicit and implicit representation
therefore involves the “consumer” of the representation, such as the human pro-
grammer reading or writing a robot program, or the robot executing a program.
To a robot controller, assembly language is an explicit program representation:
The instructions it must execute are immediately readable, and the only additional
computation required is loading them into the appropriate processor registers.
To a human programmer, the robot behavior represented by assembly language
is less explicit, as she must consult a “mental model” of the robot controller to
understand the behavioral semantics of a given piece of assembly code. To the same
programmer, assembly code represents robot behavior more explicitly than a deep
neural policy, whose weights alone provide next to no indication of the represented
behavior.

With regard to robot programs, explicit representations have several advantages
(Gray and Rumpe, 2022). First, they permit programmers to describe intended
behavior in a syntactically concise way, permitting other programmers or robot

18

2.1. A QUESTION OF REPRESENTATION

end users to understand and modify robot behavior. Moreover, explicit represen-
tations more precisely encode the semantics intended by the programmer, as less
latent knowledge is required by the reader to decode the information, which could
possibly falsify the intended semantics. By the same reasoning, explicit program
representations can be parsed by computers to help identify inconsistencies, find
bugs, or even apply formal verification methods. A significant shortcoming of ex-
plicit representations is that it is challenging to find a representation that minimizes
the need for latent knowledge while remaining concise (Levesque and Brachman,
1987). Moreover, implicit program representations avoid the need for humans to
design good representations for programs a priori, by substituting it with suitable
learning algorithms and general-purpose data structures: In neural policies, the
(latent) program representation emerges by gradient descent, and the policy can
be used without the user’s knowledge of how motions or objects are represented.

2.1.3 Neurosymbolic Representations

Ideally, then, AI-enabled robot programming operates on a program representation
that combines the properties of symbolic and subsymbolic representations, partic-
ularly of explicit symbolic representations such as textual or graphical programs,
and implicit subsymbolic representations such as neural networks. Neurosymbolic
representations provide such a combination. A ◁ Neurosymbolic

program
neurosymbolic program is a “pro-

gram that uses neural components and either symbolic components or symbolic
compositions” (Chaudhuri et al., 2021). In the context of programs, a symbolic
component is “a function that comes with a symbolic implementation, or [...] a
symbolic specification of its functionality” (Chaudhuri et al., 2021): Symbolic com-
ponents can be processed by symbol systems. Composition of multiple components,
such as functions in a program, is symbolic if “certain requirements hold at the
interface of the components being composed” (Chaudhuri et al., 2021). In other
words, composition is performed via interfaces that satisfy hard, symbolic (e.g.
logical) constraints, and that have explicit semantics.

Consider a function that computes inverse kinematics (IK), i.e. takes an end-
effector pose as input and returns a corresponding robot joint configuration. A
symbolic IK component f, for example, could accept one single input parameter,
X, that is a symbol representing a pose, and output a symbol theta representing
the associated joint configuration. f is a symbol system with explicit semantics:
For every pose X, a user will know that they will obtain the corresponding theta,
because the behavior of f has been symbolically specified; a user will also be able
to compose f with other components, as the semantics of X and theta are known.
A neural IK component f , on the other hand, takes a tensor x as input and outputs
a tensor θ; the semantics of x and θ are implicit in the function and arise during
training. Neural networks afford symbolic composition by human programmers
or symbolic program synthesis systems only if semantics are made explicit and
described symbolically.

19

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

Neurosymbolic program representations permit the use of subsymbolic learning
algorithms and neural representations at the component level, while still afford-
ing symbolic planning of and reasoning about programs at the composite level.
Moreover, if neurosymbolic programs impose some symbolic constraints on the
input-output relationship of neural components, humans can compose and parame-
terize such neurosymbolic components, and test their (learned) behavior against
those symbolic constraints. For robot programming, a neurosymbolic program
representation can facilitate learning and first-order optimization of robot behavior
as well as symbolic program synthesis, while permitting human programmers to
understand and modify the resulting programs. In the following sections, a neu-
rosymbolic robot program representation for AI-enabled robot programming is
proposed.

2.2 Neurosymbolic Robot Programs: Overview

The following paragraphs introduce Neurosymbolic Robot Programs (NRPs), a novel
representation of robot programs that associates a symbolic, skill-based program
representation with a neurosymbolic DCG to afford both symbolic planning and first-
order learning and optimization. NRPs have been the subject of several publications
(Alt et al., 2021; Alt et al., 2022b; Alt et al., 2025). The following sections introduce
NRPs in greater detail. NRPs form the basis for the program optimization and
synthesis algorithms presented in Chapters 3 and 4.

2.2.1 Desiderata for a Neurosymbolic Program Representation

The vision of AI-enabled robot programming outlined in Chapter 1 – enabling
humans to endow robots with the abilities to solve complex manipulation tasks in
challenging environments – imposes several desiderata on the program represen-
tation used to realize it. Some requirements arise directly from the objective of
enabling the creation, deployment and operation of intelligent robots, while others
facilitate the realization of the programming framework in practical applications.

Affordance of learning The ability to adapt their behavior to novel tasks or
environments based on experience is a core property of intelligent systems (Russell
and Norvig, 2021). Many of aspects of robot programming benefit from learning,
the adaptation of robot programs to incremental changes in the environment,
or the optimization of skills based on human demonstrations. Pre-programming
all possible mappings from e.g. sensory inputs to robot behavior for all possible
goals is intractable. Consequently, a program representation for AI-enabled robot
programming must afford learning of programs, or parts of programs, from data
reflecting real-world interaction between the robot and its environment.

20

2.2. NEUROSYMBOLIC ROBOT PROGRAMS: OVERVIEW

Affordance of planning and optimization at runtime The deployment of in-
telligent robots in real-world environments requires robots to be able to adapt to
novel situations as they arise. A robotic retail assistant, for example, may have to
manipulate products that have fallen over or have been placed by customers in
locations in which they do not belong. Other use cases require robots to adapt to
changing task requirements. In low-volume, high-mix production scenarios, indus-
trial robots often have to manipulate new parts or part variants on the fly, without
explicit prior programming for these exact parts. A general-purpose neurosymbolic
robot program representation must permit task or motion planners to modify the
robot’s behavior both offline (e.g. for task-level planning of manipulation strategies)
or online (e.g. for planning collision-free motions). Moreover, a general-purpose
neurosymbolic program representation must support planning and optimization
jointly at the motion and task level: Task-level objectives such as task success may
impose constraints on a motion planner, such as keeping a grasped object upright
during manipulation. For all applications, the robot program must produce kine-
matically feasible motions; for most applications, motions must be collision-free
and smooth. These motion-level constraints in turn influence a task-level planner,
as some motion types may not be possible under the given constraints.

Generalization across tasks Robots are universal manipulators: Kinematic con-
figurations with many degrees of freedom allow robots to solve a wide array of tasks
without requiring mechanical reconfiguration. To leverage the flexibility promised
by robots, a general-purpose robot program representation must be able to rep-
resent a wide variety of tasks, if not, in principle, all possible tasks. In industrial
applications, this is a prerequisite for efficient high-mix, low-volume production,
where robots must switch between tasks or task variants with only minimal hard-
ware and software reconfiguration. Service domains such as household or retail
assistance require robots to be able to perform a variety of tasks, depending on
user input and the state of the environment. As general-purpose programming
languages have been instrumental in facilitating the widespread adoption of digital
computers (Nofre et al., 2014), general-purpose robot program representations
can facilitate the widespread adoption of robots as universal manipulators.

Generalization across hardware The conceptual separation of computer hard-
ware and the software running on it has been a central paradigm of modern com-
puting (Dijkstra, 1971). Modern programming languages encapsulate hardware
behind layers of abstraction, allowing for the sharing of programs across platforms.
Robot hardware extends from the computational hardware to the kinematics and
dynamics of the manipulator, the end effector as well as peripheral hardware such
as vision or force sensors. Modern industrial robot workcells include complex com-
binations of sensors and actuators, combining robots from different manufacturers
and kinematic configurations. The ability to program complex robot cells using the
same program representation not only simplifies the process of developing new

21

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

robot workcells, but also facilitates maintenance, as replacing or adding hardware
components requires only minimal changes to the existing robot software.

Human explainability The explainability of robot programs has been shown to
be a major bottleneck in the adoption of AI-enabled robot programming (Peres et al.,
2020; Agostinho et al., 2023; Theis et al., 2023), and is crucial for AI adoption in
industrial robotics, where robot programs must undergo auditing and certification
before being cleared for deployment (Tong and Lei, 2017). While it would be
desirable to be guarantee explainability for both the program (the rules governing
the robot’s behavior) and the metaprogram (the planners and learning algorithms
which generate the program), this is considered intractable for complex programs
and metaprograms with a high degree of generalization (see Yampolskiy (2022) and
Section 1.1.3). This work focuses on explainability of the program: An explainable
program, that can be audited and certified, can be used in real-world applications,
but incurs the cost of re-auditing when the policy is changed by e.g. a planner.

Human editability In both service and industrial applications, it is crucial for
humans to exert influence over the robot’s behavior and to change the robot
program. The degree to which human users can influence the behavior of an AI
system has been shown to be positively correlated with user satisfaction and positive
attitudes toward AI (Morrison et al., 2023). Beyond psychological factors, human
editability is a practical necessity in industrial applications, where the modification
of robot programs by workers or engineers is a crucial part of robot deployment
and maintenance (Alt et al., 2024a).

Symbolic composition Most general-purpose textual or graphical program rep-
resentations afford symbolic composition by encapsulating complex algorithms
or data structures behind symbols, which can be reused and recombined. Sym-
bolic composition has been one of the core factors enabling humans to design,
deploy and maintain complex software systems (Perlis, 1996). Likewise, there is
mounting neurobiological evidence that the presence of symbolic representations
in the human brain and the evolution of cognitive processes which involve symbolic
compositions are central components of human intelligence (Pulvermüller et al.,
2014; Do and Hasselmo, 2021).

Hierarchical structure The decomposition of high-level tasks into hierarchies of
subtasks is one of the core principles of task-level programming. It permits planners
to efficiently solve complex, high-level tasks by hierarchically solving simpler, more
circumscribed low-level subtasks. Beyond automatic planning, hierarchical task
models allow human programmers to bootstrap complex robot behavior from
simple, primitive skills (Kortenkamp et al., 2016).

22

2.2. NEUROSYMBOLIC ROBOT PROGRAMS: OVERVIEW

Interoperability Particularly in industrial applications, robots rarely operate in
isolation. Typical industrial robot workcells are heterogeneous both with respect to
hardware and software, and can be operational for several years. This translates
to a high need for interoperability with the different program representations
typically deployed on industrial robot workcells, such as manufacturer-specific
robot programming langugages. A program representation which augments, rather
than replaces, legacy robot software ecosystems can be retrofitted to existing robot
workcells without requiring complete reprogramming, decreasing deployment costs
and overhead considerably.

Neither purely symbolic nor purely subsymbolic program representations satisfy
these requirements, leading to limited applicability for a range of real-world ap-
plications. Purely symbolic, explicitly represented robot programs such as textual
or task model-based programs only afford learning to a limited degree, as the
learning capacity of compact symbol systems is constrained; they only afford a
limited degree of optimization at runtime, as they cannot represent the continuous,
nonlinear interactions of the robot with a changing environment; and they are
typically limited to a given robot manufacturer. Under the deep end-to-end learning
paradigm, neural, subsymbolic policies implicitly represent robot behavior, which
is typically neither human-interpretable nor human-editable, and which does not
afford symbolic composition by default. A suitable program representation com-
bines the benefits of both representational extremes while avoiding their respective
shortcomings. The following paragraphs introduce such a representation.

2.2.2 A Dual Program Representation with a Differentiable Sur-

rogate

The field of explainable artificial intelligence (XAI) has introduced various
approaches to address the gap between the implicit, subsymbolic representations
used by many AI models for learning and representations that enable formal analysis
or human interpretation (see Section 2.6). One such approach is the use of ◁ Surrogate modelsurrogate
models, which construct an interpretable surrogate of an opaque DL model that
performs identically to the original, but is mechanistically interpretable (Burkart
and Huber, 2021). This allows for the use of the original model for efficient
inference, while the surrogate model can be used to obtain explanations when
needed, while typically requiring more computational resources. NRPs apply the
concept of surrogate models to robot programming by associating a symbolic source
program with a differentiable, partially neural shadow program, and enforcing
an isomorphism between them. NRPs are a ◁ Dual

representation
dual program representation: They

combine two representations, each of which can be dynamically converted into
the other, and permit algorithms for program synthesis or optimization to operate
on either, depending on the requirements of the algorithm. The use of surrogate

23

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

models overcomes the the apparent dichotomy between self-learning and human
sovereignty via an additional layer of indirection. By performing learning and
optimization not on the robot program itself, but on its differentiable, subsymbolic
shadow, powerful deep learning and gradient-based optimization methods can be
used without requiring the user to write differentiable robot code or interpret the
parameters of neural networks. Instead, the user can program a robot in a program
representation familiar and understandable to them – and the optimized robot
behavior is, in turn, displayed to the user in that same representation.

2.2.2.1 Processes, Programs, Skills and Tasks

For the purpose of formally defining NRPs, the terms “program”, “process”, “task”,
“skill” and “parameter” must be formally defined. This work adopts the ISO/CEN
19439 definition of aProcess ▷ process as a “partially ordered set of activities that can be
executed to achieve some desired end-result in pursuit of a given objective” (Cutting-
Decelle et al., 2007).Program ▷ Programs represent processes by modeling them, with the
threefold purpose of instructing a machine to perform them (as a prescriptivemodel),
communicate them to the programmer and other humans (descriptive model), and
making predictive statements about them (predictivemodel). The predictive view on
programs permits to establish a mathematical definition of programs as functions,
which map a set of program parameters and the initial state of the robot and its
environment to a robot motion and the corresponding outcomes in the world.

ASkill ▷ skill is a “predefined robot’s capability that can be parameterized to solve
a specific goal” (Pantano et al., 2022). A majority of common robot program
representations are skill-based, such as Movement Primitives (MPs) (Schaal, 2006;
Paraschos et al., 2013; Ratliff et al., 2018; Seker et al., 2019), Task and Motion
Planning (TAMP) operators (Kaelbling and Lozano-Perez, 2011; Silver et al., 2021)
or Behavior Trees (BTs) (Colledanchise and Ögren, 2018). The definition of a
skill proposed in (Pantano et al., 2022) also covers other representations typically
not considered “skill-based”, such as most modular robot programming languages
(Ajaykumar et al., 2021), the predefined function libraries used by many program
synthesis approaches (Fan et al., 2024; Liang et al., 2023; Vemprala et al., 2023)
and even parameterized neural policies (Klimek et al., 2017; Verma et al., 2024). A
skill refers to any parameterized function that generates some goal-oriented robot
behavior. For the purpose of this work, a Conditional Neural Movement Primitive
(CNMP) (Seker et al., 2019) trained to represent a wiping action, a URScript
(Universal Robots, 2018b) function to execute a spiral search motion, or a TAMP
operator for closing a robotic gripper can be considered skills.

ATask ▷ task is “an ordered ensemble of [skills] and depicts a concrete representation
of steps in a workflow to solve a specific goal” (Pantano et al., 2022). Complex
tasks typically involve sequential chaining of several skills. Real-world tasks are
inherently hierarchical: A pick-and-place task, for example, can be decomposed into
the subtasks Pick and Place; Pick, in turn, can be decomposed into Approach, Grasp

24

2.2. NEUROSYMBOLIC ROBOT PROGRAMS: OVERVIEW

GoalState Vel Acc

Move to

State

Move Linear

Relative

Contact

PointTo MinForce ...

Spiral

ExtentsX ...ExtentsY

GoalState Vel Acc

Differentiable
Collision-Free Planner

Differentiable FK

Differentiable
Cartesian Planner

Deep
residual GRU

PointTo MinForce ...

Differentiable
Cartesian Planner

ExtentsX ...ExtentsY

Deep
residual GRU

Source program Shadow program

structural & semantic

equivalence

Figure 2.2: NRPs are a dual program representation, associating a skill-based robot
program (source program) P with a corresponding DCG P̄ (shadow program).

and Depart; each of which can be solved by a sequence of motion and perception
skills. Many skill-based representations such as textual programming languages
or graphical task models (Jäkel, 2013) afford hierarchical task composition. From
a programmer’s perspective, a hierarchical conception of tasks is an instance of
symbolic composition, which ensures modularity and eases understanding and
maintenance of complex robot programs (Chaudhuri et al., 2021); from a cognitivist
perspective, a hierarchical task definition mirrors the hierarchical organization of
sensorimotor control circuits in the human brain (Newell, 1994; Flanagan et al.,
2006).

◁ ParameterParameters “configure a [s]kill for a specific [t]ask” (Pantano et al., 2022). In the
example of a pick-and-place task, an Open Gripper skill may be parameterized with
the width of the gripper opening for a parallel gripper, or a set of joint angles for a
humanoid hand. The parameterization of skills depends on the skill representation,
the semantics of the skill and the robot hardware: The same spiral motion can be
generated by a DMP parameterized with a set of basis function weights (Pervez
and Lee, 2018), or e.g. a URScript function parameterized with the spiral extents
and distance between the spiral arms (Alt et al., 2021).

2.2.2.2 A Dual Program Representation

In the context of this work, then, a ◁ Robot programrobot program denotes a model of a task,
hierarchically and sequentially composed of subtasks, which are ultimately com-
posed of sequentially chained, parameterized skills. This definition covers most

25

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

parameterized, modular program representations currently in use. NRPs are robot
programs — they are hierarchical models of tasks, which are in turn composed
of parameterized skills. The core representational difference between NRPs and
other program representations is that NRPs have a dual representation, offering
two different views onto the same robot program. The NRP source program and
shadow program are, in fact, the same program – they are semantically equivalent,
but represented differently. Programmers or algorithms working with NRPs can
choose whether to use the source or shadow representation, and seamlessly convert
between the two.

TheSource program ▷ source program representation can be any hierarchical task model, com-
posed of parameterized skills. The term “source program” reflects the fact that it
can be any existing program representation – and that the corresponding shadow
program is constructed from it. A robot programmer using NRPs can choose any
source program representation they want, provided it is a hierarchical task model,
composed of parameterized skills. Chapters 3 and 4 provide examples for different
source program representations, including DMPs, Cognitive Robot Abstract Ma-
chine (CRAM) plans, URScript, or task models in a graphical robot programming
language. In terms of the ternary conception of programs as descriptive, prescrip-
tive and predictive models, the source program primarily acts as a descriptive and
prescriptive model. It is typically interpretable and human-editable, serving as a
method for human programmers to describe to the robot the task it should solve,
and for the robot to communicate to the human programmer how it is solving the
task.

TheShadow program ▷ shadow program representation, in turn, is a novel, differentiable program
representation, presented in detail in Section 2.4. Shadow programs, too, are hier-
archical task models, composed of parameterized skills. Unlike the source program
representation, the shadow program representation acts primarily as a predictive
model. It is differentiable and partially neural, making it ideal for learning and
optimization. The unique benefits of NRPs stem from the fact that the descriptive,
prescriptive and predictive roles do not have to be played by the one and the same
internal representation. The source program representation can be descriptive
and prescriptive, without having to be suitable for optimization and learning; the
shadow program representation can be differentiable and subsymbolic, without
having to be interpretable (descriptive) or executable (prescriptive). The dual
representation used by NRPs sidesteps the capability-control-tradeoff by allowing
users to switch seamlessly between source and shadow program representations,
depending on the user’s needs. This duality rests on two properties, structural and
semantic equivalence, which are enforced by design.

26

2.3. SOURCE PROGRAM REPRESENTATIONS

Structural equivalence

A shadow program P̄ is structurally equivalent to its corresponding source
program P if for each skill pi in P , there is a corresponding shadow skill p̄i
in P̄ , and if for each parameter xpi of pi, p̄i has a corresponding parameter
x̄p̄i .

D

These correspondences are the only constraints on either representation – the
internal representations used to implement skills or parameters, the computa-
tional mechanisms by which skills are combined, the methods used to implement
control flow etc. can vary substantially between source and shadow programs.
The following sections as well as Chapters 3 and 4 will show that the three listed
correspondences suffice to automatically construct a shadow program for a given
source program, apply learning and optimization algorithms to the shadow pro-
gram, and map the results back to the source program so that human programmers
can interpret and possibly modify them.

Semantic equivalence

P̄ and P are semantically equivalent if they are models for the same task.
Given the same parameters, the robot actions and their consequences on
the world predicted by P̄ are identical to, or closely approximate, the robot
actions and actual real-world consequences resulting from execution of P .

D

Semantic equivalence permits shadow programs to act as surrogates, facilitating
computations such as data-driven learning or first-order optimization that the
source program does not afford.

The structural and semantic equivalence properties make NRPs a dual program
representation by offering two different “views” on the same program: Users or
algorithms can interact with the program in its source or shadow representation,
depending on whether interpretability and human-interpretability or learning and
subsymbolic optimization are required. NRPs as a dual program representation are
illustrated in Figure 2.2.

2.3 Source Program Representations

The following paragraphs provide a formal definition of robot programs as predictive
models of tasks. It delimits the class of program representations that can represent
source programs in the context of NRPs.

2.3.1 A Formal Definition of Robot Skills

A proper definition of NRPs requires a more concrete definition of skills than
parameterized, atomic robot actions (Pantano et al., 2022). Chapter 3 proposes

27

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

a learning and optimization algorithm for skills, which requires the definition
of a skill as a parameterized function producing a robot motion that, in turn,
influences the environment. Particularly in dynamic environments, some aspects of
the environment will be different at every skill execution: In a retail setting, the
same shelf may contain different products on different days, e.g. due to promotions;
in industrial applications, the pose of a feature on a workpiece, such as connector
pins or screw holes, may stochastically vary between individual workpieces due
to manufacturing tolerances. For these reasons, this work conceives of a skill as
a parameterized stochastic process: Given a parameter vector x ∈ R

N and initial
robot and world state θ0, a skill p is a stochastic process which, when sampled,
gives rise to a trajectory θ. The notions of “parameter vector”, “trajectory” and
“executing a skill” merit further definition.

The length N and contents of theParameter vector ▷ parameter vector x are skill dependent. A
DMP for table wiping, for example, may have a parameter vector of length 12,
containing one real-valued weight for each of 12 Gaussian kernel functions (Ijspeert
et al., 2002). An force-controlled probe search skill from an industrial robot skill
library may have a parameter vector of length 32, corresponding to 16 2D positions
in a plane describing the search pattern (Alt et al., 2021). Aside from the domain
of R, no additional requirements are placed on the input vector, allowing NRPs to
represent a wide variety of source programs.

Trajectory

A trajectory θ ∈ SM is a sequence of states θ ∈ S, with a fixed temporal
sampling interval between successive states. The trajectory length M is
not assumed to be fixed, but may vary, even between executions of the
same skill.

D

The trajectories generated by search skills, for example, often exhibit widely varying
lengths, as the feature the robot is searching for may be found immediately in some
executions, but very late or not at all in others.

Like the contents of the parameter vector x, theState space ▷ state space S is, in principle,
skill-, hardware- and application-dependent and represents of the robot configu-
ration and world state at the moment the skill is executed. S will typically be a
subspace of RN . For simple skills defined in joint space, S = C, the configuration
space of the robot; for simple skills defined in Cartesian space, S is the robot’s
workspace. More complex skill representations or applications may require addi-
tional information to represent the initial state, such as force or torque values at
the end effector and the current task frame for force-controlled skills (De Schutter
et al., 2007), or a voxelized representation of the environment (Alt et al., 2025).
For the purpose of defining robot programs as predictive models of tasks, it suffices
to assume some representation of the current state of the robot (and, possibly, its
environment) at the beginning of a skill. Section 2.4 will illustrate some technical
constraints on possible state representations.

28

2.3. SOURCE PROGRAM REPRESENTATIONS

Skill (formal definition)

A skill can be modeled as a discrete-time continuous-valued stochastic
process: p := {Θt} with time index t ∈ {1, 2, ...,Mp} and state space S.
The law of {Θt} is parameterized by xp, the parameter vector for p, and
conditional on θ

p
0 as well as the current environment H: The distribution

of trajectories is a partial function of the skill’s parameters and the current
state of the robot, as well as those task-relevant aspects of the environment
which are not captured by θp0. Following Alt et al. (2022b), those aspects
of the environment are grouped under a random variable H.

D

Spiral search is an intuitive example: The skill parameters define the shape of the
resulting spiral trajectories, and the current robot state defines the absolute pose of
the spiral in the workspace. {Θt} is, however, not exclusively a function of the skill
parameters and start state, but also depends on the environment, the dynamics of
the robot and other factors. For a force-controlled spiral search skill, the resulting
trajectories will deviate considerably from the the pre-planned planar spiral; if
a hole is found, the trajectory will dip into it, and the remaining motion will be
constrained by the size of the hole.

Executing or evaluating ◁ Skill executiona skill p results in some robot behavior, which is depen-
dent on the parameterization of the skill and the state of the robot and environment.
In the proposed model, this corresponds to sampling from the stochastic process,
resulting in a trajectory θp. Due to the possibly dynamic nature of the environment,
successive evaluations of the same skill will produce different trajectories, even
for the same parameterization xp. As the true distribution of {Θt} is generally
unknown, it is impossible to evaluate p in a computer – the execution of a skill
requires actual interaction of a robot in an environment, unless both the robot and
environment are simulated.

This mathematical conception of a skill is sufficiently flexible to cover any pa-
rameterized mechanism engendering robot behavior, including both deterministic,
pre-planned motions and non-deterministic behavior such as force control or neural
policies. The concrete representation of the skill, the robot hardware and the envi-
ronment are abstracted away and folded into the stochastic process {Θt}. While it
may be tempting to further specify the exact contents of xp and θp for additional
mathematical rigor, such specification is neither required nor possible. The provided
notation suffices to define a skill p as a mapping from real-world parameters to
a distribution of trajectories. The conception of skills as parameterized stochas-
tic processes is a mathematical abstraction that allows to concisely describe NRP
source programs: Any skill-based robot program representation whose skills

can be interpreted as parameterized discrete-time continuous-valued stochastic

processes can serve as the source program representation of NRPs. It allows for
source programs as diverse as textual URScript programs, DMPs or Hierarchical
Task Networks (HTNs). The fact that p can generally not be evaluated in a computer,

29

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

let alone differentiated, motivates Neurosymbolic Robot Program (NRP) as a dual
representation, as the shadow representation facilitates such operations.

2.3.1.1 Examples

URScript functions The URScript programming language is the platform-specific
programming language of the robot manufacturer Universal Robots (Universal
Robots, 2018b). URScript has a syntax similar to Python, offers general-purpose
computingmechanisms such as arithmetic operators, stringmanipulation, threading
and network communication, but also an application programming interface (API)
containing an array of motion primitives. One example is the function movel(pose,

a, v, t, r), which takes a target pose, tool acceleration a, tool speed v, optional
movement time t, and optional blending radius r, and executes a linear end-effector
motion in the workspace. movel fits the definition of a skill: It is parameterized, with
a parameter vector xp comprising a real-valued representation of the parameters
pose, a, v, t and r; when executed, the robot follows a trajectory θp. While movel
can be considered deterministic from a control perspective – it issues the same
control commands when called multiple times with the same parameters – θp will
be subject to small deviations at every execution due to physical phenomena such as
wear and tear of the robot’s joints or slight changes in the lengths of arm segments
due to temperature (Raible et al., 2023b). In more extreme circumstances, larger
deviations from the expected trajectory are possible, e.g. due to collisions with the
environment.

DMPs DMPs are nonlinear dynamical systems, which are parameterized to gen-
erate goal-directed or periodic robot behavior. Consider the DMP formulation
proposed by Ijspeert et al. (2013). It proposes a damped spring model, which
can be parameterized to act as a single point attractor or a limit cycle attractor,
depending on the choice of several constants and a forcing function f . Ijspeert et al.
(2013) realize f as a normalized linear combination of exponential basis functions
with weights wi: The weights wi are parameters determining the behavior of the
system. Viewed as a black box, DMPs can be modeled as a parameterized, discrete-
time, continuous-valued stochastic process: They generate a robot trajectory which
is contingent on a set of parameters. The mathematical formulation of DMPs is
deterministic, suggesting a stochastic process with zero variance. As their execution
on real robot hardware is subject to the same stochastic variation as e.g. the movel
URScript function, however, a probabilistic model is still warranted.

ARTM skills The ArtiMinds Robot Task Model (ARTM) is a commercial, industrial
robot program representation which underlies a manufacturer-independent, graph-
ical programming framework (Schmidt-Rohr et al., 2013). The ArtiMinds Robot
Task Model (ARTM) is an extension of Generalized Manipulation Strategies (Jäkel,
2013). An ARTM skill is a parameterized set of constraint functions, which, when

30

2.3. SOURCE PROGRAM REPRESENTATIONS

used with a constraint-based motion planner, yield a planned prior trajectory θ̃p.
On the basis of this prior trajectory, along with the skill type and skill parameters,
a set of platform-specific compiler backends generate code for the desired robot
platform, such as a Fanuc industrial manipulator, and peripheral devices, such as
grippers or force-torque sensors. Insert Moment, an exemplary ARTM skill for
force-controlled, zero-torque peg-in-hole insertion, accepts 8 parameters: Tool,
Bias, PointFrom, PointTo, WreExt, GoalWreExt, WreCenter, GoalWreCenter, as
well as a velocity Vel and acceleration Acc. The poses PointFrom and PointTo

define a relative motion in the Tool coordinate frame; WreCenter (wrench cen-
ter) and WreExt (wrench extents) define the runtime constraints of the skill, i.e.
the end-effector wrench region the force controller will attempt to reach during
the execution of the skill; and GoalWreCenter and GoalWreExt parameterize the
skill’s stop condition, i.e. an end-effector wrench region in which the skill will stop.
Like URScript functions and DMPs, ARTM skills can be modeled as parameterized
stochastic processes. While the prior trajectories θ̃p will be the same for identical
parameterizations, the real-world robot trajectories are subject to variation. The
path followed by the robot will depend on the shapes of the peg and hole, and the
forces experienced during the motion are contingent on material properties such as
surface friction or the rigidity of the materials.

2.3.2 Skill-based Robot Programs

A robot program is a model of a task, sequentially and hierarchically composed of
subtasks, which are, in turn, composed of skills (Pantano et al., 2022). As for robot
skills themselves, skill-based robot programs are represented in a variety of ways.
Again, a common abstraction serves to identify a class of program representations
which can serve as source program representations for NRPs.

Robot program

For the purpose of this work, a robot program is a sequence of subpro-
grams; a subprogram is a sequence of subprograms or skills. A robot
program is denoted as P , with parameter vector xP . The ith subprogram
in a program is denoted as Pi, with parameter vector xPi . The jth skill in
a subprogram is denoted as pj , with parameter vector xpj .

D

An example for a robot program solving a peg-in-hole task is shown in Figure
2.4. A program is a model of a task; like the corresponding task tree (Figure 2.3),
its root represents the program as a whole. It is composed of two subprograms,
Search and Insert, that solve the subtasks of searching for a hole on a workpiece,
and inserting a peg into this hole. Search, in turn, is composed of three skills:
Approach, Move to Contact, and Spiral Search. Robot programs are hierarchies
of subprograms, nested to arbitrary depth; the leaf nodes are primitive skills.

31

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

Peg-in-Hole

Search Insert

Approach Establish Contact Search Push

©
 2

02
2

IE
E

E

©
 2

02
2

IE
E

E

Figure 2.3: Task tree of a peg-in-hole
task and two industrial peg-in-hole appli-
cations: Pneumatic valve assembly (left),
PCB assembly (right) (Alt et al., 2022b).
Tasks are hierarchically and sequentially
decomposable into subtasks and skills.

Peg-in-Hole

Search

Insert

Approach

Move to Contact

Spiral Search

Insert Moment

...

PointTo

PointTo Vel Acc

Vel Acc

MaxForce MinForce

MaxForce MinForce

ExtentsX ExtentsY

...

...

...

PointFrom PointTo
...

PointFrom PointTo
...

PointTo Vel Acc MaxForce MinForce

P

Figure 2.4: Structure of a robot source
program for a peg-in-hole task, hierarchi-
cally and sequentially composed of pa-
rameterized subprograms and skills.

Program parameters

The program parameters xP are the concatenated parameter vectors of
its constituent subprograms; the parameter vector of a subprogram, in
turn, is the concatenated parameter vectors of its constituent subprograms
and skills.

D

TheProgram
execution

▷ execution of a robot program proceeds from top to bottom (see Figure
2.4). When a robot program is executed, its subprograms are executed in order.
When a subprogram is executed, its skills are executed in order. Each skill pj
yields a trajectory θpj ; each subprogram Pi yields a trajectory θPi , which is the
concatenation of the trajectories of its constituent skills; the program P yields
trajectory θP , the concatenation of the trajectories of its constituent subprograms.

As robot programs are typically executed in environments under uncertainty,
the probabilistic definition of a robot skill as a trajectory-generating stochastic
process can be extended to robot programs.

Robot program (probabilistic definition)

From a probabilistic perspective, a robot program P can be defined as
a discrete-time continuous-valued stochastic process P := {Θt} with
time index t ∈ {1, 2, ...,MP} and state space S. The law of {Θt} is
parameterized by the program parameters xP and conditional on the
initial state θP0 and environment H.

D

32

2.3. SOURCE PROGRAM REPRESENTATIONS

2.3.2.1 Examples

URScript programs As URScript functions are robot skills, there is a large class
of URScript programs that fit the proposed program definition and can be repre-
sented as NRPs. Most industrial robot programs are sequences of function calls,
with functions in turn composed of skills such as movel. PolyScope, Universal
Robots’ proprietary graphical programming interface, provides an interface by
which program hierarchies can be composed, which results in structures similar to
the program shown in Figure 2.4. This visual representation is internally mapped
to textual URScript code.

Behavior trees A large class of BT-based robot programs can be represented
as NRPs. BTs are a trees with parameterized skills at the leaves, which engender
robot behavior (Colledanchise and Ögren, 2018). BTs are hierarchical and can
be composed of sub-trees nested to arbitrary depth. BTs composed of Action
and Sequence nodes can be trivially represented as NRPs. Fallback nodes can be
represented by the same mechanism as for or while loops in URScript (see Section
3.2.3 of Chapter 3).

ARTM programs ARTM programs are hierarchically composable graphs of robot
skills. ARTMs are directed acyclic graphs (DAGs) of subprograms (Hierarchies)
or skills (Templates); repeating behavior is realized via a dedicated Loop hierarchy
type. ARTMs are structurally equivalent to the program structure described in
Section 2.3.2 and illustrated in Figure 2.4.

2.3.3 Discussion

The definition of NRPs’ source program representation is purposefully loose. It fits
a large class of skill-based robot program representations, including textual and
graphical representations. In the NRP dual representation, the shadow program
representation is automatically constructed from the source program; because
many skill-based robot program representations can serve as source programs,
NRPs can represent a wide variety of program representations currently used by
robot programmers. As most hierarchically and sequentially composed sequences of
parameterized skills can serve as a source program, NRPs support the “retrofitting”
of existing robot programs with the data-driven optimization capabilities of NRPs.
However, the structural and semantic equivalence between source and shadow
programs effectively limits the expressivity of NRPs to that of the source program
representation, as the source program is executed on the robot, and the shadow
program is trained to be a predictive model of the resulting behavior. In prac-
tice, this restriction can be mitigated by the choice of a sufficiently flexible source
program representation. The ARTM, for example, has general-purpose motion
skills such as Move to State or Path Force, which execute collision-free planned

33

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

motions or force-controlled freeform motions, respectively, and are parameterized
with low-level sampled paths. In Section 3.3.2, NRPs are used in the AI-based
planning and optimization of such freeform constrained motion skills. Similarly,
URScript, other textual program representations or MPs support near-arbitrary mo-
tions, trading off intuitive parameterization for flexibility. First-order optimization
over shadow programs (see Chapter 3) automatically generates such motion-level
parameterizations to achieve task-level objectives.

2.4 Differentiable Shadow Programs

Section 2.3 established that most hierarchically and sequentially composed se-
quences of parameterized skills can serve as source programs for NRP. While these
representations are generally interpretable and designed for human-machine inter-
action, they do not all afford learning or optimization. As noted in Section 2.3.1,
real-world robot skills cannot be evaluated in a computer; while the program is a
data structure represented in a computer, its execution involves interaction with
the physical world outside of the machine. Any learning or optimization of the
source program itself must be zero-order and model-free; the notion of “differenti-
ating a robot program” for first-order optimization is ill-defined if evaluating that
program requires running it on real robot hardware. The unique property of the
NRP representation is that it enables first-order, model-based optimization of robot
programs, using a learned model of the program.

Section 2.2 introduced NRPs as a dual program representation, which represents
a robot program both in its original form (the source program representation) as
well as in a differentiableShadow program ▷ shadow program representation which can serve as a
model of the program. The shadow program representation facilitates learning,
evaluating and optimizing programs without requiring physical robot hardware.

The shadow program must ensure structural and semantic equivalence to the
source program (see Section 2.2.2.1). Like the source program representation, it is
modular and skill-based, and permits the sequential and hierarchical composition
of complex programs from primitive skills. Structural equivalence is ensured by
affording the same symbolic composition mechanisms as the source program repre-
sentation; semantic equivalence is ensured by introducing learnable components,
which can be trained to be models of the source program.

2.4.1 Shadow Skills

NRPs associate aShadow skill ▷ shadow skill to each skill in the source program. For a given skill p,
the corresponding shadow skill p̄ associates a parameter vector xp̄ and initial world
state θ0 with a posterior trajectory θp̄. There is a one-to-one mapping between
source and shadow skills: For every source skill pi, there is a corresponding shadow
skill p̄i (see Figure 2.10).

34

2.4. DIFFERENTIABLE SHADOW PROGRAMS

The raison d’être for shadow skills is to serve as differentiable surrogates for
robot skills for program learning and optimization. For this reason, they must
be implemented purely in software – it is impossible to differentiate a physical
robot and its environment. Unlike p, which is executed, p̄ is a function which is
evaluated. Where we only have indirect means to obtain the real-world trajectory
θp by measurement, p̄ returns θp̄. This enables computation with θp̄ and the skill p̄
itself; the shadow program representation represents the abstract notion of a robot
skill as a DCG that can be differentiated using automatic differentiation, allowing
for implementation of otherwise ill-defined operations such as “inversion of a skill”
or “backpropagation through a skill”.

2.4.1.1 Tensor Representation of States and Trajectories

The representation of a robot skill as a DCG necessitates a representation of param-
eters, states and trajectories as tensors over which differentiable operations can
be defined. This section introduces a tensor representation of parameters, states
and trajectories which is used for the remainder of this work. A shadow skill’s
parameter tensor xp̄ is simply the corresponding skill’s parameter vector xp. The
representation of states and trajectories requires additional care.

◁ State spaceAs motivated in Section 2.3.1, the state space S is skill-, application- and
hardware dependent. In this work, three spaces are considered:

1. Cartesian end-effector poses P: The Cartesian position and orientation of
the robot’s tool center point (TCP) in the workspace. Represented as the
concatenation of a 3D position vector and a 4D normalized unit quaternion.
Other pose representations such as dual quaternions would also be possible,
provided they are unambiguous and interpolate smoothly.

2. Configuration space C: The N -dimensional joint configuration of the robot,
including the gripper, if any.

3. End-effector wrenches W: The six-dimensional forces and torques at the
TCP, in local coordinates.

Which combination of these three spaces (or components) span the a skill’s state
space S depend on the skill type and the needs of the application. A shadow skill
for the movel URScript function, for example, would have a state space Smovel = P .
A DMP for table wiping would have state space Swipe = P or Swipe = C, depending
on whether a Cartesian or joint-space DMP is used. A force-controlled insertion
skill Insert Moment has state space Sinsert = P ×W . Whether or not to include a
component in a skill’s state representation ultimately depends on any downstream
computation being performed. If e.g. a skill’s parameters are optimized to produce
smooth motions, the skill’s state space should include C. This work adopts the
convention that skills are defined either in Cartesian or configuration space, but not

35

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

..
.

..
.

..
.

0

0

0

1

0

0

0

0

0.4 -0.7 1.0 0.0 0.0 0.00.6 0.9 0.4 0.1 0.8-0.2 -0.9

0.4 -0.6 0.9 0.1 0.0 0.10.5 0.8 0.4 0.1 0.8-0.2 -0.9

0.5 -0.7 0.8 0.2 0.1 0.00.5 0.6 0.2 0.2 0.7-0.1 -0.5

1.0 -0.6 0.9 0.0 0.0 0.1-1.0 0.7 1.0 0.0 0.70.0 -0.6

..
.

..
.

..
.

0

0

1

0

0

0

0

0.4 -0.7 1.0 0.0 0.0 0.00.6 0.9 0.4 0.1 0.8-0.2 -0.9

0.4 -0.6 0.9 0.1 0.0 0.10.5 0.8 0.4 0.1 0.8-0.2 -0.9

0.5 -0.7 0.8 0.2 0.1 0.00.5 0.6 0.2 0.2 0.7-0.1 -0.5

1.0 -0.6 0.9 0.0 0.0 0.1-1.0 0.7 1.0 0.0 0.70.0 -0.6

..
.

..
.

..
.

0

0

0

1

0

0

0

0

0.4 -0.7 1.0 0.0 0.0 0.00.6 0.9 0.4 0.1 0.8-0.2 -0.9

0.4 -0.6 0.9 0.1 0.0 0.10.5 0.8 0.4 0.1 0.8-0.2 -0.9

0.5 -0.7 0.8 0.2 0.1 0.00.5 0.6 0.2 0.2 0.7-0.1 -0.5

1.0 -0.6 0.9 0.0 0.0 0.1-1.0 0.7 1.0 0.0 0.70.0 -0.6

..
.

..
.

..
.

..
.

0

0

0

1

0

0

0

0

0.4 -0.7 1.0 0.0 0.0 0.00.6 0.9 0.4 0.1 0.8-0.2 -0.9

0.4 -0.6 0.9 0.1 0.0 0.10.5 0.8 0.4 0.1 0.8-0.2 -0.9

0.5 -0.7 0.8 0.2 0.1 0.00.5 0.6 0.2 0.2 0.7-0.1 -0.5

1.0 -0.6 0.9 0.0 0.0 0.1-1.0 0.7 1.0 0.0 0.70.0 -0.6

..
.

L

Figure 2.5: Batched tensor representation of trajectories, by example of a spiral
search skill. Left: 3 exemplary real-world spiral search trajectories executed on a
UR5e industrial manipulator.

both. If downstream computations require the other representation, differentiable
forward kinematics (FK) and IK operations are available (see Section 2.4.4.1).

Trajectory tensors ▷ As motivated in Section 2.3.1, a trajectory is a time series of states. Trajectories
are variable-length: Different skills will produce trajectories of different length, as
will subsequent executions of the same skill. As batch-wise parallel computation
can greatly improve inference speeds in DCGs, a fixed-length representation of
trajectories is desirable to enable batching. For this reason, the shadow skill DCG
pads trajectories to a common length L by repeating the last state. To enable
downstream computations to distinguish padding from regular states, an end-of-
sequence (EOS) token is prepended to each state on the trajectory, which is 0 for
regular states on the trajectory and 1 for padding.

Many skill representations have the notion of success of a skill, which typically
denotes that all runtime conditions of the skill were met during execution and that
all postconditions of the skill held after completion. Shadow skills extend each
state on a trajectory by a success token, which is 1 for all states during which the
skill execution is deemed successful, and 0 otherwise. Figure 2.5 illustrates the
proposed tensor representation of trajectories.

2.4.1.2 Shadow Skill Learning

Shadow skills relate skill inputs xp̄ and initial state θ0 to thePosterior
trajectory

▷ posterior trajectory
θp̄. The dual nature of NRPs requires shadow skills to be semantically equivalent
to their corresponding source skills. For this reason, θp̄ must reflect the ground-
truth trajectory θp. Due to the fundamentally stochastic nature of many physical
processes, real-world robot behavior cannot be modeled with perfect accuracy. θp̄

can be, at best, a very good approximation of θp, and p̄ can only be an approximate
model of p. Nevertheless, it facilitates precise robot program optimization in
complex, force-sensitive tasks, as evidenced by experiments in Chapter 3.

The need for θp̄ to accurately reflect real-world robot behavior implies that parts
of the shadow skill DCG must be learnable. A straightforward way to implement

36

2.4. DIFFERENTIABLE SHADOW PROGRAMS

this is by using a differentiable autoregressive model, such as a recurrent neural
network, trained to minimize some prediction loss L between the posterior and
ground-truth trajectories:

◁ Trajectory
prediction loss

L(θp̄,θp) = BCE(θp̄
EOS,θ

p
EOS) + BCE(θp̄

succ,θ
p
succ) +MSE(θp̄

θ ,θ
p
θ), (2.1)

the sum of the binary crossentropies between the predicted and ground-truth EOS
and success tokens, respectively, as well as the mean squared error (MSE) between
predicted and ground-truth states.1

Bootstrapping the posterior trajectory given xp̄ and θ0 is a challenging learning
problem: The model must implicitly learn to plan low-level motion trajectories from
a sparse set of parameters, and to predict the expected interaction of the robot with
its environment. Recent publications in the field of informed machine learning have
highlighted the potential of combining explicit, differentiable implementations of
algorithms with learnable components (von Rueden et al., 2021). Some approaches
such as differentiable particle filters (Jonschkowski et al., 2018; Wen et al., 2021) or
differentiable physics engines (Degrave et al., 2019; Toussaint et al., 2018; Lutter
et al., 2021) implement known algorithms or (physical) laws as DCGs, which allows
for the first-order learning of physical parameters by iterative optimization. Other
approaches include parameterizing algorithms at runtime with neural networks
(Yang et al., 2023), integrating neural networks with ODE solvers (Chen et al.,
2018) or directly modeling the solution curves of ODEs in the network architecture
(Biloš et al., 2021). Such algorithmic priors promise to dramatically reduce the
complexity of the learning problem – instead of learning a generative predictor of
a (usually physical) process, the system must only learn to regress those aspects
of the real-world process which deviate from the prior. Algorithmic priors have
been shown to reduce the required amount of training data and to improve model
accuracy, particularly under limited data regimes (von Rueden et al., 2021).

As the availability of high-quality training data is limited in physical application
domains such as robotics, and as many manipulation tasks in service and indus-
trial robotics require a high degree of reliability and precision, the shadow skill
architecture leverages a differentiable path planner as an algorithmic prior whose
outputs are adapted by a sequence-to-sequence neural architecture. Given skill
parameters xp̄, the differentiable planner bootstraps a ◁ Prior trajectoryprior trajectory θ̃p̄. θ̃p̄ is
then adapted by a recurrent neural network to produce the posterior trajectory θp̄,
which approximates the real-world ground-truth robot behavior θp.

2.4.1.3 Differentiable Cartesian Priors

Both Cartesian and joint-space algorithmic priors are considered. The present
Section focuses on Cartesian priors; Section 2.5 introduces a collision-free differen-
tiable motion planner, which is capable of generating C-space trajectories satisfying

1An early formulation of NRPs used a loss function that split the trajectory prediction loss into
position and orientation components (see Alt et al. (2021) for details).

37

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

collision-freeness, smoothness and other constraints. For skills whose behavior is de-
fined in Cartesian space, e.g. force-controlled skills with constraints specified in the
task frame formalism (Bruyninckx and De Schutter, 1996) or similar conventions, or
for simple Cartesian motion skills such as the URScript movel primitive introduced
in Section 2.3.1, Cartesian planners can bootstrap suitable prior trajectories.

Example: Spiral Search The ARTM skill Spiral Search Relative takes pa-
rameters MinForce, MaxForce, MinDepth, MaxDepth, ExtentsX, ExtentsY, Path-
Increment as well as velocity Vel and acceleration Acc parameters. It executes
an Archimedean spiral motion in the XY plane relative to start state θp̄0 ∈ P ×W ,
where the total size of the spiral along the X and Y axes is given by ExtentsX

and ExtentsY and the scaling factor PathIncrement determines the number of
windings. During execution, the end effector pushes against the workpiece with
a force greater than MinForce. If the end effector drops by more than MinDepth

along the local Z axis, the motion ends and is deemed successful; if the spiral is
executed without such a drop or if the maximum force MaxForce or maximum
depth MaxDepth is exceeded during the motion, the motion ends and the skill is
considered to have failed. A differentiable Cartesian planner for spiral search can
be implemented by sampling an Archimedean spiral2:

1 def archimedean_spiral(start: Tensor = 0.0,

2 end: Tensor = 1.0,

3 path_increment: Tensor = 0.01) -> Tuple[Tensor , Tensor]:

4 a = path_increment / (2 * pi)

5 angle = tensor (0.0)

6 angle_max = 0.5 / a

7 max_length = angle_max * sqrt(1 + angle_max **2) + log(angle_max + sqrt(1 +

angle_max **2))

8 time = 0

9 points = []

10 times = []

11 while time <= end:

12 radius = angle * a

13 point = stack([radius * cos(angle), radius * sin(angle)])

14 current_length = angle * sqrt(1 * angle **2) + log(angle + sqrt(1 +

15 angle **2))

16 time = current_length / max_length

17 if time + eps > start:

18 if len(points) == 0 or norm(point - points[-1]) > 0.05:

19 points.append(point)

20 times.append(time)

21 angle = angle + path_increment

22 return stack(points), stack(times)

Listing 2.1: PyTorch-based differentiable implementation of a Cartesian spiral
generator.

The resulting sampled path is differentiable with respect to the PathIncrement
parameter. It is scaled according to ExtentsX and ExtentsY and re-sampled with

2This work uses Python syntax for (pseudo-)code. Unless otherwise specified, functions and
datatypes are Python builtins or provided by PyTorch (Paszke et al., 2019). Imports are omitted for
brevity.

38

2.4. DIFFERENTIABLE SHADOW PROGRAMS

repeat

Linear

+

...

...

...

Linear

Linear

ht=0

tanh

-1

...

ht=M

Skip connection

Concatenation

Duplication

Pointwise
operation

Figure 2.6: Stacked Gated Recurrent Unit (GRU) sequence-to-sequence neural
architecture. The visualization of individual GRUs has been adapted from Olah
(2015).

a trapezoidal velocity profile based on Vel and Acc, using a differentiable PyTorch
implementation of the trajectory resampling algorithm provided by the Orocos
Kinematics and Dynamics Library (KDL) (Smits, 2020). The resampled spiral is then
translated to the correct absolute workspace pose given θ

p̄
0. Similar differentiable

priors can be constructed for linear, circular, and other Cartesian motions (see
Section 3.1.3).

For some skills, such as Cartesian free-space motions, the differentiable prior
suffices to approximate the posterior trajectory; in this case, θ̃p̄ ≈ θp̄ ≈ θp, and
the shadow skill does not need a learnable component at all. This is the case for
free-space motions defined in Cartesian space, such as the URScript function movel,
or DMPs which do not interacting with the environment. Note, however, that the
approximation will be imperfect at best: The real-world dynamics of the robot
will deviate from the pre-programmed behavior, as a robot’s dynamics will always
show slight variations, e.g. due to wear and tear, payload-induced deformation
of links or similar factors (Raible et al., 2023b). For some applications, however,
submillimeter accuracy is not required and NRPs can be used for model-based
optimization without training. One such application, the optimization of approach
motions for a household fetch-and-place task, is shown in Section 3.1.3.

2.4.1.4 Skill-Level Neural Adapters

Intelligent robots interact with the physical environment to achieve their objectives.
From stocking supermarket shelves to assembling PCBs, most practical use cases for

39

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

intelligent robots require robot skills that react dynamically to their environment,
be it via force control, visual servoing, or other types of dynamic robot-environment
interaction. A DNN permits to learn this robot-environment interaction: If the
training dataset contains a sufficiently diverse sample of skill executions in different
environments, or variations of the same environment, then the trajectory predicted
by the model will be different for every parameterization and start state. More
importantly, if the shadow skill was finetuned for one specific robot and environ-
ment, knowledge about this particular robot and environment will be implicitly
represented in the weights of the DNN – and the trajectory predicted by the shadow
skill will not only be conditioned on the skill inputs and start state, but also on the
learned, latent representation of the environment, robot kinematics and dynamics.
To realize prediction of expected real-world trajectories in a data-efficient way, a
predictor for the posterior trajectory θp̄ can be conditioned on the prior θ̃p̄. This
leads to a two-part DCG, in which the prior θ̃p̄ is first bootstrapped by a differen-
tiable planner, and the planning results are then modified by aNeural adapter ▷ neural adapter to
reflect the learned real-world dynamics and environment interactions.

The proposed DNN architecture for neural adapters is shown in Figure 2.6. It
consists of a four-layer stacked GRU (Cho et al., 2014) with residual connections,
linear input and output layers, scaled exponential linear unit (SELU) activations
(Klambauer et al., 2017) and dropout layers after each GRU (Srivastava et al.,
2014). The choice of GRUs as recurrent networks is motivated by their parameter
efficiency and comparatively good ability to model correlations across long time
horizons (Yang et al., 2020b). A GRU hidden size of 128 has proven sufficient for
all tested skills; rather than the width of the hidden state, prediction accuracy is
more dependent on the number of stacked GRUs. 4 have been empirically found
sufficient for most skills. Dropout layers improve generalization, particularly on
small datasets (Srivastava et al., 2014). A dropout rate of 0.2 has been empirically
found to yield best results. SELU activations have been shown to prevent vanishing
or exploding gradients (Klambauer et al., 2017), facilitating the training of deep
architectures and permitting the construction of the end-to-end differentiable, deep
shadow program DCGs introduced in Section 2.4.

The posterior trajectory θp̄ not only depends on the prior and the latent repre-
sentation of the environment implicit in the model’s weights, but also on the skill
inputs. Consider the Spiral Search Relative skill introduced in Section 2.4.1.3:
Whether the search drops into a hole, the depth to which it drops and the dynamics
with which the robot brakes depend on the inputs of the skill, notably on MinDepth,
MinForce, Vel and Acc, and are not reflected in the prior. As the model expects a
sequence as inputs, xp̄ is concatenated to every state of the prior θ̃p̄ to form the

Augmented prior ▷ augmented prior θ+ (see Figure 2.6).

40

2.4. DIFFERENTIABLE SHADOW PROGRAMS

Vel Acc

normalize

Extents PathIncr. MinForce

Differentiable
Cartesian planner

Deep
residual GRU

normalize

denormalize

Figure 2.7: Shadow skill DCG for Spiral

Search Relative, which combines a differ-
entiable Cartesian planner with a sequence-
to-sequence neural network.

Figure 2.8: Prior (dashed), pre-
dicted (dotted) and ground truth
(solid) Cartesian spiral trajectories.

2.4.2 Evaluating Shadow Skills

Both presented shadow skill formulations – purely differentiable planning-based
models, and sequence-to-sequence neural models with differentiable priors – are
DCGs which relate inputsxp̄ and initial state θp0 to posterior trajectory θ

p̄. ◁ Shadow skill
evaluation

Evaluating
a shadow skill means performing a forward pass from leaves (xp̄ and θp̄0) to root (θp̄).
A shadow skill can then be viewed as a differentiable function p̄ : RN × S → SM ,

that permits the computation of ∂p̄(xp̄,θ
p̄
0
)

∂xp̄ and ∂p̄(xp̄,θ
p̄
0
)

∂θ
p̄
0

, the gradients of p̄ with

respect to the leaves (or any other node in the DCG).

Input normalization and denormalization Shadow skill DCGs with neural
adapters contain ◁ Normalizationnormalization and denormalization operations before and after
the DNN (see Figure 2.7). Normalizing the inputs of neural networks to the ranges
[−1, 1] or [0, 1] is considered best practice to prevent the first nonlinearity in the
network from saturating immediately: The SELU activation used in both neural skill
architectures is near-constant for values less than -5 and linear for values greater
than 0. For this reason, inputs are normalized to the range [−1, 1], which will yield
input values close to the nonlinear region of SELU. Moreover, the inputs and states
contain values at very different scales: Consider Spiral Search Relative, whose
ExtentsX may be very small (on the order of 0.001-0.003 m), but whose MaxForce
may be three orders of magnitude larger (5-8 N). In the experiments presented in
Chapter 3, inputs to networks (both xp̄ and θ

p̄
0 or θ̃p̄) are normalized to the range

[−1, 1] using min-max-normalization over the range of the training dataset, and
network outputs are again denormalized using the same scale. Denormalization of
outputs permits downstream computations, such as the differentiable forward or
inverse kinematics (see Section 2.4.4.1) or user-defined objective functions (see

41

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

1 def forward_skill(p: DCG , x: Tensor , theta_0: Tensor) -> Tensor:

2 theta_prior = p.differentiable_planner(x, theta_0)

3 if p.has_dnn ():

4 x, theta_prior = normalize(x, theta_prior)

5 theta = p.dnn(x, theta_prior)

6 theta = denormalize(theta)

7 else:

8 theta = theta_prior

9 return theta

Listing 2.2: Forward pass through a differentiable shadow skill.

Chapter 3) to be expressed in terms of their “natural” domains: A differentiable IK
module, for example, may expect a joint configuration in radians, as opposed to
the dimensionless, normalized output space of a neural network.

Forward pass The forward pass through a shadow skill p̄ (in pseudocode: p) is
shown in Listing 2.2. Additional details such as differentiable IK and FK operations
are omitted. An invocation of the differentiable planner, given skill inputs x and
start state theta_0, yields prior trajectory theta_prior, which is normalized and
passed through the DNN. The denormalized posterior trajectory theta is returned.
forward_skill preserves gradients, permitting the derivation of functions of theta
with respect to x.

2.4.3 Training Shadow Skills

The shadow skill p̄ is trained to minimize the trajectory prediction loss (Equation
2.1) on a dataset D consisting of past executions of the corresponding source skill
p. D contains 3-tuples (xp, θ

p
0,θ

p), representing the skill inputs, initial states and
ground-truth trajectories, respectively. The neural network parameters φ of p̄ are
trained to minimize the expected trajectory prediction loss over D:

Shadow skill
training loss

▷ φ∗ = argmin
φ

∑

(xp,θ
p
0
,θp)∈D

L(p̄(xp, θ
p
0),θ

p) (2.2)

The training mechanism reflects current best practices. The AdamW optimizer
(Loshchilov and Hutter, 2018) is used with a relatively low initial learning rate (α =
5e-5) and a linear learning rate scheduler. Dropout is activated during training,
but deactivated during evaluation. The number of epochs depends on the size of
the training dataset, though training typically converges in under 1000 epochs. In
line with empirical studies on the impact of batch sizes on network performance,
small-to-medium batch sizes of 32 or 64 provide a good trade-off in convergence
speed and achieved accuracy (Masters and Luschi, 2018; He et al., 2019a; Kerley
et al., 2023).

42

2.4. DIFFERENTIABLE SHADOW PROGRAMS

0.3525 0.3550 0.3575 0.3600

Pos. X [m]

0.322

0.324

0.326

0.328

0.330

P
o
s.

Y
[m

]

Real-world traj. θp

Prior traj. θ̃p̄

Posterior traj. θp̄

0 10 20 30 40

Time [s]

0.352

0.354

0.356

0.358

0.360

P
o
s.

X
[m

]

θp

θ̃p̄

θp̄

0 10 20 30 40

Time [s]

0.322

0.324

0.326

0.328

0.330

P
o
s.

Y
[m

]

θp

θ̃p̄

θp̄

Figure 2.9: Ground-truth (solid), prior (red) and posterior (blue) Cartesian end-
effector trajectories predicted by shadow skill p̄ for a spiral search task.

Precomputed prior trajectories Shadow skills with a sequence-to-sequence
architecture compute the prior trajectory θ̃p̄ as part of their forward pass. Depending
on the implementation of the differentiable planner, bootstrapping θ̃p̄ may be
computationally expensive and can dominate the training time. From a pure
training perspective, evaluating the differentiable planner is not required: In the
DCG, the differentiable planner is upstream of the neural network and does not
contain learnable parameters. For this reason, at training time, the differentiable
prior can be bypassed and the neural network can be provided with a pre-computed
prior trajectory θ̃p̄. The training dataset D is then extended to contain 4-tuples
(xp, θ

p
0, θ̃

p̄,θp), which comprise the pre-computed priors θ̃p̄ for xp and θ
p
0. This

incurs a one-time additional computational cost at dataset creation time, but saves
a repeated computational cost at training time, as the differentiable planner would
otherwise be evaluated at every epoch. When the trained shadow skill is evaluated,
the differentiable prior cannot generally be bypassed, as the inputs and initial states
will generally be different from those present in the dataset.

Data collection D is collected by executing the source skill p for a range of inputs
xp and start states θp0 and measuring the resulting trajectories θp. xp and θ

p
0 should

be sampled uniformly over the domain of p. Both the input and state domains as
well as the distribution of {Θt}, the trajectory-generating stochastic process that
incorporates the stochastic characteristics of the environment, must be the same at
data-collection time as at evaluation time. If the trained shadow skill p̄ is executed
with inputs and start states outside of its training data domain, its prediction
accuracy will be considerably reduced (Wang et al., 2023a); likewise, the posterior
trajectories θp̄ will reflect the distribution of the training data, and cannot reflect
changes to e.g. the environment at runtime without further information. Section
3.2 showcases how continuous finetuning can ensure that p̄ reflects dynamically
changing environments. In a different line of research, my colleagues and I explore
the use of multimodal Transformer architectures to condition p̄ on a representation
of the current environment at runtime (Kienle et al., 2024).

43

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

Example: Spiral search Figure 2.9 shows an exemplary posterior, prior and
ground-truth trajectory for a shadow skill for an ARTM Spiral Search Relative.
Details on the data collection setup and hyperparameters are provided in Section
4.3.2 and Appendix A. Figure 2.9 illustrates the roles of the prior (here, the Cartesian
differentiable spiral motion planner) and the neural adapter. The neural adapter
predicts real-world semantics such as search success as well as the dynamics of failed
or successful search, in which case the search ends before the spiral is completed.
At t = 4s in Figure 2.9, the workpiece drops into the hole and the search ends.
Note that the ground-truth trajectory is not a perfect spiral, due to the robot-specific
implementation of the Spiral Search Relative ARTM skill. On ABB robots,
the spiral is split into linear segments, giving the resulting trajectory an angular
appearance. The posterior trajectory is regularized by the prior, causing it to ignore
robot-specific low-frequency noise such as the ABB-specific angularity of spiral
motions. It strongly deviates from the prior when (here, correctly) predicting that
the robot has found the hole. Figure A.1 shows additional trajectories for different
parameterizations and hole positions.

2.4.4 Shadow Programs

Differentiable shadow skills represent robot skills as trainable DCGs that are dif-
ferentiable end-to-end. When combined with differentiable operations, they form
DCGs representing complex robot behavior arising from the combination of several
skills that can fulfil complex, real-world tasks. By virtue of structural and semantic
equivalence, shadow skills act as differentiable, predictive models of robot skills.
Shadow programs are differentiable, predictive models of source programs; they
must therefore ensure semantic and structural equivalence at the task level. Shadow
programs ensure structural equivalence via composition of shadow skills to complex
DCG that mirror the composite structure of robot programs and the hierarchical
nature of tasks. The mechanisms by which this is achieved are described in Sections
2.4.4.1, 2.4.4.2 and 2.4.4.3. Shadow programs achieve semantic equivalence with
their corresponding source programs by being trained to reflect task-level semantics,
arising from the execution of several skills in the environment. Section 2.4.4.4
introduces a mechanism for learning execution semantics that span multiple skills.

2.4.4.1 Differentiable Kinematics

Shadow skills can be defined in either Cartesian or configuration space, and the
tensor-based state representation introduced in Section 2.4.1.1 supports both
modalities. The combination of shadow skills to complex DCGs representing pro-
grams necessitates gradient-preserving mechanisms to convert between Cartesian
and configuration space. For this reason, differentiable FK and IK modules are
introduced. Based on these modules, Section 2.4.4.2 introduces a general-purpose
mechanism for chaining shadow skills and propagating gradients through shadow
programs.

44

2.4. DIFFERENTIABLE SHADOW PROGRAMS

Differentiable forward kinematics The formulation of a differentiable FK for
serial manipulators is straightforward. FK is a function fφ : C → P: It maps every
joint configuration θ ∈ C to exactly one Cartesian end-effector pose q ∈ P , given
some parameters φ describing the robot’s kinematics. The Denavit-Hartenberg
(DH) (Denavit and Hartenberg, 1955) and Modified DH (Craig, 2004) conven-
tions represent a robot’s kinematics by its link lengths as well as rotational and
translational joint offsets. FK then reduces to a series of matrix multiplications,
which are differentiable operations with respect to the input joint angles θ. Most
common differentiable kinematics libraries are based on variations of this approach
(Meier et al., 2022; Mölschl et al., 2023). Alternatives to DH-based FK, such as the
product-of-exponentials formula (Brockett, 1984), are likewise differentiable in
principle, though no differentiable implementations exist. NRPs use the differen-
tiable FK proposed by Meier et al. (2022). Based on the Unified Robot Description
Format (URDF) description of the robot’s kinematic chain, a tree of differentiable
rigid bodies is instantiated, which are connected by prismatic, revolute, continuous
or fixed joints. Given a joint configuration θ, the workspace poses of the links are
recursively updated, starting from the robot base. I refer to Meier et al. (2022) for
details.

Differentiable inverse kinematics Unlike FK, IK is not a function: For a given
Cartesian pose q, a kinematic chain can have either no IK solutions, if q is not
reachable; one single solution; multiple solutions; or infinitely many solutions, in
the case of kinematically redundant manipulators (DeMers and Kreutz-Delgado,
1997). Provided q is in the workspace of the robot, all IK algorithms face the
fundamental problems of selecting the “best” redundant configuration for use
in downstream computations; generating smooth C-space trajectories for given
Cartesian trajectories without oscillating between redundant configurations; or
handling transitions between disconnected regions of C-space, if no smooth C-space
trajectory exists.

Haug (2021) provides a mathematical theory of differentiable IK. He defines the
regular manipulator configuration space of an N -DoF serial manipulator as an N -
dimensional differentiable manifold with one or more maximal, disjoint, singularity
free, path-connected components. Within these components, smooth control is
possible and gradients are well-defined. Their boundaries, however, are sets of
singularities, implying that IK for serial manipulators is only locally differentiable,
within the confines of individual singularity-free components. Singularity avoidance
and graceful handling of unstable gradients due to transitions between disjoint
C-space components remains an open engineering challenge.

From a computational perspective, a differentiable, closed-form analytical IK is
desirable, as analytical IK formulations typically incur less computational overhead
than numerical solvers. However, analytical IK solutions do not exist for redundant
manipulators. Various numerical solvers have been proposed (Xie et al., 2022).
Jacobian-based methods such as the Jacobian pseudoinverse (Dulęba and Opałka,

45

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

2013) or the extended Jacobian inverse (Janiak and Tchoń, 2008) are compute-
efficient but numerically unstable near singularities (Buss, 2004). Higher-order
optimization algorithms such as Levenberg-Marquardt (LM) (Goldenberg et al.,
1985) or limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) (Liu and
Nocedal, 1989) exploit gradient information to approximate the target configu-
ration and tend to converge quickly, while remaining comparatively stable in the
neighborhood of singularities (Xie et al., 2022).

This work proposes a differentiable IK based on second-order L-BFGS opti-
mization over the differentiable FK outlined above, to iteratively approach the IK
solution θ∗ from an initial configuration θinit known to lie within the same disjoint,
singularity-free C-space component as θ∗. L-BFGS is chosen as it is considered more
robust than LM and exhibits faster convergence for initial configurations farther
away from the solution (Xie et al., 2022). A PyTorch implementation is provided
below.

1 def inverse_kinematics(q: Tensor ,

2 max_num_iter: int ,

3 theta_init: Tensor) -> Tensor:

4 theta = theta_init

5
6 def optim_closure(theta_g: Tensor) -> Tuple[Tensor , Tensor]:

7 q_curr = forward_kinematics(theta_g)

8 loss = sum((lstsq(q, q_curr) - eye (4))**2)

9 grad = autograd.grad(

10 inputs=theta_g ,

11 outputs=loss ,

12 ...

13)[0]

14 return loss , grad

15
16 theta_g = autograd.Variable(theta , requires_grad=True)

17 optim = LBFGS(max_iter=max_num_iter)

18
19 with set_grad_enabled(True):

20 theta_g , loss = optim.step(theta_g , optim_closure)

21
22 return theta_g

Listing 2.3: Differentiable inverse kinematics for serial N -DoF manipulators.

It uses torch.optim.LBFGS, the PyTorch implementation of L-BFGS, in conjunction
with the torch.autograd automatic differentiation engine (Paszke et al., 2017)
to construct a DCG at runtime. When some downstream computation requires
the gradients of θ∗ (theta_g) with respect to e.g. q or any variable upstream of q,
autograd can backpropagate through the IK procedure.

The IK problem for trajectories requires special care since successive end-effector
poses on a trajectory must be mapped to the same singularity-free C-space compo-
nent to avoid discontinuities. In this work, this is addressed by using the IK solution
θ∗i of the i

th point on a trajectory as the initial configuration θinit for the i+1th point,
successively constructing a contiguous C-space trajectory.

The proposed differentiable IK module leverages the computational efficiency
of second-order optimization, which converges sufficiently quickly for practical use

46

2.4. DIFFERENTIABLE SHADOW PROGRAMS

(see Sections 2.5 and 3.3). Due to the nature of the IK problem, inherent limitations
remain (Haug, 2021). While proper choice of θinit can ensure starting in the same
connected C-space component as θ∗, such a proper choice cannot be guaranteed,
as θ∗ is a priori unknown. For trajectories, the assumption that θ∗i+1 will be close
to θ∗i generally holds, and provides a good heuristic for the choice of θinit. Like
all iterative optimization-based IK solvers, the proposed L-BFGS-based solver can
converge in local minima, even within the same connected C-space component.
Random restarts may mitigate this issue (Xie et al., 2022).

2.4.4.2 Composite Program Structure

In order for shadow programs to act as differentiable surrogates of robot programs,
they must be structurally equivalent to their source programs. As a consequence, the
shadow program DCG is sequentially and hierarchically composed in a manner that
mirrors the sequential and hierarchical composition afforded by most skill-based
robot program representations (see Section 2.3):

A shadow program P̄ is a DCG of shadow programs and shadow skills
linked by differentiable operations. Its leaves are the program inputs xP̄

and initial state θP̄0 . Its root is the posterior trajectory θP̄ . P̄ is structurally
and semantically equivalent to a source program P .

D

This recursive definition implies that shadow programs can be hierarchically nested
to arbitrary depth. It also implies that shadow programs and shadow skills have
the same signature: Both translate a set of input parameters and a robot or world
state to a posterior trajectory. Per the definition of structural equivalence (see
Section 2.2.2.1), for each subprogram Pi in the source program P , there is a
corresponding shadow (sub-)program P̄i in P̄ ; for each skill pj in P , there is a
corresponding shadow skill p̄j in P̄ ; and for each input parameter xP

k in xP , there is
a corresponding parameter xP̄

k in xP̄ . Semantic equivalence implies that for a given
set of inputs xP and initial state θP0 , the posterior θP̄ predicted by P̄ approximates
the ground-truth trajectory θP .

Figure 2.10 illustrates a NRP for a peg-in-hole task and highlights the one-to-one
correspondence between the source program and its differentiable shadow. Like
shadow skills, shadow programs are DCGs, permitting the computation of ∂θP̄

∂xP̄
, the

gradient of the posterior trajectory with respect to the program inputs, via automatic
differentiation. The hierarchical composition into a DCG is achieved by assigning
the last state of the posterior trajectory θP̄i

M of shadow (sub-)program P̄i to the initial

state θP̄i+1

0 of the next shadow (sub-)program P̄i+1. Besides realizing the seemingly
trivial condition for physically plausible trajectories that the succeeding skill begins
where the preceding skill ended, this mechanism enables gradient computation
and backpropagation of errors through the entire program graph. Most robot
applications have interdependencies between skills: In peg-in-hole tasks such as

47

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

that illustrated in Figure 2.3, the behavior of search skills critically depends on the
preceding approach motions. A suboptimally parameterized approach will require
a larger search region to find a hole for insertion. In service robotics, grasping is a
canonical example: The appropriate parameterization of a grasping skill, such as
the initial joint configuration of a robotic hand, depends on the approach motion for
the grasp; an approach motion, in turn, can only be collision-free if the preceding
motion did not end in a collision. In the shadow program DCG, the inherent
statefulness of robot manipulation programs is captured by the literal passing of
the state between successive subprograms. This permits the joint learning (see
Section 2.4.4.4) and optimization (see Chapter 3) of program parameters across
complex program hierarchies, taking inter-skill dependencies into account.

2.4.4.3 Control Flow

NRP shadow programs map sequential control flow by passing the robot state from
one skill or subprogram to the next, and by concatenating predicted posterior trajec-
tories along the time dimension. Other control flow structures such as conditional
branching (if/else) or loops (for, while) require additional consideration.

Conditional branching Differentiable programming with conditional branching
via if/else or switch/case statements requires particular care. Each branch is
a separate differentiable subgraph; the branches eventually merge back into one
single DCG. Which subgraph is evaluated during the forward pass depends on
the branch condition and the value of the corresponding variables at the time the
branch condition is evaluated. While gradients can still be backpropagated through
the evaluated subgraph to leaf nodes upstream of the branch condition, gradients
cannot be computed for the subgraphs corresponding to the branches that were
not evaluated. When performing gradient descent over a DCG with conditional
branches, updating variables upstream of the branch condition may lead to different
branches being evaluated at different iterations of gradient descent, leading to
(possibly) vastly different values at the root of the DCG. This translates into possibly
vastly different loss values and oscillating optimizer behavior.

Conditional branching is crucial for error handling routines, in which a subpro-
gram is executed conditional on the detection of known or unexpected errors at
runtime. The shadow program DCG in Figure 2.10 contains a subprogram for an
Error Handler ARTM control structure. Error Handler executes one subprogram
(the if branch) if the preceding subprogram terminated in an error state, and
another subprogram (the else branch) otherwise. In Figure 2.10, the Spiral

Search Relative skill is only executed if the preceding contact motion terminated
successfully, i.e. made contact with the surface. In the corresponding shadow sub-
program (P̄1 in Figure 2.10), the shadow skill p̄3 modeling the search motion is only
executed if the success label of the start state θP̄1

0 is not below 0.5; otherwise, θP̄1

0

is passed directly to the subsequent subprogram. The predicted posterior trajectory

48

2.4. DIFFERENTIABLE SHADOW PROGRAMS

GoalState Vel Acc

Differentiable
Collision-Free Planner

Differentiable
Cartesian Planner

Deep
residual GRU

PointTo MinForce ...

Differentiable FK

Differentiable
Cartesian Planner

Deep
residual GRU

Extents PathIncr. ...

true

false

PointTo Vel Acc

Differentiable
Cartesian Planner

Else:If:

Figure 2.10: A NRP for a peg-in-hole task. The source program (left) is represented
in an industrial skill-based program representation (ARTM, Schmidt-Rohr et al.
(2013)); the shadow program (right) is represented as a DCG. Structural and
semantic equivalence enables bidirectional conversion between the two represen-
tations. Control flow structures such as conditional branching (Error Handler)
are mapped to corresponding structures in the DCG (P̄1). The depicted shadow
program DCG contains shadow skills with and without neural adapters (green).

49

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

Differentiable
Cartesian Planner

Differentiable
Cartesian Planner

...PointTo Vel Acc

Differentiable
Cartesian Planner

...PointTo Vel Acc

.
.
.

Deep
residual GRU

PointTo MinForce ...

Differentiable
Cartesian Planner

Deep
residual GRU

PointTo MinForce ...

Differentiable
Cartesian Planner

Deep
residual GRU

PointTo MinForce ...

...

Deep
residual GRU

Figure 2.11: A NRP for a tactile probe search task. A Spike Search Relative

ARTM skill is mapped to a shadow subprogram (P̄1) containing an “unrolled”
sequence of shadow skills (p̄1, ..., p̄32). Task-level semantics must be learned at the
hierarchy level. Neural adapters (green) permit learning of task-level semantics at
any level in the program.

θP̄ for the entire shadow program contains only the predicted trajectory for the
branch that was evaluated during the forward pass. This mechanism generalizes to
all branching control structures where the branch condition is a function of the start
state. Other branch conditions are, in principle, possible, but require additional
care, as all variables evaluated in the branch condition must be available as part of
the forward pass. It is possible, for instance, to construct a branch condition based
on e.g. sensor values, provided these values are injected into the DCG during the
forward pass.

Loops Figure 2.11 shows the shadow DCG for probe search, a search strategy by
which the robot repeatedly touches (“probes”) a surface until a feature, such as a
hole, is detected. Variations of probe search are commonly used in PCB assembly and
similar tasks requiring the manipulation of small, sensitive parts under uncertainty.
In the ARTM source program representation, the Spike Search Relative skill
implements probe search. It consists of a Loop control flow structure, which
executes a predefined probe pattern by repeatedly moving to the next probe position
(via a Move Linear skill) and touching the surface (Move Linear Relative

Contact). Loops are mapped to the shadow program DCGs by unrolling, i.e.

50

2.4. DIFFERENTIABLE SHADOW PROGRAMS

sequential chaining of M copies of the shadow subprogram for M loop iterations.
Neural network weights are shared between the copies, but gradients are not.
The predicted posterior trajectory for the looped subprogram then consists of the
concatenated posterior trajectories of the shadow subprograms in the unrolled
sequence. Experiment 3.2.3 evaluates first-order optimization over robot programs
involving loops in greater detail.

2.4.4.4 Task-Level Neural Adapters

In the context of manipulation tasks, the ground-truth motions performed by the
robot will generally differ from planned motions, as the robot reacts to contact
forces with objects, avoids collisions or detects failure and aborts a motion. At the
skill level, sequence-to-sequence neural networks provide a mechanism for learning
these dynamics. At the task level, a similar learning mechanism is required. For
complex real-world source programs, the assumption that the posterior trajectory of
a (sub-)program is merely the concatenation of its constituent skills or subprograms
must be relaxed.

Consider the robot program in Figure 2.11 (left), which illustrates an ARTM
source program for finding a hole on a surface by repeated force-controlled probing.
It approaches each point in the sequence and executes a force-controlled downward
motion (“probe”) with a given depth along the local Z axis, stopping the current
probe and moving to the next point if it hits the surface with a contact force greater
than MinForce, and aborting the search altogether when MaxForce is exceeded.
The search is considered unsuccessful if it is aborted, or if all probes have made
contact with the surface. If a probe fails to make contact, the search is considered
successful and no further probes are executed. The source program for probe search
consists of a sequence of linear approach and contact motions. The program-level
semantics, such as early termination and the determination of program success, is
handled by additional logic in the respective source program representation (e.g.
URScript).

Probe search illustrates two cases in which the execution semantics of the source
program do not correspond to sequential execution of the constituent skills. First,
the search terminates early, either when a permissible force threshold is exceeded
or when the hole is found. In this case, some skills in the sequence will not be
executed at all, and the resulting ground-truth trajectory θP is not identical to the
concatenation of the trajectories θpi of all constituent skills. Second, the success
of the program is determined by some non-trivial logic over the success of the last
executed skill: If the skill was successful, it made contact, and the search was
unsuccessful; if it was unsuccessful, but did not exceed force limits, it did not make
contact, and the search was successful; if it exceeded force limits, the search was
unsuccessful. NRPs aim to be a universal neurosymbolic program representation;
for this reason, such program-level semantics must be supported in principle by the
architecture.

51

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

The representation of dynamic changes to the control flow of programs, such
as early termination of a search program, poses severe challenges for automatic
differentiation. Modern differentiable programming frameworks such as PyTorch
perform automatic differentiation over an evaluation trace constructed during
the forward pass; the DCG over which automatic differentiation is performed
contains only those operations on the control flow path taken during execution.
The counterfactual, i.e. the situation in which the search had not been aborted,
is not represented; neither are the operations which led to the chosen control
flow path. In other words, automatic differentiation “is blind with respect to any
operation, including control flow statements, which do not directly alter numeric
values” (Baydin et al., 2018). For probe search, the control flow partly depends
on features of the environment, such as the position of the hole. As with shadow
skills, shadow programs must incorporate some learned representation of the
interactions of the robot with the environment at the program level. Likewise,
representing logical operations in DCGs is challenging. Boolean operators are, in
principle, not differentiable. While several approaches for differentiable logics such
as Differentiable Fuzzy Logics (van Krieken et al., 2022) or vectorized first-order
logic rules (Rocktäschel, 2018) have been proposed, the field of differentiable
logics remains pre-paradigmatic, and no general-purpose mechanism for automatic
differentiation of logical operators exists.

NRPs propose a general-purpose, learning-based approach to reflect both en-
vironment dependent control flow as well as task-level success semantics. The
core idea of adapting a prior trajectory via a sequence-to-sequence model to reflect
ground-truth behavior that deviates from the prior has been introduced in the con-
text of shadow skills in Section 2.4.1. As shadow skills and shadow programs share
the same signature, the principle can be directly transferred to the program level,
with the concatenation of the posteriors θp̄i of the contained skills or subprograms
acting as prior θ̃P̄ for the containing shadow program. Figure 2.11 (right, bottom)
illustrates the use of such aTask-level neural

adapter
▷ neural adapter at the task level. The stacked GRU archi-

tecture described in Section 2.4.1 is used. The overall posterior θP̄ has success and
EOS tokens which reflect the program-level semantics: The neural adapter sets the
EOS token to 1 when the motion ends, and adapts the success token to reflect the
success semantics of the search overall, rather than the constituent contact motions.
The dependence of the robot behavior on the environment is implicitly represented
by the neural adapter and, by way of its forward pass, reflected in differentiable
computations which form part of the DCG. Due to the infinitely composable nature
of shadow programs, neural adapters can be inserted at any level of the program
hierarchy. As the neural components of shadow skills do at the skill level, neural
adapters give computational meaning to the notion of “differentiating through
robot behavior” at the task level.

Forward pass The forward pass through a shadow program P̄ is summarized in
pseudocode in Listing 2.4. For each subprogram P̄i (subp) in P̄ , a forward pass

52

2.4. DIFFERENTIABLE SHADOW PROGRAMS

1 def forward(p: DCG , x: Tensor , theta_0: Tensor) -> Tensor:

2 start_state = theta_0

3 thetas_sub = []

4 for subp in p:

5 x_subp = extract_inputs(subp , x)

6 if subp.is_skill ():

7 theta_sub = forward_skill(subp , x_subp , start_state)

8 else:

9 theta_sub = forward(subp , x_subp , start_state)

10 start_state = theta_sub[-1]

11 thetas_sub.append(theta_sub)

12
13 theta_prior = concatenate(thetas_sub)

14
15 if p.has_dnn ():

16 x, theta_prior = normalize(x, theta_prior)

17 theta = p.dnn(x, theta_prior)

18 theta = denormalize(theta)

19 else:

20 theta = theta_prior

21 return theta

22

Listing 2.4: Forward pass through a differentiable shadow program.

is performed and the resulting trajectories θP̄i (theta_sub) are concatenated to
form the prior trajectory θ̃P̄ (theta_prior). If P̄ has a neural adaptation layer, it
is evaluated on normalized program inputs and θ̃P̄ , and the posterior trajectory θP̄

(theta) is returned. Note that due to the composite structure of P̄ , the forward
pass is identical at every hierarchy level and is implemented by recursive calls to
forward. At the skill level, forward_skill is used (see Listing 2.2).

2.4.5 Discussion

The presented shadow program architecture permits the nesting of shadow subpro-
grams and skills to arbitrary depths, as well as the construction of shadow programs
for source programs with non-sequential control flow. Neural adapters permit the
learning of execution semantics at the program level. Given a source program, the
corresponding differentiable shadow program can be automatically constructed
by traversing the source program and instantiating the corresponding DCG. The
modular shadow program architecture permits the development of compact parsers
and generators for automatic shadow program instantiation. In the context of this
work, a parser-generator-toolchain was developed to automatically create differen-
tiable shadow programs for ARTM source programs, as well as for the automatic
mapping between ARTM and shadow program (input) parameters, intermediate
states and trajectories. Similar toolchains can be developed for any source program
representation that meets the criteria outlined in Section 2.3.

Both at the (shadow) skill and program level, DNNs are used to map prior to
posterior trajectories. The stacked GRU architecture is trained using supervised

53

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

learning on a sequence-to-sequence translation problem (see Equation 2.1). While
the used architecture permits the learning of complex, long trajectories at the
primitive (see Experiment 3.1.3.2) and composite level (see Experiment 3.2.3.3),
learning motions with dynamic sampling characteristics remains a challenge. The
proposed architecture implicitly assumes label trajectories to be sampled at a
fixed interval, and that posterior and prior trajectories share roughly the same
dynamics. Sequence-to-sequence learning from heterogeneously sampled datasets
may be addressed by incorporating Dynamic Time Warping (Salvador and Chan,
2007) or similar techniques. Moreover, the shadow program architecture requires
differentiable priors to be available at the skill level. In this work, linear, circular and
spiral Cartesian differentiable motion planners have been developed, and Section
2.5 introduces a differentiable C-space planner. For very complex motions, it may
be preferable to directly bootstrap the posterior trajectory using e.g. a generative
neural network (Garza et al., 2024). Finally, the state space of NRP is limited to
poses, joint configurations, end-effector wrenches and the gripper state, effectively
constraining NRP to tactile manipulation. Kienle et al. (2024) extend the NRP state
space to images of the environment, enabling the application of neurosymbolic
robot programming with NRPs to visuotactile manipulation problems.

2.5 Differentiable Motion Planning

Flexible manipulation tasks typically require motions to be collision-free: When
placing glasses into a kitchen cupboard, for example, collisions with other objects
in the cupboard and the cupboard itself must be avoided. When working in close
proximity with humans, collision-freeness is a safety-critical requirement.

Collision-free motion planning is a long-standing topic of research in robotics.
Planners can be broadly divided into sampling-based and trajectory optimization
approaches. Sampling-based planners such as Rapidly Exploring Random Trees
(LaValle, 1998), Probabilistic Roadmaps (Kavraki et al., 1996) or Expansive Space
Trees (Barraquand and Latombe, 1991) generate collision-free joint trajectories by
repeatedly sampling random configurations in C-space, performing collision check-
ing, and connecting collision-free configurations to form a path. Sampling-based
planners can quickly explore large regions of C-space, making them well-suited
for complex environments with high-dimensional configuration spaces (Elbanhawi
and Simic, 2014). Trajectory optimization-based planners, on the other hand, find
a collision-free path by optimizing a cost function that encodes constraints such
as collision avoidance, smoothness, and time efficiency. Given an initial guess,
the candidate trajectory is iteratively refined to minimize the cost function while
satisfying the constraints. By optimizing over the entire trajectory, rather than
sampling configurations individually, trajectory optimization-based planners can
find solutions that are more efficient and better satisfy the constraints. However,

54

2.5. DIFFERENTIABLE MOTION PLANNING

they may be less robust to changes in the environment and can require more
computational resources than sampling-based planners.

Given the wide range of available planners, collision-free planning has become
an integral part of robot programming, and several skill-based robot programming
frameworks support collision-free planned skills. The ArtiMinds Robot Program-
ming Suite (RPS) (Schmidt-Rohr et al., 2013), an integrated development envi-
ronment (IDE) for the ARTM program representation, provides high-level skills
for grasping, insertion or ungrasping which comprise collision-free approach or
depart motions. To represent such skills and enable their optimization subject to
collision-freeness and other motion-level constraints (see Section 3.3), NRP shadow
programs must be endowed with the capacity to generate collision-free trajectories
while ensuring differentiability through the planner.

This section introduces ◁ DGPMP2-NDDGPMP2-ND, a differentiable collision-free motion plan-
ner that generates trajectories that adhere to motion constraints such as collision-
freeness, smoothness, joint limits and accuracy at key points on the trajectory.
DGPMP2-ND extends and modifies Differentiable Gaussian Process Motion Plan-
ning (DGPMP2) (Bhardwaj et al., 2020) by implementing differentiable collision
checking for three-dimensional collision worlds and N-DoF serial kinematics, adding
joint limit constraints, and incorporating a factor that rewards similarity to a human
demonstration (Alt et al., 2025).

2.5.1 Differentiable Gaussian Process Motion Planning

DGPMP2 is a trajectory optimization-based planner that casts planning as maximum
a posteriori (MAP) inference on a differentiable factor graph (Bhardwaj et al.,
2020). It is based on Gaussian Process Motion Planning 2 (GPMP2) (Mukadam
et al., 2018), which represents continuous-time trajectories θ(t) : t → S as a
sample from a Gaussian process (Mukadam et al., 2016). Motion planning is cast
as the minimization of a cost functional F [θ(t)] subject to

Gi[θ(t)] ≤ 0, i = 1, ...,mineq (2.3)

Hi[θ(t)] = 0, i = 1, ...,meq, (2.4)

with inequality constraints Gi, such as joint limits, and equality constraints Hi,
such as trajectory start and end states. In typical applications, F [θ(t)] encodes
smoothness and ameasure of collision-freeness. Trajectories are modeled as samples
from a Gaussian process (GP):

θ(t) ∼ GP(µ(t),K(t, t′)) (2.5)

with mean µ(t) and covariance K(t, t′). In this section, θ(t) denotes a trajectory
as a function of a continuous-valued time index t. Evaluating θ(t) for equidistantly
spaced values of t yields the discrete-time, vectorized representation of θ introduced
in Section 2.3.1. In the context of DGPMP2, θ denotes the support states that

55

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

parameterize θ(t) (Mukadam et al., 2018). Given a sampled trajectory θ, the GP
then “defines a prior on the space of trajectories” (Mukadam et al., 2018), with
probability density

p(θ) ∝ exp

{

−
1

2
||θ − µ||2K

}

, (2.6)

where || · ||2K denotes the Mahalanobis distance with respect to K. The advantage
of such a Gaussian prior is that θ(t) can be sampled and re-sampled at varied
temporal resolutions. I refer to Mukadam et al. (2018) for a description of the
construction of the GP.

DGPMP2 solves the motion planning problem by MAP inference. It defines a
series of binary events ei at times ti, which denote whether or not some condition
holds: e0 = 1, for example, may signify that θ(t0) is in collision, and ei = 0 for all
i that the trajectory is collision-free. Given such collision events e, the posterior
density of θ is

p(θ|e) =
p(θ)p(e|θ)

p(e)
∝ p(θ)p(e|θ) (2.7)

where p(e|θ) is the likelihood that θ is collision-free (Mukadam et al., 2018).
A MAP estimator will find a collision-free trajectory θ∗:

θ∗ = argmax
θ

p(θ|e)

= argmax
θ

p(θ)l(θ; e)
(2.8)

where l(θ; e) ≈ p(e|θ) is the likelihood of states θ given events ei for each state θi
in θ. It is defined by the distribution

l(θ; e) = exp

{

−
1

2
||h(θ)||2

Σobs

}

, (2.9)

where h(θ) is the obstacle cost for each state on θ, and the covariance Σobs is a
tunable hyperparameter defining the scale and direction of the collision error. To
perform iterative MAP optimization, θ and e are expressed as a factor graph. The
trajectory prior (2.6) can be factored as

p(θ) ∝ f
p
0 (θ0)f

p
N(θN)

N−1
∏

i=0

f
gp
i (θi,θi+1) (2.10)

with start and goal state priors

f
p
i (θi) = exp

{

−
1

2
||θi − µi||

2
Ki

}

, i = 0 or N , (2.11)

56

2.5. DIFFERENTIABLE MOTION PLANNING

for start and end states µ0 and µN and respective covariances K0 and KN . The
GP factor f gp

i (θi,θi+1) places a GP prior on successive states (see Mukadam et al.
(2018) for details). MAP inference (2.8) corresponds to the minimization problem

θ∗ = argmax
θ

p(θ|e)

= argmin
θ

− log(p(θ)l(θ; e))

= argmin
θ

1

2
||θ − µ||2K +

1

2
||h(θ)||2

Σ
.

(2.12)

At iteration j, the cost functionh is linearized around the current trajectory estimate
θj using a Taylor expansion h(θ) = h(θj) +Hδθ with H = ∂h

∂θ

∣

∣

θ=θj . A Gauss-
Newton optimizer then solves the linear system

(K−1 +HT
Σ

−1H)δθ = −K−1(θj − µ)−HT
Σ

−1h(θj) (2.13)

to find the update δθ (Bhardwaj et al., 2020):

θj+1 = θj + δθ (2.14)

The reformulation of the planning problem as nonlinear least squares and the
sparse structure of the system permits the use of highly efficient solvers. GPMP2
outperforms other trajectory optimization-based solvers such as CHOMP (Ratliff
et al., 2009) or TrajOpt (Schulman et al., 2013), while allowing collision checking
and execution at different levels of resolution via GP interpolation (Mukadam et al.,
2018). Like all motion planners based on trajectory optimization, GPMP2 can
get stuck in local minima, which can be mitigated by parallel optimization from
different initializations.

DGPMP2 is a differentiable implementation of GPMP2 based on the observation
that the operations performed by GPMP2 for motion planning form a DCG (Bhard-
waj et al., 2020). Alongside the planning module, which corresponds to the original
GPMP2, the authors introduce a learnable module which generates a set of planner
parameters, such as the GP covariance K or the collision likelihood covariance
Σ, by way of a convolutional neural network (CNN). The ability to set planner
parameters from a learned model permits the learning of planner parameterization
from past experience, mitigating the need for manual hyperparameter tuning for
different applications.

2.5.2 DGPMP2-ND: Differentiable Gaussian Process Motion Plan-

ning for N-DoF Manipulators

The differentiable motion planner presented in this work builds on the planning
module of DGPMP2. It generalizes DGPMP2 to N -DoF manipulators and 3D
collision worlds by integrating differentiable kinematics into the planning DCG.

57

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

GP Prior Start Prior Goal Prior Joint LimitsObstacle Traj. Prior

Solve linear system

Update trajectory

Figure 2.12: DGPMP2-ND plans collision-free trajectories by iterative optimization.
The planning loop is differentiable end-to-end (Alt et al., 2025).

Moreover, it permits planning in both C-space and Cartesian workspace, permitting
to simultaneously respect joint limit and end-effector pose constraints.

DGPMP2-ND is illustrated in Figure 2.12. As in DGPMP2, the planning problem
is cast as MAP inference over a factor graph, which is solved by iterative Gauss-
Newton over the linear system (2.13). At each iteration j, each factor computes
an error h(θ) indicating the magnitude of the update to the current trajectory
estimate θj , a Jacobian H indicating the direction of the update and a covariance
Σ indicating the relative weight of each factor. Section 2.5.2.6 provides an in-depth
explanation of the planning loop.

Beyond the GP, start and goal priors introduced by Mukadam et al. (2018),
DGPMP2-ND introduces a joint limits factor, which penalizes states that violate
the joint limits of the robot (see Section 2.5.2.4), as well as a demonstration prior
(see Section 2.5.2.5) which allows for trajectory optimization with respect to a
reference trajectory, such as a human demonstration. DGPMP2-ND introduces a
differentiable obstacle factor, which permits planning for N -DoF kinematics with
respect to complex 3D collision worlds (see Section 2.5.2.2).

2.5.2.1 Trajectory Representation

The definition of the trajectory θ employed by DGPMP2-ND deviates from the tra-
jectory definition provided in Section 2.4.1.1 and employed in the overall context of
NRPs. Instead of an augmented state representation, which may contain Cartesian
end-effector poses, C-space states or end-effector wrenches, θ in the context of
DGPMP2-ND strictly contains states and velocities in C-space, echoing the literature
(Mukadam et al., 2016). θ is then a tensor of size M × 2N , where M is the
number of states on the trajectory and N the number of DoF of the manipulator.
Moreover, in the context of DGPMP2-ND, states on the trajectory are not assumed
to be sampled at equidistant points in time. Rather, the dynamics are explicitly

58

2.5. DIFFERENTIABLE MOTION PLANNING

represented by including joint velocities as part of the state. DGPMP2-ND assumes
the same constant-velocity model as DGPMP2 to facilitate the computation of the
GP prior (see Mukadam et al. (2018) for details).

2.5.2.2 Obstacle Factor

The proposed obstacle factor is a differentiable version of the original GPMP2, which,
in turn, is based on the obstacle cost function of CHOMP (Ratliff et al., 2009). The
collision geometry of the robot is represented as a set of geometric primitives for
efficient computation. While GPMP2 and CHOMP represent a robot link as a set of
spheres, DGPMP2-ND represents it as a cylinder, oriented along the link’s principal
axis, which fully contains the link’s collision geometry. The cylinders of adjacent
links partially overlap (see Figure 2.13). Unlike the spherical representation used
by DGPMP2, the cylindrical representation covers the manipulator without gaps
between primitives, avoiding spurious collisions, while requiring fewer primitives
in total.

Before planning, a signed distance field (SDF) of the environment is precom-
puted, in which each voxel contains the signed distance of the voxel center to the
closest obstacle. At each planning iteration j and for every state θj

i on the current
trajectory estimate, the Cartesian poses and Jacobians of all links are computed
via differentiable FK (see Section 2.4.4.1). For each link and each timestep, the
SDF voxel is identified which intersects with the link’s cylinder approximation and
has the smallest distance to the closest collision object. The sum of the direction
vectors to the neighboring 26 voxels, each scaled with the signed distance to the
next collision object contained in that voxel, computes the collision error vector
vik for the kth robot link at the ith point on the trajectory (see Figure 2.14). The
collision error hobs(θ) is an M × L tensor of the hinge loss over the error vector
magnitudes Lhinge(|vik|), 1 ≤ i ≤ M, 1 ≤ k ≤ L, where L is the number of links of
the robot. The collision JacobianHobs is a tensor of shapeM ×L×N , where each
entry Hobs,ikn is proportional to the amount by which the nth joint state should
be changed to maximize the collision error for the kth link at the ith point on the
trajectory. The obstacle covariance Σobs is the M × L × L tensor of isotropic
matrices proposed in the original formulation of GPMP2 (Mukadam et al., 2018)

Σobs = σ2
obsI, (2.15)

where σobs is the weight of the obstacle factor.

2.5.2.3 Cartesian Start and Goal Priors

In addition to the C-space start and goal priors introduced in GPMP2 (Mukadam
et al., 2018) and provided by the original DGPMP2 implementation (Bhardwaj et al.,
2020), DGPMP2-ND provides Cartesian start and goal prior factors, which penalize
deviations of the end-effector poses at the first or last point of the trajectory θ from

59

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

Figure 2.13: Collision model by cylindri-
cal approximation for a UR5 arm.

A

B

C
v

Figure 2.14: Computation of the
DGPMP2-ND collision error vector v for
a robot link as the sum of the direction
vectors to the 26 surrounding voxels (A),
rescaled by their respective collision dis-
tances (B).

given Cartesian start and end poses q1 and qM . They typically represent constraints
on the planned motion imposed by the task, such as picking up a cup at a detected
position and placing it at a destination. The Cartesian start and goal errors hstart(θ)
and hgoal(θ) are the difference between q1 or qM and the differentiable FK solutions
of the first and last states θ1 and θM , respectively, and zero for all other states on
the trajectory. The JacobiansHstart(θ) andHgoal(θ) is theM × 6×N tensor of the
Jacobians computed by differentiable FK for θ1 and θM , respectively, and the zero
matrix for all other states on θ. The covariances Σstart = σ2

startI and Σgoal = σ2
goalI

are the same isotropic matrices as (2.15) with start and goal factor weights σstart

and σgoal, respectively (see Section 2.5.2.6).

2.5.2.4 Joint Limit Factor

To ensure that the planned trajectory θ∗ respects the joint limits of the robot, a joint
limit factor is introduced. The error hlim(θ) penalizes states on θ which exceed the
upper and lower joint limits θ+lim and θ−lim, respectively:

hlim(θ) =

θ − θ+lim if θ > θ+lim

−θ−lim − θ if θ < −θ−lim

0 otherwise.

(2.16)

The joint limit Jacobian Hlim(θ) is a M × 6 × N tensor of matrices, where the
ith matrix corresponds to the Jacobian for the ith state on θ. The Jacobians are
diagonal matrices with entries−1 for joints exceeding θ+lim, 1 for joints falling below

60

2.5. DIFFERENTIABLE MOTION PLANNING

−θ−lim, and 0 otherwise. The covariance Σlim = σ2
limI is the same isotropic matrix

as (2.15) with limit factor weight σlim (see Section 2.5.2.6).

2.5.2.5 Demonstration Prior

Most planners benefit from of human guidance during the planning process. Tra-
jectory optimization-based planners such as DGPMP2 exhibit considerably faster
convergence if the initial trajectory θ0 is close to the optimal trajectory θ∗. For
many planning problems, however, a good initial trajectory is not known before-
hand. For such tasks, planners may provide mechanisms for human experts to
demonstrate actions, and leverage that demonstration to speed up planning or
increase the quality of planned motions (Billard et al., 2008; Koert et al., 2016).
To effectively incorporate human feedback into the planning process, DGPMP2-ND
supports an optional demonstration prior factor. For every state θi on trajectory θ,
the corresponding Cartesian end-effector pose pi and Jacobian Hi are computed
via differentiable FK (see Section 2.4.4.1). The demonstration prior error htraj(θ)
is the pointwise difference between the current Cartesian planned trajectory p and
a Cartesian reference trajectory q. The demonstration prior Jacobian Htraj(θ) is
the M × 6 × N tensor of the Jacobians Hi along the trajectory. The covariance
Σtraj = σ2

trajI is the same isotropic matrix as (2.15) with demonstration prior factor
weight σtraj (see Section 2.5.2.6).

The computation of the pointwise difference requires the demonstration q and
the planned trajectory θ to be of the same length. The velocity of the human
demonstration may be relevant to the task; when moving a vessel filled with liquid,
such as a cup, the dynamics of the demonstration may be central to the task success.
For this reason, rather than resampling q at the velocity of θ, the velocity and
(constant) acceleration of θ0 (the initial trajectory at the start of planning) are set
so that q and θ0 have the same number of points and states, respectively. As the
number of states on θ does not change during planning, q and the current planned
trajectory θj can be compared at every iteration j.

Note that multiple demonstrations can be used simultaneously to condition the
planner, as additional instances of the prior demonstration factor can be added to
the factor graph with different weights σtraj. Also note that neither the end-effector
pose at the start or the end of the initial trajectory θ0, nor any point in between,
is required to lie on q. q is not required to be collision-free or smooth, either.
The start and end poses, as well as the collision-freeness and smoothness of the
trajectory, are enforced by the start and goal priors, the obstacle factor and the GP
prior, respectively. Using the demonstration factor weight σtraj, the intended degree
of similarity to the human demonstration can be adjusted depending on the task.
For DGPMP2-ND to benefit most from human demonstrations, the demonstration
should start and end in relative proximity to the initial trajectory θ0.

61

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

2.5.2.6 Planning Loop

The planning loop is illustrated in Figure 2.12. At each iteration, the linear system

(K−1 +HT
Σ

−1H)δθ = −K−1(θi − µ)−HT
Σ

−1h(θi) (2.17)

is solved for δθ with the combined Jacobian H , combined inverse covariance Σ−1,
inverse GP kernel matrix K−1 and combined error function h(θj). H and Σ

−1 are
formed by concatenating the individual factors’ Jacobian and inverse covariance
matrices along the row axis. θj is updated along the direction of δθ with update
rate β:

θj+1 = θj + β ∗ δθ (2.18)

Forward pass Including an iterative optimizer in the forward pass of shadow
programs incurs a considerable computational overhead. The termination criterion
for iterative first-order trajectory optimization should minimize the number of iter-
ations while maximizing the likelihood of planning success. A necessary condition
for planning success is collision-freeness and adherence to joint limits; moreover,
the start pose error hstart should be as low as possible to ensure smooth integration
into the overall posterior trajectory θP̄ , and a low target pose error hgoal indicates
successful completion of the motion. The critical error at DGPMP2-ND iteration j is
then defined as

hcrit(θ
j) = hstart(θ

j) + hgoal(θ
j) + hobs(θ

j) + hlim(θ
j), (2.19)

comprising all error terms except the GP and demonstration priors. When the critical
error is zero, the planned trajectory is feasible, as it is collision-free, reachable,
and integrates seamlessly into the overall posterior trajectory. To ensure fast
convergence while ensuring minimization of hcrit, a patience mechanism is adopted,
whereby the number of total inner-loop DGPMP2-ND iterations is determined
dynamically. Listing 2.5 details the forward pass through the DGPMP2-ND optimizer
in pseudocode. Two additional hyperparameters are introduced, which jointly
determine the termination condition. The patience φ determines the number of
remaining DGPMP2-ND iterations after the critical error stops decreasing; DGPMP2-
ND terminates if hcrit does not decrease for φ iterations. The threshold ε denotes
the tolerated total error h: DGPMP2-ND terminates if h < ε. DGPMP2-ND always
terminates after a given maximum number of iterations. Patience-based early
termination with respect to the critical error avoids wasted computation in situations
in which the critical error cannot be reduced, e.g. if the start pose is in collision.
Such situations typically result from suboptimally parameterized upstream skills.

2.5.3 Discussion

With DGPMP2-ND, NRPs gain the ability to represent collision-free motion skills,
and, more generally, skills that are defined by C-space and Cartesian constraint

62

2.5. DIFFERENTIABLE MOTION PLANNING

1 def forward(theta_init: Tensor , beta: float , patience: float , threshold: float ,

max_iters: float) -> Tensor:

2 j = 0

3 theta_j = theta_init

4 theta = theta_init

5 min_error = inf

6 error_patience = 0

7
8 while j < max_iters:

9 h, H, K, Sigma = construct_linear_system(theta_j)

10
11 # Compute total error and critical error

12 last_error = sum(h)

13 h_gp , h_start , h_goal , h_obs , h_lim , h_traj = h

14 critical_error = sum(h_start , h_goal , h_obs , h_lim)

15
16 # Decay learning rate if critical error zero

17 if critical_error == 0:

18 beta *= 0.1

19
20 error_patience += 1

21
22 # Critical error decreased

23 if critical_error <= min_error:

24 min_error = critical_error

25 theta = theta_j # Save new candidate (optimal) trajectory

26 error_patience = 0 # Reset patience

27
28 if last_error < threshold:

29 break # Optimizer converged , terminate

30
31 # Critical error did not decrease for too many iterations

32 if error_patience > patience:

33 break # Patience exceeded , abort

34
35 # Update current trajectory

36 delta_theta = solve_linear_system(h, H, K, Sigma)

37 theta_j += beta * delta_theta

38 j += 1

39
40 return theta

Listing 2.5: The DGPMP2-ND optimization loop.

63

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

minimization. In industrial and service applications, such skills are typically used
for approach, depart and transfer motions. The original intent motivating the
development of DGPMP2-ND was the ability to differentiate through such transfer
motions to optimize downstream grasp or insertion motions (see e.g. Experiment
3.3.2.2). However, DGPMP2-ND proves to be a flexible planner in its own right,
permitting the joint first-order optimization of low-level motion trajectories and
high-level robot program parameters by gradient descent over the shadow DCG.
Program optimization with DGPMP2-ND is covered in greater detail in Section
3.3. An evaluation of DGPMP2-ND as a standalone planner as well as a differen-
tiable prior in the context of NRPs is provided in Section 3.3.2. An open-source
implementation of DGPMP2-ND is available.3

2.6 Related Work

The conceptualization and development of suitable representations for expressing
robot programs has been a long-standing research topic in robotics. NRPs syn-
thesize several different traditions of robot programming research into a novel
program representation, drawing from textual, skill-based, neural and hybrid rep-
resentations.

2.6.1 Textual Program Representations

Textual robot programming has been the predominant mode of programming robots
since the advent of the first commercial robot arms in the 1960. MHI, the first
dedicated robot programming language, was developed in the early 1960s (Ernst,
1962) to support programming as bidirectional communication between the human
programmer and the machine (see Figure 1.1). While its main objective was to be
a “convenient programming language that permits the [...] specification of that
which the hand is to do”, a secondary objective was to enable human programmers
to gain “familiarity with the operation of the [robotic] system [...] by writing some
simple programs for [it]” (Ernst, 1962). MHI supported primitives for perception
and action, such as a move command which could be parameterized by e.g. a
direction vector and a velocity. Primitives are combined to form complex programs
by way of control flow instructions (until, ifgoto, ifcontinue) etc. The program
representation established by MHI – “[s]tatements linked by conditional transfers
determine the actions to be executed” (Ernst, 1962) – laid the foundations for
all subsequent generations of textual robot program representations. Since MHI,
many robot programming languages such as WAVE (Paul, 1977), VAL (Shimano,
1979) or AML (Taylor et al., 1982), and more recently the KUKA Robot Language
(KRL) (Mühe et al., 2010), FANUC KAREL language (FANUC America Corporation,
2014) and URScript (Universal Robots, 2018b) have been proposed, most of which

3https://github.com/benjaminalt/dgpmp2-nd

64

https://github.com/benjaminalt/dgpmp2-nd

2.6. RELATED WORK

combine a modified syntax and semantics of a general-purpose programming
language such as BASIC, FORTRAN, Lisp or Python with robotics-specific extensions
and a hardware-specific robot control stack (Poole, 1989).

Textual program representations are designed to be written and read by human
programmers, with the intent of compactly encoding the information required to
describe the robot’s behavior (Ernst, 1962). Moreover, textual representations have
a high degree of expressivity (Ajaykumar et al., 2021): Modern robot programming
languages have a wide range of mathematical, logical and control flow primitives,
support for functional abstraction and modular composition, as well as interfaces
to general-purpose programming languages such as Python or C++, enabling
them, at least in principle, to express a wide range of robot behaviors. Textual
robot programs are explicit: A human reader or the program interpreter of a robot
controller require little additional computation to extract the represented behavior
from the representation.

2.6.1.1 Industrial Robot Programming Languages

The fact that textual robot programs explicitly represent robot behavior has caused
textual programs to remain the predominant representations used in industrial
robotics today. It is crucial to note that most industrial robot programming systems
employ hybrid representations: Programs are displayed e.g. as graphical icons
on teach pendants or in robot programming software provided by manufacturers,
which can be adapted via drag-and-drop or parameterized via teach-in (Villani et al.,
2018). The PolyScope programming interface for Universal Robots, that permits
the programmer to create and parameterize URScript programs via a graphical
user interface (GUI) on a teach pendant (Weintrop et al., 2018), is an example.
One of the reasons for the ubiquity of textual program representations in industrial
robotics is the fact that large manufacturing enterprises such as automotive original
equipment manufacturers (OEMs) impose strict group-wide standards on their
manufacturing processes, including robot programs, to ensure compatibility and
safety (Hirzle et al., 2008; Akcay, 2016). Industrial robot programming standards
are largely expressed in terms of textual robot program representations such as
the VKRC dialect of the KRL programming language, mandating or prohibiting
the use of particular language features, imposing coding guidelines and placing
strict requirements on the robot controller interpreting the language (Weißmann
et al., 2011). The aim of such restrictions is to ensure that robot behavior is well-
understood by human programmers and workcell maintainers, that given safety
and behavioral guarantees are met, and that robot programs are interoperable
with the plant-wide or group-wide manufacturing execution system (MES) and
other digital infrastructure. Typically, compliance of robot programming tools and
generated robot programs is performed automatically at the syntactic level, e.g.
by the robot controller which rejects programs syntactically incompatible with the
standard, or manually by human compliance and safety experts. Industrial robotics

65

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

standards favor and often require textual robot program representations because
they are documents which can be read, versioned, archived and retrieved.

2.6.2 Movement Primitives

The representation of robot programs as text provides a straightforward way to
define programs as control flow graphs of atomic primitives, which are typically
implemented as low-level point-to-point or otherwise constrained motions directly
on the robot controller. In textual robot programming languages, the primitives
themselves are represented as symbols, whose semantics are assumed as “given”.
For this reason, approaches for learning and synthesis of textual robot programs
typically operate at the level of control flow and do not learn or adapt low-level
motion primitives (Patton et al., 2024a; Liang et al., 2023; Chen et al., 2023;
ElMaraghy and Rondeau, 1992). In contrast, Movement Primitives (MPs) represent
motions as parameterized functions such as dynamic systems described by differ-
ential equations (Schaal, 2006; Ratliff et al., 2018) or probability distributions
(Paraschos et al., 2013; Huang et al., 2019) whose parameters can be learned via
e.g. supervised (Ijspeert et al., 2002; Billard et al., 2008; Akbulut et al., 2021a)
or reinforcement learning (Akbulut et al., 2021b; Tosatto et al., 2021; Stulp and
Schaal, 2011). MPs lie on the explicit side of the representational spectrum, as they
encode robot motion via a parameterized function with a priori known semantics,
and are subsymbolic by virtue of representing motion as continuous functions.

2.6.2.1 Dynamic Movement Primitives

A wide variety of MPs have been proposed. DMPs (Ijspeert et al., 2002; Schaal,
2006) represent movements as second-order dynamic systems, such as a parameter-
ized damped spring model with a forcing term (Ijspeert et al., 2013). By choosing
suitable values for the damper and spring constants as well as the forcing term,
a range of periodic and aperiodic behaviors can be represented. If the forcing
term is modeled as a weighted sum of exponential basis functions, the DMP acts
as a point attractor and can be used to represent goal-directed actions such as
reaching or pushing; for periodic von Mises basis functions, the DMP acts as a
limit cycle attractor and can represent periodic motions such as wiping or shaking.
The behavior is largely determined by the weights of the basis functions (the DMP
parameters (Stulp et al., 2013)) as well as the start and goal states of the motion,
the time constant and the damper and spring constants (the DMP metaparameters).
Parameters and metaparameters can be learned to represent given motions using
e.g. supervised learning from human demonstrations using locally weighted regres-
sion (Schaal and Atkeson, 1998; Ijspeert et al., 2013). A wide range of variants of
DMP have been proposed, which use different basis functions, Gaussian Mixture
Models (GMMs), GPs or neural networks as forcing terms; Saveriano et al. (2023)
provide a comprehensive overview. While the original DMP formulation (Ijspeert
et al., 2002) represents single-DoF motions, multiple DMPs can be coupled via a

66

2.6. RELATED WORK

shared phase variable, allowing the representation of multi-DoF trajectories in state
spaces with independent dimensions, such as the C-space of a serial manipulator
or 3D Cartesian positions (Saveriano et al., 2023). DMP formulations for Cartesian
pose trajectories using quaternions (Abu-Dakka et al., 2015) or rotation matrices
(Ude et al., 2014) have been proposed.

2.6.2.2 DMP Alternatives

The DMP-based MP representations cited above retain the original DMP formulation
of motions as dynamic systems described by second-order differential equations
with a forcing term (Ijspeert et al., 2013). Alternative approaches use different un-
derlying representations while realizing the same function – representing low-level
robot motions via a parameterized dynamics model (Saveriano et al., 2023). From
a representational perspective, it is the MP formulations that cross the boundaries
between symbolic and subsymbolic, explicit and implicit representations which
merit detailed discussion.

Probabilistic Movement Primitives (ProMPs) (Paraschos et al., 2013) propose to
address several shortcomings of DMPs by adding support for sequential and simul-
taneous composition, variably adjustable speed of motion, training by both RL and
human demonstrations, as well as suitability for both deterministic and stochastic
environments. ProMPs represent motions as distributions over trajectories, realized
as a weighted mixture of Gaussian or von Mises basis functions for discrete and
periodic MPs, respectively. The weight vector follows a parameterized probability
distribution such that the trajectory distribution defines a hierarchical Bayesian
model. This probabilistic representation permits the definition of operators for
conditioning on given via-points, goal positions or velocities, as well as sequential
combination (blending) and parallel combination (co-activation) (Paraschos et al.,
2013).

Probabilistic Dynamic Movement Primitives (ProDMPs) (Li et al., 2023a) con-
ceptually combine DMPs and ProMPs. They propose to generate a set of position
basis functions offline by numerical integration of the DMP ODE. ProDMPs can
closely fit a single demonstration, while supporting co-activation and blending. Li
et al. (2023a) propose to extend ProDMPs by a DNN to support conditioning of the
MP on additional high-dimensional inputs, such as images of the environment. The
DNN predicts the mean and covariance of the weight distribution and is trained
to minimize the negative log-likelihood of the ground-truth trajectories, such as
human demonstrations.

Unlike ProMP and ProDMP, which model motions as dynamic systems parame-
terized by the weights of mixtures of basis functions, CNMPs (Seker et al., 2019)
model motions as GPs. The mean and variance of the GP are predicted by a neural
network given a query input vector, conditioned on prior observations. Task-specific
parameters are concatenated to the query vector, making the generated behavior
contingent on these parameters. CNMPs can be conditioned on high-dimensional

67

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

inputs, such as environment images, and trained on human demonstrations or RL
(Akbulut et al., 2021b).

ProMPs, ProDMPs and CNMPs are parameterized, motion-level representations
of robot behavior. Due to their inclusion of neural components and probabilistic
models, they lie on the spectrum between explicit and implicit representations.
Motions are represented in part explicitly, as robot behavior is encoded in a priori
specified mathematical constructs such as dynamical systems or GPs; they are
also partly represented implicitly, as the concrete motion arises by sampling from
probability distributions, evaluating neural networks, or a combination of both. All
MPs share the common advantages of being learnable from data and affording a
degree of interpretability of the represented behavior, as the robot motion is subject
to the constraints imposed by the a priori defined mathematical model of motion.

2.6.2.3 From Movement Primitives to Robot Skills

MPs represent robot behavior at the motion level and satisfy the skill definition
proposed in Section 2.2.2.1, though their application is rendered challenging by
the fact that their parameters do not necessarily reflect task-level semantics: It
is unclear, for example, how the parameters of a DMP ought to be adapted so
that the represented motion satisfies the intent of the programmer. Stulp et al.
(2013) explicitly add such a semantic dimension. They propose a DMP-based
MP which accepts task-level parameters, such as the pose of a target object in
the environment, and is trained to adapt its behavior at runtime to varying task
parameters. Most state-of-the-art MP representations provide mechanisms for
sequential combination (blending) and parallel superposition (co-activation) of
individual MPs, permitting the representation of complex robot tasks with multiple
subtasks, goals and constraints (Paraschos et al., 2013; Li et al., 2023a). Riemannian
Motion Policiess (RMPs) (Ratliff et al., 2018) extend a second-order dynamic system
representation of motion by a Riemannian metric, which permits to define an
addition operator capable of combining movement primitives defined in different
spaces such as C-space and Cartesian task space. Cheng et al. (2019) propose
the RMPflow motion planner, which sequences and parameterizes RMPs to solve
hierarchical tasks while smoothly interpolating between individual motions. MPs
remain, however, a skill-level representation: “The aim of MPs is to allow for
composing complex robot skills out of elemental movements with a modular control
architecture” (Paraschos et al., 2013). They provide a partly explicit representation
of skills and underlie several state-of-the-art task-based program representations.

2.6.3 Task-Based Program Representations

The emergence of the task-level robot programming paradigm has given rise to
program representations which mirror the compositional and hierarchical structure
of tasks (Lozano-Perez, 1983): High-level tasks can be hierarchically decomposed
into lower-level subtasks, which are solved by atomic skills (Pantano et al., 2022).

68

2.6. RELATED WORK

Task-based program representations structurally reflect this task hierarchy, and
feature mechanisms for sequential and hierarchical composition that permit pro-
grammers, task planners or program synthesis algorithms to solve complex tasks in
a divide-and-conquer, hierarchical manner. Unlike MPs, which chiefly represent mo-
tions, task-based program representations model tasks. Task-based representations
typically expose task-relevant parameters such as object poses; MPs expose motion-
level parameters such as velocities. Task models, then, model robot behavior at a
higher level of abstraction, and rely on MPs or other motion-level representations
to produce robot motions.

2.6.3.1 Task Models

Task models are graph structures which hierarchically model a task in terms of
goals and constraints (Ekvall and Kragic, 2006). Planning algorithms then operate
on these data structures to find a sequence of subtasks to satisfy high-level task
objectives (task planning) or to plan low-level robot motions to satisfy the goals
and constraints (motion planning).

Generalized manipulation strategies (Jäkel et al., 2012; Jäkel, 2013) represent
a (sub-)task as a set of goals and constraints, which parameterize a sampling-based
motion planner. Goals and constraints are expressed in terms of task-relevant
coordinate systems, such as the opening of a bottle and the center of a cup for a
pouring task, in a manner similar to the task frame formalism (Bruyninckx and
De Schutter, 1996). Subtasks are combined to form strategy graphs, which define a
partial order in which (sub-)goals have to be reached to achieve high-level tasks. To
generate motions, a Constraint Satisfaction Problem (CSP) solver is combined with
a Rapidly Exploring Random Tree (RRT) motion planner to plan robot trajectories
which satisfy the task constraints. Strategy graphs can be learned from human
demonstrations by automatic detection of contact coordinate frames and constraints,
as well as pose constraints (Jäkel, 2013). Generalized manipulation strategies have
evolved into the commercial ARTM industrial robot program representation, a
graphical programming language with a set of industrial robot compiler backends
to execute planned motions natively on robot controllers (Schmidt-Rohr et al.,
2013; Jäkel and Dirschl, 2016).

Hierarchical Task Networks (HTNs) are task models designed to support hier-
archical search-based planners similar to classical AI planners (Sacerdoti, 1975;
Tate, 1977; Nau et al., 1999). Unlike the Planning Domain Definition Language
(PDDL) and similar representations (Hoffmann, 2011), HTNs explicitly model tasks,
subtasks as well as methods, rules to decompose tasks into subtasks (Ghallab et al.,
2004). During the planning procedure, non-primitive tasks are recursively decom-
posed until primitive tasks are reached, which correspond to planning operators
with defined pre- and postconditions. Unlike strategy graphs, which fold the CSP
into a sampling-based motion planner, HTNs associate constraints with tasks as
part of the planning domain, and considers them during the decomposition phase

69

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

of the planning procedure (Georgievski and Aiello, 2015). Due to their reliance
on search-based planners, HTNs are explicit, symbolic representations, describ-
ing tasks, goals, constraints and world states over discrete spaces. Due to their
exploitation of structured domain knowledge embedded in the task constraints,
HTN-based planners outperform classical AI planners for task planning (Hogg et al.,
2016). HTNs have been used in conjunction with Learning from Demonstration
(LfD) to represent robot programs in the context of human-robot collaboration
(Hayes and Scassellati, 2016) or human-robot co-learning (Mohseni-Kabir et al.,
2014). Lallement et al. (2014) propose a dedicated HTN representation and plan-
ner for robotics, which adds explicit data structures for agents along with rules for
specifying “acceptable” or “unacceptable” behavior, as well as integration with a
3D simulation environment.

Several other task models have been designed to specifically support automatic
planning for specialized applications or interaction modalities. Cheng et al. (2021)
propose a hierarchical task model and associated planner for human-robot collabo-
ration which represents both human and robot tasks in the same representation.
Parallel (sub-)tasks are explicitly modelled, enabling an optimization-based planner
to allocate robot subtasks to be executed in parallel with subtasks performed by the
human, in order to minimize overall execution time. Mericli et al. (2014) propose
instruction graphs, control flow graphs of robot primitives which are constructed
by matching control structures (“if”, “while”, “until” etc.), primitives and their
parameters to natural-language user inputs. Klee et al. (2015) present a planner
for instruction graphs capable of deriving abstract tasks and parameter distributions
from examples, and then use these distributions to autocomplete partially specified
tasks.

Task and Motion Planning (TAMP) is a long-standing and highly active field of
study (Garrett et al., 2020). TAMP observes that for many planning problems, task
planning and motion planning cannot be performed independently: The feasibility
of a task plan for example, is contingent on the feasibility of the underlying motions,
such as collision-freeness and reachability (Guo et al., 2023). Likewise, some
task plans may be highly efficient for some environments and robot kinematics,
but highly inefficient for others. Jointly solving task- and motion-level planning
problems promises improvements in planning speed as well as better plan results.
Several robot program representations for TAMP have been proposed. Kaelbling
and Lozano-Perez (2011) propose to represent robot tasks as a hierarchy of plans,
each of which consists of abstract operators defined in a manner similar to STRIPS
(Fikes and Nilsson, 1971). Primitive actions are planned using grasp and path
planners; plans are composed of primitive actions and higher-level actions, which in
turn have an associated plan. The HPN planner (Kaelbling and Lozano-Perez, 2011)
then solves the planning problem recursively backwards from the goal Ghallab
et al. (2004). The hierarchical nature of the plan structure is exploited to restrict
the planning problem to short time horizons (Kaelbling and Lozano-Pérez, 2013).
While traditional TAMP plan representations are explicit and symbolic, recent TAMP

70

2.6. RELATED WORK

approaches have proposed a wide variety of hybrid program representations which
all share a hierarchical structure, but vary widely in terms of representations of
tasks, plans, primitives or planning algorithms. Paxton et al. (2017) propose to
represent low-level motion policies and task-level policies as DNNs, trained to
reflect task constraints expressed in Linear Temporal Logic. The planning problem
is then solved via Monte Carlo Tree search. Driess et al. (2020) address TAMP via
mixed-integer programming, using a trained neural network as a heuristic to guide
the search over the program space. Silver et al. (2021) use a traditional Planning
Domain Definition Language (PDDL)-based hierarchical plan structure and planning
algorithm, but learn PDDL operators for robot skills from demonstrations.

Behavior Trees (BTs) are a graph-based representation for the behavior of artifi-
cial agents originally developed in the context of computer gaming (Colledanchise
and Ögren, 2018). In the context of robotics, BTs are a popular robot program
representation due to their modularity, facilitating modular reuse of behavior at
different levels of abstraction (Bagnell et al., 2012). A BT is a directed tree whose
leaves are execution nodes, and which are connected by control flow nodes (Colledan-
chise and Ögren, 2018). BTs explicitly model execution semantics as part of the
representation: When a node is executed, it sends ticks to its children, which are in
turn executed if they receive ticks. Control flow nodes comprise sequence, fallback,
parallel and decorator nodes, which vary in their routing of ticks to children, and
in their success and failure semantics. BTs are explicit, symbolic representations,
as they model robot behavior with discrete, dedicated data structures. As a conse-
quence, they support search-based planning of robot behavior to solve high-level
tasks. Scheide et al. (2021) represent the search space of a BT as a formal gram-
mar and use Monte Carlo Tree Search for task planning. Gugliermo et al. (2023)
learn BTs from execution traces of manually written plans via logic factorization.
Safronov et al. (2020) extend the BT formulation to plan in “belief state”, support-
ing non-deterministic actions and facilitating planning with the objective to reduce
uncertainty.

2.6.3.2 Graphical Robot Programming Languages

Task models represent robot programs by explicitly modeling the hierarchical
structure of tasks and providing data structures for task and motion planners.
While they model programs at a higher level of abstraction that primitive-level
representations such as MPs, they are typically intended to be used by algorithms
such as planners, rather than human users. Graphical robot programming languages
are robot program representations designed to enable humans to compose, edit
and understand complex robot programs.

Platform-specific representations In industrial robotics, manufacturer-specific
graphical program representations complement textual representations (see Sec-
tion 2.6.1) and have supplanted textual programs as the default representation

71

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

for common applications such as spot welding or palettizing . All major robot
manufacturers provide graphical representations of programs as a hierarchical, tree-
like structure, which programmers can interact with via GUIs on teach pendants
attached to the robot controller or through desktop applications (Krot and Kutia,
2019; Heimann and Guhl, 2020). Unlike task models, graphical robot programming
languages do not explicitly model task semantics such as goals or constraints, but
are “syntactic sugar” (Landin, 1964) for the manufacturer’s textual programming
language, providing programmers with a higher-level view on an underlying textual
robot program. Universal Robots (UR) provides the PolyScope graphical program
representation (Universal Robots, 2018a), which permits robot programmers to
compose and modify URScript programs by drag-and-drop of graphical function
blocks in a tree structure on the teach pendant. Via a dedicated marketplace, UR
programmers can download third-party predefined application-specific function
blocks for e.g. machine tending or surface finishing. Fanuc’s CRX suite of collabo-
rative robots features a similar graphical program representation, which permits
programmers to intuitively compose robot programs on the robot’s teach pendant
that directly correspond to textual KAREL and TP programs (FANUC America Corpo-
ration, 2023). While industrial graphical programming languages do not explicitly
model task semantics and do not afford automatic task planning, they have been
shown to enable inexperienced programmers to solve complex manipulation tasks,
chiefly due to their hiding of syntactic complexity behind graphical abstractions
(Ajaykumar et al., 2021).

Cross-platform representations The increasing proliferation of industrial robot
manufacturers and the heterogeneity of the various sensors and actors used in com-
plex manufacturing applications have given rise to cross-platform graphical program
representations which are independent from individual hardware manufacturers.
Cross-platform graphical robot programs explicitly model task semantics to varying
degrees, and vary in the ways in which they relate to lower-level representations
closer to the robot hardware.

The ArtiMinds Robot Task Model (ARTM) (Jäkel and Dirschl, 2016) is an
industrial robot program representation based on strategy graphs (Jäkel, 2013).
Tasks are modeled as a hierarchical graph of parameterized templates. Templates
are pre-parameterized generalized manipulation strategies that represent common
skills, such as linear or collision-free motion, grasping, insertion or search, but also
higher-level tasks such as peg-in-hole insertion or aligning two objects. Templates
as well as hierarchy and control flow structures such as if conditions or while loops
can be composed by drag-and-drop and parameterized via an interactive wizard
system. The ARTM is a hybrid program representation in that it combines three
representations in one: A parameterized graph of visual, modular, semantically
well-defined templates is internally represented by a strategy graph; the strategy
graph, in turn, parameterizes a motion planner, which generates low-level robot
trajectories and, depending on the task, associated runtime and goal constraints,

72

2.6. RELATED WORK

e.g. for a force controller. The planned paths, goal and runtime constraints are then
translated into executable robot programs in manufacturer-specific programming
languages. Due to its cross-platform compatibility and the availability of a wide
range of motion templates, the ARTM is used as a source program representation
in the experiments in Chapters 3 and 4.

Similar cross-platform graphical robot programming languages and frameworks
have been proposed (Krot and Kutia, 2019; Heimann and Guhl, 2020). The
Intrinsic Flowstate (White, 2023) and drag&bot (Naumann, 2017) programming
platforms, for example, represent robot programs in a manner similar to the
ARTM, but directly control the robot via low-level joint commands, rather than
generating robot code. All cross-platform graphical robot programming languages
are explicit program representations with known task (and program) semantics,
making them particularly suitable for industrial applications. As such, they are
fundamentally explainable, and enable the auditing of robot behavior by human
experts or automated systems.

2.6.4 Deep Neural Networks

Since the invention of backpropagation provided researchers with an efficient,
general-purpose learning algorithm (Rumelhart et al., 1986), neural networks
have been used as a highly flexible representation for learning, planning and
optimization across all domains of science and engineering. Per the universal
approximation theorem, multilayer feedforward neural networks with at least
one hidden layer and nonlinear activations are capable of approximating any
function at any degree of accuracy, given a sufficient amount of hidden units
(Hornik et al., 1989). The availability and rapidly decreasing cost of computing
hardware have enabled the development of deep neural architectures with very large
numbers of hidden layers. Deep neural networks have enabled comparatively simple
learning and optimization algorithms to solve highly complex problems purely from
data, enabling the automated solutions for protein folding (Jumper et al., 2021),
synthesis of high-resolution video (Blattmann et al., 2023) or multilingual machine
translation (Fan et al., 2021), problems which had been considered very challenging,
if not intractable, by classical AI methods. The appeal of neural networks lies in the
fact that they are universal, implicit representations: Given sufficient training data,
neural networks can be trained to represent nearly anything, without requiring
a priori specifications of the structure of the representation. Suitable training
algorithms can elicit latent representations exhibiting desired characteristics for
planning (Lynch et al., 2019), classification (Yeh et al., 2017), or algebra (Lee
et al., 2019); by virtue of representing information implicitly in latent space, neural
networks delegate the search for an efficient representation to solve a given problem
to the learning algorithm and training data. Neural networks support the solution
of problems for which no efficient representation is known, e.g. because the input
and output spaces are extremely high-dimensional, as in protein folding (Jumper

73

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

et al., 2021). In robotics, deep neural networks have a long tradition of representing
robot behavior (Horne et al., 1990; Pierson and Gashler, 2017; Kroemer et al.,
2021). Neural robot program representations differ in the modeled input-output
relationships as well as in the modeled level of abstraction, such as low-level motions
or high-level tasks.

2.6.4.1 Deep Neural Policies

The most common neural robot program representation are what may be termed
neural policies: Deep neural networks which predict the next action a robot should
take, given an observation of the current world state. Robot behavior is often
modelled as a partially observable Markov decision process (POMDP), where the
robot executes an action at each time step, yielding a state- and action-dependent
reward, followed by a transition to a new state (Lauri et al., 2023). Robot actions
are typically incremental C-space motions (joint state increments), Cartesian end-
effector positions or joint torques (Bahl et al., 2020). Neural policies are often
trained via RL (Kober et al., 2013; Levine et al., 2016), but can also be trained via
imitation learning (Zheng et al., 2022) or other methods. For the purpose of this
work, the learning algorithm is of lesser importance than how the learned policies
represent robot behavior, and at which level.

End-to-end sensorimotor policies translate raw sensory input about the world
and robot state into low-level joint positions, joint torques or Cartesian end-effector
positions. Levine et al. (2016) train deep visuomotor policies for general-purpose
manipulation using RL, which map raw images to joint torques using one single
deep CNN. Hansen et al. (2022) present a deep visuotactile policy, which combines
input from tactile sensors, 2D images of the environment as well as proprioceptive
information on the robot state to produce Cartesian end-effector pose and is trained
via RL to solve manipulation tasks. Diffusion policies (Chi et al., 2023) represent
robot visuomotor policies as a conditional denoising diffusion process. Chi et al.
(2023) train a neural network to represent the action distribution as a gradient
field by predicting noise added in the training process, similar to the training of
diffusion-based image generation networks (Rombach et al., 2022).

End-to-end sensorimotor policies implicitly represent robot motion or primitive
robot skills at a level similar to MPs. To tractably solve long-horizon, complex
tasks using end-to-end learning, hierarchical neural policy architectures have been
proposed. Hierarchical architectures exploit the hierarchical nature of tasks in a
manner similar to task models. At each hierarchy level, however, tasks and skills are
represented implicitly in the latent space of neural networks (Pateria et al., 2021).
Frans et al. (2018) propose a hierarchical RL approach, in which one master policy
is trained to select a learned sub-policy suitable to the given task. Both master and
sub-policies are trained together in an end-to-end manner. Gupta et al. (2020)
propose a similar two-level neural representation, but employ a two-stage training
process in which both levels are jointly trained first by imitation learning on human

74

2.6. RELATED WORK

demonstrations of “semantically meaningful behaviors” not necessarily related to
the final task, and then finetuned by RL on concrete long-horizon manipulation
tasks. The DISH (Ha et al., 2021) architecture for hierarchical policy learning
proposes a different approach: Instead of training a high-level policy to select
among several low-level policies, a high-level neural policy generates task-relevant
high-level parameters, which are then received by a single low-level policy to
generate robot control signals. Unlike for task models, task parameters in DISH are
not fixed and carry explicit semantic meaning, but carry implicit semantics which
arise through the training process.

The general approach of prescribing a hierarchical architecture for robot behav-
ior, but leveraging learning to manifest the concrete representation, is echoed in the
literature on robot meta learning, which is concerned with “learning to learn” new
tasks or task variants efficiently (Hospedales et al., 2021). Modular architectures
such as Meta Networks (Munkhdalai and Yu, 2017) propose dedicated neural
architectures for meta learning, in which one neural network (the meta learner)
learns abstract knowledge across tasks and parameterizes another network (the
base learner) to quickly learn new tasks. In Meta Networks, the representation
of task knowledge, while implicit, is still modular: The meta learner represents
aspects of task knowledge useful for learning new tasks, while the base learner
represents the policy to execute the task. Model-agnostic meta learning methods
such as MAML (Finn et al., 2017a) or Reptile (Nichol et al., 2018) facilitate meta
learning for arbitrary model architectures by inducing representations suitable for
meta learning via the training algorithm. Model-agnostic meta learning illustrates
the representational flexibility of neural networks to simultaneously represent
cross-task shared knowledge as well as task-specific knowledge in a single model,
without the need for a priori representation design.

Most neural policies do not explicitly encode task objectives or constraints;
rather, goals and constraints are implicitly represented, and are reflected in the
reward function used at training time. This has the considerable disadvantage of
requiring retraining when the task objectives or constraints change. Retraining
upon changing task objectives may be avoided by conditioning the policy on an
explicitly represented input of the task goal (Kaelbling, 1993). Gupta et al. (2020)
and Groth et al. (2021) condition deep visuomotor policies on an image of the
intended state of the environment after task completion. Lynch and Sermanet
(2021) query the policy with a natural-language description of the task goal, while
Myers et al. (2023) combine image and natural-language goal descriptions by
learning an embedding of the language description that is aligned with a goal
image. The explicit representation of task constraints typically require the use of
algorithmic priors (Jonschkowski et al., 2018), the integration of differentiably
implemented algorithms into the neural architecture, to force network outputs to
the constraint manifold (Qureshi et al., 2020; Ni and Qureshi, 2024).

75

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

2.6.4.2 Multimodal Transformer Architectures

The widespread, popular adoption of ChatGPT (OpenAI, 2023) and similar large
language model (LLM)-based AI assistants has given credence to the hypothesis
that token-based sequence-to-sequence neural architectures can serve as general-
purpose representations for tasks in a wide range of domains, including robotics
(Zeng et al., 2023). The Transformer architecture (Vaswani et al., 2017) underlying
all current state-of-the-art LLMs predicts the next token in a sequence by leveraging
an attention mechanism, which computes the relative importance of tokens in a
fixed-size context window around the current token for the current prediction.
While the Transformer and related architectures quickly achieved state-of-the-art
results for many applications such as time-series forecasting (Su et al., 2023) or
machine translation (Vaswani et al., 2017), the availability of web-scale training
datasets and increases in performance and availability of computational resources
have permitted Transformer architectures to become the de facto default representa-
tion for general-purpose AI systems capable of superhuman performance on a variety
of unrelated or only partially related tasks (Zhong et al., 2024). In robotics, multi-
modal Transformer architectures have seen increasing adoption due to their ability
to represent policies with multimodal state or action spaces in one single network.
Reed et al. (2022) propose Gato, one of the first Transformer-based multimodal
general-purpose architectures. Gato first transforms the input sequence of tokens
(integer-valued tensors) into token embeddings via a modality-specific embedding
function. The token embeddings are then processed by a Transformer network to
predict the next token in the sequence. Gato supports images, discrete actions, con-
tinuous actions, proprioceptive inputs such as joint torques and natural-language
text as input and output modalities. Instead of employing modality- or task-specific
submodules, Gato is jointly trained end-to-end on large-scale datasets spanning a
wide range of tasks and modalities such as simulated robot control, Atari games,
and vision-language tasks such as image captioning. While Gato’s performance
remained behind that of task- or modality-specific systems, it demonstrated the
ability of Transformer architectures to learn useful cross-modality representations
across tasks.

In the domain of robotics, Zitkovich et al. (2023) propose RT-2, a multimodal
large-scale Transformer network for robot learning. RT-2 is a vision-language-action
(VLA) model that takes token embeddings of natural language, images and robot
actions as inputs and predicts the next action the robot should take, such as an
incremental change in end-effector position and orientation. RT-2 can be used
as a goal-conditioned neural policy by prompting it with an image of the current
state of the environment and a natural-language description of the task goal to
produce an action sequence (robot motion) to solve the task. RT-2 is co-finetuned
on both web-scale datasets as well as a dedicated robotics dataset. Its performance
gives credence to the hypothesis that pretraining and co-finetuning on multimodal
data for tasks not associated with robot control, such as image captioning or visual
question answering, benefits robot control, in that general-purpose representations

76

2.6. RELATED WORK

of objects, naive physics, natural-language semantics and other concepts are learned,
which aid in the inference of policies for e.g. manipulation tasks. Zitkovich et al.
(2023) identify such “emergent capabilities” for symbol understanding, reasoning
and human recognition.

The strong generalization capabilities and flexibility of RT-2 suggest its use as a
foundation model in downstream AI systems, either as an architectural component
in a modular neural architecture or by finetuning on more specialized tasks. Hu
et al. (2023) provide an overview of foundation models in robotics. They highlight
that dedicated robotic (VLA) foundation models propose an end-to-end approach
to robot learning, acting effectively as multimodal neural robot control policies that
implicitly learn perception, task understanding, planning and control in one large
distributed representation. A range of dedicated VLA foundation models for robotics
have been proposed (Bonatti et al., 2022; Bousmalis et al., 2023; Stone et al.,
2023). Like deep neural policies, multimodal foundation models are implicit robot
program representations. As such, their chief advantage is their ability to manifest
multimodal, latent representations useful across a wide variety of tasks as a function
of their training data and learning algorithm. The success of large-scale Transformer
architectures has given credence to the scaling hypothesis: That “breakthrough
progress [in AI] eventually arrives by [...] scaling computation by search and
learning” (Sutton, 2019), evidenced by empirical research on neural scaling laws
(Kaplan et al., 2020). While large-scale, implicit, distributed representations enable
end-to-end robot task learning, they carry inherent interpretability challenges
(see Section 2.7 for a detailed discussion). Moreover, reliance on scaling datasets
and compute to achieve a given level of performance is challenging in specialized
domains for which there is little training data, or in which the collection of training
data requires physical interaction with humans or fragile workpieces (Hu et al.,
2023). For these applications, the integration of foundation models with other
representations into hybrid systems promises to increase task-specific performance
without requiring additional training data.

2.6.5 Hybrid Representations

The discussed robot program representations each have their respective advantages
and shortcomings, particularly with respect to ease of use by human programmers,
interpretability, expressivity and support for data-driven learning and optimization.
Consequently, a large and heterogeneous family of hybrid program representations
combines explicit, implicit, symbolic and subsymbolic representations to optimally
resolve these trade-offs. NRPs are a hybrid representation in that they are doubly
neurosymbolic: The shadow program DCG is composed of modular deep neural net-
works as well as differentiable planners, forming a program graph via mechanisms
of symbolic composition; moreover, NRPs are a dual representation, establishing
a one-to-one structural and semantic equivalence between a skill-based source
program (such as a task model) and its corresponding neurosymbolic shadow. In

77

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

the literature on robot learning, program synthesis and optimization, a wide range
of hybrid representations have been proposed, which combine representations in a
variety of ways.

CRAM The Cognitive Robot Abstract Machine (CRAM) is a cognitive architecture
which endows robots with mechanisms of cognition for perception, planning, ac-
tion and metacognition (Beetz et al., 2010; Beetz et al., 2023). CRAM is tightly
integrated with the KnowRob KR&R engine (Tenorth and Beetz, 2013; Beetz et al.,
2018). The CRAM Plan Language (CPL) is a LISP-based domain-specific language
(DSL) for specifying plans to solve tasks at varying levels of abstraction. CRAM
plans are hierarchies of designators, symbolic representations for robot actions,
objects, locations or low-level robot motions. CRAM plans can be underspecified,
i.e. contain ungrounded designators, which can be resolved at planning time or
dynamically at runtime by grounding from perception (Beetz et al., 2015; Mania
et al., 2024), reasoning over knowledge bases (Beßler et al., 2021), prior experience
(Beetz et al., 2018) or simulations (Haidu et al., 2018; Mania et al., 2021). CRAM
plans are explicit and symbolic program representations in that the task structure
and task parameters are directly reflected in the structure and parameters of CRAM
plans. Due to the grounding of underspecified plans at runtime and the use of ex-
ternal knowledge bases, perception and simulations for symbol grounding, CRAM
integrates both symbolic and subsymbolic robot programming. The KnowRob
framework permits the definition of hybrid reasoning routines combining symbolic
reasoning in Prolog with subsymbolic, external reasoners (such as grasp planners or
object detectors) (Beßler, 2022). MetaWizard, the interactive AI assistant proposed
in Chapter 4, leverages CRAM plans as an intermediate representation for the syn-
thesis of NRPs, and proposes semi-symbolic reasoners to ground NRP parameters in
human VR demonstrations, real-world percepts and simulations (Alt et al., 2024c).

Neural textual program synthesis The dual nature of NRPs representationally
separates learning and program optimization from execution. Several recent LLM-
based robot programming approaches are founded on a similar paradigm. Liang
et al. (2023) propose Code as Policies (CaP), an approach for robot program
synthesis using LLMs. CaP uses an LLM trained for general-purpose code generation
(OpenAI Codex, Chen et al. (2021)) to synthesize textual robot programs given
natural-language descriptions of the task. The LLM synthesizes Python code which
uses and parameterizes function calls to a robot API providing perception and
manipulation primitives, such as object detection, point-to-point motions or grasps.
Instead of finetuning the LLM on the semantics of the robot API, the authors
provide descriptions as comments and use descriptive function names, which are
provided along with a natural-language description of the environment as part
of the prompt. Liang et al. (2023) demonstrate that CaP can be used recursively,
i.e. that the LLM can generate code containing calls to functions which, in turn,
use the LLM to generate their own implementation. The textual, explicit robot

78

2.7. DISCUSSION

program representation is used for human-AI interaction (goal conditioning via
prompting) and program execution, but also as an intermediate representation in a
recursive chain of reasoning. Reliance on an explicit, textual program representation
with well-defined semantics permits the use of LLMs for program synthesis without
retraining, as the LLM has been trained to perform high-level reasoning over general-
purpose Python code, and all robot-specific or even environment-specific aspects,
such as grounding of objects via visual perception, is hidden behind symbolic, textual
abstractions. The paradigm of combining explicit, textual program representations
with large neural networks to generate andmanipulate them has been demonstrated
in the context of simulation generation (Wang et al., 2023b), tabletop manipulation
(Liang et al., 2023) or high-level household assistance (Vemprala et al., 2023).
Instead of generating executable Python code, other approaches have generated
explicit textual representations to serve as inputs for classical task ormotion planners
(Wake et al., 2023; Joublin et al., 2023; Rana et al., 2023).

Informedmachine learning NRPs leverage differentiable motion planners such as
DGPMP2-ND (Alt et al., 2025) and differentiable Cartesian trajectory generators to
provide the neural networks with useful priors and reduce the learning problem from
long-horizon trajectory prediction to a sequence-to-sequence translation. The field
of informed machine learning is founded on the principle of intertwining implicit and
explicit representations in order to leverage existing, known algorithmic solutions
to (sub-)problems, such as planning algorithms, to improve the efficiency or safety
of learning systems (von Rueden et al., 2021). Informed machine learning has
been proposed in the context of representing of physical dynamic systems. Physics-
informed neural networks (Cuomo et al., 2022), Neural ODEs (Chen et al., 2018),
Neural Flows (Biloš et al., 2021) or neural Kalman filters (Revach et al., 2022)
integrate algorithmic priors by tightly integrating neural network architectures
with differentiable implementations of known system dynamics (Jonschkowski
et al., 2018). In robot programming, Neural Dynamic Policies (NDPs, Bahl et al.
(2020)) combine a deep neural network with a differentiable implementation of
forward integration of the DMP differential equations. The resulting DCG can be
trained end-to-end by supervised or reinforcement learning, outperforming purely
neural architectures on a range of dynamic tasks such as opening a faucet, pushing
or throwing. At the skill level, CNMPs (Seker et al., 2019) and related hybrid
movement primitives (see Section 2.6.2) constitute similar hybrid representations.

2.7 Discussion

NRPs are a neurosymbolic robot program representation that combines the advan-
tages of implicit and explicit representations to bridge the representational gap
between learning and control. It is a dual program representation by virtue of
maintaining an equivalence relation between a skill-based, explicitly represented

79

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

source program, such as a task model or a textual robot program, and a neurosym-
bolic shadow program. NRPs are the first robot program representation to propose
such a dual structure. By virtue of this duality, NRPs realize the requirements and
desiderata laid out in Section 2.2.1.

2.7.1 Learning, Planning and Optimization

2.7.1.1 Learning

NRPs afford learning by gradient descent over the shadow program DCG: Shadow
skills can be learned jointly or in isolation to represent real-world robot and world
dynamics. NRPs leverage the learning capacity of DNNs to learn complex non-linear
system dynamics, such as force-sensitive interactions with the environment during
tactile manipulation. At the same time, the shadow program DCG combines DNNs
with explicit representations of robot behavior, such as semantically meaningful
shadow program parameters xP̄ , robot states θ and trajectories θ as well as dif-
ferentiable priors in the form of Cartesian and C-space motion planners. NRPs are
a doubly neurosymbolic, hybrid program representation: It associates a symbolic
source program with a neurosymbolic, differentiable surrogate. The structural and
semantic equivalence properties of source and shadow programs facilitate shadow
program learning in two ways. First, in a manner similar to hierarchical neural
architectures (Pateria et al., 2021) such as DISH (Ha et al., 2021) or Relay Policies
(Gupta et al., 2020), the hierarchical structure of the shadow program DCG decom-
poses the task-level learning problem into several skill-level subproblems, which
can be learned in isolation or pre-initialized from a library of learned shadow skills.
The learning problem is further simplified by the use of differentiable priors as an
instance of informed machine learning (von Rueden et al., 2021), which reduce
shadow skill learning to learning the residual between the prior and ground-truth
trajectories, a considerably easier learning problem than generatively bootstrapping
the posterior trajectory directly (He et al., 2016).

Crucially, NRPs learn predictive models of robot and world dynamics. This
is a marked difference between NRPs and hierarchical neural policies: Neural
policies are trained to represent the optimal behavior to solve a given task, whereas
NRPs learn a predictive model, conditional on task or skill inputs and the robot
state. While neural policies solve the problem of behavior optimization at training
time by e.g. imitation learning, NRPs solve the comparatively easier problem of
learning a forward model and relegate the optimization problem to dedicated
optimization algorithms (see Chapter 3). This has three decided advantages. First,
the optimization criterion is not required to be known at training time, and NRPs are
trained to minimize a general-purpose trajectory prediction error (see Equation 2.1).
Consequently, no retraining is required when the task objective changes, and explicit
goal-conditioning is avoided, simplifying the training procedure. This property
is crucial for service robotics applications, in which tasks goals typically change
at every invocation of the program, and industrial applications, where e.g. small-

80

2.7. DISCUSSION

batch production requires increasing flexibility with respect to frequently changing
task objectives. Second, NRPs can be trained purely from unlabeled observation
data of past task executions, with small perturbations to the input parameters and
initial states. This manner of training data collection resembles Learning from
Play (Lynch et al., 2019) and exhibits the same advantages. Crucially, it can be
performed completely autonomously without human supervision, and avoids the
shortcomings of RL-based approaches such as goal misgeneralization (Shah et al.,
2022) and random exploration, which is infeasible in constrained industrial settings
(Sünderhauf et al., 2018; Brosset et al., 2019). Third, the fact that NRPs are world
models enables them to act as foundation models for downstream tasks, such as
parameter optimization or task and motion planning. Echoing related work on
robotics foundation models (Zitkovich et al., 2023), Kienle et al. (2024) propose
a neural shadow skill architecture for NRPs based on multimodal, visuotactile
Transformer architecture, which combines vision and trajectory modalities and can
be pretrained for a wide range of robotic manipulation tasks.

One limitation of a dual program representation founded on structural and
semantic equivalence is that the (in principle) unlimited expressivity of the shadow
program representation can only translate to flexible robot behavior within the
representational constraints of the source program. Consider a NRP with a URScript
source program. As the source program is used for execution on the robot, the
robot’s range of possible behaviors will be constrained by the URScript API; down-
stream optimizers or planning algorithms can only optimize URScript function
parameters or plan URScript programs. From a safety perspective, this is a re-
quirement in many industrial applications; from a capabilities perspective, this
can be a severe limitation. The flexibility of NRPs to support arbitrary skill-based
representations as source programs permits the user to choose a source program
representation with a sufficient level of expressivity for the intended application.

2.7.1.2 Planning and Optimization

Their dual structure permits NRPs to afford first-order optimization of program
parameters for source programs which are not differentiable (Alt et al., 2021;
Alt et al., 2022b; Alt et al., 2025) (see Chapter 3). As such, NRPs are the first
robot program representation to realize first-order optimization via a differentiable
surrogate, similar to the use of differentiable surrogates in other engineering
domains (Vandegar, 2020). Section 3.4 provides a detailed analysis of first-order
optimization of NRPs. In addition, structural equivalence to an explicit, modular
program representation such as a task model permits the use of symbolic task
planners for the source program, which exploit prior knowledge and the hierarchical
task structure for efficient planning (Alt et al., 2023; Alt et al., 2024c) (see Chapter
4). This echoes the advantage of modular program representations such as HTNs,
task models or TAMP operators, which support efficient search-based task planning

81

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

due to their hierarchical structure with explicit semantics. Section 4.4 provides a
detailed discussion of program synthesis with NRPs.

2.7.2 Hardware and Task Agnosticity

NRPs are agnostic with respect to the source program representation, provided it
is parameterized and explicit. A corollary of this representational agnosticity is
that NRPs can be used to learn and optimize robot programs for a wide variety
of tasks and hardware platforms, provided they can be represented by the source
program. Source program representations such as ARTM task graphs (Jäkel and
Dirschl, 2016) and other task models, sequences of movement primitives or other
explicit representations are generally suited. Likewise, due to the reliance on DNNs
as universal function approximators in the shadow program DCG, NRPs can be
trained to represent arbitrary world and robot dynamics. The representational
power of NRPs is limited largely by the input and output modalities of the shadow
skills. The architecture proposed in Section 2.4.1.4 accepts arbitrary real-valued
skill input tensors and start states in state space S and outputs posterior trajectories
in trajectory space SM . This effectively restricts it to only represent tasks whose
semantics can be expressed in terms of Cartesian end-effector poses, C-space
configurations and end-effector wrenches (see Section 2.4.1.1). This state space
covers a wide range of complex manipulation tasks in service and industry robotics
(see Chapter 3); however, the poses of objects in the environment or the behavior
of other agents are not explicitly represented. In principle, the input and state
spaces can be extended to arbitrary real-valued spaces without loss of generality.
Kienle et al. (2024) extend the input space of NRPs by a tokenized representation
of images of the environment to represent visuotactile tasks which require force
and vision-adaptive behavior.

By similar logic, NRPs are as hardware-agnostic as the chosen source program
representation. For cross-platform graphical programming languages, task models
or similar hardware-agnostic representations, NRPs can be trained to represent the
kinematics and dynamics of arbitrary robot hardware. NRPs have been trained and
tested chiefly on six-axis industrial robot arms (see Chapter 3), though they are
not limited to 6-DoF serial kinematics.

2.7.3 Human Interpretability

One considerable advantage of explicit program representations is that they al-
low human programmers or formal provers to audit robot programs which may
have been generated or optimized by AI systems (Espiau et al., 1996; Webster
et al., 2016; Luckcuck et al., 2019). Implicit representations, such as DNNs, dis-
tribute the representation of concepts across neurons and layers (Hinton, 1989),
making the interpretation of network behavior highly challenging (Chang et al.,
2024). A corollary of the distributed nature of representation in neural networks

82

2.7. DISCUSSION

is polysemanticity, the ability of individual neurons to simultaneously represent
semantically unrelated concepts by “superposition” of sparse features (Elhage et al.,
2022). Polysemanticity has been observed in networks of all sizes and architectures
(Scherlis et al., 2023) and poses significant challenges to mechanistic interpretabil-
ity, as post-hoc disentanglement of features, e.g. via sparse autoencoders, is lossy
and computationally expensive (Huben et al., 2023). Hospedales et al. (2021)
note that while e.g. meta-learning symbolic, human-interpretable activations is
possible, this comes at the cost of eschewing end-to-end differentiability and the
use of first-order optimizers or loss of accuracy. Deep neural policies, which learn
implicit representations of task goals and constraints, pose an additional challenge
to interpretability, as the learned objectives or constraints may not reflect the true
task objectives or constraints, e.g. due to reward misspecification (Pan et al., 2021),
reward hacking (Skalse et al., 2024), goal misgeneralization (Shah et al., 2022) and
related phenomena (Pitis, 2023). In a manner similar to the concept of “global sur-
rogates” in the XAI literature (Burkart and Huber, 2021), NRPs leverage a surrogate
model to resolve the capability-safety tradeoff. However, where global surrogates
in XAI learn an explicit representation to be functionally equivalent to an implicit,
neural representation, NRPs start from an explicit, explainable representation and
train a differentiable, implicit surrogate for learning and optimization. By using
the explicit, explainable source program representation for user interaction and
execution on the robot, NRPs ensure that the ultimate behavior of the robot is
explainable to the human programmer. Their dual nature enables NRPs to leverage
the representational flexibility and differentiability of implicit neural program rep-
resentations for learning and first-order optimization without requiring them to
be explainable. The “safety tax” of NRPs lies in the limited expressivity of explicit
program representations. The neural components of shadow skills can, in principle,
learn to represent arbitrary behavior; this would, however, violate the semantic
equivalence property, negating the core benefit of NRPs – facilitating first-order
optimization over explicitly represented robot programs that could otherwise not
be optimized. In practice, well-designed task models offer sufficient flexibility to
express tasks of very high complexity. The factor delaying or preventing the use of
robots for complex tasks rather lies in the difficulty of identifying good or optimal
parameters for robot skills, while requiring the explainability of skill-based robot
programs.

2.7.4 Human Interaction

The duality between explicit source and implicit shadow program representations
not only ensures the explainability of robot behavior, but also facilitates the creation
and modification of NRPs by human programmers. The modularity and exposure
of semantically well-defined task-space parameters makes robot programming lan-
guages, task models and hybrid representations such as CRAM plans particularly
suited for use in interactive programming paradigms such as textual or task-based

83

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

programming. Even under data-driven programming regimes such as Programming
by Demonstration (PbD), explicit representations facilitate the post-hoc editing
of robot programs by human experts. End-to-end neural approaches lack such
mechanisms for post-hoc modification, and interactive learning paradigms such as
active or imitation learning facilitate human interaction during training, but their
lack of interpretability prevents targeted post-hoc editing of the learned policies.
NRPs balance data-driven learning and first-order optimization with the ability of
humans to edit the explicitly represented source programs and their parameters
before or after optimization. Use of source program representations designed for
human programming, such as textual programming languages, permits program-
mers to interact with robot programs via established interfaces and abstractions,
such as teach pendants, GUI applications or textual editors, while simultaneously
permitting purely data-driven learning and optimization by human demonstration
(Alt et al., 2021; Alt et al., 2025), lifelong self-learning (Alt et al., 2022b), interac-
tive program synthesis in VR (Alt et al., 2023) or natural-language interaction (Alt
et al., 2024c).

By giving a central role to explicit program representations, NRPs re-establish
AI-enabled programming as bidirectional, interactive communication between hu-
man and machine. However, Chen and Huang (2023)’s criticism of LLM-based
architectures applies to NRPs as well: The bidirectional communication between
programmer and programmed system is not lossless. While the use of explicit pro-
gram representations for execution and human-machine interaction permit human
editing and understanding of the generated program, that does not necessarily
imply correctness of the program. Chen and Huang (2023) propose factual and
physical error classes. Factual errors are e.g. erroneous model outputs due to
hallucinations, such as predicted trajectories which do not approximate the physical
reality, or do not approximate it to sufficient fidelity, e.g. due to overfitting on
insufficiently diverse training data. Physical errors include e.g. collisions with
the environment at runtime. NRPs are susceptible to both error types, and any
downstream use of NRPs, such as for first-order optimization or program synthesis,
will be affected by such model errors. The modular architecture of NRPs, however,
helps contain the scope of model errors at the skill or hierarchy level, and the
semantic equivalence between the source program and the shadow program DCG
enables straightforward testing against such errors – the quality of e.g. a learned
shadow skill is exactly proportional to the degree to which it approximates its
corresponding source skill.

2.7.5 Additional Desiderata

Beside simplifying the learning problem and facilitating human interpretability and
editability, the modular architecture of NRPs ensures that they satisfy the additional
desiderata for neurosymbolic program representations introduced in Section 2.2.1.
NRPs facilitate symbolic composition, i.e. the construction of complex programs

84

2.8. CONCLUSION

from primitive, semantically well-defined components (Chaudhuri et al., 2021);
moreover, they facilitate hierarchical abstraction, permitting to hide complex skill
sequences behind higher-level subtask abstractions, and afford learning at all levels
of hierarchy. Symbolic composition and hierarchical abstraction in NRPs is not
complete, however. The length of skill or subtask sequences and the depth of
hierarchies is limited by the available computational resources, such as graphics
processing unit (GPU) memory. Moreover, loop structures with many iterations can
cause vanishing gradients, which may require additional regularization (Wu et al.,
2021).

From an application perspective, one of the most important corollaries of the
dual nature of NRPs is their interoperability with existing programming systems,
workflows and execution environments. The realities of industrial robot program-
ming, in particular, mandate a program representation that seamlessly integrates
into existing robot programming ecosystems. The agnosticity of NRPs with respect
to the source program representation permits the creation of NRPs for existing
robot programs in a wide range of commonly-used textual, task model-based or
hybrid source program representations by training the shadow DCG on existing
robot experience data. In industrial robotics, this permits the use of NRPs alongside
traditional methods of robot programming, reducing the overhead of adoption (Alt
et al., 2024a).

2.8 Conclusion

NRPs are a novel neurosymbolic robot program representation that combine a
skill-based robot program for execution and human editing with a learnable, differ-
entiable shadow DCG for first-order optimization. NRPs are a dual representation,
enforcing a bidirectional correspondence between source and shadow representa-
tions. A wide range of existing skill-based robot program representations can be
converted to NRPs, comprising most industrial robot programming languages and
a range of state-of-the-art robot task models. NRPs support sequential and hierar-
chical composition of primitive skills to complex programs, as well as control flow
structures for iteration and conditional branching. By integrating neural networks,
differentiable programming and collision-free motion planning into one unified
DCG, NRPs act as differentiable models of robot behavior. As a data structure,
NRPs afford the design of symbolic and neural program synthesis and program
optimization algorithms, which are the subject of Chapters 3 and 4. NRPs have
evolved in the context of several publications (Alt et al., 2021; Alt et al., 2022b;
Alt et al., 2025; Kienle et al., 2024). Their ability to represent complex force-
dynamic manipulation tasks is demonstrated in the context of several real-world
industrial and service robotics applications, notably Experiments 3.1.3, 3.2.3 and
3.3.2. By bridging the representational divide between the symbolic, explicit robot
program representations designed and optimized for human programmers, and the

85

CHAPTER 2. A NEUROSYMBOLIC ROBOT PROGRAM REPRESENTATION

subsymbolic, implicit program representations favored by first-order learning and
optimization approaches, NRPs support neurosymbolic robot programming work-
flows that satisfy the needs of both human programmers and AI-based programming
methods.

86

CHAPTER 3

First-Order Robot Program Parameter

Optimization

The identification of suitable program parameters to achieve high-level task ob-
jectives is one of the core challenges of robot programming. Under the manual
programming paradigm, robot programmers specify both the structure of the robot
program as well as its parameterization, to specify robot behavior which achieves
the task objectives. Textual program representations typically require fine-grained
parameterization at the motion level, such as the specification of velocities, acceler-
ations, blending radii, force controller parameters, time delays etc. A comparatively
simple robot program for peg-in-hole insertion, for example, may have tens to hun-
dreds of subsymbolic, continuous-valued program parameters, controlling aspects
such as the force and torque setpoints for a proportional-integral-derivative (PID)
controller to push the peg into the hole, or parameters defining approach and depart
poses as well as intermediate waypoints. Identifying parameterizations which not
only solve a task, but also optimize for nonfunctional task objectives such as cycle
time or robustness, is a challenging high-dimensional multicriterial optimization
problem. In the current industrial state of the art, robot program parameterization
is performed by human experts in a costly, time-consuming process of trial and
error. Automating this process via AI-based, data-driven methods has the potential
of freeing resources and allowing robot programmers to use their knowledge more
effectively.

As an example for an industrial robot program parameterization problem, con-
sider the servoj function of the URScript programming language, one of its core
functions for position-controlled motion (Universal Robots, 2018b). servoj accepts
six parameters: A target joint configuration q, velocity vel, acceleration acc, time
duration t during which the robot is controlled, a lookahead_time which smooths
the resulting trajectory, and a gain parameter indicating the degree of fidelity to
which the reference trajectory is to be followed. Even for a simple robot program
causing a robotic manipulator to follow a reference trajectory, parameterizing
servoj is highly challenging: First, the states q on the reference trajectory must

87

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

Neurosymbolic
Robot Programs

Knowledge-Driven
Robot Program Synthesis

VR Human
Demonstration

Task
Abstraction

Task
Grounding

Program
Execution

Training Data
Collection

First-Order Robot
Program Optimization

Surrogate Model
Learning

repeat

Linear

+

...

...

tanh

-1

...

Duplication

Pointwise
operation

Real-World
Execution

Shadow
Program
Inversion

Figure 3.1: Shadow Program Inversion (SPI) is an optimization algorithm for
Neurosymbolic Robot Programs (NRPs). By gradient descent over the shadow
program, program parameters and motion trajectories are optimized with respect
to user-provided task objectives, subject to motion-level constraints.

be determined, e.g. by a motion planner. Appropriate values of vel and acc must
be specified to determine the motion dynamics, often under motion-level task con-
straints such as acceleration limits to prevent spillage of liquids or minimize energy
consumption. The parameters t, lookahead_time and gain jointly determine the
overall smoothness of the trajectory as well as the path accuracy. Their mutual influ-
ence and exact mathematical meaning are not transparent to the user and poorly
documented, requiring several iterations of trial and error even for experienced
programmers.

In the context of task-based programming, parameter optimization is an equally
important and challenging problem. Task-based program representations abstract
away most motion-level and hardware-specific details in favor of task-level parame-
terizations. One central challenge is the need for joint optimization of task- and
motion-level parameters. Consider the example of a service robot placing a cup
from a table into a shelf (see Figure 3.18). Using the ARTM graphical programming
language (Schmidt-Rohr et al., 2013), this task can be solved using a sequence of
the predefined subtasks Grasp, Move to State and Ungrasp. Grasp and Ungrasp

are in turn composed of primitives for approaching and departing the cup, as well as
primitives for closing and opening the gripper. Program parameterization requires
specifying the approach and depart poses, the initial gripper opening for grasping,
the pose of the cup before grasping, the object-relative grasp point, the target

88

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

position of the cup for ungrasping, as well as velocities and accelerations for all
primitives. Crucially, Move to State and the approach and depart primitives plan
collision-free motions, given a 3D representation of the environment. The choice of
approach, depart and grasp poses can affect the feasibility of collision-free motion,
and will greatly affect its efficiency, e.g. in terms of energy consumption.

This chapter introduces SPI, a general-purpose parameter optimizer for param-
eterized robot programs. SPI performs first-order model-based optimization over
NRPs to compute optimal parameterizations with respect to a wide range of task
objectives, such as cycle time, robustness, or proximity to a human demonstra-
tion. Section 3.1 introduces SPI, contextualizes it in the field of program parameter
optimization and describes experiments evaluating SPI in both industrial and house-
hold settings. Section 3.2 proposes a method for lifelong learning and continuous
program re-optimization in the face of real-world stochastic noise processes. This
lifelong variant of SPI is evaluated on industrial tactile peg-in-hole applications
subject to nonstationary drift and shift processes. Section 3.3 casts parameter
optimization as joint task- and motion-level constrained optimization problem and
presents an extended version of SPI capable of simultaneously optimizing task
parameters and motion trajectories, as well as a comprehensive evaluation on
industrial quality assurance and household pick-and-place tasks.

3.1 Optimization of Robot Program Parameters via

Inversion of Differentiable Shadow Programs

Section 2.3.2 defines a robot program P as a discrete-time continuous-valued
stochastic process P := {Θt} with time index t ∈ {1, 2, ...,MP} and state space S.
A trajectory θP is a sample of {Θt}, containing MP states θPt , t ∈ {1, 2, ...,MP}.
The law of {Θt} is parameterized by the program inputs xP and conditional on
the initial state θP0 as well as a random variable H representing the environment.

The parameter optimization problem concerns finding the optimal parameteri-
zation xP,∗ to minimize a cost function Φ reflecting the task objectives:

◁ Parameter
optimization
problem

xP,∗ = argmin
xP

Φ(P) (3.1)

Consider the industrial peg-in-hole task introduced in Section 1.1.1.2 and the robot
program shown in Figure 2.4. Optimization of the ExtentsX and ExtentsY param-
eters of the Spiral Search Relative skill, as well as the PointTo parameter of
the preceding Approach skill, can ensure that the Spiral Search Relative is
executed in close proximity to the hole, and that the shape of the spiral is aligned
with the spatial distribution of hole positions to, on average, reliably find the hole,
without spending excessive time on search in low-probability areas. Even for this
comparatively simple use case, the parameter optimization problem expressed in
Equation 3.1 is ill-posed. First, the probabilistic view on P is mathematically under-

89

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

specified: How exactly xP parameterizes the law of {Θt}, or how that probability
measure could reasonably be represented mathematically, cannot be specified for
the general case, as robot programs vary widely from application to application.
Moreover, a true solution to Equation 3.1 optimizes xP for executions of P in
real-world environments; however, the real world is not a mathematical object over
which an optimization algorithm can be defined.

SPI proposes to solve the optimization problem via a well-defined, learned
model of the robot program’s real-world execution dynamics (Alt et al., 2021). SPI
leverages the NRP program representation (see Chapter 2) to associate P with a
DCG P̄ , which contains neural components that can be trained to approximate P
for a given range of parameters and start states in a given environment. Unlike P ,
P̄ is a computable function of the program inputs xP̄ ; moreover, P̄ is differentiable,
permitting the use of first-order optimizers over robot behavior. Due to structural
equivalence, the optimized shadow program parameters xP̄ ,∗ can be transferred
back to the original model.

SPI was first introduced in Alt et al. (2021). This section expands on this
publication and presents SPI in greater detail.

3.1.1 Overview

Unlike for the source program P , the parameter optimization problem for the
shadow program P̄ is well-defined:

Shadow program
parameter

optimization
problem

▷ xP̄ ,∗ = argmin
xP̄

Φ(P̄ (xP̄ , θP̄0)) (3.2)

P̄ is a DCG, and as such a differentiable function of its leaf nodes xP̄ and θP̄0 .
P̄ can be evaluated by a computer without requiring real-world execution on a
robot, and reflects real-world robot behavior by virtue of being trained on robot
data. The environment H is implicitly represented in the learned weights of the
shadow program’s neural networks.

As P̄ is a function, the ideal solution to the parameter optimization problem
would be to invert Φ(P̄) to yield the inputs and start states that achieve some
desired value ϕ of Φ:

xP̄ ,∗, θP̄0 = (Φ(P̄ (xP̄ , θP̄0)))
−1 = P̄−1(Φ−1(ϕ)) (3.3)

Generally, the shadow program P̄ will not be invertible, as it is generally not
injective: Several parameterizations may produce the same robot behavior. More-
over, the DCG of P̄ will contain operations that do not have a unique inverse, such
as the square function or FK. The differentiability of P̄ , however, permits iterative
inversion by gradient descent in the input space: For each iteration i, a forward pass
through the shadow program DCG is performed, yielding the posterior trajectory
θP̄ ,i. Φ(θP̄ ,i) is backpropagated through the DCG by automatic differentiation

(Paszke et al., 2017), permitting the computation of the gradient ∂Φ(P̄ (xP̄ ,i,θP̄
0
))

∂xP̄ ,i
of

90

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

1 def optimize(p: DCG , x_init: Tensor , theta_0: Tensor , gamma: float , phi: [

Tensor] -> Tensor , num_iterations: float) -> Tensor:

2 x = x_init

3 optim = Adam(parameters =[x], lr=gamma)

4 for i in range(num_iterations):

5 optim.zero_grad ()

6 posterior_trajectory = forward(p, x, theta_0)

7 loss = phi(posterior_trajectory)

8 loss.backward ()

9 optim.step()

10 return x

11

Listing 3.1: SPI iteratively optimizes the input parameters x of a DCG p with respect
to task objectives phi by gradient descent.

the task objective Φ with respect to the current program inputs xP̄ ,i. The inputs
are then updated via first-order optimization, such as stochastic gradient descent
(SGD):

◁ Iterative
parameter
optimization

xP̄ ,i+1 = xP̄ ,i − γ
∂Φ(P̄ (xP̄ ,i, θP̄0))

∂xP̄ ,i
, (3.4)

where γ is the update rate. In practice, an adaptive first-order optimizer such as
Adam (Kingma and Ba, 2015) results in faster and more stable optimization. Listing
3.1 provides a high-level summary of SPI.

SPI exposes two high-level hyperparameters: The update rate γ and the number
of iterations Niter. Note that only the program inputs xP̄ are optimized, while the
weights of the neural networks in P̄ remain frozen and dropout is disabled. Like the
shadow program DCG itself, SPI is implemented in PyTorch (Paszke et al., 2019)
and makes efficient use of GPU acceleration for both forward and backward passes.

3.1.2 Differentiable Task Objectives

SPI permits the optimization of robot program parameters with respect to a wide
range of task objectives Φ, provided Φ is a differentiable function of the posterior
trajectory θP̄ generated by P̄ . Task objectives may be simple boolean conditions
such as task success, real-valued indicators such as cycle time, more complex criteria
such as similarity to a human demonstration, or combinations thereof. This section
introduces SPI through the lens of first-order iterative program inversion, solving
a multicriterial optimization problem. Section 3.3 re-casts program parameter
optimization as a constrained optimization problem and introduces additional task-
and motion-level constraints such as smoothness or collision-freeness.

91

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

3.1.2.1 Process Metrics

Program parameter optimization in industrial robotics is frequently motivated by
a need for industrial production processes to meet non-functional requirements
such as remaining below a maximally permissible time limit (the cycle time) to
perform a task, or performing a task with limited joint effort. Other applications,
such as the production of expensive, labor-intensive products, have strict functional
requirements with respect to task success rates, limiting the amount of rejects,
or with respect to production tolerances such as limits on the forces and torques
exerted on cables or connectors.

Cycle time As the posterior trajectory θP̄ has a fixed temporal sampling interval,
the number of points on θP̄ serves as a proxy for the cycle time. However, counting
the number of items in a sequence is not a differentiable operation. SPI realizes
a differentiable proxy for the cycle time by summation of EOS tokens along the
posterior trajectory:

Cycle time
objective

▷ Φcycle(θ
P̄) =

|θP̄ |
∑

n=1

(

1− σ
(

(θP̄
n,EOS − 0.5) ∗ T

)

)

(3.5)

The Sigmoid function σ over the EOS tokens of the posterior trajectory, re-centered
around 0 and spread to the edges of the domain of σ by multiplication with a large
constant T (here 100), returns a value very close to one if the motion has been
completed before timestep n, and a value close to zero otherwise. Φcycle effectively
“counts” the number of zero-valued EOS tokens on θP̄ in a differentiable way.

Task success By a similar principle, the task success tokens of the posterior
trajectory can be exploited to realize a differentiable measure of task success. As Φ
is a task cost to be minimized, the probability of task failure is given by

Task success
objective

▷ Φfail(θ
P̄) = max

(

0,min
(1

|θP̄ |

|θP̄ |
∑

n=1

θP̄
n,succ, 1

)

)

. (3.6)

Note that Φfail does not return the true probability of task failure, as P̄ is not a
probabilistic model. Rather, it is proportional to the average of the task success
tokens on θP̄ . This formulation implicitly assumes that the program P successfully
solved a task if all subprograms Pi were successful. For cases in which only a
subset of subprograms is relevant for task success, Φfail can be computed over the
corresponding sub-trajectories – due to backpropagation, only program parameters
which influence those subtrajectories, both directly and indirectly, will be optimized.

92

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

Path length For motions defined in Cartesian space, the path length is a useful
proxy for the overall joint effort. SPI defines a Cartesian path length measure

◁ Path length
objective

Φpath(θ
P̄) =

1

|θP̄ |

|θP̄ |−1
∑

n=1

(

∥θP̄
n+1,pos − θP̄

n,pos∥2

+ dq(θ
P̄
n+1,ori,θ

P̄
n,ori)

)

,

(3.7)

where ∥·∥2 is the L2 norm, θP̄
n,pos and θP̄

n,ori represent the Cartesian end-effector

position and orientation components of θP̄ , respectively, and dq is the quaternion
distance

dq(q1, q2) = cos−1(2⟨q1, q2⟩
2 − 1), (3.8)

where ⟨q1, q2⟩ denotes the inner product of quaternions q1 and q2.

Force and torque objectives Many industrial applications, such as peg-in-hole
assembly or surface finishing, involve force-controlled interaction with the envi-
ronment. Service robotics applications also often require the handling of sensitive,
breakable objects such as plates or glasses. For such applications, the task objective

◁ Wrench limit
objective

Φmax_wrench(θ
P̄) = maxθP̄

:,wrench,d (3.9)

computes the maximal force or torque along the dth dimension of the 6-dimensional
wrench vectors on the posterior trajectory. Alternatively, the task objective

◁ Contact wrench
objective

Φcontact(θ
P̄) = MSE(θP̄

M P̄ ,wrench, ω0) (3.10)

penalizes wrenches at the end of the motion which deviate from a wrench setpoint
ω0. This task objective is particularly useful for the optimization of force-controlled
contact motions, such as when placing THT electronics components on a PCB (see
Experiment 3.1.3.1).

3.1.2.2 Multicriterial Optimization

Most real-world applications require a combination of possibly contradicting task
objectives. Consider the force-controlled electronics assembly task introduced in
Section 1.1.1.2. Both task success and cycle time are relevant optimization targets;
they are, however, mutually exclusive, in that slower, more fine-grained search over
a larger search area increases the probability of success at the cost of additional
search time. At the task level, SPI supports multicriterial optimization by weighted
addition of multiple task objectives to an aggregated task cost

◁ Multicriterial
task objective

Φ(θP̄) =
NΦ

∑

i=1

wiΦi(θ
P̄), (3.11)

where NΦ is the number of task objectives. In addition to task-level objectives, Sec-
tion 3.3 introduces motion constraints, which further contrast with task objectives,
e.g. by mandating collision-freeness.

93

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

3.1.3 Experiments

3.1.3.1 Optimization of Force-Controlled Contact Skills

To evaluate SPI in the context of industrial manipulation, the optimization of force-
controlled contact motions is considered. Force-controlled contact is an important
building block of many industrial robot tasks, such as assembly or quality control.
Moreover, force-controlled contact motions often constitute crucial bottlenecks in
industrial robot processes, as they must be comparatively slow to avoid build-up of
excessive forces. The manual parameterization of contact motions is challenging
because the actual contact force is determined by a spring-mass-damper system
composed of the robot and the contact surface, whose damping and spring char-
acteristics are a priori unknown. The following experiments test the hypothesis
that SPI can optimize the parameters of force-controlled contact motions to avoid
exceeding force limits, while minimizing total cycle time.

Data-driven optimization of contact forces In an initial set of experiments, SPI is
used to optimize the motion direction, velocity and acceleration of a Move Linear

Relative Contact ARTM skill. Move Linear Relative Contact moves the
robot along a given direction vector PointTo with a velocity Vel and acceleration
Acc until a force setpoint Fgoal is reached. The actual contact force Fcontact will
generally exceed Fgoal, as the robot will begin decelerating only after Fgoal has been
registered, moving further into the surface. Fgoal merely imposes a lower bound on
the maximum force, while Vel and Acc determine the true force upon contact (see
Figure 3.2 (bottom right, gray)).

A shadow model is pretrained on 50,000 simulated trajectories and finetuned
on 500 real-world executions with randomly sampled values of Vel and Acc. Simu-
lated data was generated by combining a linear acceleration model of Cartesian
end-effector motion with a spring-damper system, whose parameters roughly fit
observed ground-truth data. The task objective consisted of a linear combination of
the cycle timeΦcycle (Equation 3.5) and the contact force objectiveΦcontact (Equation
3.10) with force setpoint Fgoal. Optimization was performed for values of Fgoal of
3, 4, 5, 6 and 7 N, collecting 250 optimized parameterizations for each goal force.
Vel and Acc were initialized randomly. In total, 1,250 optimized programs were
executed on a FANUC LR Mate 200iD/7L manipulator and FS-15iA force-torque
sensor1 to measure the resulting ground-truth trajectories.

The results are shown in Figure 3.2. The optimized parameterizations result in
maximum contact forces very close to the desired Fgoal, with average remaining
deviations of 0.60 N from the force setpoint, an average improvement by 62 %
over the initial parameterizations. Note that optimization for different target
forces does not require retraining of the model. Figure 3.2 (top right) illustrates
the convergence behavior of SPI for a target force of 5 N. SPI converges on an

1FANUC, Oshino-mura, Japan

94

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

©
 2

02
1

IE
E

E
Fgoal 3 N 4 N 5 N 6 N 7 N

ARTM
0.69
-75%

0.54
-69%

0.54
-51%

0.38
-64%

0.77
-51%

Figure 3.2: Optimization of force-controlled contact with SPI (Alt et al., 2021).
Bottom left: Mean deviation from Fgoal over 250 optimizations and improvement
over the initial parameterization. Right: Convergence behavior (top) of SPI for the
velocity parameter and resulting force trajectories (bottom) for Fgoal = 5 N for a
linear motion ARTM skill.

optimal velocity in under 40 iterations regardless of the initial parameterization.
Figure 3.2 (bottom right) plots the force trajectories resulting from executing the
250 optimized parameterizations against 250 baseline trajectories in which the
Fgoal parameter was set to 5 N, but velocities and accelerations were chosen at
random. Note that the resulting contact forces range between 3 and 10 N, while
the optimized parameterizations result in contact forces centered around 5 N with
considerably reduced variance.

Generalization to different source program representations In a second series
of experiments, SPI is used to parameterize low-level primitives with respect to three
different surfaces (PCB, rubber and foam) with damping characteristics ranging
from near-linear (foam) to highly nonlinear (rubber). The target pose, velocity, and
acceleration parameters of a movel URScript primitive (Universal Robots, 2018b) as
well as the temporal scaling parameter τ and the target pose of a linear discrete DMP
(Ijspeert et al., 2013) are optimized respectively to achieve the target force Fgoal.
For each combination of surface and skill type, a shadow program is pretrained on
5,000 simulated trajectories and finetuned on 500 real-world executions. For each
combination of primitive, surface, and goal force, 100 optimizations are performed

95

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

© 2021 IEEE

Rubber PCB Foam

Fgoal 5 N 10 N 20 N 1 N 5 N 8 N 1 N 1.5 N 2 N

URScript
1.43
-75%

1.63
-84%

2.76
-84%

0.16
-92%

0.68
-71%

0.95
-80%

0.24
-36%

0.15
-51%

0.16
-74%

DMP
0.56
-96%

0.65
-94%

2.55
-85%

0.14
-90%

0.18
-93%

0.26
-95%

0.16
-60%

0.21
-54%

0.17
-78%

Table 3.1: Optimization of contact motions for different skill frameworks and
surfaces (Alt et al., 2021): Mean deviation from Fgoal over 100 optimizations from
random initial parameters (top, inN) and improvement of this error over the initial
parameterization (bottom).

from randomly initialized parameters. A total of 1800 trajectories are collected on
a UR5e collaborative manipulator.2

The results are shown in Table 3.1. The optimized parameterizations result
in deviations below 0.25 N for most surfaces. Note that neither movel nor the
DMP are force-controlled, and the achieved precision in reaching the target force is
exclusively due to the optimization of program parameters by SPI.

3.1.3.2 Optimization of Force-Controlled Spiral Search

Like contact motions, search is a fundamental component of many industrial robotics
tasks. Most production processes are subject to process noise, which may arise due
to imprecise positioning of workpieces, sensor or actor inaccuracies, wear and tear,
and a wide range of other sources. Search skills use real-time sensor data, such as
tactile information from a force-torque sensor, to find workpiece features at runtime.
A force-controlled spiral search skill, for example, conducts a spiral motion while
exerting constant force against a surface to find a hole. When a sufficiently large
deviation in the end-effector pose along the pushing direction is detected, the skill
execution stops and the search is deemed successful. Search skills trade off search
time for increased robustness. Like contact motions, they constitute bottlenecks
in industrial robot processes, as they can incur considerable cycle time penalties,

2Universal Robots A/S, Odense, Denmark

96

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

particularly if the robustness requirements are very high. The manual optimization
of search skills is challenging, as the underlying noise distribution is unknown to
the human programmer and often at submillimeter scale. The following experiment
tests the hypothesis that SPI can automatically optimize force-controlled spiral
search skills to optimally resolve the trade-off between cycle time and robustness.

Experiment setup An electronics assembly scenario is considered, in which a
robot is tasked to place THT components onto a PCB. Due to inaccurate positioning
systems, the position of the holes on the PCB is subject to stochastic variation. More-
over, the pins of the THT components may be slightly bent within the manufacturer’s
tolerances. A robot program consisting of a linear approach motion (a Move Linear

ARTM skill) followed by a Spiral Search Relative skill is used to reliably place
each component. Move Linear accepts a target pose PointTo as well as a veloc-
ity and acceleration, and performs a motion linear in Cartesian space to PointTo.
Spiral Search Relative executes a force-controlled spiral search motion starting
from the current end-effector pose. It accepts parameters parameters MinForce,
MaxForce, MinDepth, MaxDepth, ExtentsX, ExtentsY, PathIncrement as well as
velocity Vel and acceleration Acc. ExtentsX and ExtentsY determine the size of
the spiral along its principal axes, in mm; PathIncrement determines the distance
between spiral arms, and therefore indirectly the number of windings of the spi-
ral. During search, a force controller ensures that a force between MinForce and
MaxForce is exerted against the surface. If the deviation along the pushing direction
lies between MinDepth and MaxDepth, the search terminates and is considered
successful.

A shadow program is pretrained on 50,000 simulated trajectories and finetuned
on 2,500 real-world executions. The real-world experiment setup is shown in Figure
3.5. A FANUC LR Mate 200iD/7L industrial manipulator and FS-15iA force-torque
sensor3 are used. Two test datasets of 250 samples are collected, respectively. The
first dataset (Drandom) contains input parameters are randomly initialized from
a range deemed reasonable by a robot programming expert; the second dataset
(Dexpert) contains an “oracle” parameterization manually finetuned by a human
programming expert. For both real-world training and test data collection, the
variance in the position of the hole is simulated by offsetting the start pose of
the robot by random 2D offsets sampled from a unimodal Gaussian distribution.
Program parameters are optimized with respect to cycle time Φcycle (Equation 3.5),
task success Φfail (Equation 3.6), and path length Φpath (Equation 3.7) individually,
as well as the combined objectives Φfail +Φpath and Φfail +Φcycle. Φpath +Φcycle was
not considered, as omitting Φfail led to degenerate results that were not suitable
for any application – the objective of a search is, after all, to successfully find the
searched feature.

3FANUC, Oshino-mura, Japan

97

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

Figure 3.3: Empirical process metrics for different SPI task objectives Φ, relative to
oracle (human expert, left) and random (right) baselines. Hatched bars indicate
metrics that are not represented by, and in some cases run counter to, the task
objective Φ (Alt et al., 2021).

Results The results are shown in Figure 3.3. For each task objective, the mean
path lengths, cycle times and failure rates were computed across the collected
real-world executions. Compared to the “oracle” parameterization by a human
expert, SPI achieved considerable improvement in cycle time and failure rates, with
improvements by 31% and 79% respectively. With respect to path length, gains
were more moderate (26% reduction). As expected, optimization with respect to
task objectives comprising Φfail effectively reduced failure rates, while other task
objectives, most notably the exclusive optimization with respect to path length or
cycle time, were detrimental to robustness and led to increases in failure rates
by factors 6 and 4, respectively. This illustrates the inherent conflict between the
robustness objective Φfail and the efficiency objectives Φpath and Φcycle – robustness
requires slower, more fine-grained search in a larger search area. In Figure 3.3,
metrics that do not represent the task objective, such as the path length for Φfail,
or the cycle time for Φpath, are hatched. The reduction in path length realized by
optimizing Φcycle illustrates that cycle time and path length correlate, as shorter
spirals also terminate sooner. The failure of SPI to jointly optimize Φfail + Φcycle

indicates that optimization of mutually counteracting task objectives may not result
in programs that are superior with respect to both metrics. Compared to the random
baseline, SPI achieves considerable improvements for all task objectives with respect
to the corresponding metrics, with reductions by 48 % in path length, 71 % in
failure rate and 56 % in cycle time.

Figure 3.4 illustrates the evolution of spiral search trajectories over the course
of 250 SPI iterations for the five considered task objectives. Optimization with
respect to Φfail yields trajectories that cover almost the complete hole distribution,
while task objectives Φcycle and Φpath produce shorter spirals, as expected. They do
not cover the hole distribution, as evidenced by high failure rates (see Figure 3.3).

98

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

0.4760 0.4765 0.4770 0.4775 0.4780 0.4785 0.4790

Pos. (X) [m]

0.0615

0.0620

0.0625

0.0630

0.0635

0.0640

P
os
.
(Y

)
[m

]

Φfail

Baseline (Oracle)

Hole Distribution

0.4770 0.4775 0.4780 0.4785 0.4790

Pos. (X) [m]

0.0615

0.0620

0.0625

0.0630

0.0635

0.0640

P
os
.
(Y

)
[m

]

Φcycle

Baseline (Oracle)

Hole Distribution

0.477 0.478 0.479 0.480 0.481

Pos. (X) [m]

0.0615

0.0620

0.0625

0.0630

0.0635

0.0640

P
os
.
(Y

)
[m

]

Φpath

Baseline (Oracle)

Hole Distribution

0.4765 0.4770 0.4775 0.4780 0.4785 0.4790

Pos. (X) [m]

0.0615

0.0620

0.0625

0.0630

0.0635

0.0640

P
os
.
(Y

)
[m

]

Φfail +Φcylce

Baseline (Oracle)

Hole Distribution

0.4770 0.4775 0.4780 0.4785 0.4790

Pos. (X) [m]

0.0615

0.0620

0.0625

0.0630

0.0635

0.0640

P
os
.
(Y

)
[m

]

Φfail +Φpath

Baseline (Oracle)

Hole Distribution

0.476 0.477 0.478 0.479

Pos. (X) [m]

0.061

0.062

0.063

0.064

0.065

P
os
.
(Y

)
[m

]

Φfail +Φcycle

Baseline (Random)

Hole Distribution

Figure 3.4: Spiral search motions optimized by SPI for different task objectives Φ
(Alt et al., 2021). Higher opacity indicates later SPI iterations.

99

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

1 mm

B
aselin

e (O
racle)

©
 2

02
1

IE
E

E

Figure 3.5: Exemplary baseline (top) and optimized (bottom) spiral trajectories.
In line with the task objective (minimization of failure rate and path length), the
optimized spiral is shorter, and begins closer to the mean position of the hole (Alt
et al., 2021).

This is, however, intended behavior: Without including task success in the task
objectives, SPI cannot be expected to produce search motions that find the sought
feature. When included in the task objective, Φfail acts as a regularizer, ensuring
that the functional requirement of finding the hole is respected.

3.1.3.3 Household Fetch-and-Place With VR Human Demonstrations

Particularly in the domain of service robotics, inferring program parameters from
human demonstrations of a task avoids manual programming and parameter tweak-
ing, and permits intuitive human-robot interaction and teaching. SPI supports
optimization of robot programs with respect to human demonstrations both at the
task as well as the motion level. This section introduces a dedicated task objec-
tive Φdemo, which causes SPI to adapt program parameters to cause the posterior
trajectory to approximate a given demonstration trajectory. Section 3.3.2 treats a hu-
man demonstration as a motion-level constraint on the DGPMP2-ND differentiable
motion planner.

Given a demonstrated trajectory θ̌, a task-level demonstration cost can be
defined as the sum of the pointwise Euclidean and quaternion distances between
positions and orientations on θP̄ and θ̌. If θ̌ contains a gripper state, e.g. when
the demonstration was recorded in VR and includes the distance between thumb
and index finger, Φdemo may also include the pointwise distances between the
demonstrated and predicted gripper states:

Human
demonstration

objective

▷ Φdemo(θ
P̄ , θ̌) =

|θP̄ |
∑

i=1

(

∥θP̄
i,pos − θ̌i,pos∥2 + dq(θ

P̄
i,ori, θ̌i,ori)

+ dg(θ
P̄
i,gripper, θ̌i,gripper)

)

,

(3.12)

100

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

©
 2

02
1

IE
E

E

Figure 3.6: VR human demonstration for a household pick-and-place task.

where dq denotes the quaternion distance (Equation 3.8) and θi,gripper the gripper
state at the ith point on θ. The distance function dg is dependent on the gripper state.
For the parallel gripper used in this experiment, θi,gripper is a real number denoting
the Cartesian gripper opening in mm and dg is the mean absolute error (MAE).
Note that this implementation of Φdemo requires θP̄ and θ̌ to have the same number
of points. As the neural networks in P̄ have been trained to predict trajectories of
fixed length M P̄ , padding θ̌ to length M P̄ avoids the need for retraining.

Experiment setup This experiment tests the hypothesis that SPI can automatically
infer parameters for a multi-skill robot program given a single VR demonstration of
the task. A household assistance task is considered, in which a glass is picked up
and deposited in a sink. The source program P is an ARTM program consisting of
of a linear approach motion (a Move Linear ARTM skill), a motion Open Gripper

to open the gripper, a sequence of three Move Linear transfer motions, a Close

Gripper skill, and a Move Linear depart motion. Besides the PointTo, Vel and
Acc parameters of the Move Linear motions, Open Gripper and Close Gripper

each have parameters GoalState, the target gripper configuration, and Vel, the
gripper velocity, for a total of 19 symbolic parameters represented as a subsymbolic
parameter vector xP of length 49. For the parallel gripper used in this experiment,
GoalState and Vel are scalars, corresponding to the gripper opening in mm and
mm
s . Four VR human demonstrations were recorded in the Unreal VR environment

of the KnowRob framework (Haidu and Beetz, 2021), in which a human picks up a
cup and deposits it in a sink (see Figure 3.6).

The state space S consists of Cartesian poses as well as a one-dimensional
gripper state, denoting the gripper opening in mm. Both the posterior trajectories
θP̄ predicted by P̄ and the demonstrations θ̌ are trajectories in S. The “gripper
opening” in θ̌ is computed from the distance between the thumb and index fingertips
of the hand of the VR avatar.

101

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

As learning is not required for this task, the shadow program P̄ for P does not
contain any neural adapters. Parameter optimization is performed purely via SPI
given a single human demonstration. The task objective

Multicriterial
demonstration

objective

▷ Φ(θP̄ , θ̌) = wposΦpos(θ
P̄ , θ̌)

+ woriΦori(θ
P̄ , θ̌)

+ wgripperΦgripper(θ
P̄ , θ̌)

+ wgoalΦgoal(θ
P̄ , θ̌),

(3.13)

where Φpos is the MSE between the position of the VR avatar’s hand and the
predicted end-effector position, Φgripper is the MAE between the demonstrated hand
openings and predicted Cartesian gripper openings, and Φgoal is the MAE between
the demonstrated and predicted and-effector positions at the end of the trajectory.
Φori is the mean quaternion distance (see Equation 3.8) between the demonstrated
and predicted end-effector orientations.

This is a challenging multidimensional optimization problem, which is further
complicated by the difference in dynamics between the human demonstration and
the predicted trajectory. SPI must first optimize the velocity and acceleration pa-
rameters of all skills before criteria such as grasp pose accuracy can be meaningfully
optimized. To make the optimization more tractable, the demonstrations were split
into three segments corresponding to pick, transfer and place actions. Splitting of
trajectories was performed based on force-dynamic events, such as contact of the
hand with the cup (see Section 4.1.2.4). ARTM subprograms for pick, transfer and
place were optimized separately. The program parameters are initialized randomly.
The optimized robot programs are executed on a UR5 collaborative manipulator4

and a Robotiq 2FG-85 parallel gripper.5

Results The task could be solved successfully for each of the four demonstrations,
indicating that SPI can optimize robot program parameters with respect to human
demonstrations. Initial, demonstrated and optimized trajectories for one of the
demonstrations are shown in Figure 3.7. SPI generated parameterizations resulting
in a robot trajectory that approximates the human demonstration, subject to prior
constraints imposed by the semantics of the robot skills in the source program. The
linearity constraint of the Move Linear transfer motions causes the most visible
deviations from the demonstrated trajectory, which is not subject to any constraints.
Likewise, the gripper can only be opened or closed during the Open Gripper

skills in the source program, making it impossible for SPI to further reduce the
demonstration error.

Figure 3.8 plots the demonstrated and optimized trajectories over the course
of iterative optimization. Figure 3.9 shows the real-world execution of the opti-
mized source program. As SPI optimizes the program parameters of NRPs, human

4Universal Robots A/S, Odense, Denmark
5Robotiq Inc., Lévis, Canada

102

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

−0.6

−0.4

P
o
s.

(X
)
[m

]

0.00

0.25

O
ri
.
(Q

W
)

−2.0

−1.5

P
o
s.

(Y
)
[m

]

−0.25

0.00

O
ri
.
(Q

X
)

0.9

1.0

1.1

P
o
s.

(Z
)
[m

]

0.0

0.1

O
ri
.
(Q

Y
)

0 2 4 6 8

Time [s]

80

100

G
ri
p
p
er

[m
m
]

0 2 4 6 8

Time [s]

0.9

1.0

O
ri
.(
Q
Z
)

Demonstration Initial Optimized

Figure 3.7: Optimization of pick-and-place program parameters with respect to
a human VR demonstration. Subject to the (e.g. linearity) constraints imposed
by the robot skills, the robot trajectory resulting from execution of the optimized
parameterization (green) approximates the demonstration (red).

programmers can make post-hoc adjustments to the robot program via their ac-
customed user interfaces and programming workflows. In this case, it was demon-
strated that the optimized source program could be trivially adapted to different
pick-up poses by manually overriding the PointTo parameter of the approach mo-
tion for grasping. The adapted program was validated on three different pick-up
poses on the real-world robot setup.

While this experiment demonstrates the ability of SPI to optimize robot program
parameters with respect to human demonstrations, this experiment makes several
simplifying assumptions that will be relaxed in further experiments. First, it assumes
faithful approximation of the demonstrated trajectory as a proxy for task success.
Chapter 4 introduces a program synthesis system for NRPs that parses human
demonstrations at a semantic level, and generates robot programs that perform the
tasks the user intended, rather than the motions the user demonstrated. Second, it
does not consider collision-freeness during optimization, implicitly requiring the
VR environment to be identical to the real-world execution environment. Section
3.3 introduces an extended version of SPI that explicitly considers the optimization
of robot program parameters subject to collision constraints.

3.1.4 Related Work

SPI is a model-based first-order optimizer for robot program parameters. As such, a
discussion of its merits and limitation requires contextualization within the family of

103

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

Figure 3.8: Posterior trajectory (green) during optimization of pick-and-place
program parameters with respect to a human VR demonstration (red).

Figure 3.9: Real-world execution of a fetch-and-place task optimized with respect
to a VR human demonstration.

first-order model-based optimization approaches, as well as within the application
area of program parameter optimization.

3.1.4.1 First-Order Model-Based Optimization

The idea of optimizing a system’s parameters by first-order optimization over a
differentiable forward model of the system has been proposed as a solution to
challenging optimization problems in a wide range of applications. First-order opti-
mization algorithms leverage gradient information to direct the optimizer towards
local optima of the objective function in an iterative manner (Lan, 2020). Examples
for general-purpose first-order optimization algorithms include the Gauss-Newton
(Magreñán and Argyros, 2018), Levenberg-Marquardt (LM) (Levenberg, 1944)
and Frank-Wolfe algorithms (Frank and Wolfe, 1956), which are all realizations of
this pattern in different forms. Beck (2017) provides an overview of gradient-based
optimization.

Optimization over differentiable surrogates In engineering disciplines, first-
order optimization is generally performed over some differentiable model of a
real-world system. The use of such differentiable surrogates enables the use of
gradient-based optimizers for systems which are not differentiable themselves. By
virtue of their ability to approximate complex real-world phenomena to a high level
of fidelity in a purely data-driven manner (Hornik, 1991), neural networks are
particularly suitable general-purpose representations for first-order optimization.
Neural surrogates have been used in conjunction with a wide range of first-order
optimization methods in application domains such as astronomy (Himes et al.,

104

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

2020), aeronautics (Liao et al., 2021) or robotics (Behl et al., 2020) to enable first-
order optimization over hard-to-model real-world systems. Holeňa et al. (2010)
provide an overview over surrogate-based optimization in materials science, where
neural surrogates are used to avoid the need for real-world measurements, which
may be prohibitively costly. (Lai, 2022) employs a surrogate CNN to avoid the
need for computationally expensive molecular dynamics simulations to estimate
antibody viscosities in a clinical context. In robotics, neural surrogates have been
used primarily in modeling real-world phenomena that are particularly difficult
to simulate, such as the deformation behavior of soft objects (Zhong et al., 2006;
Wu et al., 2023b). SPI applies neural surrogates to robot program parameter
optimization by leveraging a (partly) neural surrogate – the shadow program –
to optimize robot program parameters with respect to a function of the expected
real-world robot behavior.

Neural Network Iterative Inversion At its core, SPI solves an inverse problem:
Computing the set of parameters x∗ which cause optimal robot behavior with
respect to task objectives Φ (see Equation 3.2). It solves this problem by approxi-
mating the robot program P with a surrogate DCG P̄ , and performing gradient
descent in the input space of P̄ . Methodologically, SPI is a generalization of Neural
Network Iterative Inversion (NNII) (Hoskins et al., 1992), which proposes to solve
challenging inverse problems by learning a neural network to represent the function
to be inverted, freezing its weights after training, and “inverting” the network by
iterative search in the input space (Jensen et al., 1999). Williams, Linden and
Kinderman (WLK) inversion is a straightforward formulation of NNII that performs
inversion by backpropagation and SGD. Since the original formulation by Williams
(1986) and Linden and Kindermann (1989), several variants of NNII have been
proposed. WLK inversion only finds a single local solution to the inverse problem,
which may not correspond to the true global inverse; alternative, multi-element
inversion techniques employ e.g. evolutionary algorithms to find the global inverse
by simultaneous, distributed search (Jensen et al., 1999). Wong and Kolter (2017)
propose to substitute SGD by interpreting the neural network as a set of non-convex
constraints, casting the inversion problem as constrained optimization and solving
it via the Alternating Direction Method of Multipliers (Boyd et al., 2011). They
report higher precision and faster convergence compared to SGD-based inversion.
Ardizzone et al. (2018) propose Invertible Neural Networks, a neural network
architecture which is invertible by virtue of enforcing a bijection between inputs
and outputs, which permits the tractable approximation of the true posterior of
the inverse. NNII has been applied to domains relevant to robotics such as optimal
control (Hoskins et al., 1992), but most saliently to the computation of IK for
learned robot geometries. Martin and Millán (1997) train a neural network to
approximate the forward kinematics of a robotic manipulator, and use NNII in
conjunction with RL to implement a C-space controller. Raible et al. (2023b) train
a DNN to approximate the kinematics of an industrial robot manipulator subject to

105

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

real-world geometric errors caused by deformation under load as well as wear and
tear, and use NNII to compute compensatory joint offsets. SPI is a generalization
of WLK inversion to complex DCGs, combining gradient-based network inversion
with differentiable programming to invert a differentiable function represented
by multiple chained neural networks and other differentiable modules. To my
knowledge, SPI is the first application of gradient-based model inversion to robot
program parameter optimization.

3.1.4.2 Robot Program Parameter Optimization

The ubiquity of parameterized robot program parameterizations (see Section 2.6)
motivated the development of algorithms for the automatic optimization of pro-
gram parameters. The proposed approaches can be divided into gradient-free and
gradient-based approaches, which are detailed below.

Gradient-free optimizers Due to the fact that robot programs effect changes
in the physical world, a majority of robot program parameter optimizers require
repeated executions of the robot program on real-world or simulated environments
to iteratively approximate an optimal parameterization. As gradient information
is typically not available, these approaches are generally gradient-free. Parameter
optimizers based on evolutionary algorithms have been proposed for path planning
(Liang et al., 2017), legged locomotion (Chernova and Veloso, 2004; Urieli et al.,
2011; Kulk and Welsh, 2011), contact-rich manipulation (Marvel et al., 2009), or
optimization of program parameters in domains beyond robotics (Wu et al., 2015;
Sohn et al., 2016). In evolutionary approaches, an individual typically represents a
candidate parameterization, changes to parameterizations are introduced at each
generation subject to a given set of mutation and reproduction rules, and candidates
are selected at each generation to maximize a fitness function encoding the task
objectives. Like RL-based robot learning approaches, the convergence properties of
evolutionary algorithms depend to a large extent on the fitness function. Moreover,
the evaluation of the fitness function requires the execution of the robot program,
which may incur significant overhead, particularly in real-world environments.
Vollmer and Hemion (2018) propose to avoid the need for explicit specification of
the fitness function by directly incorporating human feedback on candidate program
executions. In a similar spirit, Racca et al. (2020) propose an active learning
approach, in which the robot executes candidate parameterizations, receives human
feedback, and computes the next candidate parameterization to maximize the
expected information gained from the next trial. To further reduce the amount of
required program executions, Berkenkamp et al. (2023) propose an approach based
on Bayesian optimization, which has been empirically shown to be highly sample-
efficient (Srinivas et al., 2010; Bull, 2011) without requiring gradient information,
while still permitting global optimization (Mockus, 1989). Bayesian optimization
has been used for parameter optimization in the context of legged locomotion

106

3.1. OPTIMIZATION OF ROBOT PROGRAM PARAMETERS VIA INVERSION OF

DIFFERENTIABLE SHADOW PROGRAMS

(Lizotte et al., 2007; Calandra et al., 2014), manipulation (Akrour et al., 2017)
and feedback control (Marco-Valle, 2020).

First-order optimizers First-order optimization promises faster convergence, as
gradient information is exploited to direct search (Loshchilov and Hutter, 2022). A
large family of parameter optimization approaches folds parameter optimization
into learning, and directly learn optimal parameters for a given task. The majority
of MP learning approaches follow this principle (see Section 2.6.2). Alternative
approaches train an auxiliary model such as a neural network, e.g. via RL or LfD,
to directly output optimal program parameters. Zhou et al. (2020) train a Mixture
Density Network from human demonstrations to predict optimal parameters for
movement primitives. Kumar et al. (2024) learn a parameter policy, which generates
optimal skill parameters for a given robot state, and is trained by exploration in an
RL-like manner.

A different family of approaches avoid learning optimal solutions to the parame-
ter optimization problem, and instead learn a suitable forward model of real-world
robot actions that affords downstream optimization. One considerable advantage of
such approaches is that the task objectives are not required to be known at training
time, avoiding the need for expensive retraining when the task objectives change.
Methodologically, several approaches have leveraged differentiable programming,
model inversion or combinations of both in order to avoid repeated executions of
candidate parameterizations. Differentiable programming has been used in conjunc-
tion with differentiable physics simulators to optimize the parameters of low-level
motion controllers (Toussaint et al., 2018; Degrave et al., 2019; Hu et al., 2019a;
Hu et al., 2019b; Qiao et al., 2020; Jatavallabhula et al., 2023). A methodologically
related line of work exploits differentiable programming together with learned,
typically neural, models to optimize the parameters of robot kinematics or dynamics
models (Haug, 2021; Meier et al., 2022), particularly for manipulation problems in
which real-world robot kinematics and dynamics differ from prior models due to a
priori unknown phenomena such as wear and tear or payload-induced deformations
(Raible et al., 2023b).

SPI performs first-order optimization over a learned forward model of a robot
program. It is, to my knowledge, the first approach to optimize robot program
parameters via gradient-based optimization over a DCG that combines differentiable
kinematics and planners with learned neural modules.

3.1.5 Discussion

SPI solves a complex multicriterial optimization problem using a deceptively simple
algorithm. The algorithmic simplicity is achieved by relegating the lion’s share of
the complexity to the NRP program representation: NRPs combine differentiable
planners and neural networks in a modular fashion to represent real-world, long-
horizon, sensor-adaptive robot programs as DCGs, permitting the use of standard

107

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

automatic differentiation tools and first-order optimizers to perform parameter
optimization in a straightforward manner. SPI is the first model- and gradient-based
optimizer for robot program parameters that uses a partially learned, differentiable
program surrogate. Like other model-based optimizers, it avoids repeated execution
of candidate parameterizations at runtime, as the objective function is evaluated
on a learned forward model of the expected real-world program execution. As a
corollary, the task objectives are not required to be known at training time, and
re-optimizing program parameters upon changing task objectives is performed in
a zero-shot manner over the same learned forward model. An additional conse-
quence of performing optimization over a learned surrogate, rather than e.g. a
simulator, is that the gap between the model used for optimization and reality
will be comparatively small; SPI optimizes program parameters with respect to
a function of the posterior trajectory θP̄ , the expected real-world behavior of the
robot, as learned from real-world data. Like other first-order optimizers, SPI uses
gradient information to steer the search, allowing for fast convergence even in
high-dimensional input spaces.

SPI jointly optimizes all robot program parameters xP̄ , or arbitrary subsets
of xP̄ . At each iteration, SPI performs a forward pass through the entire shadow
program P̄ , and the task objectives Φ are evaluated for the complete trajectory.
Long-horizon manipulation tasks typically have inter-skill dependencies, e.g. when
the start state of an insertion skill depends on the last state of a preceding search
skill, or when the way in which an object is grasped determines the feasibility of
downstream manipulations. SPI respects such inter-skill dependencies by design: If
the parameterization xp̄i of an upstream skill p̄i influences the resulting trajectory

of some downstream skill p̄j , this will be reflected in the gradients ∂Φ(θp̄j)
∂xp̄i

, and
the inputs of p̄i will be adjusted to optimize e.g. the success probability of p̄j . In
Experiment 3.1.3.2, the parameters of an approach motion are optimized to maxi-
mize the success probability of a downstream search. Joint cross-skill parameter
optimization naturally arises as a consequence of the core operating principle of
SPI – iterative optimization over a forward model of a robot program.

In addition to the mentioned advantages, SPI has two additional properties
that make it particularly suitable for application in industrial and service robotics,
respectively. First, like the underlying NRP program representation, SPI is agnostic
with respect to the source program representation and can be used to optimize
most skill-based robot program representations (see Experiment 3.1.3.1). This
makes SPI particularly suitable for industrial applications, where a wide variety of
manufacturer-specific programming languages are used. Second, SPI is agnostic
with respect to the task objective, provided the task objective can be expressed as
a differentiable function of the robot trajectory. The task objectives introduced in
Section 3.1.2 are merely examples. In future work, the use of neural networks as
task objectives will be investigated. Neural objective functions can facilitate the
learning of complex task objectives in a manner similar to inverse RL (Adams et al.,
2022).

108

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

Like most first-order optimizers, SPI performs local optimization, which may
result in convergence on a local minimum of Φ. Premature convergence is a
limitation common to all local optimizers, and can be addressed by a variety of
methods. SPI uses the Adam optimizer, which employs learning rate decay with
momentum to avoid premature convergence (Kingma and Ba, 2015). Loshchilov
and Hutter (2022) proposes to combine momentum-based learning rate decay with
“warm restarts”, periodically resetting the learning rate to a higher value. Prakash
et al. (2024) propose to combine warm restarts with Bayesian optimization for
efficient global first-order optimization. As SPI does not place a restriction on the
optimization algorithm itself, Adam can be replaced by a global optimizer without
loss of generality.

A more fundamental limitation of SPI lies in the fact that as a model-based
optimizer, the quality of learned forward model imposes upper bound on the
quality of the optimization results. Unlike model-free optimizers, which rely on
repeated executions of the robot program to evaluate the objective function during
optimization, SPI relies on the surrogate model’s faithful representation of real-
world robot dynamics. In application domains with limited data availability, such
as high-mix, low-volume manufacturing, or in service robotics domains with highly
dynamic environments, the shadow program may not represent robot-environment
dynamics with sufficient accuracy, causing SPI to optimize program parameters
with respect to an inaccurate model of reality. This limitation can be overcome by
employing state-of-the-art data-efficient machine learningmodels that combine data
efficiency with high learning capacity. Recent work has explored replacing the GRU-
based model architecture of NRPs with multimodal Transformer networks, adding
a vision modality to enable faithful prediction of robot trajectories in dynamic
environments (Kienle et al., 2024). Section 3.2 introduces a lifelong learning
approach, which ensures that the shadow program is continuously updated to
reflect current ground-truth robot-environment dynamics. The astute reader may
note that SPI implicitly assumes that the environment is stationary, i.e. that the
environment at optimization is drawn from the same distribution as the environment
at training time. The lifelong learning mechanism introduced in Section 3.2 allows
to relax this assumption to a degree, and permits the optimization of robot programs
in the face of nonstationary environments.

3.2 Lifelong Learning and Optimization in Stochastic

Environments

One of the foundational narratives of the field of robotics is the promise to automate
repetitive and redundant tasks. Research and development in industrial robotics
has advanced to the point that a wide variety of tasks can be automated with robots;
in some industries, such as automotive manufacturing, some tasks such as welding
or chassis assembly have been nearly completely automated. Other industries and

109

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

tasks, however, have not achieved comparable rates of robotic automation. While
the benefits of robots – uninterrupted around-the-clock production, increased ro-
bustness and standardized quality, and decreased need for increasingly rare, highly
specialized workers – apply to equal measure for tasks such as electronics assembly,
which, in the automotive industry, remains a largely manual process. Consider the
wiring of a car center console, which requires connecting user controls – buttons,
dials, or touchscreens – to the car’s mechatronic and infotainment busses. This
requires plugging tens of connectors attached to a wire harness into the respective
sockets on the back of the center console. Currently, this task is typically performed
by humans, despite the availability of multiple robots on the same assembly line.
The central reason for the comparable lack of automation for this particular task,
and similar tasks like it, is the presence of stochastic process variances. Section 3.1
motivates the use of search strategies to compensate process variances via tactile
sensing, and demonstrates that SPI can leverage process data to optimize search
parameters to minimize cycle time and maximize the probability of task success
(see Experiment 3.1.3.2). However, SPI implicitly assumes that the process noise
distribution at training time is stationary, i.e. that the noise distribution remains
unchanged over time – and that the noise distribution does not change between
training and evaluation of the NRP. For many complex real-world production tasks,
this assumption does not hold. In the case of center console assembly, for exam-
ple, both the center console and the cable connectors are positioned via external
effectors, typically conveyor belts and feeder systems. The positioning of the center
console, may be subject to drifts or sudden shifts between executions; moreover,
components are often sourced from different suppliers, causing e.g. the geometry
of connectors to vary suddenly between successive batches, causing nonstationary
variances in the pose of the connector in the gripper. In high-precision applications,
nonstationary process variances may be due to temperature variations, causing
submillimeter deformations in the links and changing the viscosity of lubricants in
the joints, resulting in nonstationary, constantly changing deviations from modeled
kinematics and dynamics. Over long time horizons, wear and tear or mechanical
defects may have similar effects, degrading a robot’s absolute positioning accuracy
over time (Raible et al., 2023b). To deploy SPI in real-world environments, the
problems of efficiently training NRPs to reflect stochasticity in the environment,
as well as keeping NRPs up-to-date with nonstationary noise processes, must be
solved.

The study of SPI in nonstationary, stochastic environments presented in this
section was first presented in Alt et al. (2022b). This section provides a revised and
more detailed account.

110

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

Spike Search

Move Linear

Spike Search

Source program

Train Shadow Program1
Finetune
Shadow Program2

Optimize Program
Parameters3

Execute4

SPI

Spike Search

Shadow program

Spike Search

Finetuned

shadow program

*

*

Figure 3.10: Closed-loop SPI for lifelong robot program parameter optimization in
nonstationary environments (Alt et al., 2022b).

3.2.1 Data-Efficient NRP Learning in Stochastic Environments

3.2.1.1 Stochastic Environments

Chapter 2 models robot trajectories as stochastic processes {Θt}, that associate
a probability distribution over robot states θ with each timestep t. The law of
{Θt} is parameterized by xP and is conditional on θP0 as well as the current
environment H. Chapter 2 left H unspecified. For the purpose of this Section,
H is defined to be a ◁ Environment

distribution
probability distribution over task-relevant features. For the

task of center console wiring, for example, H may be a probability distribution
over the Cartesian workspace poses of sockets on the center console, and the pose
of the grasped connector relative to the TCP. In general terms, H denotes the
probability distribution from which the environment is sampled. In the context of
the applications considered in the present section, in which robot programs are
executed repeatedly over time, H may be thought of as drawn from a stochastic
process {Hk}, which associates an environment distribution with every program
execution k. In the context of center console assembly, the probability distribution
over the socket poses varies over time according to {Hk}: For the k0

th program
execution, the socket poses are distributed according toHk0 . No assumptions about
the law of {Hk} are made – in particular, {Hk} is not assumed to be Gaussian.

3.2.1.2 Sequential Transfer Learning of NRPs in Stochastic Environments

Transfer learning studies how AI systems can leverage information learned in the
context of some task or domain to improve their performance in other tasks or
domains, or solve unseen tasks altogether (Zhuang et al., 2021). ◁ Sequential

transfer learning
Sequential transfer

learning approaches pretrain machine learning (ML) models on a large source

111

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

dataset6 collected over a wide range of tasks, and finetune it at runtime on a much
smaller dataset representing the task at hand (Ruder, 2019).

Alt et al. (2022b) propose an extension to SPI that leverages sequential transfer
learning to keep model parameters up to date with changing environment dis-
tributions, permitting continuous re-optimization of robot program parameters
over the lifetime of a production cell. By recasting the NRP learning phase of SPI
as a transfer learning problem, the shadow program is pretrained offline on a
large dataset representing a range of environment distributions, and finetuned at
runtime on a much smaller dataset containing samples of the current environment.
To that end, the definition of a task as “an ordered ensemble of [skills that] depicts
a concrete representation of steps in a workflow to solve a specific goal” (Pantano
et al., 2022) put forth in Chapter 2 is extended to be contingent on the environ-
ment. For the purpose of this Section, then, a task T associates robot behavior
with a stochastic environment {Hk}. Formally, a task T is an indexed conditional
stochastic process with primary process {Hk}, describing the environment at the
kth program execution, and secondary process {Θk,t} describing the corresponding
robot trajectory over t timesteps. {Θk,t} is governed by some latent probability
distribution

Θk,t|Hk ∼ PΘ(·|Hk), (3.14)

where PΘ(·|Hk) denotes the conditional trajectory distributionΘk,t for environment
Hk. In this framework, the NRP learning problem consists of learning this latent
distribution.

For a given task T0, the corresponding task dataset

DT0 = {(xP
0 , θ

P
0,0,θ

P
0), ..., (x

P
N , θ

P
0,N ,θ

P
N)}

containsN sampled program executions for different program parameters and start
states, with trajectories θP

n realizations of T0; i.e., all trajectories were executed in
environments whose task-relevant features are distributed according to probability
distributions generated by the same stochastic process {Hk}

T0 . The real-world
datasets used for training NRPs in Chapter 2 and Section 3.1 are task datasets for a
single task T0; the NRPs for the experiments in Section 3.1.3 were pretrained in
simulation on a different task T1, which is identical to T0 except in the ways the
simulated environment differs from reality. Sequential transfer learning proposes
to pretrain ML models on a large variety of tasks, to facilitate efficient finetuning
on a given task at hand (Ruder, 2019). To that end, the shadow program P̄ is
pretrained on a largeSource dataset ▷ source dataset DS =

⋃M

m=0 DTm containing executions of P
in a variety of environments. DS may contain executions of P on different robots,
with different workpiece geometries, or, as it is a common occurrence in industrial

6The terms source dataset and source task are unrelated to the concept of a source program,
the symbolic part of the dual NRP representation. In line with established terminology in transfer
learning, a source task forms part of the set of tasks on which a ML model is pretrained (the source
domain), and a source dataset contains data representing several source tasks (Zhuang et al., 2021).

112

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

robotics, for different configurations of the hardware in a robot workcell. P̄ is then
finetuned on the ◁ Target datasettarget dataset DT = DTcurr containing only data sampled from the
current task Tcurr. In the case of assembly-line industrial production processes, for
example, DT contains data from the last N production cycles. Depending on the
quality of the pretraining dataset, the amount of training data in DT can be very
small – the experiments in Section 3.2.3 finetune on 128 samples of Tcurr. Moreover,
if DS contains pretraining examples with a sufficiently diverse range of program
inputs, DT may contain only program executions with one single set of program
parameters, while still generalizing sufficiently well to new parameterizations
during execution. Echoing the literature on sequential finetuning, lower learning
rates during finetuning improve convergence and permit the model to retain priors
learned during pretraining (Mosbach et al., 2020). In Experiment 3.2.3.1, the
proposed sequential transfer learning scheme is evaluated on a real-world search-
based peg-in-hole application in the presence of stationary process noise.

3.2.2 Lifelong NRP Learning and Optimization in Nonstationary

Environments

SPI as introduced in Section 3.1 implicitly assumes {Hk} to be stationary, i.e. that
environments at successive program executions are drawn from the same probability
distribution. In the case of center console assembly, this means that the distribution
underlying the spatial noise in the pose of the sockets is stationary – and that the
offline optimization of e.g. a Spiral Search Relative skill, which adapts search
parameters to optimally fit the process noise distribution, yields skill parameters
which remain optimal for subsequent executions of the program. The realities of
non-stationary sources of process noise, such as drifts due to thermal expansion or
shifts due to supplier changes, imply that program parameters optimized at time k
may be outdated at the next program execution k + 1.

To keep the shadow model up-to-date with nonstationary process noise, the
proposed sequential transfer learning scheme introduced in Alt et al. (2022b) and
described above can be modified to form a closed-loop, lifelong learning system.
Figure 3.10 provides an overview of the proposed system. After pretraining on
a large source dataset DS, program parameters are optimized via SPI and the
source program P is executed on the robot. The resulting trajectory is recorded and
added to the task dataset dataset DT . After DT has reached a sufficient size (e.g.
128 samples in Experiment 3.2.3.3), the NRP is finetuned on DT , parameters are
re-optimized and the resulting trajectory is added to DT . This cycle of finetuning
and optimization is repeated for every subsequent iteration. As the environment is
not assumed to be stationary, DT is implemented as a fixed-size ring buffer, and
outdated samples are eventually removed from the finetuning dataset. To prevent
catastrophic forgetting of the priors learned during pretraining (Kirkpatrick et al.,
2017), the original, pretrained model is finetuned from scratch at each iteration.

113

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

3.2.3 Experiments

To empirically test the hypothesis that SPI with a sequential transfer learning
scheme enables data-efficient optimization of robot program parameters in stochas-
tic environments, a series of experiments is conducted. The experiments consider
mechanical and electrical assembly tasks in simulated and real environments with
stationary and nonstationary process noise.

3.2.3.1 Force-Controlled Spiral Search Optimization in Stationary Environ-

ments

A first experiment considers an industrial search-based insertion task (see Figure
3.11). SPI with sequential transfer learning is used to optimize Spiral Search

Relative and approach motion parameters to minimize failure rate and cycle time
on a real-world experiment setup (Alt et al., 2022b). The results are compared to
a zero-order Non-dominated Sorting Genetic Algorithm (NSGA-II) baseline (Deb
et al., 2002).

Experiment setup The task is shown in Figure 3.11 (right). A mechanical assem-
bly task is considered, which requires inserting a steel cylinder into a hole with
tolerances on the order of 1/100 mm. This process is representative for a class
of manufacturing processes with tolerances exceed the robot’s repeat accuracy,
requiring a combination of force-sensitive search and zero-moment insertion. Under
real-world conditions, the receptacle is subject to additional positioning errors, e.g.
due to an imprecise conveyor belt. With sequential transfer learning, SPI promises
to compensate this process noise by adapting the parameters of the search skill via
first-order optimization over a forward model of the robot program, finetuned on a
small sample of real-world program executions.

The source program for valve assembly is shown in Figure 3.11 (left). The
ARTM source program representation is used (Schmidt-Rohr et al., 2013). The
program consists of an approach motion (a Move Linear skill), followed by a
spiral search motion starting at the current robot state (Spiral Search Relative)
and an Insert Moment skill for zero-moment insertion of the cylinder. If Spiral
Search Relative fails to find the hole, the program terminates and no insertion
is performed. For a detailed description of Spiral Search Relative and its
parameters, see Section 3.1.3.2. The task consists of optimizing program parameters
to maximize the likelihood of successful insertion while minimizing cycle time
under stationary process noise. To that end, the approach pose (the PointTo

parameter of the approach motion) as well as the spiral extents (ExtentsX and
ExtentsY), width between spiral arms (PathIncrement) and motion dynamics
(Vel and Acc) are optimized. Note that the approach pose also determines the
orientation of the spiral, i.e. the primary axes of the ellipse covered by the search.

In the context of this experiment, the environment distribution of task-relevant
features {Hk} represents the position in the XY-plane of the robot’s workspace. In

114

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

Valve Assembly

Move Linear

Spiral Search Relative

Insert

PointTo Vel Acc

ExtentsX ExtentsY

PointTo
...

PathIncrement

MinForce

Vel AccMinForce MaxForce

© 2022 IEEE

Figure 3.11: Robot program (left) and hardware setup (right) for search-based valve
assembly (Alt et al., 2022b). Optimized robot program parameters are highlighted
in bold font.

this experiment, {Hk} is assumed stationary: For every program execution, the
hole position is sampled from the same distributionH . To elicit a variety of possible
noise distributions on the same hardware setup, process noise is modeled as a
bivariate Gaussian mixture with one to six components, and is artificially added as
an offset to robot motions.

The shadow program is trained on a source dataset DS consisting of a total of
128.000 program executions collected in 1000 simulated environments (training
tasks), each with a different hole distribution. The simulation consists of a simple,
scripted kinematics and dynamics model with naive Newtonian physics, including
damping and friction. The shadow program is then finetuned on a target dataset
DT containing 128 program executions in the environment (test task) at hand.
Unlike in Experiments 3.1.3.1 and 3.1.3.2, inputs are not required to be sampled
from a region covering the optimization domain; rather, diversity in program inputs
is only required in the source dataset, and all program executions in the task dataset
are sampled with the same set of parameters. Parameter optimization is performed
to minimize a linear combination of failure rate Φfail and cycle time Φcycle (see
Equations 3.6 and 3.5). The experiment is repeated for 10 different simulated and
6 real-world test tasks on a UR5 manipulator7 with an ATI Axia80 force-torque
sensor.8

Baselines SPI is compared against a human expert parameterization, an application-
specific heuristic and the zero-order NSGA-II optimizer.

7Universal Robots A/S, Odense, Denmark
8ATI Industrial Automation Inc., Apex, USA

115

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

NSGA-II

Oracle

Transfer-Learned SPI

© 2022 IEEE

(a)

Transfer-Learned SPINSGA-II Oracle

© 2022
 IEEE

(b)

Figure 3.12: Optimization of spiral search parameters in the presence of station-
ary process noise (Alt et al., 2022b). (a) Exemplary spiral paths for NSGA-II, a
handcrafted “oracle” heuristic and SPI for a multimodal Gaussian hole distribution.
(b) Failure rates and cycle times for SPI as well as human expert, NSGA-II and
oracle baselines on 10 and 6 simulated and real-world noise distributions (128 test
executions per distribution).

1. Human expert: A fixed set of parameters considered suitable by a robot
programming expert for the given application (peg-in-hole insertion with very
low positional tolerances). No data-driven, empirical parameter optimization
is performed.

2. Oracle: A task-specific heuristic that estimates optimal values for several
program parameters using information about the ground-truth valve body
poses. The orientation of the approach target pose (PointTo of Move Linear)
is determined via Principal Component Analysis over the ground-truth valve
body positions, aligning the principal axis of the spiral motion with the
principal axis of the hole distribution. The spiral extents ExtentsX and
ExtentsY are set to the widths of the distribution along the principal axes.

3. NSGA-II with hyperparameters µ = λ = 25 (Deb et al., 2002). Suitable
hyperparameters were determined by hyperparameter search in a simulated
environment.

Results The results are shown in Figure 3.12. With respect to task success, SPI
significantly outperforms both the human expert and NSGA-II baselines to result
in near-zero failure rates (Φfail = 0.06 v. 0.40 and 0.74 respectively on real-world
test tasks; see Figure 3.12b, left). SPI is competitive with the “oracle” heuristic
(Φfail = 0.05) while avoiding need for ground-truth information about the hole
distribution, which is not available in real-world applications, and without requiring
task-specific adaptations. With respect to cycle time, SPI outperforms the human
expert baseline and NSGA-II on real-world tasks (Φcycle = 2.41 s v. 3.07 s and 3.42 s,
respectively), but is outperformed by NSGA-II on simulated tasks.

116

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

Discussion The results highlight the benefits of data-driven approaches to param-
eter optimization. They replicate the results of Experiment 3.1.3.2 with only 128
training examples of the test task, and without requiring diverse inputs in the task
dataset. As the training scheme is the only algorithmic difference between experi-
ments 3.1.3.2 and 3.2.3.1, the results indicate considerable gains in data efficiency
due to sequential transfer learning. The possibility to finetune shadow models on
small task datasets permits pretrained shadow models to act as general-purpose
foundation models for downstream tasks, enabling data-efficient generalization to
task variants (here, different environment distributions). Data-efficient fine-tuning
enables real-world use of SPI in commercial industrial applications, as it avoids
costly stoppages of production for data collection. The poor performance of NSGA-II
on real-world tasks may reflect the difficulty of ensuring reliable convergence of
genetic algorithms, particularly when only few evaluations of the fitness function
are possible. In this experiment, NSGA-II was allowed 250 program executions, 122
more than the 128 training examples provided to SPI. The inconsistent performance
of NSGA-II motivates further experiments comparing the relative performance of
gradient-based and gradient-free parameter optimizers.

3.2.3.2 Benchmarking Sequential Transfer Learning and Meta Learning

Besides sequential transfer learning, a wide range of alternative approaches for
task generalization have been proposed. Meta learning is concerned with “learning
to learn” by leveraging prior knowledge to adapt quickly to new tasks (Hospedales
et al., 2021). Like sequential transfer learning, meta learning decomposes the
learning problem into two stages; unlike sequential transfer learning, however, in
which pretraining and finetuning solve the same learning problem on different
datasets, meta learning approaches first train a learning system to effectively learn
new tasks on a large, diverse meta-training set, and then use that learning system
to learn the task at hand on a much smaller meta-test set containing only data for
one specific task. Model-agnostic meta learning methods, which can be applied
to learning systems without requiring modification of model architectures, can be
applied directly to the learning stage of SPI (Finn et al., 2017a). As in the sequential
transfer learning formulation proposed in Section 3.2, a task corresponds to goal-
oriented robot behavior subject to a stochastic environment-generating process
{Hk}. Interpreting the source dataset DS as the meta-train dataset and the task
dataset DT as the meta-test dataset, the sequential transfer learning problem can
be recast as a meta learning problem, in which the meta-training phase replaces
the pretraining phase, and the weights of P̄ are adjusted by meta-training over DS

to maximize the effectiveness of learning the current task from DT .
From the fact that meta learning approaches train learning systems to efficiently

learn new tasks, then, follows the hypothesis that meta learning improves the data
efficiency or performance of sequential transfer learning in the context of learning
NRPs for peg-in-hole insertion tasks under uncertainty. To that end, the proposed

117

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

sequential transfer learning scheme is compared with three model-agnostic meta
learning approaches:

1. Model-Agnostic Meta Learning (MAML): MAML formulates meta learning
as double-loop gradient descent, in which an inner loop minimizes a task
objective Ltask, and an outer loop optimizes a meta-objective Lmeta that
represents the ability of the system to learn new tasks (Finn and Levine,
2017). At each training iteration, a task T is sampled from DS and M steps
of SGD with task-learning rate α are performed to update the weights ϕP̄ of
P̄ for the task-learning objective Ltask (here the regular NRP training loss, see
Equation 2.1). This task-learning stage results in a set of task-adapted weights
ϕ̃P̄ . The meta-objective is then evaluated for the task-adapted model, and one
step of gradient descent is performed to update the original parameters ϕP̄

of the model P̄ , before any task adaptation, with meta-learning rate β. The
meta-learning objective Lmeta is the sum of all N task-level losses. Note that
MAML is a second-order learning algorithm: In the outer (meta-)learning
loop, weights ϕP̄ are updated by gradient descent over the computational
graph representing, in turn, M iterations of inner-loop gradient-based task
learning. I refer to Finn and Levine (2017) for a detailed description of
MAML.

2. First-Order MAML (FOMAML): MAML requires automatic differentiation
of a nested loop, which is computationally expensive for large values of
M (the number of task-learning iterations). FOMAML has been found to
speed up MAML by roughly 33% on image classification tasks (Finn and
Levine, 2017) FOMAML avoids computing the second-order gradient by
avoiding differentiation through the inner-loop gradient update; rather, the
gradient used for outer-loop (meta-)learning is simply the gradient of the
meta-objective for the network parameter values after the last task-learning
step. Nichol et al. (2018) and Finn and Levine (2017) describe FOMAML in
greater detail.

3. Reptile: Reptile is a first-order model-agnostic meta-learning algorithm
(Nichol et al., 2018). As in MAML and FOMAML, the task-learning step
consists of M steps of SGD on the task-learning objective Ltask, yielding task-
adapted weights ϕ̃P̄ ; the meta-learning step updates the weights ϕP̄ of P̄
along the direction ϕ̃P̄ − ϕP̄ with meta-learning rate β. Reptile has been
found to perform similarly to FOMAML on several meta-learning benchmarks.
I refer to Nichol et al. (2018) for further details.

Experiment setup The valve assembly task and source program illustrated in
Figure 3.11 is considered. Given the source and task datasets DS and DT defined
on page 115, NRP shadow programs are trained using sequential transfer learning

118

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

Learning algorithm Traj. precision Success acc.

Sequential transfer learning (N = 128) 0.80 0.72

MAML (N = 5) 0.95 0.64
FOMAML (N = 5) 0.96 0.62
FOMAML (N = 128) 0.99 0.58
Reptile (N = 128) 1.35 0.56

Table 3.2: Comparison of sequential transfer learning with meta learning alterna-
tives for NRP training (Alt et al., 2022b).

as well as MAML, FOMAML and Reptile. For all meta-learning approaches, hyper-
parameters are set to M = 5, α = 0.01, and β = 0.001. Models are trained for
50 epochs. As second-order MAML proved too memory intensive to train on the
available hardware (a single NVIDIA 1080 Ti GPU), the inner-loop batch size N
(the number of training examples per task) is reduced to 5 for MAML. For com-
parison, FOMAML is evaluated with both N = 5 and N = 128. The performance
of the resulting models is evaluated on 10 simulated test tasks (stationary hole-
distribution-generating processes, {Hk}) with 128 finetuning and 128 test samples
each. All trained shadow programs are evaluated on two metrics: Trajectory preci-
sion, the MSE between predicted and ground-truth end-effector poses; and success
accuracy, the proportion of correctly classified task success labels.

Results The results are shown in Table 3.2. Sequential transfer learning outper-
forms all meta learning alternatives, both with respect to the predicted end-effector
positions as well as success labels. The comparison with MAML permits to draw few
conclusions, as MAML only sees 5 examples during its inner-loop task adaptation
phase, compared to the 128 finetuning examples for sequential transfer learning.
However, increasing the inner-loop batch size to 128 did not improve the perfor-
mance of FOMAML, indicating that the inner-loop batch size is not a performance
bottleneck for FOMAML.

Discussion While meta learning has been considered highly promising for few-
shot learning tasks (Hospedales et al., 2021; Wang et al., 2020; Sun et al., 2019),
where the number of training examples per task is very small, this promise failed
to manifest better training outcomes in the context of NRP learning in stochastic
environments. Table 3.2 gives credence to the hypothesis that sequential transfer
learning is a suitable alternative to meta learning in the medium-data regime, where
few-shot learning is not required and it is possible to collect a small finetuning
dataset. These findings are in line with recent empirical comparisons of meta
learning and sequential transfer learning (Kolesnikov et al., 2020; Shysheya et
al., 2022; Mandi et al., 2022; Patacchiola et al., 2023). In compute-constrained
environments, sequential transfer learning is considerably more computationally

119

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

THT Assembly

Move Linear

Spike Search Relative

Insert

PointTo Vel Acc

Pattern

PointTo
...

MinDepth

MinForce

Vel AccMinForce MaxForce

© 2022 IEEE

Figure 3.13: Robot program (left) and hardware setup (right) for THT assembly
(Alt et al., 2022b).

efficient than meta learning, avoiding the additional accumulation of gradients
during task adaptation. Additional experiments are required to provide empirical
measurements of the performance of meta learning in the absence of such resource
constraints, e.g. with larger inner-loop batch sizes, a larger, more diverse source
dataset or empirical hyperparameter search.

3.2.3.3 Force-Controlled Probe Search Optimization in Nonstationary Envi-

ronments

To determine to what extent the results of the above experiment generalize to a
different task, more complex program structures and nonstationary environments,
a PCB assembly task is considered (Alt et al., 2022b). The robot is tasked to insert
a 14-pin socket into the corresponding holes on a PCB (see Figure 3.13, right).
Reflecting phenomena commonly occurring in real-world production lines, the
positioning of the PCB in the XY-plane is subject to nonstationary process noise,
e.g. due to drift in imprecise positioning systems such as conveyor belts, wear and
tear or sudden supplier changes.

Experiment setup The task is shown in Figure 3.13 (right). To compensate
process noise and ensure robust insertion, a probe search strategy is used, in which
the robot repeatedly touches the surface with the workpiece and a specified contact
force until the workpiece drops in the hole. In the domain of THT assembly, probe
search is the preferred strategy for placing components as it avoids lateral movement
over the surface, preventing damage to the conducting surface of the PCB and
avoiding bending the pins of the workpiece.

The robot program for search-based THT assembly is shown in Figure 3.13
(left). The ARTM source program representation is used (Schmidt-Rohr et al.,
2013). The program consists of a linear approach motion (a Move Linear skill)

120

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

followed by a probe search beginning at the current end-effector pose of the robot
(Spike Search Relative) and insertion with zero side forces (Insert). For the
purpose of this experiment, the Points parameter of Spike Search Relative is
optimized, which defines the search pattern as a sequence of poses, relative to the
start of the search. Points is initialized as a 4x4 grid in the XY plane, combined
into a 32-dimensional parameter vector. The robot moving successively from the
top-right to the bottom-left point of the grid. An optimal search pattern would
reflect characteristics of the underlying hole distribution – notably, the first probes
should be made in regions with high probability density, with later probes exploring
lower-probability regions.

The noise of the hole position is modeled as bivariate Gaussian mixture with
up to 6 modes. Unlike in 3.2.3.1, process noise is not assumed stationary. Instead,
three different nonstationary noise processes {Hk} are considered:

• Drift: At each timestep, the modes of {Hk} are translated by a constant offset.
This models process noise induced by wear and tear or thermal expansion.

• Shift: At each timestep, the modes of {Hk} are translated by a uniformly
random offset with probability Pshift = 0.05. This models sudden changes
to the production process, such as slightly varying workpiece geometries
between batches, or slight reconfigurations of the robot workcell during
planned downtime.

• Brownian motion: At each timestep, the modes of {Hk} are translated by an
offset sampled from a bivariate Gaussian distribution. This models “chaotic”,
fast-changing drift-like effects.

SPI is trained on a source dataset DS containing 128.000 program executions
in 1000 different environments (training tasks). For each training task, a new
hole-distribution-generating process {Hk} is instantiated, and an environment
distribution H is sampled before each program execution. Each task is repeated
100 times (t = 1, 2, ..., 100). For the real-world executions, the sampled hole
offsets are artificially added as an offset to robot motions, permitting simulation
of complex process noise on a static hardware setup. As in Experiment 3.2.3.1,
diversity in program inputs is only required in the source dataset, and all program
executions in the task dataset are sampled with the same set of parameters. As
nonstationary noise processes are considered, the lifelong learning and continuous
re-optimization scheme introduced in Section 3.2.2 is used. The task dataset DT is
implemented as a ring buffer of size 128, test executions are immediately added to
the ring buffer and the original, pretrained model is finetuned at each iteration on
the updated task dataset.

The experiment is repeated for 10 different simulated and 6 real-world test
tasks on a Fanuc LR Mate 200iD/7L manipulator with an FS-15iA force-torque
sensor.

121

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

Baselines SPI with sequential transfer learning is compared against the following
baselines (Alt et al., 2022b):

1. Grid: A fixed 4x4 grid covering the complete search region.

2. Heuristic: A task-specific heuristic, that fits a 16-mode GMM to those probe
points in the finetuning dataset for which search was successful, and sets the
optimized probe points to the resulting modes.

3. NSGA-II with hyperparameters µ = λ = 100 for simulated tasks, and
µ = λ = 30 for real-world tasks (Deb et al., 2002).

Regularizers Optimization is performed to minimize failure rate Φfail (see Equa-
tion 3.6). When optimizing the search pattern, SPI inherently faces an exploration
– exploitation trade-off: Parameters are optimized to fit the learned, implicit char-
acteristics of the environment distribution, at the expense of those areas of the
workspace that have seen few to no samples in the training data. With small task
datasets, this can cause optimization results to overly emphasize workspace regions
frequently present in the dataset, while ignoring regions of lower probability density.
This is particularly salient for shift processes, in which the occurrence of a shift and
the environment distribution after the shift cannot be extrapolated from the task
dataset before the shift occurs. For this reason, two regularizers are investigated:

1. L1 distance to initial grid: Ξinit(x
p̄,j) =

∑

i=0 |x
p̄,j
i − x

p̄,0
i | penalizes candi-

date parameterizations xp̄,j at SPI iteration j proportional to their L1 distance
to the initial parameterization xp̄,0. In the context of search pattern optimiza-
tion, this regularizer encourages the optimizer to keep optimized patterns
close to the initial grid. Ξinit is a general-purpose regularizer that can be
applied to any application use case.

2. Euclidean cross-distance between points: Ξcdist =
1

dcross(xp̄,j ,xp̄,0)
penalizes

candidate search patterns for which the sum of the Euclidean distances
between all point pairs (dcross) is small. In the context of probe search, it
encourages the optimizer to distribute probe points and avoid clusters of
probes in close proximity. Unlike Ξinit, Ξcdist is specific to probe search, as it
assumes xp̄ to represent 2D Cartesian positions.

Optimization is performed with respect to Φfail(θ
p̄,j) as well as the regularized

objectives Φfail(θ
p̄,j) + Ξinit(x

p̄,j) and Φfail(θ
p̄,j) + Ξcdist(x

p̄,j). Note that the regu-
larized objectives not only score the current predicted trajectory θp̄,j at the jth SPI
iteration, but also the current candidate parameters xp̄,j .

122

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

© 2022 IEEE

420 425

Pos. (X) [mm]

8

10

12

14

P
os
.
(Y

)
[m

m
]

t = 0

420 425

Pos. (X) [mm]

t = 25

420 425

Pos. (X) [mm]

t = 50

420 425

Pos. (X) [mm]

t = 75

420 425

Pos. (X) [mm]

t = 99
0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6
6.4
7.2

f
H

t

Figure 3.14: Optimization of probe search patterns for nonstationary noise pro-
cesses, here linear drift (top) and Brownian motion (bottom) (Alt et al., 2022b).
The search pattern is optimized via SPI with lifelong learning to minimize the
likelihood of task failure, subject to the Ξinit regularizer.

Results Figure 3.14 shows exemplary search pattern evolutions produced by SPI
with Ξinit regularization for linear drift and Brownian motion noise processes. SPI
continuously adapts the search pattern to reflect the underlying noise distribution,
even in the presence of relatively fast-changing nonstationary processes.

The quantitative results are summarized in Table 3.3. Without optimization,
probe search failed in more than 60% of search attempts across noise types. Without
regularization, SPI reduces failure rates by 33%, 11% and 21% for drift, Brownian
and shift noise processes, respectively. With Ξinit regularization, improvements are
lower in the presence of drift and Brownian noise (18% and 9%), but higher for
shift processes (32%), indicating that the more conservative optimizer behavior
induced by Ξinit regularization may reflect in improved robustness only in the
presence of a priori unpredictable process noise such as sudden shifts, which can
only be compensated for after the fact; drift and Brownian motion processes have
low-frequency stochastic properties which can be learned during finetuning and
which remain valid for the duration of the process. SPI with Ξcdist regularization
yields best results, reducing failure rates by 53%, 27% and 43%, respectively. This
gives credence to the hypothesis that Ξcdist regularization strikes a balance between
allowing the optimizer to produce search patterns which deviate from the original
grid, while avoiding overfitting on the task dataset by tightly clustering probe points
on the (implicitly learned) modes of the hole distribution.

Discussion The results give credence to the hypothesis that continuous, lifelong
finetuning enables SPI to update program parameters with respect to nonstationary
stochastic environments. The proposed continuous finetuning scheme updates the
weights of the shadow program P̄ based on a very low number of samples (here,

123

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

Drift Brownian Shift

No optimization 0.679 0.679 0.600
SPI (Φfail) 0.458 0.605 0.472
SPI (Φfail + Ξinit) 0.556 0.616 0.406
SPI (Φfail + Ξcdist) 0.318 0.494 0.339

Table 3.3: Failure rates for different regularizers and stochastic processes (Alt et al.,
2022b). SPI with the Ξcdist regularizer reduces failures by up to 53% over 100
timesteps.

128), while avoiding catastrophic overfitting. As the nonstationary environment
changes at every iteration k, the model must generalize at every iteration, as the
task dataset will lag behind the ground-truth process {Hk} by one timestep. It
is particularly notable that SPI adapts search pattern despite never being trained
on an explicit representation of the environment distribution: The relationship
between search pattern and task success is an implicit function of the environment
distribution, and is implicitly represented in the learned weights of P̄ . Learning
this relationship and inverting it via NNII gives rise to search patterns which reflect
this latent representation. The ability of SPI to update program parameters with
nonstationary noise processes enables its continuous use on long-running production
lines, in which the underlying environment distributions will invariably change
over time.

3.2.4 Related Work

SPI with sequential transfer learning addresses the fundamental problem of effi-
ciently optimizing robot program parameters for noisy environments. More specif-
ically, it addresses the situation in which the environment at optimization time
follows a different distribution than the environment at (pre-)training time. Such
distributional shift is a profound challenge for ML systems beyond robotics (Bansak
et al., 2024). In the context of model-based optimization, the challenge is to ensure
that the model accurately represents the environment distribution at optimization
time. For neural ML models, the transfer learning, meta learning and zero-shot
learning literature has brought forth a range of algorithmic and representational
solutions to addressing distributional shift. This Section focuses on model-agnostic
approaches that can be applied to existing model architectures such as the stacked
recurrent architecture introduced in Section 2.4.1.4, without requiring changes to
the architecture.

3.2.4.1 Transfer Learning

Transfer learning is a family of ML approaches designed to relax the assumption that
training and test data share the same distribution. Transfer learning approaches

124

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

center around learning priors from a large-scale source dataset in order to simplify,
or make tractable, learning or optimization for downstream tasks following a
previously unseen distribution (Abnar et al., 2021). Pan and Yang (2010) as well
as Zhuang et al. (2021) provide comprehensive overviews of transfer learning.

Full finetuning Among the neural transfer learning approaches, sequential trans-
fer learning, the method proposed and described in Section 3.2, is a model-agnostic
technique for transfer learning which makes no assumptions about model architec-
ture (Alt et al., 2022b; Ruder, 2019). This transfer learning approach finetunes all
network parameters after initializing them by pretraining on a large source dataset.
It has been used with considerable success in computer vision, where pretraining
networks on the ImageNet dataset (Deng et al., 2009) has become a common
method to bootstrap networks for downstream tasks in which little training data is
available (Agrawal et al., 2014; Kolesnikov et al., 2020; Ridnik et al., 2021). The
same paradigm has been successfully applied in other domains such as autonomous
driving (Strudel et al., 2021; Zhang et al., 2022; Yuan et al., 2023) or robot-assisted
surgery (Ross et al., 2018; Bodenstedt et al., 2020; Mateen et al., 2024).

Fixed feature extraction The most common alternative to finetuning the full set
of model weights is to train or finetune only the last layers of a network on the target
dataset, using a pretrained model as a fixed feature extractor (Krizhevsky et al.,
2012; Kornblith et al., 2019). This strategy has been employed with particular
success in larger network architectures such as Transformers (Vaswani et al., 2017),
for which full finetuning may be prohibitively expensive. In Transformer-based
encoder-decoder architectures, such as those underpinning robot VLA models,
pretrained encoders are often used as-is, and only decoder networks are finetuned
(Kienle et al., 2024; Ghosh et al., 2024; Driess et al., 2023).

Empirical findings In their seminal work, Yosinski et al. (2014) empirically
investigate several finetuning strategies. They find that sequential transfer learning
generally improves network performance on the target task. Their findings also
suggest that transfer may be negatively impacted by “splitting” a pretrained network
to adapt the last layers, as some layers may have “fragilely co-adapted”, spreading
feature extraction across layers (Yosinski et al., 2014). Similarly, Kornblith et al.
(2019) find strong empirical evidence that pretraining on large-scale source datasets
considerably improves performance on downstream tasks under a transfer learning
regime, echoing the results of Experiments 3.2.3.1 and 3.2.3.3. He et al. (2019b)
find that, in the context of ImageNet pretraining, sequential transfer learning
considerably speeds up convergence on downstream tasks, but does not impact final
task performance. The degree to which their results transfer to the present context
is limited, however, by the fact that they finetune on COCO (Lin et al., 2014), itself
a large-scale dataset, unlike the very small task datasets considered here. In a large-
scale meta study, Abnar et al. (2021) similarly find that while sequential transfer

125

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

learning generally improves downstream performance, too high accuracy on the
source dataset may reduce performance on downstream tasks due to saturation
effects. In the present context, pretrained shadow programs typically do not perform
well on their own, as themodels are not conditioned on the environment distribution,
but rather learn the distribution from the training data. The high diversity of
environment distributions in the source datasets prevents models from overfitting
on individual distributions during pretraining; rather, they learn general motion
characteristics that widely apply across environment distributions, and precise
performance for a given environment distribution is acquired during finetuning.
The results of Experiments 3.2.3.1 and 3.2.3.3 give credence to this interpretation.

3.2.4.2 Meta Learning

Meta learning, or “learning-to-learn”, is concerned with enabling AI systems to
learn effective learning algorithms from data (Thrun and Pratt, 1998). In the
context of model-based optimization in the presence of distributional shifts, meta
learning approaches promise to facilitate efficient fine-tuning on few examples of
the distribution at hand by explicitly training AI systems to learn efficiently.

Model-agnostic meta learning A wide variety of model-agnostic meta learning
algorithms have been proposed, which can be applied to near-arbitrary neural
network architectures. Finn and Levine (2017) introduced MAML, a method
that optimizes network parameters so that they can be quickly fine-tuned with
a few gradient steps on new tasks. MAML approaches meta learning by double-
loop gradient descent: In an inner loop, individual tasks are learned via SGD,
while in an outer loop, SGD is performed over the inner-loop learning procedure,
making MAML a second-order learning algorithm. In response to the considerable
computational overhead of double-loop SGD, Finn and Levine (2017) propose
FOMAML, a computationally efficient variant that approximates the meta-gradient
by ignoring second-order derivatives, thereby reducing the computational overhead
while still achieving competitive performance in rapid adaptation scenarios. Reptile
(Nichol et al., 2018) simplifies the meta-learning process by performing multiple
steps of SGD and then updating model parameters towards the final parameters
obtained after these steps. Probabilistic MAML (PMAML), introduced by Finn et al.
(2018), incorporates uncertainty estimation into the MAML framework, allowing
for more robust adaptation in uncertain and dynamic environments commonly
encountered in robotics. Instead of learning a set of model weights that can quickly
be finetuned to fit new tasks, Andrychowicz et al. (2016) propose learning an
optimizer itself, which can then be used to adapt models to new tasks with a similar
structure than those in the source dataset.

Meta learning in robotics In robotics, model-agnostic meta learning methods
have been applied in the context of learning locomotion policies (Kaushik et al.,

126

3.2. LIFELONG LEARNING AND OPTIMIZATION IN STOCHASTIC ENVIRONMENTS

2020; Gurumurthy et al., 2020), fault diagnosis of industrial robots (Liu et al., 2023)
or learning from demonstrations (Hu et al., 2022). While meta learning approaches
can be used to solve transfer learning problems, meta learning approaches have
been widely used for few-shot learning, with task datasets containing only a very
low, typically single-digit number of training examples (Finn et al., 2017b; Yu et al.,
2018; Ghadirzadeh et al., 2021).

Empirical findings Experiment 3.2.3.2 applies and evaluates model-agnostic
meta learning approaches for efficient learning of forward models of robot programs
in stochastic environments. The results indicate that sequential transfer learning
may be more effective for transfer learning problems with medium-sized, rather
than few-shot, task datasets. This finding is in line with empirical findings in
computer vision (Kolesnikov et al., 2020; Shysheya et al., 2022) as well as robot
policy learning (Mandi et al., 2022; Patacchiola et al., 2023) indicating that “multi-
task pretraining with finetuning on new tasks performs equally as well, or better,
than meta-pretraining with meta test-time adaptation” (Mandi et al., 2022).

3.2.4.3 Zero-Shot Transfer

Recent advances in large Transformer-based architectures have given rise to an
alternative approach to robot learning in the presence of stochastic environments,
which eschews finetuning or meta learning in favor of zero-shot transfer without
any examples of the task distribution.

VLA models VLA models such as RT-2 (Zitkovich et al., 2023), RoboFlamingo
(Li et al., 2023b), Octo (Ghosh et al., 2024) or OpenVLA (Kim et al., 2024) com-
bine token embeddings of vision, language and robot actions as input and output
modalities and process them via a set of modality-specific and cross-modality
Transformer-based encoder and decoder modules. The modality-specific modules
are typically state-of-the-art vision or language models such as ViT (Dosovitskiy
et al., 2020), Llama 2 (Touvron et al., 2023), DINOv2 (Oquab et al., 2023) or
PaLM-E (Driess et al., 2023) trained on web-scale datasets. VLA models are often
used as foundation models for downstream tasks, either as-is or as part of a larger
neural architecture, typically without finetuning (Li et al., 2024). This is possible
due to the astonishing zero-shot transfer abilities of large-scale Transformer-based
architectures, which can generate highly specific predictions given a description of
the target task as part of the context or prompt (Kojima et al., 2022). Zero-shot
transfer via multimodal foundation models has been used in the context of robotics
in applications ranging from navigation (Huang et al., 2023a; Shah et al., 2023) to
task planning (Singh et al., 2023; Rana et al., 2023).

Finetuning foundation models If the target domain is highly specific and rel-
atively far removed from the domains covered in the source dataset, foundation

127

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

models may still be finetuned on domain- or task-specific data (Mosbach et al., 2020;
Xu et al., 2023; Alt et al., 2024b), though this incurs considerable computational
overhead and can be avoided in favor of Retrieval-Augmented Generation (RAG)
or and similar prompt-based strategies in many applications (Chen et al., 2024).
Kienle et al. (2024) pursue a hybrid strategy, finetuning a pretrained multimodal
Transformer on robot- and application-specific data, but zero-shot generalize at
runtime to variants of the finetuning task (e.g. differently colored cables for a cable
insertion task). They evaluate their work in the context of SPI on search-based
insertion tasks similar to those considered in Experiments 3.2.3.1 and 3.2.3.3 and
constitute a direct evolution of the work introduced by Alt et al. (2022b) and
presented in Section 3.2. However, large-scale pretrained Transformers have been
shown to generate erroneous outputs, or “hallucinations”, particularly on zero-shot
transfer tasks outside of their training distribution (Gunjal et al., 2024). Ensur-
ing precision and reliable transfer in VLA models is a crucial direction of ongoing
research (Xu et al., 2023).

3.2.5 Discussion

The proposed sequential transfer learning scheme addresses a the crucial issue of
learning forward models of robot behavior in stochastically varying environments,
with a focus on both stationary and nonstationary noise processes. Experiments in
simulated and real-world industrial search-based peg-in-hole applications demon-
strate the data efficiency of sequential transfer learning, allowing for the finetuning
of forward models for previously unseen environment distributions on as little
as 128 finetuning examples (see Experiment 3.2.3.1). Lifelong finetuning on a
streaming dataset permits SPI to continuously re-optimize robot program parame-
ters in the presence of nonstationary process noise (see Experiment 3.2.3.3). The
improved data efficiency of sequential transfer learning is in line with empirical
findings from the literature (Yosinski et al., 2014; Kornblith et al., 2019; Abnar
et al., 2021), and allows for robot program parameter optimization in real-world
industrial applications, in which only a limited amount of finetuning examples may
be available. The pretraining and finetuning schedule integrates well into the devel-
opment process of industrial robot cells, in which serial production is preceded by a
ramp-up phase. During ramp-up, the assembly line is tested at reduced production
volume, and small amounts of finetuning data can be collected (Alt et al., 2024a).
During serial production, process data can be continuously recorded for lifelong
finetuning and program re-optimization. The fact that sequential transfer learning
alleviates the need for diverse program inputs in the task dataset further facilitates
deployment during ramp-up, as making small changes to parameters during data
collection may not be feasible for all production processes.

Experiment 3.2.3.3 demonstrates that continuous, lifelong finetuning enables
SPI to continuously (re-)optimize program parameters with respect to nonstationary
noise processes. In real-world production lines, this enables SPI to compensate low-

128

3.3. JOINT OPTIMIZATION OF TASK PARAMETERS AND MOTION TRAJECTORIES

frequency, long-horizon noise processes such as wear and tear (Raible et al., 2023b)
as well as high-frequency, short-horizon disruptions such as supplier changes (Alt
et al., 2022b). A ring-buffer size of 128 finetuning examples in the task dataset and
finetuning the original model at each iteration appear to avoid both catastrophic
forgetting and overfitting for the four-layer stacked GRU architecture of SPI shadow
skills (see Section 2.4.1.4).

Zero-shot transfer to new environments or task variants is a promising direction
of future work. The shadow program architecture presented in Chapter 2 does
not accept a representation of the environment or task as an input; all information
about environment or task is implicitly represented in the weights of the neural
networks. Zero-shot transfer requires the model to accept some representation of
the current task as inputs. Kienle et al. (2024) extend the NRP shadow program
architecture by a tokenized image of the current environment, which is passed to
the shadow program along with the program inputs and robot state. This avoids
the need for continuous finetuning, provided all changes in the environment are
visible in the image, and are drawn from a distribution close to those represented
in the training data. The successive integration of multimodal foundation models,
combined with additional pretraining on high-quality, domain-specific data and
a rich representation of the current environment and task as part of the model’s
inputs, may permit shadow programs to zero-shot generalize across increasingly
dynamic, stochastic environments.

3.3 Joint Optimization of Task Parameters and Mo-

tion Trajectories

For most manipulation tasks, task success requires not only achievement of high-
level task objectives, but also the respect of a set of low-level constraints on the robot
motions performed. Consider the robotic shopping assistant outlined in Chapter 1:
When tasked to pick up an object on a shelf and placing it into a shopping basket,
task success cannot be defined exclusively by whether the target object is in the
shopping basket after the robot has performed the task, but must include additional
criteria such as whether the robot collided with other objects, human customers
or itself during task execution. For other applications such as industrial surface
treatment tasks, smoothness of motion or minimization of higher-order dynamics
may be crucial to task success. To optimize for task success in the presence of
motion-level constraints, task parameters and motion trajectories must be jointly
optimized.

Experiment 3.1.3.3 first demonstrated the need for respecting complex motion-
level constraints during parameter optimization. In the experiment, a robot is
tasked to transfer a cup into a sink. Robot program parameters are optimized via
SPI with respect to an objective function derived from a VR human demonstration.
As the source program consisted of grasp and put-down subprograms connected by

129

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

Figure 3.15: Shadow Program Inversion with Differentiable Planning (SPI-DP)
permits the joint optimization of robot program parameters and motion trajectories
by nested gradient-based optimization over a learned shadow program (P̄ , grey) to
optimize both task- and motion-level objectives such as collision avoidance (blue),
target pose accuracy (green), or proximity to a human demonstration (red).

a sequence of linear Cartesian transfer motions, the resulting motion trajectories
were constrained to be linear in Cartesian space by design, and the optimization
objective – proximity to a human demonstration – implicitly ensured that the target
poses of the linear transfer motions were collision-free. There was no algorithmic
guarantee, however, of collision-freeness of the overall motion, and the environment
at optimization time was implicitly required to be identical to that in which the
human demonstration was recorded. To provide such guarantees, and to support
arbitrary environments at optimization time, it does not suffice for SPI to be a
parameter optimizer; SPI must also be a motion planner.

3.3.1 First-Order Parameter and Trajectory Optimization with

Differentiable Motion Planning

This section introduces SPI-DP, a first-order robot program optimizer capable of
jointly optimizing robot program parameters and motion trajectories. It expands
on work first published in Alt et al. (2025).

130

3.3. JOINT OPTIMIZATION OF TASK PARAMETERS AND MOTION TRAJECTORIES

3.3.1.1 Optimizing Planned Motion Skills

SPI is a model-based robot program parameter optimizer. As such, it optimizes the
parameters of parameterized robot skills – skills p for which the resulting robot
behavior is a function of a set of parameters xp. The optimized parameters x∗,p̄

computed by SPI over shadow skill p̄ are transferred back to p, and p is executed on
the real robot with the optimized parameters to produce optimal behavior. If the
resulting real-world robot trajectory θp is completely specified by xp, as is the case
for e.g. DMP skills, there is neither need nor opportunity for trajectory optimization.
There is, however, a large class of skills, which may be termed planned motion
skills, for which trajectory optimization is both possible and, in many applications,
required. The Move to Point ARTM skill is an illustrative example. It accepts four
parameters: A Cartesian target pose PointTo, velocity Vel and acceleration Acc,
and an optional Path parameter representing a path planned by an external motion
planner. If Path is not given, the ArtiMinds RPS will attempt to plan a collision-free
path to PointTo. Similarly, the Path Force ARTM skill accepts a mandatory Path
parameter containing a user-specified reference trajectory for a force controller as
well as several controller parameters. Move to Point and Path Force represent
a range of skills accepting a reference trajectory as an input parameter. Planned
motion skills also include skills for which the reference trajectory is provided by
kinesthetic teaching, a widespread class of skills in industrial robotics (Ajaykumar et
al., 2021; Heimann and Guhl, 2020; Krot and Kutia, 2019). To optimize such skills
in a data-driven way, the reference trajectory must, in many cases, be optimized
along with the remainder of the skill (and often program) parameters. Consider a
robot program to grasp an object; the grasp pose must be jointly optimized with
the motion trajectory to approach the target object, to ensure that it is reachable
and the approach is collision-free.

3.3.1.2 Shadow Program Inversion with Differentiable Planning

Section 2.5 introduces DGPMP2-ND, a differentiable motion planner based on first-
order trajectory optimization with respect to motion-level objectives, or constraints,
such as smoothness, collision-freeness, motion-level proximity to a human demon-
stration, adherence to joint limits, or precision at reaching Cartesian target poses.
DGPMP2-ND is integrated into the shadow program DCG, acting as a differentiable
prior which gives shadow programs the ability to bootstrap complex trajectories
under Cartesian or C-space constraints (see Figure 3.16). In the context of SPI,
DGPMP2-ND enables the optimization of motion trajectories for planned motion
skills, jointly with any other parameters of the containing program (see Figure
3.15).

Integration of DGPMP2-ND makes differentiable motion planning under col-
lision, smoothness and other constraints part of the shadow program forward
pass. Joint program parameter and motion trajectory optimization can then be
performed by double-loop gradient descent over the shadow program DCG. The

131

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

Solve linear system

Update trajectory

Inner-loop
trajectory

optimization

Planned collision-free
joint trajectory

Shadow
M

ove to State

Residual GRU

Differentiable
Cartesian planner

Planned Cartesian
trajectory

Shadow
Spiral Search

Posterior
trajectory

dGPMP2-ND

(Optional) Residual GRU

Collision
environment

Figure 3.16: SPI-DP performs joint parameter and trajectory optimization by double-
loop gradient descent over the shadow program DCG.

resulting second-order optimizer is calledSPI-DP ▷ SPI-DP. It is illustrated in Figure 3.16
at the example of a planned motion skill (Move to Point) followed by a spiral
search. From a birds-eye view, SPI-DP is vanilla SPI: The shadow program DCG
P̄ is forward-evaluated to predict posterior trajectory θP̄ ; the task objective Φ is

computed over θP̄ ; gradients ∂Φ(θP̄)

∂xP̄
are backpropagated and inputs xP̄ are incre-

mentally updated. However, if P̄ contains a free-space motion skill, parts of θP̄

will be a function of first-order planning with DGPMP2-ND, and the computation

of gradients ∂Φ(θP̄)

∂xP̄
requires differentiation through the gradient-based update of

DGPMP2-ND (see Section 2.5.2.6). As DGPMP2-ND is differentiable by design

and implemented in PyTorch, ∂Φ(θP̄)

∂xP̄
can be computed end-to-end via automatic

differentiation.

3.3.1.3 Hyperparameters and Best Practices

SPI-DP exposes several additional hyperparameters to configure the nested double-
loop optimization algorithm. In particular, the outer- and inner-loop learning
rates α and β must be balanced: Low values of α improve the stability of SPI, but

132

3.3. JOINT OPTIMIZATION OF TASK PARAMETERS AND MOTION TRAJECTORIES

require high values of β to prevent exploding runtimes; high values of α cause
SPI to converge more quicky, but larger changes to programs parameters per SPI
iteration in turn require more inner-loop replanning by DGPMP2-ND. Across all
experiments, initializing the DGPMP2-ND update rate β with relatively high values
(0.25 ≤ β ≤ 1) and performing as few DGPMP2-ND iterations as possible yielded
best results, as it allowed for more SPI iterations at the same compute budget. High
learning rates can cause DGPMP2-ND to oscillate, as the obstacle factor may push
trajectory points too far out of collision objects, causing the GP factor to increase
suddenly, and vice versa. To prevent oscillations, β is decayed by a factor of 0.1
at every iteration after the critical error has reached zero (see Equation 2.19 and
Listing 2.5). When the critical error is zero, the planned trajectory is feasible, as
it is collision-free, reachable, and integrates seamlessly into the overall posterior
trajectory. The remaining error terms hGP and htraj continue to be optimized at
decayed learning rates to avoid reintroducing e.g. collisions or joint limit violations.

DGPMP2-ND converges considerably more quickly if the initial trajectory is close
to the optimal trajectory. To further speed up convergence and avoid redundant
computation, DGPMP2-ND outputs are cached for every planned motion skill p̄
in the shadow program, and the posterior trajectory θp̄,i at SPI iteration i is used
to initialize the trajectory θp̄,i+1 at the next iteration. The underlying assumption
is that changes, notably to the start state θp̄,i+1

0 , between SPI iterations are small.
Empirically, the number of DGPMP2-ND iterations until convergence drops from
up to 100 at the first SPI iteration to 2-5 for the last iterations, as the cached
trajectory is already nearly optimal. As an additional benefit, DGPMP2-ND can
continue trajectory optimization in the next SPI iteration if it failed to converge at
the previous iteration, improving the overall likelihood of finding both feasible and
optimal trajectories.

3.3.2 Experiments

SPI-DP is assessed in two real-world experiments on industrial and service robotics
use cases. Both experiments focus on jointly solving trajectory and parameter
optimization problems, with mutual interdependencies between parameterized
and planned motion skills.

3.3.2.1 Collision-Free Household Pick-and-Place with Human Demonstration

In a first experiment, a household scenario is considered, in which a robot is tasked
to pick up a cup from a table and place it into a cupboard, given one single human
demonstration of the task (see Figure 3.17). In a variant of the same experiment,
the robot is tasked to instead pick up and place a wine glass, given the same human
demonstration. The experiment tests the following hypotheses:

1. SPI-DP plans collision-free, smooth pick-and-place motions for various target
poses and object geometries.

133

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

t=0 s t=2.6 s t=5.2 s t=8 s

Figure 3.17: RGB (top) and depth images (bottom) of a human demonstration of a
household pick-and-place task.

2. SPI-DP can jointly optimize robot programs to satisfy both motion-level con-
straints such as collision avoidance and similarity to a human demonstration,
as well as task-level constraints such as the target pose.

3. SPI-DP can optimize robot programs based on a single human demonstration,
even when the demonstrations have different pick-up and target poses than
those required at runtime.

Experiment setup The experiment setup is shown in Figure 3.18 (right). A red
cup is placed at a fixed position on a table, and is to be placed at one of four
different target poses on two shelves of a cupboard. A UR5 collaborative robot,9

ATI Gamma force-torque sensor10 and Schunk pneumatic gripper11 are used. 10
human demonstrations are collected using an Intel RealSense RGB-D camera (see
Figure 3.17), covering different pick-up poses of the cup on the table as well as
different target poses on two shelves of the cupboard. The 3D Cartesian trajectory
of the cup was parsed by color segmentation; the resulting trajectories are shown
in Figure 3.18 (red).

The source program is shown in Figure 3.19. The ARTM source program
representation is used in this experiment. Two subprograms, Pick Up and Place,
are linked by a Move to State transfer motion. Optimization of both transfer
and placing motions are considered: A collision-free, smooth transfer motion is
to be planned, which respects the additional constraints implicit in the human
demonstration – notably, to keep the cup upright during transfer. In a second set of
experiments, zero-shot transfer to a wine glass is considered, which additionally
requires the optimization of the target pose.

Move to State is a planned motion skill, which defaults to a point-to-point
motion in C-space unless the optional Path parameter is specified. In this experi-
ment, the GoalState parameter denoting the target configuration as well as the

9Universal Robots A/S, Odense, Denmark
10ATI Industrial Automation Inc., Apex, USA
11Schunk SE & Co. KG, Lauffen am Neckar, Germany

134

3.3. JOINT OPTIMIZATION OF TASK PARAMETERS AND MOTION TRAJECTORIES

Figure 3.18: Left: 10 human demonstrations (red) and 4 exemplary trajectories
planned by SPI-DP (green) for a household pick-and-place task. Right: Real-world
execution of the optimized robot program.

motion trajectory Path are optimized. Pick Up contains a sequence of gripper and
motion skills, which are not optimized in this experiment. The Place skill consists
of a short linear approach motion followed by a Move Linear Relative Contact

force-controlled contact skill (see Experiment 3.1.3.1 for a detailed description).
DGPMP2-ND is initialized with a mesh representation of the environment (see

Figure 3.15 for a rendering). As the motions occupy a large fraction of the robot’s
workspace, the SDF is constructed with a voxel size of 10 mm, which proved
sufficient for the application. DGPMP2-ND is configured with an update rate of
β = 0.4 and patience φ = 75.

In a first series of experiments, the trajectory of the transfer motion is opti-
mized. A shadow program for the pick-and-place program show in Figure 3.19 is
constructed (see Figure 3.15 (gray)). The shadow skill for Move Linear Relative

Contact is trained on 4000 real-world executions of randomly sampled executions
of the Place subprogram. As no program parameters are optimized in this series
of experiments, no SPI update is made, and trajectory optimization is performed in
one forward pass through the shadow program. A total of 40 trials are performed,
one for each combination of human demonstration and target pose.

In a second series of experiments, the cup is swapped for a wine glass. No new
human demonstrations or training data are collected. In the collision environment,
the mesh of the cup is swapped for a mesh of the wine glass, and the gripper
geometry is changed to accommodate the new workpiece geometry. The collision
environment and real-world setup are shown in Figure 3.20. The DGPMP2-ND
hyperparameters remain unchanged. A total of 40 trials are performed, one for
each combination of human demonstration and target pose.

Results In the first series of experiments, SPI-DP successfully optimized all 40
motion trajectories to be smooth and collision-free. The trajectories were initialized
to point-to-point motions in configuration space, causing collisions in all 40 cases.
Likewise, several of the human demonstrations contained collisions due to imprecise

135

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

Figure 3.20: Left: 4 exemplary trajectories planned by SPI-DP (green) for placing
a wine glass into a cupboard. Right: Real-world execution of the optimized robot
program.

segmentation of the cup. After optimization, all trajectories were collision-free. Four
example trajectories, one for each target pose, are shown in Figure 3.18. Due to the
GP factor, the generated trajectories are very smooth and permit execution with high
dynamics. The human demonstration acts as a regularizer on the planned motion,
mainly ensuring that the cup is kept upright during manipulation. It was found that
there is a direct trade-off between smoothness, collision avoidance and proximity to
the human demonstration, as the Jacobians of the GP, obstacle and prior trajectory
factors directly oppose each other – avoiding an obstacle will incur a GP penalty,
and may push the trajectory farther from the human demonstration. Likewise, the
planned motion may have to deviate far from the human demonstration to remain
smooth and reach the goal, particularly if the queried target pose is on a different
shelf than the demonstrated target. Figure 3.21 illustrates the influences of the
respective factors on the optimized trajectory. The target pose was reached with a
mean accuracy of 0.6 mm across all trials.

In the second series of experiments, the cup is swapped for a wine glass. Again,
all trajectories were collision-free after optimization. Four exemplary trajectories
to different target poses are shown in Figure 3.20 (left). As the wineglass is larger
relative to the space between shelves, the planning problem is more challenging.
Particularly for the top shelf, the planned trajectories closely approach the edge
of the shelf, while avoiding collision. As the human demonstrations were per-
formed with cups, they were less representative of the task, yet still regularized
the orientation, keeping the wine glass upright for most of the trajectory.

Discussion The results give credence to the hypothesis that DGPMP2-ND permits
the optimization of motion trajectories with respect to collision, smoothness and
other motion-level constraints. DGPMP2-ND can be guided by a single human
demonstration, even if the start state and goal pose passed as a skill parameter differ
considerably from the demonstrated start and goal poses, and the demonstration

136

3.3. JOINT OPTIMIZATION OF TASK PARAMETERS AND MOTION TRAJECTORIES

j=0

Collision
error

Collision
error

j=30 Start pose
error

j=60

Collision
error

j=90

Pos. (X) [m] Pos. (X) [m] Pos. (X) [m] Pos. (X) [m]

P
os

.
(Z

)
[m

]

j=0 j=30 j=60 j=90

Pos. (X) [m] Pos. (X) [m] Pos. (X) [m] Pos. (X) [m]

P
os

.
(Z

)
[m

]

j=0 j=30 j=60 j=90

Pos. (X) [m] Pos. (X) [m] Pos. (X) [m] Pos. (X) [m]

P
os

.
(Z

)
[m

]

Collision
error

Collision
error

j=0 j=30 j=60 j=90

Pos. (X) [m] Pos. (X) [m] Pos. (X) [m] Pos. (X) [m]

P
os

.
(Z

)
[m

]

Figure 3.21: Collision (blue), prior trajectory (red) and start pose (purple) factors
during DGPMP2-ND optimization for four different target poses, given the same
human demonstration (red). The planned trajectory (black) is iteratively optimized
to approximate a human demonstration, while guaranteeing collision freeness,
adherence to start and goal poses, joint limits and smoothness. The optimized
trajectory remains smooth despite a highly discontinuously sampled human demon-
stration.

137

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

Hole found Cycle time (s)
unoptimized optimized unoptimized optimized

Hole 1 6 / 20 11 / 20 2.29 1.39
Hole 2 6 / 20 10 / 20 1.95 0.77
Hole 3 7 / 20 20 / 20 1.97 0.48

Table 3.4: Success rates and cycle times for force-controlled poka-yoke testing of
screw holes before and after optimization.

is not collision-free. Balancing the GP, obstacle and prior trajectory factors, in
particular, required considerable hyperparameter tuning. The appropriate factor
weights σobs, σtraj and σGP had to be balanced empirically. For this experiment,
values of σobs = 3e − 5, σtraj = 0.4 and σGP = 0.3 were found suitable. Too high
values of σobs caused the planner to oscillate, causing large changes to colliding
points on the trajectory and subsequent updates in the opposite direction due to
the GP prior, often forcing the trajectory back into collision. Too large values of σtraj

could force the trajectory into collision, if the human demonstration collided with
the environment. The appropriate factor weights depend on the update rate β, the
required degree of smoothness, and the quality of the human demonstration. With
the appropriate hyperparameters, DGPMP2-ND stably converges and is remarkably
robust against very noisy and irregularly sampled demonstrations.

Pick and Place

Move to State

GoalState Vel Acc

Pick Up

Open Gripper

GoalState

Move Linear Relative

PointTo Vel Acc

Close Gripper

GoalState

PointTo Vel Acc

Move Linear Relative

Place

Move Linear Relative Contact

PointTo Vel Acc

Open Gripper

GoalState

PointTo Vel Acc

Move Linear Relative

PointTo Vel Acc

Move Linear Relative

Force

Path

Figure 3.19: Source pro-
gram for a household
pick-and-place task.

3.3.2.2 Force-Controlled Engine Block Poka-Yoke

Quality Assurance

Experiment 3.3.2.1 demonstrated the ability of DGPMP2-
ND to optimizemotion trajectories with respect tomotion-
level objectives such as collision-freeness, smoothness
or proximity to a human demonstration. A second ex-
periment tests the hypothesis that SPI-DP is capable of
jointly optimizing task- and motion level objectives. To
that end, a quality assurance (QA) task is considered,
in which a probing pin is inserted into several screw
holes on an engine block. This is a common technique
in poka-yoke (“mistake-proof”) manufacturing (Shim-
bun, 1988), which emphasizes preventing irrecoverable
defects. By detecting e.g. insufficiently deburred or im-
properly drilled screw holes before assembly, mistakes
can be corrected and discarding parts can be avoided.
This experiment evaluates to what extent SPI-DP can
optimize a robot program for task success and overall
efficiency subject to stochastic process noise, while avoid-
ing collisions with the workpiece.

138

3.3. JOINT OPTIMIZATION OF TASK PARAMETERS AND MOTION TRAJECTORIES

Figure 3.22: Left: Trajectory planned by SPI-DP (green) for a poka-yoke QA task.
Right: Real-world execution of the optimized robot program.

Poka-Yoke QA

Peg-In-Hole 1

Move to State

GoalState Vel AccPath

Move Linear Relative Contact

PointTo Vel AccForce

Spiral Search Relative

ExtentsX ExtentsY PathIncrement Vel AccMinForce MaxForce

Error Handler

Move Linear Relative

PointTo Vel Acc

Peg-In-Hole 2

Move to State

GoalState Vel AccPath

Peg-In-Hole 3

Move to State

GoalState Vel AccPath

.
.
.

.
.
.

Move Linear Relative

PointTo Vel Acc

Figure 3.23: Source program for
a poka-yoke QA task.

Experiment setup The experiment setup is
shown in Figure 3.22 (right). An single-cylinder
engine block is mounted on a linear axis, which
is used to simulate stochastic process noise.
A UR5 industrial manipulator12 with an ATI
Gamma force-torque sensor13 are used. A metal
probing tip is attached to the end effector via
a 3D-printed adapter. The source program is
shown in Figure 3.23. The ARTM program rep-
resentation is used. The robot is tasked to ap-
proach three holes on the front, top and back
sides of the engine block, respectively, via a Move
to State planned motion skill. Due to the
presence of process noise, the robot performs a
force-sensitive contact motion (a Move Linear

Relative Contact skill) to establish contact
with the surface. If contact could be made, a
spiral search motion (Spiral Search Relative) follows. The overall task objective
is the minimization of a linear combination of task failure (Φfail, see Equation 3.6)
and cycle time (Φcycle, see Equation 3.5). The Path parameters of the three Move
to State skills as well as the PointTo parameter of Move Linear Relative and
the ExtentX and ExtentY parameters of Spiral Search Relative are optimized.

The shadow program contains learned shadow skills for Move Linear Relative

Contact and Spiral Search Relative. Move Linear Relative Contact is
trained on 3200 real-world contact motions, while Spiral Search Relative is
trained on 2600 real-world executions. At each run, process noise is simulated by
uniformly sampling a spatial offset and translating the engine block accordingly
via the linear axis. DGPMP2-ND is configured with an update rate of β = 1.0 and

12Universal Robots A/S, Odense, Denmark
13ATI Industrial Automation Inc., Apex, USA

139

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

patience φ = 30. SPI is configured with an update rate α = 0.001. Outer-loop SPI
is run for 15 iterations. A total of 20 evaluation trials are performed. For each trial,
a random offset is sampled within a 4mm interval, applied via the linear axis and
both the optimized and unoptimized robot programs are executed.

Results The resulting motion trajectory is shown in Figure 3.22 (left). The
quantitative results are shown in Table 3.4. Across 20 trials, the optimized parame-
terization improves the likelihood of task success by 83 %, 67 % and 186 % for each
of the three holes, respectively. The large difference in the number of successful
insertions for each hole is due to different workpiece geometries around the hole:
Holes 1 and 2 are surrounded by concave surfaces, which can cause the search
motion to spiral away from the hole, and their hole diameter is smaller. Cycle times
are reduced by 39 %, 60 % and 75 % respectively. These reductions are due to a
combination of improved spiral search parameters, whereby a higher probability
of finding the hole implies more spiral searches terminating early, reducing the
expected cycle time per spiral, and optimized, shorter transfer motion trajectories.
All optimized transfer motions are collision-free.

Discussion The results indicate that SPI-DP permits the optimization of robot pro-
gram parameters for complex robot programs consisting of multiple, hierarchically
composed subprograms, as well as the joint optimization of motion trajectories
and robot skill parameters. Task-level metrics such as cycle time and task success
are optimized along with motion-level objectives such as collision avoidance and
smoothness. As in Experiment 3.3.2.1, DGPMP2-ND plans collision-free motions
given a static 3D representation of the environment. With stochastic process noise,
however, collision-freeness or motion-level optimality of planned trajectories cannot
be guaranteed, as the environment at runtime may deviate from the environment
representation used for planning. In Experiment 3.3.2.2, the magnitude of stochas-
tic variations is sufficiently small to cause collisions. By an extension similar to
that proposed by Kienle et al. (2024) for SPI, constructing the collision SDF of
DGPMP2-ND from sensory data about the current environment may ensure that
SPI-DP optimizes robot programs with respect to the current environment at hand.

3.3.3 Related Work

SPI-DP is a nested gradient-based optimization algorithm that integrates an iterative
differentiable motion planner into a model-based first-order parameter optimizer.
As such, SPI-DP is situated at the intersection of differentiable programming and
model-based optimization.

140

3.3. JOINT OPTIMIZATION OF TASK PARAMETERS AND MOTION TRAJECTORIES

3.3.3.1 First-Order Model-Based Optimization

From a bird’s-eye view, SPI-DP performs gradient-based optimization over a partially
learned model of robot dynamics, while incorporating a differentiably implemented,
explicit model of robot kinematics and trajectory semantics. In related fields, several
approaches have been proposed that leverage differentiable programming to create
a forward model, which forms the basis for first-order model-based optimization. Jin
et al. (2020) propose Pontryagin Differentiable Programming (PDP), a framework
for differentiable optimal control. PDP introduces a differentiable optimal control
loop, which permits the differentiation of a system’s trajectory with respect to e.g.
controller parameters. Beyond PDP, first-order, model-based approaches based on
differentiable programming have received increased attention in the field of optimal
control (Amos et al., 2018). Jin et al. (2020) evaluate PDP on a 2-DoF robot arm as
well as a 6-DoF quadrotor. In their analysis, they highlight the central advantage
of model-based first-order optimization: Their incorporation of prior knowledge
(here, of optimal control theory) provides the optimizer with an inductive bias,
enabling the achievement of “higher efficiency and capability than existing learning
adn control methods” (Jin et al., 2020). As SPI-DP operates on a fundamentally
similar principle, the same advantage applies: The GP, obstacle and other factors
are inductive biases for the optimizer, and avoid the need for learning collision-free
planning from data.

In model-based RL, the benefits of inductive priors for learning and optimization
have led to increasing adoption of differentiable, explicit models in conjunction
with learned DNNs. Okada et al. (2017) integrate a differentiable formulation
of path integral optimal control into a neural network architecture, permitting
the end-to-end learning of network and control parameters while providing the
learner with an inductive bias for optimal control. Srinivas et al. (2018) propose
Universal Planning Networks (UPNs), which integrate differentiable planning into
a neural network architecture. UPNs contain a “gradient descent planner”, which
iteratively optimizes a plan to reach a given goal using gradient descent. The
outer-loop learner then performs gradient descent over the “unrolled” computation
graph of the inner planner. This double-loop policy learner resembles SPI-DP in the
context of RL; unlike UPNs, however, SPI-DP plans in C-space rather than latent
space, permitting the intuitive and transparent specification of motion constraints.
Similarly, physics-informed machine learning proposes to integrate differentiable,
mathematical models of the laws of physics in ML models. Lutter et al. (2021) show
that optimizing the parameters of differentiable models of rigid-body dynamics
using offline RL requires less training data and produces more stable results than
learning black-box neural policies. Hu et al. (2019b) propose a differentiable
simulator for soft robots and demonstrate that gradient-based optimizers can
compute viable actuation controllers in considerably fewer iterations than model-
free RL.

141

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

3.3.3.2 Differentiable Motion Planning and Parameter Optimization

Differentiable motion planning permits the use of planning algorithms with known
properties, e.g. convergence or performance guarantees, in conjunction with
gradient-based optimization or learning methods. Ni and Qureshi (2024) lever-
age physics-informed neural networks, combining two ResNet-style DNNs with
a differentiable implementation of the Eikonal equation for constrained motion
planning (Ni and Qureshi, 2022). Yonetani et al. (2021) present a differentiable
implementation of A* search for path planning. They integrate the differentiable
planner with a neural network to realize an end-to-end learnable planning system,
which can be trained to solve planning problems more efficiently than vanilla
A*. Pogančić et al. (2020) propose a more general variant of this approach, by
automatically constructing a differentiable analogue of a black-box combinatorial
solver, which supports backpropagation of errors and computation of gradients, to
facilitate integration into hybrid, neurosymbolic architectures. Hybrid planners
combining neural networks and differentiable search- or optimization-based plan-
ners promise considerably faster planning times, as the neural components may
steer the planner into regions of the planning space which are likely to contain
a solution, based on data seen during training. Bhardwaj et al. (2020) propose
a trainable module for DGPMP2 consisting of a neural network, which outputs
the covariances for the GP, obstacle and other factors. This module is trained to
produce a suitable trade-off between the individual factors for a given environment,
start and goal configurations. SPI-DP exploits the differentiability of DGPMP2 in
a different way: Instead of learning planning parameters, DGPMP2 is integrated
into a DCG representing a larger, end-to-end differentiable robot program, for
first-order program parameter and trajectory optimization. This usage does not,
however, preclude the simultaneous optimization of planner parameters, which is
a promising direction of future research.

SPI-DP leverages a differentiable model of robot kinematics, a differentiable
representation of trajectories as a factor graph as well as a differentiable motion
planner over this factor graph, integrated into a first-order optimizer for robot
program parameters. While the degree of integration achieved by SPI-DP is unique,
one state-of-the-art approach is particularly related to SPI-DP, both in scope and
algorithmic detail. Toussaint et al. (2018) combine physics-informed, differentiable
models with a principled, mathematical robot program representation to solve
TAMP problems. They incorporate differentiable primitives, which impose motion-
level constraints such as smoothness or impulse exchange, into the Logic Geometric
Program (LGP) representation of robot programs (Toussaint, 2015). The TAMP
problem is then solved by Multi-Bound Tree Search (MTBS), a multi-level search-
based optimizer for LGPs that exploits gradient information (Toussaint and Lopes,
2017). The resulting LGP is optimal with respect to the task objectives, while
respecting motion-level constraints. From a high-level perspective, LGP solving
with differentiable primitives addresses the same problem as SPI-DP: Joint task-
and motion-level optimization of robot programs. One significant difference is that

142

3.3. JOINT OPTIMIZATION OF TASK PARAMETERS AND MOTION TRAJECTORIES

SPI-DP performs parameter optimization over a differentiable surrogate, and can
therefore optimize program parameters and motion trajectories for near-arbitrary
source programs.

3.3.4 Discussion

SPI-DP integrates the DGPMP2-ND differentiable motion planner with the SPI
first-order parameter optimizer to jointly optimize program parameter and mo-
tion trajectories. As SPI-DP operates on the shadow program representation, it is
applicable to arbitrary skill-based source program representations with planned
motion skills (see Section 3.3.1.1). For robot programs with such skills, integrating
differentiable motion planning into SPI is necessary to ensure end-to-end differen-
tiability of the shadow program. One core advantage of SPI-DP specifically is that
program parameters and motion trajectories are optimized jointly with respect to
task objectives Φ and the motion-level constraints represented in the DGPMP2-ND
factors. For tasks such as the QA task considered in Experiment 3.3.2.2, the im-
pact of individual skill parameters on task-level objectives such as cycle time are
highly correlated across the complete program. For search-based insertion under
uncertainty, for example, cycle time depends largely on the expected completion
time for search motions, which in turn depends on the target pose of the preceding
approach motion; if that approach motion is a planned motion skill, the planned
motion, in turn, depends on the target pose parameter. As the target pose parameter
changes over the course of optimization, large adjustments to the approach motion
trajectory may be required, as parts of the motion may become infeasible due to
joint limit constraints or collisions with the environment. In short, in the presence
of planned motion skills, coupling parameter optimization and motion planning
ensures that task objectives are achieved while respecting motion constraints. For
practical applications, SPI-DP has the additional advantage of enabling a degree of
reactivity to dynamic environments, enabling replanning without requiring training
or finetuning, provided that the SDF used by DGPMP2-ND represents the current
environment.

Like most gradient-based methods, SPI-DP converges on local minima (Jin et al.,
2020), both with respect to program parameters as well as motion trajectories. For
certain challenging environments, such as narrow passages, SPI-DP may fail to
converge on a set of motions and parameters that solve e.g. a reaching task. This
limitation may be mitigated by “warm-starting” DGPMP2-NDwith initial trajectories
that already approximately solve the task (Lembono et al., 2020), which can be
pre-planned by a non-differentiable, sampling-based planner. Likewise, DGPMP2-
ND can be restarted with different initial trajectories to increase the probability of
convergence in complex environments.

The entanglement of parameter and trajectory optimization gives rise to an
additional, less evident limitation. In the current implementation, situations can
occur in which the task objectives Φ may clash with motion constraints during

143

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

optimization. It is possible, for example, that the outer optimizer (SPI) changes
high-level program parameters so that the trajectory starts or ends in collision; this
occurs if the skill before a planned motion ends in collision, or if SPI optimizes the
goal pose parameter of a planned motion into collision. This is due to the fact that Φ
does not reflect motion-level objectives such as collision-freeness, and SPI may move
e.g. goal pose parameters into collision objects, which would make collision-free
planning impossible. To address this limitation, a global collision-freeness objective
may be added to Φ, in a manner similar to other, task-level objectives such as
minimization of cycle time (see Equation 3.5). This would not require architectural
or algorithmic changes, as Φ is evaluated for the complete posterior trajectory θP̄ ,
the collision SDF of the environment is already available, and the differentiable
obstacle loss of DGPMP2-ND can be applied at the program level as part of Φ. The
same reasoning applies for other motion-level constraints such as adherence to joint
limits, which can be integrated into Φ in the same manner. Evaluation of SPI-DP
with such global motion constraints is a promising avenue of future research.

Nested gradient-based optimizers such as SPI-DP “unroll” the inner optimization
loop into an acyclic DCG and perform automatic differentiation on this unrolled
graph. Jin et al. (2020) motivate PDP in part by showing that such “unrolling” is
memory intensive and incurs performance penalties, as the unrolled DCG grows
with the number of inner-loop SGD iterations. In the context of SPI-DP, it has been
experimentally observed that the memory footprint grows with the number of inner-
loop DGPMP2-ND iterations. Linear approximation of the inner-loop gradient as in
FOMAML (Finn and Levine, 2017) or Reptile (Nichol et al., 2018) can considerably
reduce the memory requirements of SPI-DP and will be considered in future work.

3.4 Discussion

SPI and its variants promises to optimize robot programs both with respect to
program parameters as well as motion trajectories. The central innovation of SPI is
that it performs first-order optimization over a learned, differentiable surrogate of
a robot program. Most of SPI’s properties stem from the dual nature of the NRP
program representation, which permits SPI to combine the virtues of black-box
optimizers with first-order optimization approaches. As NRPs allow source pro-
grams to be represented in a wide range of skill-based program representations,
SPI can optimize the parameters of near-arbitrary robot programs, without impos-
ing representational requirements such as differentiability; at the same time, by
optimizing over the shadow program DCG, SPI can leverage gradient information
to steer the search along the direction of steepest descent. The dual nature of SPI
as a black-box, first-order optimizer enables the direct application of SPI in real-
world industrial settings, where non-differentiable source program representations
predominate. Most saliently for industrial use, SPI is fundamentally compatible
with industrial safety certification: As the source program representation is used

144

3.4. DISCUSSION

for execution, which may have been audited and certified for safety, the program
parameters optimized by SPI may be written back to the certified program. Often,
re-certification will not be required, provided the optimal parameters lie in a given,
pre-approved range.

The demonstrated use cases ranging from household pick-and-place to industrial
assembly tasks highlight the fact that SPI does not have any algorithmic restrictions
on a given task or family of tasks. SPI can be used to optimize, in principle, robot
program parameters for arbitrary tasks, provided they are realized by a parame-
terized, skill-based source program, and that task objectives can be expressed as
a differentiable function of the expected posterior trajectory. The experiments in
this chapter illustrate a variety of task objectives, including minimization of cycle
time, respect of force limits or similarity to a human demonstration, as well as
combination of multiple, partly contradictory objectives. They illustrate that SPI is
a general-purpose optimizer for robot programs that supports a wide variety of use
cases ranging from the optimization of process indicators to human imitation and
collision-free planning.

One considerable advantage of SPI as a model-based optimizer is that it solves
optimization problems without requiring optimal labels; instead, models are trained
on data of robot behavior “as-is”, and optimization is conducted over this learned
forward model of the process. While this avoids human labels or RL-like active
exploration, both of which are challenging to realize in real-world industrial or
service scenarios, SPI does require training data that both accurately reflects robot
behavior and covers sufficiently large regions of the parameter and state spaces.
Both of these requirements imply real-world challenges. For many applications,
collecting large amounts of observations is impossible or prohibitively expensive.
Consider destructive, irreversible processes such as sanding or drilling, or robot
actions that only rarely occur, such as recovery routines for infrequent errors.
For such applications, only limited datasets are available. Large-scale pretraining
in simulation considerably reduces the real-world data requirements of SPI (see
Experiments 3.1.3 and 3.2.3). Follow-up work by Kienle et al. (2024) explores the
integration of an additional vision modality, to make SPI conditional on images
of the current environment. The pretraining of multimodal foundation models on
diverse tasks is an avenue of ongoing and future work that promises to further
reduce the real-world data requirements of SPI. The requirement for diverse training
data is mitigated, if not altogether eliminated, by sequential transfer learning (see
Experiment 3.2.3), albeit only at the finetuning stage. Future work is concerned
with investigating the degree to which shadow programs generalize to inputs
outside of their training data distribution.

From the perspective of human-machine interaction, SPI holds tremendous
promise, but also poses a set of challenges. SPI permits the optimization of robot
program parameters and motion trajectories with respect to near-arbitrary task
objectives purely by optimization over a learned model. In practice, SPI avoids the
time-consuming and expensive phase of iterative parameter tuning by human robot

145

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

programmers and domain experts, particularly for tasks which are, for humans,
challenging to observe and understand. Small-scale, fine-grained assembly tasks
with tight tolerances, physical contact dynamics or stochastic noise such as the use
cases considered in Sections 3.1.3 and 3.2.3 are salient examples; another class
of optimization problems challenging to human programmers are multicriterial
optimization problems with mutually opposing task objectives such as the examples
considered in Section 3.3.2. For such applications, “programming by optimization”
(Hoos, 2012) via data-driven optimizers such as SPI presents a better, faster and
more economical alternative to human trial and error. However, while the integra-
tion of SPI into productive robot programming workflows removes the burden of
iterative trial-and-error from program parameterization, it simultaneously intro-
duces the challenge for robot programmers to use and configure SPI. The skills
required to configure data collection, train ML models and choose suitable hyper-
parameters for an iterative optimizer are outside the scope of a typical industry
practitioner’s experience. To help bridge this “skill gap” (Li et al., 2021), a GUI has
been developed to guide the robot programmer through the program optimization
process (see Alt et al. (2024d) and Chapter 5). It comprises intuitive user interfaces
for the selection of the subprogram to be optimized, for the specification and analy-
sis of training datasets, the training of a shadow program and the configuration
and analysis of SPI optimization. The GUI employs XAI and data visualization
techniques to make model performance, data quality and optimizer behavior as in-
tuitive as possible for the user and offers two different levels of assistance (“guided”
and “expert” modes), allowing users to select the mode corresponding to their level
of AI expertise. A preliminary, small-scale user survey indicates that the proposed
GUI enables AI novices to optimize robot program parameters for a real-world gear
assembly task, with participants highlighting the usefulness and intuitive usability
of the system (Alt et al., 2024d). A larger-scale user study of SPI in the context of
industrial robot programming is required to provide more robust insight into the
benefits and challenges of data-driven program parameter optimization in practical
applications.

3.5 Conclusion

3.5.1 Summary

Section 3.1 introduced SPI, a first-order optimizer for parameterized robot programs.
It leverages NRPs, differentiable forward models of robot control programs, to
perform model-based, iterative optimization over a learned surrogate of the robot
program. SPI supports various differentiable task objectives, including cycle time,
task success, path length, and force/torque constraints, allowing for multicriterial
optimization by combining multiple objectives. Experiments demonstrate the
effectiveness of SPI in optimizing force-controlled search (Experiment 3.1.3.2)
and contact motions (Experiment 3.1.3.1) for industrial robotics tasks. Results

146

3.5. CONCLUSION

show that SPI successfully optimizes motion parameters to optimize target contact
forces while minimizing cycle time, and can generalize across different surfaces and
program representations. SPI presents a data-driven approach to robot program
parameterization, promising to free up human programmers for higher-level tasks.

Section 3.2 introduced a lifelong learning approach that continuously updates
the shadow program to reflect current robot-environment dynamics. The chapter
addresses the challenge of efficiently training NRPs in stochastic environments
and keeping them up-to-date with nonstationary noise processes. A sequential
transfer learning scheme is proposed, where the shadow program is pretrained
on a large dataset representing various environment distributions and then fine-
tuned at runtime on a smaller dataset of the current environment. This approach
enables data-efficient optimization of robot program parameters and adaptation to
changing environment conditions. Experiments 3.2.3.1 and 3.2.3.3 demonstrate
the ability of of SPI with sequential transfer learning to optimize robot program
parameters with respect to stationary and nonstationary stochastic environments.
Sequential transfer learning is found to outperform meta learning for data-efficient
training of shadow models in stochastic environments.

Section 3.3 introduced SPI-DP, an extension of SPI for jointly optimizing robot
program parameters and motion trajectories. SPI-DP integrates the DGPMP2-ND
differentiable motion planner into the shadow program framework, allowing for
optimization of planned motion skills while respecting constraints like collision
avoidance and smoothness. SPI-DP performs double-loop gradient descent over the
shadow program to optimize both task-level objectives and motion-level constraints.
In Experiment 3.3.2.1, SPI-DP successfully plans collision-free, smooth trajectories
for placing cups and wine glasses based on a single human demonstration, even
when target poses differ from the demonstration. Experiment 3.3.2.2 shows the
ability of SPI-DP to jointly optimize task success and efficiency in a poka-yoke
QA task for engine block inspection. These experiments validate the effectiveness
of SPI-DP in solving complex robotic manipulation problems that require both
parameter and trajectory optimization.

3.5.2 Outlook

Since its first publication (Alt et al., 2021), SPI has been under active development
and has been the subject of several scientific publications (Alt et al., 2022b; Alt
et al., 2025). Kienle et al. (2024) introduce the Multimodal Trajectory Transformer
(MuTT) neural network architecture as a drop-in replacement for the GRU-based
neural networks that form the learnable components of shadow programs (see
Section 2.4.1.4). MuTT permits the conditioning of shadow programs on an image
of the current environment, and consequently the gradient-based optimization
of robot program parameters for a given environment. In industrial grasping
and assembly use cases, MuTT-based shadow programs permit SPI to generate
optimized program parameters for the particular environment at hand, enabling

147

CHAPTER 3. FIRST-ORDER ROBOT PROGRAM PARAMETER OPTIMIZATION

the use of SPI in an on-line way without continuous retraining. Ongoing research
investigates the use of MuTT as a “foundation model”, enabling SPI for unseen
tasks or environments under few-shot or zero-shot regimes.

Another line of ongoing research investigates the application of SPI in the context
of real-world industrial robot programming. Section 5.1.1 of Chapter 5 presents a
general-purpose workflow for AI-based robot programming, which maps SPI and
its variants as well as the program synthesis approaches proposed in Chapter 4 to
the lifecycle of a an industrial robot program. It positions SPI as a practical, data-
driven alternative or supplement to parameter tweaking by human experts during
the ramp-up phase of industrial robot workcells, and shows that SPI with lifelong
learning can address several use cases in robot-based production processes, such as
re-optimization after maintenance interventions or wear and tear compensation.

Human programmers are, and likely will remain for the foreseeable future, a
crucial factor in industrial automation. To deploy AI-enabled robot programming at
scale, intuitive human-machine interfaces must be developed to enable AI novices to
use and interact with AI systems such as SPI. Section 5.1.2 introduces an Explanation
User Interface (XUI) for SPI, which guides users through the model training and
program optimization workflow while providing explanation and visualization
features depending on the user’s level of AI expertise. Future work will focus
on larger-scale, representative user studies to validate, study and improve user
interaction.

Beyond scientific study, SPI is subject to ongoing integration into a larger-scale
commercial robot programming ecosystem. SPI has been patented (Alt et al., 2022a)
and an early version of the SPI source code is available under an open-source li-
cense.14 SPI is being integrated into the ArtiMinds RPS and Learning and Analytics
for Robots (LAR) product families.15 Integration into the RPS robot IDE permits the
automatic optimization of robot programs in the ARTM program representation
with SPI, offering robot programmers the option of optimizing program parameters
through intuitive user interfaces. Integration into the LAR platform for industrial
robot data enables automatic collection of robot data from a range of robot man-
ufacturers as well as both seamless training of shadow models and model-based
program parameter optimization on cloud servers or edge devices. In its commer-
cial implementation, SPI contributes to the larger-scale push toward data-driven,
flexible manufacturing as well as human-centric and resilient production in the
contexts of Industry 4.0 and Industry 5.0 (Xu et al., 2021).

14https://github.com/benjaminalt/shadow-program-inversion
15ArtiMinds Robotics GmbH, Karlsruhe, Germany

148

https://github.com/benjaminalt/shadow-program-inversion

CHAPTER 4

Interactive AI-Enabled Robot Program

Synthesis

Programming is an act of bidirectional communication between the programmer
and the technical system: Through the program, the programmer conveys their
intent to the system, and the system’s behavior can, in turn, be understood by the
programmer by reading the program (see Chapter 1). This chapter addresses the
challenges of program creation, the determination of a suitable sequence of robot
skills and initial parameterizations to perform a given task.

When programming robots, programmers leverage a range of domain- and task-
specific expertise. Robot programming requires a thorough understanding of robot
capabilities, including available skills and physical abilities based on kinematics.
Moreover, it requires a deep understanding of the problem domain. Programming
an industrial robot to sand a workpiece, for example, requires understanding of
what sanding means, implying both knowledge about what constitutes a well-
sanded surface for the particular application – what is the goal to be achieved –
and what sequence of actions is likely to lead to that goal. This includes knowledge
of possible failure modes, and strategies to recover from them: What happens the
sander is pressed onto the surface with too much force, or if it is moved across
the surface at a velocity that is too fast or too slow? What happens if there is a
bump in the surface, which requires special treatment? Answering these questions
requires a profound, latent understanding of domain-specific and common-sense
physics. In the context of sanding, it requires highly task-specific understanding
of the physics of abrasion and how sanding pads of a given material interact with
a given workpiece materials; but also a common-sense understanding of what a
smooth surface looks and feels like.

Furthermore, programming requires mapping intended effects to the robot
actions that can produce them, subject to kinematic constraints. Some actions a
human can perform may not be feasible, or a sequence of several robot actions may
be required to achieve the same goal. One example is tool use: Where the dexterity
of the human hand may permit a human to pick up and seamlessly use a tool in a

149

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

variety of ways, a robot may have to put down and regrasp the tool to perform a
task due to kinematic constraints imposed by a gripper with few DoF.

Programming is an iterative activity: Programs may be read and modified
many times after their initial creation. During the ramp-up phase of an industrial
robot-based assembly line, for example, programs for individual robot workcells
are iteratively improved until the e.g. quality or cycle time requirements of the
production process are met. Likewise, programs are read by human auditors for
safety certification, and adjusted again after deployment when production lines are
reconfigured for new workpiece variants or hardware is exchanged for scheduled
maintenance. The challenge of creating robot programs is then amplified by the
additional requirement of creating programs in a way which facilitates later reading
and editing, likely by people other than the initial programmer.

Programming requires overcoming the representational divide between the
ways in which humans conceptualize, reason about and express physical processes,
and the syntax and semantics of robot programs. This is challenging even for
experienced programmers. It is aided somewhat by structured, explicit and graph-
ical program representations; it would be aided further if human programmers
could specify and interact with programs in a modality in which they intuitively
reason and communicate, such as natural language. Algorithms and frameworks
for robot program synthesis that enable humans to intuitively create and modify
robot programs are an important step toward democratizing robotics, permitting
users with little expertise to instruct robots what to do and correct them when
they make mistakes. Use of algorithms and representations that permit humans to
understand the resulting robot behavior, moreover, may foster trust, paving a way
for increasing the acceptance of AI-based tools by human programmers.

Research questions While SPI addresses parameter inference through optimiza-
tion over a surrogate model, this chapter focuses on the complementary challenge
of program synthesis: creating the initial program skeleton, a preparameterized se-
quence of robot actions, to solve a given task. It addresses the overarching research
questions:

1. How can humans express their intent in a way that permits precision and
detail where required, while avoiding redundant or unneeded specification?

2. How can executable robot programs be synthesized from underspecified task
descriptions provided by human programmers?

3. How can human expert knowledge be represented, stored and leveraged for
the purpose of automatic or interactive program synthesis?

4. To what extent can explicit robot program representations support the synthe-
sis of robot programs that can solve complex tasks while being interpretable
by human programmers?

150

Training Data
Collection

Neurosymbolic
Robot Programs

First-Order Robot
Program Optimization

First-Order
Optimization

Real-World
Execution

Surrogate Model
Learning

repeat

Linear

+

...

...

tanh

-1

...

Duplication

Pointwise
operation

...

Knowledge-Driven
Robot Program Synthesis

VR Human
Demonstration

Task
Abstraction

Task
Grounding

Program
Execution

Natural-Language
Interaction

KR&R

Engine

Figure 4.1: The MetaWizard family of robot program synthesis systems leverage
explicitly represented, structured knowledge representations to create executable
robot programs from high-level user inputs such as VR human demonstrations or
natural-language interaction.

Overview To address these questions, this chapter introduces and studies the
MetaWizard family of systems for interactive, knowledge-driven robot program
synthesis. The central innovation of the MetaWizard systems is the notion of
modular composition of symbolic and subsymbolic algorithms and knowledge
sources. They permit the user to express their intents in high-level, intuitive
representations such as VR demonstrations or natural language. They then leverage
semisymbolic reasoning, such as hybrid reasoning over knowledge bases or Retrieval-
Augmented Generation (RAG), to translate this description of user intent into an
underspecified plan of robot actions, and to ground this plan in the real-world
execution environment. The grounded plan is then translated into a robot program,
which is executed on the robot.

This chapter introduces systems for both end-to-end and interactive program
synthesis. In the context of neurosymbolic programmingwith NRPs, theMetaWizard
family of program synthesizers assist robot programmers in the initial creation of
NRPs given a high-level description of the task at hand. They synthesize NRPs by
exploiting the symbolic program structure and known semantics of NRP source
programs. To that end, they leverage existing task knowledge, encoded in symbolic
representations of knowledge or data, to realize program synthesis for complex
tasks without requiring data-driven learning or exploration. All three MetaWizard
variants have a modular architecture, permitting the flexible integration of different

151

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

interaction modalities, knowledge sources and reasoners. Their ability to generalize
to novel tasks and domains gives the MetaWizards their name: From a user’s
perspective, a MetaWizard is a programming assistant (“wizard”) for the synthesis of
robot programs. From a technical perspective, the provision of structured knowledge
gives rise to programming assistants for new tasks and domains, without requiring
changes to the program synthesis system’s algorithms or code. In this sense,
MetaWizards are metaprogramming systems which, parameterized with structured
knowledge, synthesize robot programs for the tasks and environments represented
by this knowledge.

Outline Section 4.1 introduces the MetaWizard program synthesis system as well
as the algorithms and data structures used to represent and reason about tasks,
actions and plans. It demonstrates the ability of MetaWizard to synthesize NRP
source programs from human VR demonstrations in the context of retail assistance.
Section 4.2 proposes an MetaWizard2, a variant of MetaWizard that realizes an
interactive robot programming paradigm, as well as algorithms and data structures
for grounding underspecified action plans through dialogue with the user. The
approach is validated on a surface treatment task in the context of robot-based
remanufacturing. Section 4.3 introduces MetaWizardLLM, a MetaWizard variant
that leverages pretrained LLMs for reasoning about high-level task sequences, and
grounds generated plans in a structured, digital representation of the environ-
ment. MetaWizardLLM is validated on an industrial gear assembly task. Finally,
Sections 4.4 and 4.5 contextualize and discuss MetaWizard, MetaWizard2 and
MetaWizardLLM in the context of AI-enabled robot programming in general, and
neurosymbolic programming in particular.

4.1 Knowledge-Driven Robot Program Synthesis

This section introduces the MetaWizard program synthesis system, presenting an
extended account of work first published in (Alt et al., 2023).

4.1.1 Overview

MetaWizard is a program synthesis system capable of bootstrapping robot program
skeletons to perform concrete manipulation problems given sparse task descrip-
tions. It combines a structured, semisymbolic representation of task, domain and
commonsense knowledge, a framework for human VR demonstrations of tasks, as
well as a subsystem for grounding generated plans in simulations and real-world
percepts (see Figure 4.2).

MetaWizard decomposes program synthesis into the following steps:

1. User input: The user describes the task at hand via an intuitive modality,
such as a demonstration in VR or natural language. The task description is

152

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

VR Demonstration

Task Abstraction2

1

3 Task Grounding

Program Execution4

KR&R
Engine

...

Abstract
task sequence

Semisymbolic user
input

...

...

Robot control
program

...

Robot
experience

data

Figure 4.2: High-level overview of the MetaWizard system for knowledge-driven
program synthesis.

not required to be complete; missing task-relevant details are resolved during
task grounding (see below). The task description is parsed into a structured,
hybrid symbolic-subsymbolic (“semisymbolic”) representation of intended
actions and effects and stored in a knowledge base. The process of parsing
user input is described in detail in Section 4.1.3.

2. Task abstraction: User input is typically described in terms of human actions
or capabilities, often referring to objects in a different environment (such
as a VR environment) than the environment at hand. By reasoning over the
knowledge base, the parsed task description is lifted to the abstract level.
The resulting abstract task sequence is heavily underspecified and does not
refer to, e.g., concrete robot actions to complete it. Section 4.1.4 provides a
detailed overview.

3. Task grounding: The abstract task sequence is grounded in prior knowledge,
simulations and real-world sensory data to form a fully specified NRP source
program, a sequence of parameterized robot skills that solve the task with
the given robot in the environment at hand. Task grounding is described in
detail in Section 4.1.5.

4. Program execution: The source program is executed on the given robot
hardware, and robot experience data can be fed back into the knowledge
base. Section 4.1.6 details the execution pipeline.

Figure 4.2 illustrates the MetaWizard framework from an algorithmic perspec-
tive. It highlights the central role of KR&R in the proposed framework, which
combines a semisymbolic knowledge base with reasoners operating on it to realize
functionality such as deduction of facts from existing knowledge, induction of
knowledge from experience data, or symbolic constraint-based planning of task
sequences.

153

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

4.1.2 Knowledge Representation

MetaWizard uses the KnowRob KR&R engine (Beetz et al., 2018) as a knowledge
repository and reasoning platform. KnowRob permits downstream systems to
reason over a semisymbolic knowledge representation, combining subsymbolic
modalities such as vision or robot trajectory data with symbolic representations of
knowledge such as ontologies.

4.1.2.1 A Semisymbolic Representation of Knowledge

The central data structure in KnowRob is a knowledge graph that combines on-
tological with subsymbolic knowledge. It is realized via anTriple store ▷ Resource Description
Framework (RDF) triple store, which stores data as subject-predicate-object triples
and is integrated with subsymbolic sources of knowledge such as a database of
spatial transforms.

RDF triple store At the data level, symbolic knowledge is represented as entries in
the triple store. Consider the retail assistance scenario introduced in Chapter 1. The
environment, such as the products on the shelves, their types and other properties,
information about the robot as well as any other task-relevant or commonsense
information is represented as RDF triples:

1 @prefix rdf: <http :// www.w3.org /1999/02/22-rdf-syntax-ns#>

2 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf-schema#>

3 @prefix dul: <http :// www.ontologydesignpatterns.org/ont/dul/DUL.owl#>

4 @prefix soma: <http :// www.ease-crc.org/ont/SOMA.owl#>

5 @prefix dm: <http :// knowrob.org/kb/supermarket.owl#>

6 @prefix mw: <http :// www.artiminds.com/kb/metawizard.owl#>

7
8 dm:HealingSalve_0 rdf:type dm:HealingSalve

9 dm:HealingSalve rdfs:subClassOf dul:DesignedArtifact

10 dm:DMShelfMountingBar_0 rdf:type dm:DMShelfMountingBar

11 dm:DMShelfMountingBar rdfs:subClassOf mw:Hook

12 # ...

13 mw:UR5Robotiq_0 rdf:type mw:UR5Robotiq

14 mw:UR5Robotiq_0 srdl2-comp:hasBodyPart mw:UR5Arm_0

15 mw:UR5Robotiq_0 srdl2-comp:hasBodyPart mw:RobotiqGripper_0

16 mw:UR5Robotiq_0 mw:hasTCPName "tcp"

17 # ...

18 mw:hasTCPName rdfs:subPropertyOf soma:hasNameString

19 # ...

Listing 4.1: Example for a KnowRob knowledge base in RDF Turtle syntax
(W3C, 2014). The loaded ontologies supermarket.owl and metawizard.owl

are described in greater detail in Sections 4.1.2.3 and 4.1.7.

This extract of the knowledge base (KB) from Experiment 4.1.7 contains in-
formation about three individuals: An product (dm:HealingSalve_0), a hanger
(dm:DMShelfMountingBar_0) and a robot (mw:UR5Robotiq_0). They represent
physical entities that exist in the real-world environment. Moreover, the KB also
contains information about them, such as their object types (e.g. dm:HealingSalve)

154

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

or their components (e.g. mw:RobotiqGripper_0, referring to the gripper which,
together with the robot arm mw:UR5Arm_0, makes up the robot mw:UR5Robotiq_0).
Listing 4.1 illustrates several core features of KnowRob’s RDF triple store.

First, entities, their types, their properties and relations between them are de-
fined in terms of ontologies, such as the Socio-Physical Model of Activities (SOMA)
(Beßler et al., 2021), DOLCE+DnS Ultralite (DUL) (Presutti and Gangemi, 2016),
and others. The KB comprises the RDF representation of the complete ontol-
ogy hierarchy, including upper-level ontologies. By including the complete on-
tology hierarchy in the triple store, the KB contains common-sense knowledge
defined in higher-level ontologies such as DUL. Trivial-seeming relations such as
‘dul:DesignedArtifact rdfs:subClassOf dul:PhysicalObject’ (“every de-
signed artifact is a physical object”) enable the definition of high-level reasoners
that exploit the transitivity of object properties, permitting inferences such as “if
every physical object has a mass, then every designed artifact must also have a
mass”.

Second, Both TBox and ABox information is stored in the same KB. The
knowedge base contains e.g. information about class hierarchies, such as the
TBox assertion ‘dm:HealingSalve rdfs:subClassOf dul:DesignedArtifact’

declaring that the product category “healing salve” belongs to the broader cate-
gory of designed artifacts (as opposed to other object categories, such as biologi-
cal objects or substances). It also contains ABox assertions about indiviuals (e.g.
‘dm:HealingSalve_0 rdf:type dm:HealingSalve’, the object dm:HealingSalve_-
0 is an instance of the object category “healing salve”) and the relationships be-
tween them (e.g. ‘mw:UR5Robotiq_0 srdl2-comp:hasBodyPart mw:UR5Arm_0’,
the robotic arm mw:UR5Arm_0 is a part of the particular robot mw:UR5Robotiq_0).

Third, the knowledge base can be dynamically modified at runtime, and new
ABox and TBox assertions can be added at any time. This is crucial for learning
from experience, making inferences in dynamic environments, or implementing
planners that modify a shared state.

Spatial data and semantic maps One of the core distinguishing features of
KnowRob is that it is a hybrid symbolic-subsymbolic reasoning system. At the level
of the knowledge base, this reflects in the integration of additional data structures
for subsymbolic data, which is semantically connected to the symbolic data structure
(the RDF triple store). One such data structure is the ◁ TF databasetransformation (TF) database,
a data structure for timestamped spatial transformations, including both the poses
of objects in the environment as well as the transformations between the robot links.
Both the RDF triple store and the TF database are implemented as key-value stores
sharing the same database technology (MongoDB, 2023). Poses in the TF database
and objects represented the RDF triple store are linked by the ◁ Semantic mapsemantic map, a URDF
representation of the environment as well as the agents acting in it, such as robots,
which defines the (initial) poses of all known environment objects with respect to
some reference coordinate system, forming a TF tree with the world origin at its

155

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

vr:LeftHand_0

vr:RightHand_0

dm:DMShelfMountingBar_0

dm:ShoppingBasket_0

dm:HangingDummy_0

dm:DMShelfMountingBar_1

dm:HealingSalve_0

mw:RobotiqGripper_0

mw:UR5Arm_0

dm:DMShelfMountingBar_0

dm:DMShelfMountingBar_1

dm:DMShelfMountingBar_2

Figure 4.3: Semantic maps of VR (left) and real-world (right) supermarket envi-
ronments.

root. Moreover, the semantic map defines kinematic constraints on objects, such as
connections to other objects in kinematic chains, which can be accessed by hybrid
reasoning systems. The semantic map links the TF database to the symbolic KB
by associating string identifiers with the links and joints of objects and agents,
which are in turn linked to individuals in the RDF triple store via properties such
as soma:hasNameString. In the triple store shown in Listing 4.1, the TCP of robot
mw:UR5Robotiq_0 is linked to the literal “tcp” via mw:hasTCPName, a subproperty
of soma:hasNameString. The string “tcp” is a key for lookup in the semantic map
and TF database, permitting hybrid reasoners to access the robot’s TCP pose at a
given time. Figure 4.3 illustrates the semantic map for both a VR and real-world
environment in the context of a retail assistance task. By using the RDF triple store,
TF database and semantic map, hybrid reasoners can perform spatio-temporal
reasoning, inferring e.g. that an object was grasped by the robot or contained or
otherwise constrained by another object. Tenorth and Beetz (2017) and Pangercic
et al. (2012) describe the semi-symbolic knowledge representation of KnowRob in
greater detail.

Prolog knowledge base An additional central feature of KnowRob is the tight
integration between the semisymbolic knowledge base and the Prolog language and
reasoning framework (Wielemaker et al., 2012). KnowRob permits the querying
and modification of the KB via Prolog at runtime. To that end, KnowRob provides a
MongoDB backend for Prolog, which exposes the RDF triple store and TF database
to Prolog. Via the KnowRob query language, a Prolog language extension that
provides Prolog predicates for accessing and modifying the KB. The predicate kb_-
call(P) is true if predicate or list of predicates P is true for the current state of the
KB. kb_project(P) is always true and has the side effect of inserting predicate
P into the KB. kb_unproject(P) is always true and retracts P from the KB. The
predicate holds(S, P, O) is true if the subject-predicate-object triple ‘S P O’ is
in the RDF triple store. In combination, holds, kb_project, kb_unproject and
kb_call permit the dynamic assertion, retraction and retrieval of knowledge by

156

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

Prolog programs, and natively expose the RDF triple store to the Prolog runtime,
enabling Prolog reasoners to perform unification over variables grounded in the
RDF triple store. Moreover, it permits the initialization and modification of parts of
the KB at runtime, which is particularly useful for knowledge that is hard to define
in OWL. Consider the following example:

1 ?- kb_project ([holds('Object_0 ', rdf:'type', owl:'NamedIndividual '),

2 holds('Object_0 ', rdf:'type', dm:'LaundryDetergent ')]).

3 true.

4
5 ?- kb_call(holds('Object_0 ', rdf:'type', T)).

6 T = dm:'LaundryDetergent ' ;

7 T = owl:'NamedIndividual '.

8
9 ?- kb_unproject(holds('Object_0 ', rdf:'type', dm:'LaundryDetergent ')).

10 true.

11
12 ?- kb_call(holds('Object_0 ', rdf:'type', T)).

13 T = owl:'NamedIndividual '.

Listing 4.2: Code example for dynamic knowledge assertion and retraction in the
KnowRob knowledge base.

kb_project on line 1 asserts that Object_0 is an individual of type dm:Laundry-
Detergent into the knowledge base by inserting the corresponding triple into the
RDF triple store. Namespace expansion of e.g. ‘rdf:’ into the corresponding URLs
is handled by the implementation of kb_project. kb_call on line 5 retrieves the
asserted knowledge from the knowledge base by unifying P with the the triples.
After the call to kb_unproject on line 9, the knowledge base no longer contains
the fact that Object_0 is of type dm:LaundryDetergent.

The KnowRob query language introduces two new operators that simplify
the projection and retrieval of knowledge for complex predicates. The projection
operator +> replaces the Prolog operator :-, asserts all statements made in the body
of the predicate into the semisymbolic knowledge base and makes the predicate
available for use with kb_project. The retrieval operator ?> grounds all statements
made in the body of the predicate in the semisymbolic knowledge base, and makes
the predicate available for use with kb_call. The combined operator ?+> makes
the predicate available for both projection and retrieval. Consider the following
example:

1 has_time_interval(Event , StartTime , EndTime) +>

2 new_iri(Interval , dul:'TimeInterval '),

3 has_time_interval(Event , Interval),

4 holds(Interval , soma:'hasIntervalBegin ', StartTime),

5 holds(Interval , soma:'hasIntervalEnd ', EndTime).

6
7 has_time_interval(Event , StartTime , EndTime) ?>

8 has_time_interval(Event , Interval),

9 holds(Interval , soma:'hasIntervalBegin ', StartTime),

10 holds(Interval , soma:'hasIntervalEnd ', EndTime).

Listing 4.3: Code example for predicates defined with KnowRob’s projection and
retrieval operators.

157

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

The predicate has_time_interval associates an Event with a start and end time.
The respective definitions of projection and retrieval differ in that for projection,
the prolog variable Interval must first be assigned an Internationalized Resource
Identifier (IRI), which identifies it in the RDF triple store. Subsequent calls to
kb_call(has_time_interval(‘Event_0’, StartTime, EndTime)) and kb_-

project(has_time_interval(‘Event_0’, 10.2, 11.5)) retrieve or project a
start and end time for a given event ‘Event_0’. Use of the projection and retrieval
operators permit the creation of complex reasoning routines that read from and
write to the semisymbolic knowledge base, and enable seamless interaction with
native Prolog programs: Prolog variables grounded through retrieval are regular
prolog variables, and kb_call and kb_project support unification and can be
used like native Prolog predicates. MetaWizard’s reasoners for task abstraction
and program synthesis are largely implemented as Prolog predicates using the
KnowRob query language extension (see Section 4.1.4).

4.1.2.2 An Ontological Representation of Common-Sense and Domain Knowl-

edge

MetaWizard represents both symbolic domain knowledge as well as commonsense
knowledge as ontologies. When loaded, they are converted into an RDF representa-
tion by KnowRob and are made available to reasoners as part of the semi-symbolic
knowledge base. When designing ontologies, a principle of parsimony was followed,
and only entities that were actually needed to solve a practical use case (here,
Experiment 4.1.7) were modeled as ontological concepts, without loss of generality:
Due to inheritance from general-purpose ontologies such as the Socio-Physical
Model of Activities (SOMA) (Beßler et al., 2021) and DUL (Presutti and Gangemi,
2016), the ontologies can be populated with additional concepts in the future,
should they be needed for different use cases.

Domain ontology for robot programming In Alt et al. (2023), my colleagues
an ontology for knowledge-driven robot programming (metawizard.owl) is in-
troduced that provides knowledge and fundamental concepts required for robot
program synthesis. It extends SOMA, which is itself a domain ontology for everyday
activities with a focus on robotics and and which models high-level, general-purpose
concepts such as actions, processes, states or objects (e.g. soma:PhysicalAction,
soma:Physical Process, soma:State and soma:PhysicalObject), as well as
relations between them (e.g. soma:hasAction, soma:isEndLinkOf). The robot
programming ontology provides robot programming-related concepts at the finer
level of granularity required by reasoners for practical program synthesis problems:

• It fleshes out the SOMA role hierarchy with concepts such as mw:Gripper-
Role, mw:Supporter (children of soma:LocatumRole, the active parts in a re-
lation), mw:GraspedObject or mw:SupportedObject (children of soma:Relatum-
Role, the passive parts in a relation), which permit the specification or infer-

158

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

ence of the semantics of manipulation actions with respect to the participants
(robots and objects) involved in them.

• It adds general-purpose object categories not provided by SOMA, such as
mw:Hook, or object features, such as mw:Base, mw:GraspPoint, mw:Hole or
mw:Tip (children of soma:RelevantPart) and corresponding object proper-
ties such as mw:hasGraspPoint (subproperty of dul:associatedWith).

• It defines concepts for robot kinematics that are not modeled in SOMA at the
required level of granularity, such as mw:IndexFinger and mw:Thumb (chil-
dren of mw:soma:Finger) for a two-finger gripper, as well as corresponding
object properties such as mw:hasFinger (subproperty of dul:hasPart).

Application ontology for synthesis of skill-based robot programs Tasks in
SOMA are defined at a very abstract level contains only very high-level tasks
such as soma:EndEffectorPositioning, soma:PickingUp etc. KnowRob uses
the ARTM for program synthesis (see Section 4.1.5), which defines a broadly
useful set of high-level tasks and low-level skills. An ontology of the ARTM
(artm.owl) for use with KnowRob is proposed (Alt et al., 2023). It defines both prim-
itive and composite task definitions: Primitive tasks such as artm:MoveToPoint,
artm:Grasp or artm:RelativeMotion correspond one-to-one to robot skills, here
Move to Point, Grasp or Move Linear Relative. Composite tasks such as
artm:InsertHoleOntoPeg correspond to complex task sequences, here an approach-
search-insert sequence for a variant of a peg-in-hole task, where a workpiece with
a hole is threaded onto a peg. A total of 27 different manipulation tasks are
represented in the ontology.

◁ ActionsOntological model of actions, tasks and situations DUL conceptualizes ac-
tions as events, entities that occur at a given time or during a given time inter-
val. dul:Event is a composite and can be related to other dul:Events via the
dul:hasConstituent relation, one of the general-purpose object properties for
composition in DUL. Objects (dul:Object), but also humans (dul:Person) can be
participants in events. SOMA adds the additional nuance that actions (dul:Action)
are intended in that they are disjoint from accidents (soma:Accident). As a conse-
quence, actions have at least one agent as participant, such as a person or robot
(dul:PhysicalAgent). ◁ SituationsActions give rise to situations (dul:Situation), relational
contexts in which the world and the objects and agents in it satisfy some de-
scription (dul:Description). In SOMA, situations are modeled to manifest in
(soma:manifestsIn) events, such as actions and states (dul:State).

◁ Tasksdul:Task is a dul:EventType that classifies (dul:classifies) an event. Ac-
tions execute tasks.1 The semantic difference between actions and tasks in DUL is

1Note that the ontological definition of dul:Task differs from the definition of a task in Section
2.2.2.1. This chapter, the DUL definition of a task is used.

159

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

dul:executesTask

soma:manifestsIn

dul:Action

dul:Event

dul:State

dul:Task

dul:Situation soma:SituationTransition

soma:hasInitialSituation
soma:hasTerminalSituation

dul:Description

dul:satisfies

dul:Relation

Object property

Inheritance relation

(rdfs:subclassOf)

soma:PickingUp

soma:Grasping

soma:Releasing

soma:HoleOnPeg

...

L
e
v
e
l o

f a
b
s
tra

c
tio

n

Figure 4.4: The semantics of events, tasks and situations modeled by SOMA (Alt
et al., 2023).

one of abstraction: Actions are events that have occurred, are occurring or will
occur in the world, while tasks are “social objects” that humans or other cognitive
agents use to conceptualize, communicate and reason about actions. For example,
a reaching task may be executed by a robot action of simply extending its arm, or
performing a planned motion in a cluttered environment. Section 4.1.5 proposes a
reasoning mechanism for solving thisTask grounding ▷ task grounding problem: Finding a mapping
from abstract tasks to concrete robot actions to be performed in the real world, and
relating task parameters to action. The inverse problem, determining what task is
executed by a given action, is also inherently ambiguous: A may extend its arm to
perform a reaching task, but also to push an object or point at something. Section
4.1.4 proposes a reasoning mechanism to solve thisTask abstraction ▷ task abstraction problem. Pro-
gram synthesis with MetaWizard hinges on finding effective solutions to interpret
the tasks implied by e.g. human demonstrations, which are events performed by
the human in a given environment, and translating them to a different set of actions
to be performed by a robot in a different environment. Figure 4.4 illustrates the
SOMA model of events, tasks and situations.

4.1.2.3 A Hybrid Representation of Task Knowledge

To devise a knowledge-based reasoner capable of synthesizing executable robot
programs, the semantics of tasks must be well-defined. The SOMA and ARTM
ontologies define what tasks exist, but do not define what the tasks mean in terms
of robot behavior or changes to world state: How is the world different after the
robot has grasped an object? What does it mean to have grasped successfully, and
how does grasping affect downstream tasks? A hybrid task representation, that
defines the task taxonomy in an ontology and defined task semantics as Prolog
predicates over concepts from the ontology, promises to concisely represent complex
task semantics (Alt et al., 2023). The specification of task semantics in terms of
Prolog predicates facilitates the straightforward implementation of reasoners for
task abstraction and task grounding, similar to how the differentiable shadow
program representation facilitates the straightforward implementation of first-
order optimizers for robot programs.

160

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

MetaWizard follows the established approach in the task planning literature of
defining tasks in terms of their preconditions, runtime conditions and postconditions.
With the ontological task taxonomy loaded into the semisymbolic knowledge base,
and the integration of the semisymbolic knowledge base in Prolog via the KnowRob
query language, tasks such as soma:PickingUp can be succinctly defined:

1 satisfies_pre(Act , soma:'PickingUp ') :-

2 % precondition 1: Some object O1 grasped

3 has_initial_situation(Act , S1),

4 object_grasped(O1 , Gripper , S1),

5 % precondition 2: O1 supported by something

6 has_initial_situation(Act , S2),

7 object_supported(O1 , O2 , S2).

8
9 satisfies_run(Act , soma:'PickingUp ').

10
11 satisfies_post(Act , soma:'PickingUp ') :-

12 % postcondition 1: O1 still grasped

13 has_initial_situation(Act , S1),

14 object_grasped(O1 , Gripper , S1),

15 has_terminal_situation(Act , S2)),

16 object_grasped(O1 , Gripper , S2),

17 % postcondition 2: O1 not supported anymore

18 forall(has_terminal_situation(Act , S3)),

19 \+ object_supported(O1 , O2 , S3)).

Listing 4.4: Definition of a soma:PickingUp task in terms of pre-, runtime and
postconditions.

The predicates has_initial_situation(A, S) and has_terminal_situation(A,
S) are true if S manifests at the beginning or end of action A, respectively (see Fig-
ure 4.4). They, as well as the predicates object_grasped and object_supported,
are written in the KnowRob query language to perform reasoning over the semisym-
bolic knowledge base. satisfies_pre(A, TT) is true if action A satisfies the
predconditions of task type TT (here soma:PickingUp), i.e. if the specified set
of conditions hold at the beginning of A. The preconditions are represented as a
conjunction of predicates in the body of satisfies_pre. Here, for an action to
satisfy the preconditions of soma:PickingUp, the object O1 to be picked up must
be grasped and supported by some other object. The postconditions expressed
in satisfies_post are satisfied if, at the end of the action, O1 is still grasped,
but not supported by any other object anymore – it has been picked up. Note
the use of the universal quantifier forall: As situations in SOMA are relational
contexts (“substrates” over which descriptions, such as relations, are defined (see
Figure 4.4)), multiple situations can manifest at the same time, each serving as a
context for some subset of the relevant descriptions of the scene. When specifying
that some condition is not to hold at the beginning, during or after an action, it
is necessary to specify that this condition is false for all situations in that time
scope. soma:PickingUp does not have any runtime conditions, and satisfies_-

run is trivially true. For an example with salient runtime conditions, consider the
definition of artm:Sliding:

161

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

1 satisfies_pre(Act , artm:'InsertHoleOntoPeg ') :-

2 % precondition 1: Some object O1 grasped

3 has_initial_situation(Act , S1),

4 object_grasped(O1 , Gripper , S1),

5 % precondition 2: O1 is not touching anything other than the gripper

6 forall(has_initial_situation(Act , S2),

7 objects_touch(O1 , O2 , S2) -> O2 = Gripper; true).

8
9 satisfies_run(Act , artm:'InsertHoleOntoPeg ') :-

10 % runtime condition 1: O1 grasped

11 has_runtime_situation(Act , S1),

12 object_grasped(O1 , Gripper , S1).

13
14 satisfies_post(Act , artm:'InsertHoleOntoPeg ') :-

15 % postcondition 1: Grasped object supported by a Peg

16 has_terminal_situation(Act , S1),

17 object_grasped(O1 , Gripper , S1),

18 has_terminal_situation(Act , S2),

19 object_supported(O1 , O2 , S2),

20 kb_call(instance_of(O2 , mw:'Peg')).

Listing 4.5: Definition of an artm:InsertHoleOntoPeg task in terms of pre-,
runtime and postconditions.

artm:InsertHoleOntoPeg represents an insertion task in which an object is slid
onto a peg. In a retail assistance use case, this corresponds e.g. to a product
being placed on a rod-shaped hanger. Here, the preconditions are that an object
is grasped, and is currently not in contact with anything but the gripper. The
postconditions are that the object is still grasped, but now supported by a peg. The
runtime condition is that the object remains in the gripper. Note that the pre-,
runtime and postconditions do not impose constraints on how the task is being
achieved, but rather on what relations between objects are to hold.

1 object_supported(Supportee , Supporter , Situation) ?+>

2 binary_related(Supportee , Supporter , Situation ,

3 mw:'SupportRelation ', soma:'SupportedObject ',

4 soma:'Supporter '),

5 Supportee \== Supporter.

6
7 binary_related(Thing1 , Thing2 , Situation , DescriptionType ,

8 RoleType1 , RoleType2) ?>

9 is_individual(Description),

10 instance_of(Description , DescriptionType),

11 satisfies(Situation , Description),

12 holds(Description , soma:'hasBinding ', Binding1),

13 holds(Description , soma:'hasBinding ', Binding2),

14 Binding1 \= Binding2 ,

15 holds(Binding1 , soma:'hasBindingFiller ', Thing1),

16 holds(Binding1 , soma:'hasBindingRole ', Role1),

17 instance_of(Role1 , RoleType1),

18 holds(Binding2 , soma:'hasBindingFiller ', Thing2),

19 holds(Binding2 , soma:'hasBindingRole ', Role2),

20 instance_of(Role2 , RoleType2).

21
22 binary_related_in_situation(Thing1 , Thing2 , Situation , DescriptionType ,

RoleType1 , RoleType2) +>

23 ...

Listing 4.6: Semantic reasoning routines in the KnowRob query language.

162

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

Listing 4.6 illustrates the implementation of the semantic reasoning routines as
Prolog predicates with the KnowRob query language, that underpin the task defi-
nitions. object_supported(Supportee, Supporter, Situation) is true if the
mw:SupportRelation holds between Supporter and Supportee in Situation.
object_supported affords both querying and projection. binary_related(Thing1,
Thing2, Situation, DescriptionType, RoleType1, RoleType2) is true if
the relationship between entities Thing1 and Thing2 satisfies some description
of a given type (such as mw:SupportRelation), in a given Situation. binary_-
related illustrates the way in which SOMA models the roles participants play in
actions: In a description of a situation, participants can be associated (soma:has-
Binding) with a role, which they play in this situation. In the terminal situation
of the action of hanging a product onto a hanger, for example, the peg plays the
role of the supporter (a subclass of soma:LocatumRole, the active part of an in-
teraction), while the hanging object plays the role of the supportee (a subclass of
soma:RelatumRole, the passive part of an interaction).

4.1.2.4 Narrative-Enabled Episodic Memories

This chapter proposes a framework for knowledge-driven program synthesis from
human VR demonstrations. In this context, Section 4.1.4 proposes an approach
to extract an understanding of abstract tasks from concrete experience data. As
an underlying data structure, MetaWizard leverages ◁ NEEMsNarrative-Enabled Episodic
Memories (NEEMs), a semisymbolic representation of robot or human experience
data. NEEMs are semantically enriched execution traces of agents performing
actions in an environment (Beetz et al., 2018). Individual actions, motions, objects
in the environment and the agents themselves are stored in the semisymbolic
knowledge base, affording the same kinds of semisymbolic reasoning over robot
experiences as e.g. task (see Section 4.1.2.3) or commonsense knowledge (see
Section 4.1.2.2).

A NEEM is a data structure with three components:

1. A semantic map of the environment, comprising the robot, environment
objects and other agents, as well as any a priori known relationships between
them, such as kinematic constraints or affordances;

2. an event timeline, that represents the performed actions, the situations
manifesting in them as well as the involved participants and their roles in
terms of the above described model of actions and situations;

3. and a TF database containing the timestamped positions and orientations
of task-relevant frames such as object origins, the robot end-effector or the
hands of human agents, throughout the entire episode.

The structure of NEEMs directly mirrors that of the KnowRob semisymbolic
knowledge base. As such, NEEMs can be inserted directly into the knowledge base

163

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

and made available to reasoners or learning algorithms. The event timeline of a
NEEM collected in VR (see Section 4.1.3) is shown in Figure 4.5. It consists of a
sequence of actions (orange) as well as states (blue) with concrete start and end
timestamps, here displayed along the X axis. In SOMA, actions are events in which
participants effect some change in the world, while states are events in which some
properties of or relation between participants remains static. Via their start and end
timestamps actions and states can be associated with the corresponding motions
performed by the agents involved in them. In the MetaWizard system, NEEMs are
further semantically enriched by adding information about interactions between
agents and objects using the situation-description model outlined in Section 4.1.2.2
(Alt et al., 2023).

Each state in a NEEM manifests at least one situation, which satisfies some
description about the world. In Figure 4.5, an packet of healing salve is taken
out of a shopping basket by a human VR agent and placed onto a hanger. The
state soma:State_PITZNFDG, for example, represents the state of contact between
the hanger and the object. It begins when the object first touches the hanger
and persists until the end of the episode, as the object remains on the hanger. It
manifests a situation in which a contact relation holds between the object and the
hanger; in that relation, both hanger and object act as soma:ConnectedObjects.
Most NEEMs contain temporally overlapping states, as generally more than one
relation hold at the same time. States can manifest more than one situation; the
semantics are such that all situations manifesting in a state do so for the complete
duration of the state.

Actions are associated with a soma:SituationTransition, itself a type of sit-
uation, which relates a set of situations at the beginning of the action (the initial
situations) to a set of situations at the end (the terminal situations). The initial
situations for an action are the union of all situations manifesting in states that are
ongoing at the beginning of the action. Terminal situations are the union of all
situations manifesting in states ongoing at the end of the situation. Along with a set
of soma:SituationTransitions and the associated initial and terminal situations,
actions are associated with runtime situations, manifesting in states which are ongo-
ing for the entirety of the action. Note that a given situation may be initial, runtime
and terminal situation of an action. The predicates has_initial_situation(A,
S), has_runtime_situation(A, S) and has_terminal_situation(A, S) used
throughout the semantic task definitions (see Listing 4.5) yield these situations for
a given action A.

4.1.3 From VR Human Demonstrations to NEEMs

The central objective of MetaWizard is to permit humans to intuitively instruct
robots what to do, without requiring a specification of how to do it – for a given task,
the reasoning system should infer what actions the robot is to perform, in what
order and with what parameterization. This permits the user to program robots

164

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

State

Action

Force-Dynamic Event
Situation_KHSJDEZA (soma:Situation)

Rel_LKHSDAHI (soma:ContactRelation)

dul:satisfies

soma:manifestsIn

soma:hasBinding soma:hasBinding

Bnd_ASUAROSX (soma:RoleFillerBinding) Bnd_PABCCUBY (soma:RoleFillerBinding)

soma:hasBindingRole soma:hasBindingFiller soma:hasBindingRole soma:hasBindingFiller

Role_NBJZHLON (soma:ConnectedObject) Role_WUURQIZR (soma:ConnectedObject)Obj_AVTGIOII (dm:HealingSalve) Obj_BMEPGQTQ (mw:Peg)

Figure 4.5: Event timeline of a VR NEEM (Alt et al., 2023). It associates a series of
states (blue) and actions (orange) with semantic information, such as which objects
were in contact with each other in which situations, and what roles objects and
agents played in interactions. Time progresses from left to right along the X axis.

e.g. by demonstrating the task in VR. Compared to real-world demonstrations, VR
demonstrations permit to record the complete ground-truth state of the agent and
environment, permitting the VR engine to parse e.g. contact relations between
objects without the need for sophisticated perception algorithms. Moreover, as the
environment is virtual, users can demonstrate tasks for arbitrary environments,
even if they do not have access to the real-world physical environment. MetaWizard
uses NEEMs to represent user demonstrations. VR demonstrations are recorded in
Unreal Engine 4 (Epic Games, 2019) using the RobCoG framework (Haidu et al.,
2018). RobCoG permits users to record human demonstrations in realistically
rendered virtual settings with simulated physics, permitting the demonstration
of contact-rich physical interactions with the environment, such as threading an
object onto a hanger (see Experiment 4.1.7). Haidu and Beetz (2021) present a
pipeline for the automatic segmentation and semantic annotation of human VR
demonstrations, which is used to convert low-level VR data into a semantically
annotated ◁ Execution traceexecution trace. Using a grammar over force-dynamic events such as
contacts, detected from the simulated force measurements and collision models
provided by the VR environment, semantically meaningful state and action types
are detected. For example, if an object is in contact with another object and has
near-zero vertical velocity, it is detected to be in a “supported-by” state. If an object
is moved while having contact only with the VR avatar, a “transporting” action
is detected. The execution trace contains the detected states and actions, along
with the corresponding time intervals, as well as the timestamped trajectories of all
moving objects in the scene. To convert the execution trace provided by RobCog
into a NEEM, a semantic parser has been developed and is available open-source2

(Alt et al., 2023). The parser traverses the execution trace and creates a NEEM
according to the following algorithm:

2https://github.com/ease-crc/vr-neem-converter

165

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

1. Construct the semantic map: Assert individuals for the human VR avatar and
all environment objects into the knowledge base, and associate corresponding
kinodynamic information such as object meshes and physical properties, if
available.

2. Assert an individual for the top-level task (e.g. artm:PickAndPlaceTask).

3. For each state in the execution trace, assert an individual for the seman-
tically equivalent SOMA state type in the knowledge base, as well as the
corresponding situation, participants and roles.

4. For each action in the execution trace, assert an individual for the seman-
tically equivalent SOMA action type in the knowledge base, as well as the
corresponding participants.

5. Every state change in the must have been brought about by some action.
Traverse the timeline and assert a new anonymous action (an individual of
type soma:Action) whenever a state begins or ends, unless there is already
an action ongoing during that interval. After this step, there is exactly one
typed or anonymous action ongoing at every point in time (see Figure 4.5
(orange)).

6. For each action in the knowledge base, assert the corresponding situation
transition.

The resulting knowledge base, together with the semantic map and TF database,
constitutes the NEEM, a semantically rich, semisymbolic representation of a human
demonstration. Note that the semantic annotation is necessarily incomplete. Beyond
the high-level task, it does not contain information on the task level: The tasks,
or human intent, represented by the demonstrated actions must be inferred, or
interpreted, in light of commonsense and domain knowledge. Moreover, the action
sequence contains anonymous actions, whose semantics are exclusively defined via
the associated situation transitions. For example, when a contact relation of an
object with the shopping basket ends, it is unknown to the VR NEEM parser by what
exact action that contact was ended – whether the object was picked up by a person
or fell out of the shopping basket, for example. Such semantic information can be
inferred by subsymbolic reasoning over the NEEM, in the context of commonsense
and domain knowledge.

4.1.4 Task Abstraction

The inference of robot programs given human VR demonstrations involves the
cognitive task of transferring the actions demonstrated by a human avatar in a
simulated environment to a robot with possibly different kinematics, a constrained
set of skills, and a different environment. For program synthesis, then, the objective

166

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

cannot be to directly mimic the demonstrated actions – rather, the synthesized robot
program should execute the demonstrated tasks. To that end, a program synthesis
system must extrapolate the intended tasks from the demonstrated actions, in a
process of ◁ Semantic liftingsemantic lifting: The demonstrated events must be interpreted in light
of the available background knowledge to yield a series of tasks, along with the
corresponding task parameters, which can in turn be grounded again to produce an
executable robot program, which results in a series of robot actions that execute
the task in the environment at hand (see Section 4.1.5).

MetaWizard proposes a simple, but effective method of task abstraction (Alt
et al., 2023). With the hybrid task definition outlined in Section 4.1.2.3 and
NEEMs as a data structure for human demonstrations, both task knowledge and
the demonstration are loaded into the same knowledge base and available to the
KnowRob KR&R engine. At the level of an individual action, task abstraction can
be encapsulated in the following predicate:

1 interprets_to(Act , Tsk) :-

2 has_task_type(Tsk , TskType),

3 satisfies_pre(Act , TskType),

4 satisfies_run(Act , TskType),

5 satisfies_post(Act , TskType),

6 parameterize_task(Act , TskType , Tsk).

Listing 4.7: The predicate interprets_to enables the abstraction from a given
action to the intended task via the Prolog unification algorithm.

interprets_to unifies a variable Tsk with a task individual such that a given
action Act plausibly executes Tsk, in accordance with the knowledge base. To
that end, has_task_type unifies TskType with an candidate task type (subclass
of dul:Task, e.g. soma:Grasping); then, if demonstrated action Act satisfies
the pre-, runtime and postconditions for TskType (see Listing 4.5), the task is
parameterized with high-level task parameters. By backtracking, the unification
algorithm successively generates candidate task types until pre-, runtime and
postconditions are satisfied. Note that task abstraction is not one-to-one: As the
knowledge base is, by practical necessity, incomplete (it is impossible to specify
tasks without ambiguity), a demonstrated action may execute several different task
types. Successive queries to interprets_to eventually yield parameterized task
individuals for all tasks. MetaWizard performs task abstraction lazily, i.e. queries
interprets_to only if task grounding or program synthesis failed and a different
candidate task is required.

At the task abstraction stage, tasks are parameterized at the abstract level. The
task type soma:Grasping, for example, has the grasped object as a task parameter.
The determination which object from the target environment is to be grasped is
left to the task grounding pipeline (see Section 4.1.5). Rather, an anonymous
individual of the same object type as the object performing the role of the grasped
object (soma:RelatumRole) is asserted into the knowledge base and attached to the
generated task via the dul:hasParameter object property. Unifying interprets_-

167

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

to(Act, Tsk) for every action Act in the demonstration yields a candidate task
sequence for the complete demonstration:

1 actions_interpret_to(ActionSeq , TaskSeq) :-

2 findall(Act ,

3 (member(Act , ActionSeq),

4 interprets_to(Act , Tsk)),

5 TaskSeq).

Listing 4.8: Abstraction from a demonstrated sequence of action to a candidate
task sequence via the Prolog unification algorithm.

Repeated evaluation of actions_interpret_to yields all possible task sequences
TaskSeq that action sequence ActionSeq can be interpreted to execute, given the
knowledge base.

4.1.5 Task Grounding

To synthesize an executable robot program, the generated task sequences must
be grounded to the robot and environment at hand. For a soma:Grasping task,
for example, task grounding must identify the target object in the real-world
environment, and infer all other parameterizations such as collision-free approach
and depart motions required to execute the task. MetaWizard first translates the
task sequence to anUnderspecified

plan
▷ underspecified plan, which is then grounded by reasoning over

a simulated environment representation and real-world sensor data.

4.1.5.1 Underspecified Plans

The CPL is a semisymbolic robot program representation, that combines a textual
syntax with the semantics of task-based programming (Beetz et al., 2010). The
CPL represents robot programs, or plans, in the Cognitive Robot Abstract Machine
(CRAM) cognitive architecture (Beetz et al., 2023). The CPL is designed explicitly
to accommodate the fact that robot programs are, by necessity, underspecified when
they are created: Some information required for execution, such as the precise
location of objects in the scene, may not be available at planning time. Certain
decision-making processes must be performed at runtime, either through reasoning
over a knowledge base (e.g., determining the opening direction of a door) or
through perceptual processes (e.g., locating a target object in the environment). At
the highest level, a CPL plan is a data structure composed of designators, symbolic
representations of entities which are grounded, or resolved, with concrete symbolic
or subsymbolic meaning at runtime (McDermott, 1991). CPL action designators
are conceptually similar to subprograms in the ARTM, and contain, in turn, other
designators, such as object designators, location designators, motion designators or
lower-level action designators. Executing a CRAM plan corresponds to resolving
the designator hierarchy. MetaWizard leverages CPL designator resolution as a task
grounding mechanism (Alt et al., 2023).

168

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

1 class HoleOnPegActionDescription(ActionDesignatorDescription):

2 """

3 'Inverse Peg-In-Hole ': Inserting an object with a hole onto a peg

4 """

5 def __init__(self , hole_obj: ObjectDesignator , peg_obj: ObjectDesignator ,

resolver="grounding"):

6 self.hole_obj = hole_obj

7 self.peg_obj = peg_obj

1 def ground_hole_on_peg(desc: HoleOnPegActionDescription):

2 """

3 Ground HoleOnPeg

4 """

5 # Ground possibly ungrounded ObjectDesignators hole_obj and peg_obj

6 peg_obj_grounded = desc.peg_obj.reference ()

7 hole_obj_grounded = desc.hole_obj.reference ()

8
9 # HoleOnPeg is decomposed into 4 motions:

10 # 1. Move to Point (Approach)

11 hole_pose_world = Frame(affine_from_pycram_pose(feature_pose(hole_obj_grounded[

"name"], "hole")), WORLD_FRAME)

12 world_T_tcp = hole_pose_world # Set TCP to CS of hole

13 world_T_tip = Frame(affine_from_pycram_pose(feature_pose(peg_obj_grounded["name

"], "tip")), WORLD_FRAME)

14 # Approach 2 cm above tip

15 approach_pose_tip = Frame(transform_from(np.eye (3), [0.0, 0.0, 0.02]) ,

world_T_tip)

16 approach_pose_world = pycram_pose_from_affine(approach_pose_tip.affine_world ())

17 # ...

18 # 2. Move Linear Relative Contact

19 # ...

20 # 3. Spiral Search Relative

21 # ...

22 # 4. Insert

23 if instance_of(peg_obj_grounded["name"], "mw:Hook"):

24 # If the peg is bent (hook-shaped), zero side-force Move Linear Relative

Contact -> Move Linear Relative to rotate

25 # 4.1 Move Linear Relative Contact along -Z of the tip feature

26 mlrc_2_motion = [0, 0, -0.01, 0, 0, 0, 1] # 1 cm in -Z, in TCP coordinates

27 mlrc_2_min_force = 1.0 # 1 N

28 # ...

29 # Instantiate the skill sequence

30 yield super(HoleOnPegActionDescription , desc).ground ()

Listing 4.9: PyCRAM description of a HoleOnPeg designator for “inverse” peg-in-
hole insertion, and abbreviated grounding routine to create and parameterize an
executable ARTM skill sequence.

169

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

dm:HealingSalve_0

dm:DMShelfMountingBar_0

tiphole

Figure 4.6: Grounded object designators and features for the peg and hole objects
(left) and generated ARTM robot program for “inverse” peg-in-hole (right).

Listing 4.9 illustrates PyCRAM designator grounding for an “inverse peg-in-hole”
subtask (a HoleOnPeg action designator). In the grounding routine (ground_hole_-
on_peg), first the two object designators for the peg as well as the manipulated
object are grounded, including the respective locations of their tip and hole

features. Given these features, parameters for lower-level motion designators
are derived, such as TCP poses or relative motion targets. Resolution yields a
parameterized sequence of ARTM skills to insert the object onto the peg (see Figure
4.6).

Action designators The task representation introduced in Section 4.1.2.3 allows
for a direct conversion of candidate task sequences into underspecified plans. As
tasks and CPL action designators share the same level of abstraction, conversion is
straightforward: For each task in the sequence, one action designator is instantiated,
along with object or location designators for the task parameters. For instance, a task
of type soma:PickingUp involves two objects: the locatum (primary object to be
picked up) and the relatum (secondary object supporting or containing the locatum).
This task translates directly to a PickingUp action designator with one object
designator, target, corresponding to the locatum. To implement this approach,
PyCRAM,3 the Python implementation of the CPL, has been extended to support
27 different task types covering a range of robotic actions, including prehensile
(e.g., Grasping, PickingUp, Placing) and force-controlled manipulation (e.g.,
HoleOnPeg, Sliding, Retracting). Notably, for each task type defined in the
knowledge base, a corresponding PyCRAM action designator is defined.

Grounding object and location designators Grounding an action designator
recursively grounds the associated designator hierarchy. PickingUp, for example,

3https://github.com/cram2/pycram

170

https://github.com/cram2/pycram

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

Figure 4.7: Object designator grounding with RoboSherlock: Detected object
bounding boxes in the RGB (left) and point cloud (right) images of the environment
(Alt et al., 2023).

has two object designators, target and support. Each object designator, in turn,
has several properties, such as an object type and ID, as well as a location designator
pose designating the pose of the object in the robot workspace. In the context of
program synthesis from VR demonstrations, PickingUp is underspecified because
both object designators are underspecified: While the object type is known, the
concrete designated object instance in the real-world execution environment is a
priori unknown, and must be determined by some reasoning mechanism. MetaWiz-
ard resolves the ID and name attributes of object designators via search for objects
of the given object type in the semantic map of the execution environment or, if the
corresponding object detector has been configured in the RoboSherlock perception
system (Beetz et al., 2015; Mania et al., 2021), searches for candidate objects in
a camera image of the real-world environment (see Figure 4.7). RoboSherlock is
integrated with the KnowRob KR&R engine, acting as a real-world extension of the
knowledge base and permitting queries, such as the existence of objects of a given
type, in terms of the KnowRob query language. Likewise, location designators are
grounded by lookup of an object’s position in the TF database or, if the correspond-
ing detector is available, by querying RoboSherlock. Beyond the location of objects
in the environment, a mechanism for grounding object-relative location designators,
e.g. the relative poses of object features such as screw holes or the tip of a peg, has
been implemented.

Grounding action designators Once all associated object and location designa-
tors are resolved, the action designator itself is resolved. Action designators are
resolved to sequences of motion designators, which represent atomic motions to
be executed by the robot. In CRAM, motion designators are resolved by planning
motions and executing them dynamically. To ensure that human programmers
can view, edit and interact with the robot program in an intuitive manner, a new
backend for designator resolution was implemented, which resolves motion desig-

171

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

nators by transpiling them to ARTM skills (Alt et al., 2023). The RPS robot IDE is
then used for collision-free motion planning, 3D visualization, robot code genera-
tion and execution, as well as validation and potential editing of the synthesized
program by the human robot programmer. A PickingUp action designator, for
example, is resolved by first resolving its associated target object designator; then,
a suitable grasp pose on the object is determined. Here, a precomputed grasp pose
has been stored as an object feature in the knowledge base and is retrieved; alter-
natively, a grasp pose can be computed dynamically via a grasp planner. The task
soma:PickingUp has two postconditions: The target object remains in the gripper
and is not in contact with another object. Consequently, the PickingUp action
designator computes a depart region corresponding to the free-space region around
the object with a given padding, which is used to parameterize a MoveToRegion

motion designator. Finally, the MoveToRegion motion designator is resolved to a
Move to Region ARTM skill, which plans a collision-free motion into the depart
region. Skill parameters, such as velocities or setpoints for a force controller, are
inferred from the knowledge base. The parameterized skill is inserted into the can-
didate ARTM program and motion planning is performed, given a collision model
of the world reflecting the current state of the knowledge base. After grounding all
contained designators, the resulting motions are validated in a kinematic simulator
with support for contact-rich motions and grasps, and the postconditions of the
action designator are checked. If they are not met (e.g. if the planned motion for
PickingUp is not collision-free), action designator resolution returns with an error.

Action designator resolution is implemented in such a way as to preserve the
hierarchical plan structure; i.e., action designators containing other action desig-
nators are resolved to ARTM subprograms, and motion designators are resolved
to atomic ARTM skills which are inserted at the appropriate place in the program
hierarchy. Like task abstraction, task grounding is inherently ambiguous: A given
object designator, for example, could be resolved to several possible objects in the
environment. For this reason, action, object and location designators are resolved
lazily, yielding one valid grounding at a time. Designator resolution can be per-
formed repeatedly to eventually exhaust all possible groundings. If some designator
cannot be resolved, e.g. if an object of the required type cannot be detected in the
environment, MetaWizard backtracks and attempts to ground the designator again,
until all options are exhausted, in which case it attempts to ground the designator
one level above in the designator hierarchy. If no valid grounding for the plan can
be found, MetaWizard backtracks through task abstraction until a task sequence
(and corresponding plan) is found that can be resolved.

4.1.6 Program Execution

Once all action designators of the plan have been grounded, the completed plan
is grounded and a corresponding ARTM source program has been created. That
program can be visualized in the RPS robot IDE, read and edited by human experts if

172

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

Figure 4.8: VR human demonstrations for force-controlled fetch-and-place (top)
and peg-in-hole (bottom) (Alt et al., 2023).

needed, and executed on the robot. The program execution pipeline of MetaWizard
consists of four basic steps:

1. Load the candidate ARTM program and collision environment into the
RPS robot IDE. The collision environment is loaded from the semisymbolic
knowledge base according to the semantic map, updated with the real-world
object poses grounded by RoboSherlock (Mania et al., 2021).

2. Visualize the candidate program in the simulated 3D environment. Program
execution continues only if the user approves the visualized simulation.

3. Compile the candidate program to executable robot code for the robot
hardware at hand.

4. Execute the generated robot code on the real robot.

4.1.7 Experiments

To validate the MetaWizard framework on a set of real-world scenarios, a retail assis-
tance use case is considered. The experiment tests the hypothesis that MetaWizard
permits the synthesis of robot programs for complex manipulation skills given one
single human demonstration of the task in VR. Two force-sensitive fetch-and-place
tasks are considered, in which the robot takes an object and places it onto a peg,
and vice versa. A quantitative evaluation is conducted under laboratory conditions
(see Section 4.1.7.1). For both use cases, qualitative validation is conducted in a
realistic supermarket environment (see Section 4.1.7.2).

Application scenarios In a first application scenario, a robot is tasked to take an
object off a peg and place it in a basket. This task requires grasping of the object,
force-controlled extraction of the object from the hanger, as well as the collision-free

173

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

placing of the object into the basket. In a second application scenario, a peg-in-hole
task is considered, in which an object is threaded onto a peg. This tasks involves
grasping of the object, collision-free transfer to the target peg, force-controlled
search for the tip of the peg and force-controlled insertion onto the peg. Both
scenarios are representative of retail robotics tasks such as shopping assistance and
shelf-filling, and were considered in the context of a research project aiming to
assist elderly people or people with disabilities in supermarkets.4

Application ontology and semantic maps To support the experiment use cases,
an application ontology was developed (supermarket.owl, prefix dm), which de-
fines the required classes and individuals for the experiment. The respective
spatial layouts of the real-world and VR supermarket environments are spec-
ified in the semantic maps illustrated in Figure 4.3. Five individuals of type
dm:DMShelfMountingBar are defined, representing five pegs mounted on a shelf,
each of which has a feature of type mw:Tip denoting the tip of the peg. The pegs,
as well as a shopping basket (an individual class dm:ShoppingBasket) are present
in both the real-world and VR environments, albeit at different locations. The
real-world supermarket contains a target object of type dm:HealingSalve, a small
cardboard box containing a tube of salve for treating burns, which has a feature of
type mw:Hole representing the hole on a tab by which it is hung on a peg. The VR
supermarket environment instead contains an object of type dm:HangingDummy, a
box-shaped dummy object.

VR human demonstrations For each of the two application scenarios, 30 human
demonstrations were collected at the VR lab of the IAI at the University of Bremen.
Demonstrations were performed for three variants of dm:HangingDummywith object
geometries differing in width, height and depth as well as 10 different peg poses.
Figure 4.8 shows two of the collected VR demonstrations. All demonstrations are
parsed into NEEMs (see Section 4.1.3).

4.1.7.1 Quantitative Evaluation

In a first set of experiments, MetaWizard was used to generate robot programs
for all 60 human demonstrations (Alt et al., 2023). To ensure reproducibility and
comparability between runs, programs were executed on real hardware under
controlled conditions.

Experiment setup The physical experiment setup is shown in Figure 4.9. A UR5
collaborative manipulator5 with an flange-mounted force-torque sensor6 and a

4Research project ILIAS (2019-2022), funded by the German Federal Ministry of Education and
Research under grant #01DR19001B.

5Universal Robots A/S, Odense, Denmark
6ATI Industrial Automation Inc., Apex, USA

174

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

Figure 4.9: Laboratory (left) and realistic (right) supermarket environments (Alt
et al., 2023).

Demonstr. Abstr. Grounding Exec.

Demos # Cands. Plan succ. Task succ. Succ.

O1 10 29 27 (93%) 27 (93%) 26 (90%)

O2 10 60 52 (87%) 44 (73%) 35 (58%)

O3 9 18 18 (100%) 18 (100%) 18 (100%)

Table 4.1: Quantitative results for a force-sensitive fetch-and-place task (Alt et al.,
2023). For three different objects (O1, O2, O3), the number of human demon-
strations (# Demos), number of generated task sequences (# Cands.), number of
successfully grounded plans (Plan succ.), number of robot programs achieving the
task objectives in the simulation (Task succ.) and number of successfully executed
robot programs (Succ.) are listed.

Robotiq 2F-85 parallel gripper7 is mounted on a table. The box of healing salve is
reinforced with a 3D-printed backplate to withstand repeated grasping, insertion
and retrieval from the peg. A metal hanger from a German drugstore chain8 is
mounted to the table at a fixed position.

Each of the 60 human demonstrations is parsed to a NEEM and inserted into
a knowledge base. During task abstraction, all possible candidate task sequences
are generated and grounded to executable source programs. As the environment is
known and reset to its original state after each program execution, object and loca-
tion designators are grounded with known objects and features from the knowledge
base.

Results The results for the force-controlled fetch-and-place scenario are summa-
rized in Table 4.1. Out of 29 VR human demonstrations, a total of 107 candidate
task sequences were generated. 79 out of the 107 candidates (74%) were executed

7Robotiq Inc., Lévis, Canada
8dm-drogerie markt GmbH + Co. KG, Karlsruhe, Germany

175

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

Figure 4.10: Simulated (top) and real-world (bottom) execution of a generated
robot source program for force-controlled fetch-and-place in a lab environment
(Alt et al., 2023).

successfully. One out of the 30 original human demonstrations was excluded from
the analysis due to a glitch in the VR engine, which caused the object to briefly
disappear from the avatar’s hand, appear on the ground and then re-appear in
the avatar’s hand. This behavior was inconsistent with the knowledge base and
prevented the reasoner from finding a plausible task sequence for the demonstration.
The majority of the variance in the generated number of task sequences across
objects stems from imperfect detection of force-dynamic events such as contacts
or support states, presumably due to imperfect physics simulation. For example,
support states are sometimes interrupted and later resume, even though the object
was continuously supported. 10 candidate task sequences (9%) fail to be grounded
to ARTM programs, largely due to unreachable target poses given the robot and
gripper kinematics. An additional 8 candidate programs (7%) fail to place the
object into the basket in the simulation. This reflects the fact that MetaWizard
does not plan a sequence of tasks to achieve the objectives of a high-level task, but
rather finds a sequence of actions that replicates a demonstrated sequence of object
relations and force-dynamic events. 74% of all generated task sequences were
executed successfully, achieving the task objectives in the real-world environment.
This includes at least one task sequence for each human demonstration. For 10
generated candidate programs (9%), execution failed. In all cases, this was due
to the challenging physics of the task: The long metal peg flexed when force was
applied, and made the robust extraction of the peg with force-controlled motion
skills difficult. Moreover, the use of predefined object poses imposed the challenge
of robustly grasping the object, as the object pose on the peg varied by up to 1 cm
after resetting the environment. An execution of a generated robot source program
in both simulated and real-world environments is shown in Figure 4.10.

Scenario 2 considered the complementary task of threading an object onto a
peg. The results are summarized in Table 4.2. Given 30 VR demonstrations, a total
of 67 candidate task sequences are generated, of which all but 2 are successfully
grounded, and two additional task sequences do not achieve the task objectives
(the object is placed on the peg) when tested in the simulation. 58 generated robot
source programs (87%) are executed successfully in the real-world environment.

176

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

Demonstr. Abstr. Grounding Exec.

Demos # Cands. Plan succ. Task succ. Succ.

O1 10 22 20 (91%) 18 (82%) 18 (82%)

O2 10 20 20 (100%) 20 (100%) 15 (75%)

O3 10 25 25 (100%) 25 (100%) 25 (100%)

Table 4.2: Quantitative results for a force-controlled peg-in-hole insertion task (Alt
et al., 2023). For three different objects (O1, O2, O3), the number of human demon-
strations (# Demos), number of generated task sequences (# Cands.), number of
successfully grounded plans (Plan succ.), number of robot programs achieving the
task objectives in the simulation (Task succ.) and number of successfully executed
robot programs (Succ.) are listed.

The core challenge was the force-controlled threading of the object onto the peg.
Due to flexing during insertion, the position of the tip of the peg varied by up to 1 cm
after resetting the environment, making it challenging for force-controlled search
skills such as Spiral Search to find the peg. Moreover, the tip of the peg points
upward in a direction nearly perpendicular to the remainder of the peg, requiring
the force-controlled insertion skill to compensate forces and torques while rotating
the object around the tip, which was prone to oscillations due to the length of the
peg. For each human demonstration, at least one program could be successfully
executed. An execution of a generated robot source program in both simulated and
real-world environments is shown in Figure 4.11.

Discussion The results demonstrate that executable robot source programs can
be synthesized from single human VR demonstrations by reasoning over a semisym-
bolic knowledge base. MetaWizard bridges the gap between VR and real-world
environments by abstracting away from concrete objects and events to infer a plan
at the task level, which is then refined, or grounded, to the robot and environment
at hand. For this reason, the same mechanism, without any algorithmic changes or
even learning, could be used to infer robot programs for different object geome-
tries and peg poses. The results highlight that for each successfully grounded and
executed task sequence, several other candidate task sequences are generated for
which grounding, simulation or execution fails. This is evidence of a fundamental
trade-off facing program synthesis approaches that rely on symbolic knowledge
representations. The knowledge base must find a balance between generality and
specificity: It must be general enough to cover all relevant task variants or noise in
e.g. the human demonstrations, while being fine-grained enough to afford genera-
tion of robot programs that solve a given, specific task with the required degree
of precision. A comparatively general definition of task semantics, for example,
permits to cover a wide range of task variants with a compact knowledge base, but
may be too permissive and lead to the generation of “false positives”, task sequences

177

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

Figure 4.11: Simulated (top) and real-world (bottom) execution of a generated
robot source program for force-controlled peg-in-hole in a lab environment (Alt
et al., 2023).

that cannot, in fact, be executed in the environment at hand. On the other hand, a
very fine-grained task definition may only afford task abstraction for very specific
environments or demonstrated actions, requiring the addition of new rules to the
knowledge base whenever the environment changes or actions are demonstrated
in a slightly different way. Architectures such as MetaWizard use a “generate and
test” principle to resolve this trade-off and accept some inefficiency (here, rejecting
some of the generated candidate task sequences during grounding or simulation)
to avoid overspecification.

The experiments also evidenced that results can be further improved by the
integration of sensory modalities for grounding. In the first application scenario,
for example, vision-based detection of the object, rather than grounding its pose
from the knowledge base, would likely have improved task success. Likewise, in
the second application scenario, detecting the tip of the peg via vision would have
avoided execution failures. Qualitative validation in a supermarket environment
(see Section 4.1.7.2) corroborates these findings. Likewise, the results can be
further improved by the integration of learning into the framework. MetaWizard
grounds candidate plans in predefined force-controlled skills that are general-
purpose, and therefore cover a wide range of use cases, but at the same time
are not adapted to the concrete task at hand. In the context of the peg-in-hole
scenario, for example, learning an insertion strategy for the hook-shaped peg used
in the supermarket environment would likely have led to even more robust results,
and can be implemented on top of MetaWizard without requiring changes to the
program synthesis architecture itself.

4.1.7.2 Qualitative Validation

Experiment 4.1.7.1 evaluated MetaWizard under laboratory conditions. To validate
the framework in a realistic environment, the experiments are replicated in a real-
istic supermarket environment at the retail robotics lab of the IAI at the University
of Bremen (Alt et al., 2023).

178

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

Figure 4.12: Simulated (top) and real-world (bottom) execution of a synthesized
robot program for a supermarket fetch-and-place task in a realistic environment
(Alt et al., 2023).

Experiment setup The semantic map of the supermarket environment is shown
in Figure 4.3 (right). A UR5 collaborative manipulator9 with an flange-mounted
force-torque sensor,10 a Robotiq 2F-85 parallel gripper11 and a RealSense D435
RGB-D camera12 is mounted on a moving base. For this experiment, the position of
the base is fixed. The experiment was conducted in a laboratory for retail robotics,
which featured a supermarket environment nearly identical in layout, lighting and
furniture to a small branch of a large German drugstore chain,13 comprising a
selection of the original product range. For each of the two use cases, one human
demonstration was chosen at random and program synthesis was performed. The
RoboSherlock perception framework (Beetz et al., 2015; Kenghagho Kenfack et al.,
2020) is used to ground object designators in real-word 3D camera images, notably
to identify and locate the box of healing salve in the scene. As in Experiment
4.1.7.1, object-relative location designators, such as grasp points, are grounded in
precomputed features via the knowledge base.

Results For both application scenarios, program synthesis resulted in robot source
programs that could successfully execute the task. Figures 4.12 and 4.13 show
the simulation and real-world execution for each scenario, respectively. For each
application scenario, program synthesis was performed twice, each time with a
different initial object pose. RoboSherlock accurately detected the pose of the
object and could be queried via the KnowRob engine without requiring changes to
MetaWizard. Due to the crowded collision environment and small inaccuracies in
the perception pipeline, notably with respect to the orientation of the object, task
grounding required several steps of backtracking until a collision-free candidate
program was found.

9Universal Robots A/S, Odense, Denmark
10ATI Industrial Automation Inc., Apex, USA
11Robotiq Inc., Lévis, Canada
12Intel Corporation, Santa Clara, USA
13dm-drogerie markt GmbH + Co. KG, Karlsruhe, Germany

179

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

Figure 4.13: Simulated (top) and real-world (bottom) execution of a synthesized
robot program for a force-controlled peg-in-hole task in a realistic environment
(Alt et al., 2023).

Discussion Due to very limited time in the supermarket laboratory, only two
trials per scenario could be performed. While not statistically significant, the results
conceptually validate the integration of perceptual grounding via RoboSherlock
into MetaWizard: In all four trials, the pose of the target object deviated from its
default pose in the semantic map, and the object could be grasped and manipu-
lated without manual changes to the knowledge base. Notably, RoboSherlock was
integrated as a drop-in reasoner backend in KnowRob, using the same knowledge
representations and data structures as MetaWizard and requiring no changes to the
task abstraction or task grounding mechanisms. Extending the use of perceptual
grounding to ground all location designators, such as object features, can further
improve MetaWizard’s generalization abilities.

4.1.8 Related Work

MetaWizard addresses the challenge of synthesizing executable robot code from
intuitive inputs such as VR human demonstrations. It shifts the user-facing aspect of
programming from specifying how the robot is to perform a task to specifying what
the robot is to do, inferring the how from a knowledge base containing task-specific,
domain-specific and commonsense knowledge. There is a rich literature on robot
program synthesis and its constituting subproblems such as task recognition – the
semantic understanding of e.g. demonstrated actions – and task execution, the
conversion of abstract task structures into real-world robot actions.

4.1.8.1 Knowledge-Based Robot Program Synthesis

Program synthesis requires an understanding of the user’s intent – what the robot
ought to do – given some user input that does not directly, or not exhaustively, specify
that intent. MetaWizard solves the problem of task recognition by abstraction from
concrete, demonstrated events (human actions in VR) to tasks with known, well-
defined semantics (Alt et al., 2023). To that end, it uses symbolic representations
of tasks and events, which are defined in terms of SOMA (Beßler et al., 2021)

180

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

and derived ontologies, as well as the KnowRob KR&R engine for semisymbolic
reasoning over a knowledge base containing symbolic knowledge and subsymbolic
data, such as robot trajectories (Beetz et al., 2018). In the KnowRob ecosystem,
several related approaches propose leveraging explicit, structured task, domain and
commonsense knowledge to understand the intent of human actions and synthesize
corresponding robot programs. Haidu and Beetz (2016) present a pipeline for
action recognition from VR human demonstrations, which inserts VR data into the
semisymbolic knowledge base and uses Prolog reasoning routines to semantically
classify cooking tasks. MetaWizard proposes a more structured task representation,
in which all tasks are defined in terms of their pre-, post- and runtime conditions
and which yields all candidate task sequences consistent with the VR demonstration.
Haidu and Beetz (2021) introduce the VR demonstration and action recognition
pipeline used by MetaWizard, in which elementary actions are classified based on
force-dynamic events.

Ramirez-Amaro et al. (2017) propose a program synthesis system within
the KnowRob ecosystem that is the technological and intellectual predecessor
of MetaWizard. It uses the KnowRob semisymbolic KR&R engine to infer the
goals pursued by humans as they demonstrate kitchen tasks, and then plans a
sequence of robot actions to achieve those goals. Their action recognition pipeline
semantically segments the demonstration timeline by detecting whether or not
the human hand is moving, whether a tool is used, whether an object is acted on
and whether an object is in the human’s hand. The segmented timeline is then
translated into individuals the semisymbolic knowledge base. Bates et al. (2017)
extend this work to support VR human demonstrations. For execution, goals are
directly mapped to robot tasks, which in turn consist of sequences of primitive robot
skills. MetaWizard is based on the same foundational principle of task abstraction
followed by task execution. MetaWizard uses lower-level force-dynamic events to
segment the demonstration timeline at finer granularity, and models tasks in terms
of pre-, runtime- and postconditions, permitting higher generality. Moreover, its
task model and execution pipeline supports complex manipulation tasks such as
force-controlled insertion or retraction.

Patton et al. (2024b) propose prolex, an approach to robot program synthesis
that is structurally similar to MetaWizard in that it first generates a set of pro-
gram “sketches” – underspecified plans –, and then “completes” – grounds – the
sketch in the human demonstration. prolex generates a sketch by converting
demonstrations into strings of characters and generating a regular expression that
matches them. It then produces executable programs by finding character strings
that match the synthesized regular expression, and leverages an LLM as a heuris-
tic to prioritize programs that are more likely to be executed successfully. Like
MetaWizard, prolex generates multiple tasks sequence candidates for a given
demonstration, and eliminates infeasible plans during task grounding. One central
difference to MetaWizard is that prolex grounds plans by unifying them over
multiple demonstrations, i.e. by finding an fully specified sequence of actions that

181

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

matches the regular expression synthesized from the demonstrations. MetaWizard
instead grounds candidate plans in the current environment at hand, allowing for
generalization to an environment different from that during demonstration while
still generating specific plans for that new environment. Another difference is that
prolex generates task sequences that syntacticallymatch the demonstrations, while
MetaWizard performs task abstraction using a semantic task definition.

4.1.8.2 Neural Robot Program Synthesis

Recent approaches to robot program synthesis have leveraged deep neural rep-
resentations, particularly LLMs and Transformer-based multimodal foundation
models, to synthesize robot programs. Zitkovich et al. (2023) propose Robotics
Transformer 2 (RT-2), an end-to-end neural approach to robot program synthe-
sis. RT-2 translates a textual description of a task and an image of the current
environment into a unified token representation, which is transformed by an LLM
into low-level robot control commands, such as end-effector pose or joint angle
increments. RT-2 relies on implicit representations of actions and the environment.
Task-specific and commonsense knowledge is represented in latent space, implicitly
encoded in the weights of the Vision Transformer (Dosovitskiy et al., 2020) used
to encode the environment image into text tokens, and the LLM used to generate
the output action sequence, both of which were pretrained on web-scale, general-
purpose datasets. Several related end-to-end neural program synthesizers have
been proposed. CaP (Liang et al., 2023) uses an LLM to synthesize Python robot
control code from textual natural-language descriptions of a task, by composing
and parameterizing high-level functions from a low-level robot control API. Un-
like RT-2, which generates low-level motion commands, CaP generates textual
robot programs that can be read and modified by human programmers. SayPlan
(Rana et al., 2023) use an LLM to perform semantic search in a 3D scene graph to
generate high-level plans from natural-language task descriptions, and then use
the same LLM to iteratively refine the plan until it is executable in a simulator.
It uses a similar generate-and-test pattern to MetaWizard, generating candidate
plans from the human instruction which are then refined to fit the target envi-
ronment. With “ChatGPT for robotics”, Vemprala et al. (2023) propose to use
ChatGPT (OpenAI, 2023), an off-the-shelf general-purpose chat LLM, to synthesize
executable robot code purely via prompt engineering (Marvin et al., 2024), i.e.
structuring the textual input to the LLM in a way that encodes the user’s intention,
information about the environment as well as any additional knowledge that may
be required for the task. Similar to SayPlan, they propose an iterative refinement
procedure, by which the LLM repeatedly iterates over previously generated robot
code to successively improve robot behavior. ProgPrompt (Singh et al., 2023), in
a manner similar to CaP, proposes a prompt structure designed to provide the
code-generating LLM with the required knowledge about available actions, the
objects in the environment. They include example programs in the prompt, which

182

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

provide the LLM with the implicit, contextual knowledge about the semantics of
the available control primitives. Recent architectures such as Octo (Ghosh et al.,
2024), GROOT (NVIDIA, 2024b) or RFM-1 (Covariant, 2024b) build on large-scale
pretrained VLA models to generate outputs in different modalities, such as joint
angles, textual robot code or natural-language descriptions, given inputs in the
same or different modalities. Cross-modality reasoning is enabled by pretraining
on several web-scale, partially multimodal datasets, as well as modular network
architectures that combine pre-trained, modality-specific encoders and decoders
with a shared, jointly trained backbone (Ma et al., 2024).

End-to-end neural program synthesizers like RT-2 do not require humans to
provide the systemwith explicit knowledge by virtue of learning, and generalize well
by leveraging highly general, implicit representations learned over a wide variety
of training data. Unlike end-to-end neural systems, MetaWizard uses a modular
architecture with distinct reasoning steps (task abstraction and task grounding),
and relies on explicit knowledge representations and reasoning routines. Modular
program synthesis systems with explicit knowledge representations and reasoning
mechanisms make it comparatively easy for humans to fundamentally alter or
reliably influence the behavior of the system without retraining it on new data,
by adding new knowledge to the knowledge base. Moreover, end-to-end neural
systems can be prone to “hallucinations”, implausible generation results indicating
a lack of deep semantic understanding (Huang et al., 2023b; Gunjal et al., 2024).
Moreover, explicit systems such as MetaWizard afford mechanistic interpretability,
allowing the user to understand the chain of reasoning steps by which the system
arrived at a particular conclusion (Bereska and Gavves, 2024; Burkart and Huber,
2021).

4.1.9 Discussion

MetaWizard performs robot program synthesis by reasoning over a semisymbolic
knowledge base. It provides an intuitive, automatic way to synthesize robot source
programs from human VR demonstrations. From a programmer’s perspective,
MetaWizard alleviates the need for task- or domain- specific expertise or program-
ming experience, as this knowledge is encoded in the knowledge base prior to
program synthesis.

A general challenge faced by program synthesis systems is to find knowledge
representations and reasoning algorithms that are sufficiently general to cover a
wide range of applications, while at the same time permitting inference of program
structures and parameterizations that are specific enough to solve concrete use cases.
MetaWizard resolves this trade-off by combining a highly generalizable, ontological
model of knowledge with hybrid data structures such as semantic maps and the TF
database, which permit the grounding of abstract tasks in concrete, numerical data
about the current environment. Neural approaches face the same tradeoff: They
must be trained on sufficiently diverse datasets to permit generalization across

183

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

use cases, yet must generate robot programs that solve a precise, exact task in a
highly performant way. They address it by domain-specific finetuning, few-shot
task learning, or reinforcement learning from human feedback (Ouyang et al.,
2024). MetaWizard does not require upfront training on large datasets or fine-
tuning on task-specific data, making it particularly suited for applications in which
acquiring training data is prohibitively expensive. In Section 4.2, MetaWizard
is applied in the context of such an application. Instead, it shifts the burden of
knowledge specification to the metaprogrammer, who must encode prior knowledge
in a structured knowledge base.

MetaWizard’s complete program synthesis pipeline is explainable, and the rea-
soning behind given decisions – such as what events in the human demonstrations
led to a particular task being included in a candidate task sequence – can be made
transparent by following the chain of unification and backtracking operations that
underlie task abstraction and task grounding. From a metaprogramming perspec-
tive, this is particularly useful to explain erroneous synthesis results, and add
missing knowledge or fix contradictory assertions. From a user’s perspective, it fos-
ters trust in the behavior of the system. The conception of explanatory mechanisms
and corresponding user interfaces for complex KR&R systems like MetaWizard is a
promising avenue of future work.

The data structures used to represent human demonstrations merit additional
discussion. The use of NEEMs as an input modality allows for program synthesis
from human demonstrations, but can also represent robot experience data (Beetz
et al., 2023). NEEMs, by virtue of axiomatizing actions and motions in terms of
ontologies, permit downstream systems to abstract away from the particulars of
the executing agent or the execution environment. NEEMs as an input modality
enable MetaWizard to synthesize robot programs given demonstrations from other
robots for cross-platform learning. The use of NEEMs, as well as the representation
of task knowledge in terms of the KnowRob semisymbolic knowledge base and the
use of CRAM plans as an intermediate representation for task grounding integrate
MetaWizard in the CRAM cognitive architecture as a component for program
synthesis and metaprogramming.

Many program synthesis systems, including MetaWizard, map demonstrated
action sequences to tasks at a higher level of abstraction. In MetaWizard, task
abstraction assumes that each action executes one task. This restricts the knowledge
representation to model tasks and actions at the same level of granularity, and
may require an unnecessarily fine-grained task model. A more intuitive model of
tasks and actions would allow e.g. the possibility of a sequence of actions executing
some common task. Likewise, task grounding assumes that for each task, there is a
corresponding skill or predefined skill sequence. To achieve good generalization,
this requires considerable modeling upfront, as a wide variety of tasks must be
considered. The integration of planners that generate skill sequences to achieve a
given task, can decrease the overhead of modeling, as only the primitive skills must
be modeled. Recent works in the TAMP community propose to use PDDL planners

184

4.1. KNOWLEDGE-DRIVEN ROBOT PROGRAM SYNTHESIS

to sequence primitive TAMP operators on the fly (Vu et al., 2024), avoiding the need
to explicitly model skill sequences beforehand, or to learn primitive operators which
are then sequenced by a planner (Silver et al., 2021). Integration of task planners
or integrated task and motion planning into MetaWizard could further reduce the
burden of modeling and increase generalization while keeping the knowledge base
compact.

MetaWizard, in its current iteration, does not incorporate learning. Knowledge
is added to the knowledge base upfront, via the semantic map of the environ-
ment and the task definitions, and during program synthesis by way of the human
demonstration, which asserts new facts into the knowledge base. New knowledge is
derived from these assertions at inference time, but that knowledge is not retained
for future use. Learning from past program synthesis results would enable MetaWiz-
ard to yield more likely candidate plans first, cover situations the human designers
of the knowledge base did not specify, or yield executable robot programs that
solve tasks with increasing reliability or efficiency. NEEMs are expressly designed
to support learning from humans, from other robots, but also from the system’s
own experience (Beetz et al., 2023). Learning mechanisms can be integrated into
MetaWizard in several ways. Mechanisms that update the knowledge base in a
persistent way, such as automatic derivation of new ABox and TBox axioms from
experience or demonstration (Petrucci et al., 2016; Khadir et al., 2021), can be
integrated in a drop-in manner, without requiring changes to the remainder of
the system. Likewise, neural learning approaches, such as use of CNNs, Vision
Transformers (Dosovitskiy et al., 2020) or Neural Scene Graphs (Ost et al., 2021)
can be integrated as grounding mechanisms into the task grounding scheme in a
manner similar to RoboSherlock, to improve task grounding as the system gains
experience.

All program synthesis frameworks face the challenge that the real-world environ-
ment may significantly deviate from the model assumed during program synthesis.
This is particularly true for dynamic environments, which may change during
runtime, or programs that involve interaction with other agents, whose behavior
cannot be fully modeled. CRAM addresses this challenge by resolving CPL plans
online, grounding each action just before executing it (Beetz et al., 2023). This
principle of just-in-time grounding can be implemented by MetaWizard without
significant architectural change, but implies eschewing the generation of complete,
fully specified programs, which can be reviewed and possibly certified by human
experts before execution. For application domains in which dynamic environments
are the rule, such as household assistance tasks, just-in-time grounding may be
preferable, while for industrial robotics applications, fully offline grounding is pre-
ferred. Even with just-in-time grounding, execution failures are to be expected.
Failure handling has been supported by the CPL since its inception (Beetz et al.,
2010), and has to date been realized by predetermined failure handling routines.
Meywerk et al. (2022) propose a mechanism for the automatic generation of tests
to ensure that all known failure modalities are handled. Extending MetaWizard

185

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

to automatically synthesize subprogram for failure handling is a promising and
important line of future work.

4.2 An Interactive Robot Programming Assistant

The vision of the “robot colleague” – a robot assistant that can be taught and
instructed like a human coworker – has been the subject of scientific study and
the aim of many research and engineering efforts since the inception of the field
of robotics (Nyholm, 2024). The ability to communicate with robots in a bilateral
conversation, by means of natural language, has been emphasized as a crucial
component of this vision, and repeatedly found to be beneficial for the acceptance of
robots by human coworkers (Dautenhahn, 2007; Oistad et al., 2016; Strazdas et al.,
2020). The vision of conversational human-robot interaction naturally extends to
robot programming: Programs are written, read, executed, simulated and refined in
constant back-and-forth interaction between programmer and machine. AI-enabled
programming systems like MetaWizard promise to store expert knowledge and
make it available to non-experts through automatic program synthesis. Interactive
robot programming, realized by AI algorithms, can enable users to access this
knowledge in an intuitive manner.

As a system for automatic program synthesis from human demonstrations,
MetaWizard as introduced in Section 4.1 shifts the burden of programming away
from creating robot programs and towards the upfront specification of task and
domain knowledge in the knowledge base, as well as the recording of good human
demonstrations of the task. For some applications, however, collecting human
demonstrations may be highly challenging or even infeasible: Destructive processes
such as sanding or cutting, for example, are challenging to simulate in VR, and real-
world demonstrations may be prohibitively expensive, particularly if workpieces are
unique. For these applications, an interactive programming paradigm may be better
suited. This section introduces MetaWizard2, an interactive programming assistant
based on MetaWizard that guides users through the robot programming process by
interactive dialogue. The work described in this chapter was first presented by Alt
et al. (2024c).

4.2.1 Overview

Figure 4.14 outlines an interactive assistant for robot programming. The user
instructs the assistant with a rough description of the task objective – in Figure 4.14,
the task consists of sanding a wind turbine rotor blade. Through natural-language
dialogue with the user, MetaWizard2 incrementally grounds its knowledge base,
drawing from user-supplied information, commonsense knowledge, as well as
planning and perception modules. The synthesized robot program is executed on
the robot and the user is asked for feedback. The process is repeated until the task
is complete.

186

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

"What is the material
of the workpiece?"

"Sand this rotor blade."

Belief
StateKR&R Engine

Reasoner

MetaWizard2

Dialogue Module

"It's made of fiberglass."

...

Robot
Program

Perception Module

Planning Module

Execution Module
© 2024 IEEE

Figure 4.14: MetaWizard2 co-creates executable robot programs by interactive
dialogue with a human programmer (Alt et al., 2024c).

The central algorithmic contribution of MetaWizard2 is a flexible, extensible
metaprogramming system for robot tasks. High-level tasks are modeled as under-
specified workflows, which include not just robot (sub-)tasks resulting in physical
robot actions, but also interactive tasks such as obtaining feedback from a human
expert. The metatask hierarchy is grounded at runtime by querying sensor data
or asking questions to the user. MetaWizard2 is designed around three guiding
principles:

1. Metaprogramming: Task hierarchies are modeled as knowledge in a KB,
and executable NRP source programs are synthesized by reasoning over this
KB. Generalization to novel tasks should require only the addition of new
knowledge to the KB.

2. Proactive grounding through dialogue: The program synthesis system
should be “aware” of knowledge that may be missing to ground a task, and
proactively ask questions to the human user to fill such gaps in the KB as they
are discovered.

3. Just-in-time task grounding: Subtasks should be grounded just before they
are executed. Task grounding and execution should be interwoven to react
e.g. to unexpected changes in the environment.

Where MetaWizard emphasizes offline, fully autonomous planning of robot source
programs with distinct task abstraction, task grounding and program execution
phases, MetaWizard2 emphasizes interactive grounding and execution, keeping
the human user in the loop as a source of knowledge and expertise.

187

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

4.2.2 Metatask Representation

MetaWizard2 uses the KR&R backend of MetaWizard, based on the KnowRob
semisymbolic knowledge base and reasoning engine (Beetz et al., 2018). To realize
dialogue-based programming, MetaWizard2 proposes to model tasks not as atomic
units, but rather as constituents of an overarchingMetatask ▷ metatask. The metatask models
not just subtasks to be executed by the robot, such as grasping an object or sanding
a surface, but also cognitive or communicative tasks required to be executed by
MetaWizard2 itself, such as performing path planning or asking a human user for
input. It acts not only as a model of some real-world task to be achieved, but also
as a model of MetaWizard2’s own process of achieving the task. Metaprogramming,
i.e. specifying or changing the behavior of MetaWizard2 itself, is reduced to
adding metatask information to the KB. This permits MetaWizard2 to generalize
between profoundly different task types without requiring changes to the codebase
of MetaWizard2.

The metatask model is defined in metawizard2.owl (short mw2), a domain
ontology that extends SOMA (Beßler et al., 2021). A metatask is represented as
an individual of class mw2:MetaTask of type dul:Task in KnowRob’s semisymbolic
knowledge base. As a running example, a refabrication task is considered, in
which the rotor blade of a wind turbine is sanded down by a robot after repairs
to the surface. The use case of robot-based refurbishing of wind turbine blades
is considered in greater detail in Experiment 4.2.4.1. An application ontology
for surface treatment tasks, (surface_treatment.owl, short sft) extends mw2
and defines the metatask type sft:Sanding. A metatask has a set of metatask
parameters, workpieces, tools and subtasks.

Metatask parameters The metatask parameters comprise task-specific, symbolic
or subsymbolic information associated with the metatask. sft:Sanding, for exam-
ple, has the metatask parameters sft:CuttingDepth representing the amount of
overall material, in mm, to be removed, as well as a symbolic parameter sft:Finish
with values rough or fine. Metatask parameters are related to the metatask via
the object property dul:hasParameter, and are available to the reasoner during
task grounding at all levels of the task hierarchy.

Workpieces The workpieces of a metatask are all objects manipulated or other-
wise interactedwith by the robot during execution of themetatask. For sft:Sanding,
the object to be sanded is the only workpiece. Workpieces are related to themetatask
via the object property mw:hasWorkpiece.

Tools The tools of a metatask are all tools used by the robot during the execution
of the metatask. For sft:Sanding, the sander is the only tool. Tools are related to
the metatask via the object property mw:hasTool.

188

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

Subtasks The subtasks of a metatask are the lower-level tasks, such as path
planning, simulation, program execution or user interaction, that are required to
execute the metatask. Subtasks are sequenced by the predicate successor(T, S)

in the KB, indicating that task type T is succeeded by task type S. Succeedence
relations are asserted into the KB as TBox axioms and apply to all instantiated
subtasks of the given types. Figure 4.15 illustrates the definition of a metatask’s
subtasks in MetaWizard2 by the example of sft:Sanding. The left-hand side shows
a “one-shot” version of a sanding task that performs one pass over the surface. The
right-hand side shows sanding as an iterative process, which asks the user after
every pass whether the surface has the desired quality, whether parameters (here,
the intended surface finish) should be adapted, and repeats the process until the
user is satisfied. Listing 4.10 shows the programmatic definition of the metatask in
Prolog. Adaptation of a sequential to an iterative metatask is achieved purely by
adding additional assertions to the KB (highlighted in blue in Figure 4.15 and Listing
4.10). Each subtask has an associated workflow, following the SOMA workflow
model, that specifies the concrete steps MetaWizard2 must perform to execute
the subtask. In Figure 4.15, the subtask sft:ChooseFinish has one associated
workflow step, sft:AskUser. Associating a workflow with each subtask adds a
layer of flexibility in the model that make the metatask, to a degree, independent
from the concrete cognitive, computational or physical tasks required to execute it:
In some contexts, sft:ChooseFinish may also be realized by reasoning over the
KB instead of direct user interaction.

4.2.3 Metatask Grounding

Like abstract candidate task sequences generated by MetaWizard (see Section
4.1.4), the metatask is underspecified. While for most tasks, some TBox information
such as the required tool type may be available, ABox information such as the con-
crete tool to be used for the task, the workpiece to operate on or subtask parameters
such as planned motions must be grounded in the real-world environment through
perception, user interaction and planning. Metatask grounding is done via semisym-
bolic reasoning over the knowledge base, using additional perception, planning and
dialogue modules to provide ground-truth information at runtime. The dialogue
and execution modules are described below. Application-specific perception and
planning modules are described in the context of Experiment 4.2.4.1.

4.2.3.1 Dialogue module

The dialogue module provides a mechanism for interactive symbol grounding
through natural-language user interaction. It consists of a natural language pro-
cessing (NLP) pipeline for text-to-speech and speech-to-text conversion, abstracted
behind an interface providing high-level methods for grounding numerical or sym-
bolic parameters, choosing values among a set of categories, etc. The dialogue
module is integrated into MetaWizard2’s KR&R engine via a Python API.

189

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

sft:ChooseFinish

sft:PathPlanning

sft:Simulate

sft:Execute

sft:ChooseFinish

sft:PathPlanning

sft:Simulate

sft:Execute

sft:AskFinished

yes no

sft:ChooseFinishAgain

mw2:AskUser

mw2:RPSAddPathLoaderForce

mw2:RPSSimulate

mw2:RPSExecute

mw2:AskUser

mw2:AskUser

successor

workflow_first_step

mw2:AskUser

mw2:RPSAddPathLoaderForce

mw2:RPSSimulate

mw2:RPSExecute

Figure 4.15: TheMetaWizard2metatask representation, at the example of a sanding
task. Subtasks are chained by a succeedence relation and are each associated with a
workflow, detailing concrete steps required to execute them. One-shot sanding (left)
can be extended to an iterative process (right) by asserting additional succeedence
relations (blue).

1 successor(sft:'ChooseFinish ', Succ) :-

2 true -> atom_string(Succ , sft:'PathPlanning ').

3 successor(sft:'PathPlanning ', Succ) :-

4 true -> atom_string(Succ , sft:'Simulate ').

5 successor(sft:'Simulate ', Succ) :-

6 true -> atom_string(Succ , sft:'Execute ').

7 successor(sft:'Execute ', Succ) :-

8 true -> atom_string(Succ , sft:'AskFinished ').

9 successor(sft:'AskFinished ', Succ) :-

10 kb_call(parameter_value(done_flag , X)),

11 X = not_done ,

12 atom_string(Succ , sft:'ChooseFinishAgain ').

13 successor(sft:'ChooseFinishAgain ', Succ) :-

14 true -> atom_string(Succ , sft:'PathPlanning ').

15 successor(sft:'Execute ', Succ) :-

16 true -> atom_string(Succ , sft:'AskFinished ').

17 successor(sft:'AskFinished ', Succ) :-

18 kb_call(parameter_value(done_flag , X)),

19 X = not_done ,

20 atom_string(Succ , sft:'ChooseFinishAgain ').

21 successor(sft:'ChooseFinishAgain ', Succ) :-

22 true -> atom_string(Succ , sft:'PathPlanning ').

Listing 4.10: Metatask definition of a sanding task via Prolog predicates in the
semisymbolic knowledge base. One-shot sanding can be extended to an iterative
process by asserting additional succeedence relations (blue).

190

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

Verbalization of user queries Queries by the KR&R engine are three-tuples
(S, T, P) consisting of a query string S (the prompt) provided by the KR&R engine,
the query type T and query parameters P . Two query types are supported, option
and parameter. Option queries ask the user for a choice between a set of given op-
tions, while parameter queries ask the user for a numerical value with an associated
unit. For an option query, P is the list of (string) options. For a parameter query, P is
a tuple containing the parameter type (float, int etc.) and the unit (mm, degrees
etc.). To ground the metatask parameter sft:CuttingDepth of sft:Sanding, for
example, MetaWizard2 queries the dialogue module with the tuple (“How much
material should be removed?”, float, mm). Queries are output to the user via
standard text-to-speech utilities (pyttsx3, Bhat (2020)).

Parsing of natural-language user responses To parse natural-language user
responses, a hybrid speech recognition pipeline is proposed (Alt et al., 2024c):

1. Speech-to-text conversion: User speech is converted to text via the Google
Speech Recognition API (Google, 2024).

2. Tokenization and embedding: The spaCy library (Honnibal and Montani,
2024) is used to chunk the text into semantic units. The semantic chunks
are embedded into a vector space.

3. Semantic matching: Based on their semantic roles and vector embeddings,
chunks arematched to symbols to be grounded. To ground sft:CuttingDepth,
for example, the chunk “point seven” is recognized as a quantity, and “inches”
is recognized as a unit. The parsed parameter value, converted to the de-
sired unit, is returned to MetaWizard2. For option queries, the option with
the smallest distance to its nearest-neighbour chunk in embedding space is
returned.

MetaWizard2 then asserts the grounded parameter values or options into the
knowledge base.

With the dialogue module, MetaWizard2 has a general-purpose backend to
ground variables that it cannot ground in its knowledge base. Whenever MetaWiz-
ard2 fails to unify the arguments of a predicate, it can query the dialogue module
to supply user-provided values for the uninstantiated arguments and assert them
into the KB so that subsequent unification attempts will succeed.

4.2.3.2 Execution Module

The executionmodule provides capabilities for executing and/or simulating grounded
robot source programs. The default execution module of MetaWizard2 is a Python
wrapper of the ArtiMinds RPS industrial robot IDE (Schmidt-Rohr et al., 2013).
The RPS provides collision-free path planning and can also serve as an elementary
planning module, allowing MetaWizard2 to plan e.g. collision-free approach or

191

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

depart motions. Complex, application-specific planners can be integrated via dedi-
cated planning modules, such as the planner for surface treatment tasks introduced
in the context of Experiment 4.2.4.1.

4.2.3.3 Metatask Grounding

Given the metatask definition and the dialogue module, Metatask grounding re-
quires to first ground the metatask parameters, workpieces and tools, before incre-
mentally grounding and executing the subtask sequence.

Grounding of parameters, workpieces and tools When MetaWizard2 is first
started, the metatask at hand is unknown and represented by an anonymous individ-
ual in the knowledge base. Queries to ground the metatask type will fail (as no type
for the individual has been asserted), so the user is asked to specify the metatask
type. Note that queries and user responses are articulated in natural language (e.g.
“What task can I help with?”, and “I want you to sand this injection mold.”). The
parsed reply (e.g. sft:Sanding) is asserted into the KB, and subsequent KB queries
about the metatask type and associated background knowledge will succeed. This
paradigm of creating anonymous individuals and “filling out” missing information
about them by asking the user for information, if it cannot be inferred from the KB,
is MetaWizard2’s default mode of knowledge discovery. Unification of the predicate
has_parameter(TT, P) yields all parameters P for given metatask type TT, which
are each grounded, in turn, by unification with available domain knowledge in the
KB or user interaction, should no such knowledge be available. The workpieces
and tools of the metatask are grounded in the same manner. Interactive ground-
ing of objects, such as workpieces and tools, is realized by option queries, which
provide the user with a choice between (known) objects in the environment that
correspond to criteria, such as class constraints, defined in TBox assertions as part
of the metatask definition (e.g. sft:Sanding requires a tool of type sft:Sander).
Objects in the KB are associated with the corresponding 3D meshes, which are
required for e.g. collision-free motion planning during subtask grounding. Once all
workpieces and tools are grounded, the kinematic robot model and object meshes
are instantiated in the planning environment, here the ArtiMinds RPS. Parameter,
tool and workpiece properties are available during grounding of subsequent task
types. Figure 4.16 illustrates the interactive grounding of metatask parameters,
workpieces and tools.

Subtask grounding and execution The subtask sequence is grounded by succes-
sively querying the successor predicate on each subtask of the metatask. For each
subtask, the associated workflow is traversed and each workflow step is executed
in turn. Each workflow step corresponds to a predefined handler routine, which
executes the workflow step using the planning, perception execution or dialogue
modules, the general-purpose KB, or other external utilities, depending on the

192

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

Natural Language Interface

is_known_task(Task).
subclass_of(Task, 'MetaTask').

Task = 'Sanding'.

Task = 'Deburring'.

Task = 'Polishing'.

Task = 'Sanding'.

Task = 'Deburring'.

Task = 'Polishing'.

get_option(['Sanding', 'Deburring', ...],

"What task do you want me to help with?")

get_option['RotorBlade', 'RotationalMold'],

"Please specify the type of the workpiece.")

What task do you want
me to help with?

I'd like to sand
this workpiece.

'Sanding'
has_properties('Sanding',

Workpieces, Tools, Parameters).
has_workpiece('Sanding', W).

has_tool('Sanding', T).

has_parameter('Sanding', P).

W = 'RotorBlade'.

W = 'RotationalMold'.

...

T = 'DiskSander'.

...

Workpieces = ['RotorBlade',

 'RotationalMold', ...]).

Tools = ['DiskSander', 'BeltSander',

 ...]).

Parameters = ['CuttingDepth'].

Please specify the type
of the workpiece.

It's a wind turbine
blade.

'RotorBlade'

MetaWizard2Prolog ReasonerKnowRob

.
.
.

.
.
.

.
.
.

.
.
.©

 2
02

4
IE

E
E

Figure 4.16: MetaWizard2 grounds symbols in its knowledge base by natural-
language interaction with a human programmer (Alt et al., 2024c).

workflow step. The subtask sft:ChooseFinish, for example, has the only work-
flow step mw2:AskUser, which uses the dialogue module to ask the user for the
desired surface quality. Experiment 4.2.4.1 details the grounding and execution
of the more complex subtask sft:PathPlanning in the context of sanding, which
requires domain-specific perception and planning modules.

4.2.4 Experiments

MetaWizard2 leverages a semisymbolic knowledge base and a flexible metatask
representation to store domain-specific task knowledge and makes that knowledge
accessible to human users for program synthesis via natural-language interaction.
Robotic surface treatment tasks such as sanding, grinding or deburring require a
particular degree of domain-specific expertise, as they are contact-rich, dynamic
processes that are hard to simulate and where e.g. quality criteria are often
highly context-dependent and difficult to quantify. In many applications such as
polishing, the task objective is for a surface to “look good”, which is a subjective
criterion judged by domain experts. As MetaWizard2 centers around human-
robot co-programming, it holds particular promise in application domains such
as robotic surface treatment, where iterative workflows with continuous human
involvement predominate. Experiment 4.2.4.1 applies MetaWizard2 to wind turbine
refabrication. Section 4.2.4.2 discusses the generalization ofMetaWizard2 to related
sanding and deburring tasks.

4.2.4.1 Refabrication of Wind Turbine Blades

To validate MetaWizard2 on a real-world industrial scenario, the refabrication of
wind turbine blades is considered. The rotor blades on wind turbines are subject
to constant wear and tear from wind, precipitation, lightning and other factors.
As wind turbines age, their power output decreases by 1.8% per year (Staffell
and Green, 2014). The design lifespan of wind turbine blades is 20 years, with
many blades being replaced before that time (Liu and Barlow, 2017). Wind turbine

193

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

3D Surface Scanning1

NLP Frontend

Reasoner

Q: "What is the
material of the
workpiece?"

A: "Fiberglass."

KR&R Engine

query answer

3D Scanning1a

Surface Anomaly
Detection1b

AI-Assisted Robot
Programming2

Path Planning3a

Code Generation3c

movej([1.33, -2.57, -2.02, ...

frame_userOffset = p[-3.65, ...
...

Simulation3b

Force-Controlled
Surface Treatment3

© 2024 IEEE

Figure 4.17: MetaWizard2 was used to synthesize executable robot programs (3)
given vision sensor input (1) and natural-language user interaction (2) (Alt et al.,
2024c).

blades are made from composite materials, with an outer shell of coated fiberglass.
At the time of writing, no industrial-scale method for recycling wind turbine blades
exists (Lund and Madsen, 2024), making a strong case for automated robotic
remanufacturing. Remanufacturing of wind turbine blades comprises filling holes,
dents or uneven regions of the blade surface with fiberglass putty, and subsequently
sanding the surface until a uniform curvature and smooth surface is achieved. Like
for most surface treatment tasks, no quantifiable metric for task success has been
defined. Rather, human experts must look at and touch the surface to determine
whether it is “smooth enough”. This is amplified by the fact that there is little
literature on robotic wind turbine remanufacturing (Franko et al., 2020; Cieslak
et al., 2023; Jiang et al., 2023; Stöckl et al., 2023), and no dedicated literature
focusing on the sanding process. In the RoboGrind14 project, MetaWizard2 is used
to structure and store knowledge of human surface treatment experts, and to enable
the largely automated creation of robot programs for sanding wind turbine blades.

Perception module A domain-specific perception module for sanding tasks has
been developed to provide ground-truth, annotated sensor data as a basis for
subsequent task and motion planning. The surface of the workpiece is scanned
using a robot-mounted laser line scanner.15 Surface defects such as holes, dents or
bumps are automatically identified by statistical outlier detection (Rusu and Cousins,
2011). I refer to Stöckl et al. (2023) and Alt et al. (2024c) for further details. In
the real-world experiment setup, scanning required physical reconfiguration of the
robot (see Figure 4.21). For this reason, scanning was realized as an offline process,
and queries to the perception module return the last scan result, a point cloud of

14Research project RoboGrind (2021-2023), funded by the German state of Baden-Württemberg
under grant #BW1_0079/01.

15Gocator 2490, LMI Technologies Inc., Burnaby, Canada

194

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

© 2024 IEEE

Figure 4.18: Left: Scanned point cloud and annotated defect regions (center,
enlarged) of a wind turbine blade section. Right: Planned tool path for sanding a
section of a wind turbine blade.

the surface with annotated defect regions. Figure 4.18 shows the scanned surface
of a wind turbine blade as a raw (left) and annotated (center) point cloud.

Planning module A domain-specific planning module for sanding tasks has been
developed. When queried with the point cloud of the surface and the properties
of the sanding tool, such as the pad diameter of an orbital sander, the planner
generates a 6D tool path comprising positions and orientations to cover the surface
in a meandering path with a given amount of overlap. Tool orientations are kept
normal to the surface and large, sudden changes in position and orientation are
avoided to ensure a homogeneous sanding result. I refer to Raible et al. (2023a)
and Alt et al. (2024c) for further details. Figure 4.18 (right) shows a planned tool
path for sanding a wind turbine blade section.

Execution module Sanding of wind turbine blades requires robust force control.
While the curvature of the workpiece is comparatively homogeneous, the thin
fiberglass is prone to vibrations during sanding, which are not absorbed well by the
lightweight collaborative arm used in the experiments. For robust force control,
the main sanding motion is performed by a Path Loader Force ARTM skill for
hybrid force-position control, which overlays a planned Cartesian trajectory with
a force profile, allowing a set amount of deviation from the planned trajectory to
stay within given force limits. The planned Cartesian trajectory is provided by
MetaWizard2 via the planning module, while the force setpoint along the Z axis is
computed by reasoning over the knowledge base.

Knowledge base The metatask model for iterative sanding is shown in Figure
4.15 (right). The application ontology surface_treatment.owl models common
tools for sanding, several example workpieces comprising the rotor blade at hand, as
well as common materials such as aluminum, fiberglass, wood and steel. The class
hierarchy for tools, descendants of mw:RobotTool, is connected to the metatask
definition via the Prolog predicate viable_tool, which permits metatasks to restrict
the range of viable tools for the given metatask via TBox axioms. sft:Sanding, for

195

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

example, can only be performed with tools descendant from sft:Sander. Tools
have associated geometry information, such as a 3D model and a pose (offset and
orientation) for attachment to a robot end-effector. Workpieces are associated with
a material, as well as an optional 3D model, which can be used for collision-free
path planning. For many sanding tasks, material removal largely depends on the
contact force during sanding, the end-effector velocity, properties of the tool such
as rotation speed, the angle of attack of the tool against the surface as well as
the material of the workpiece. For this experiment, an OnRobot collaborative
disk sander16 was used with a pre-set rotation speed (6000 RPM) and angle of
attack (5°). Determining the appropriate end-effector velocity and contact force
to achieve a desired amount of material removed requires considerable expertise
with robotic sanding in general and task-specific knowledge in particular, which
cannot be expected from the user of the system. For this reason, the predicate
mat_to_vel_f(M, F, V, T) permits the KR&R engine to unify an end-effector
velocity V and force F with material M and metatask T. Expert knowledge can be
added to the knowledge base upfront, as illustrated for sft:Fiberglass for small
amounts of material removed (fine finish):

1 mat_to_vel_f(sft:'Fiberglass ', 10, 20, MainTask) :-

2 kb_call ([

3 has_parameter(MainTask , P),

4 has_type(P, sft:'finish '),

5 parameter_value(P, 'fine')

6]).

This permits human experts to build up a knowledge base of suitable task param-
eterizations from past experience, and avoids requiring the user to specify such
parameters at program inference time.

Laboratory experiments The perception, planning and execution modules were
evaluated under laboratory conditions on three identical 500mm x 750mm wind
turbine blade sections (Alt et al., 2024c). Each section is partitioned into four
concave segments containing surface defects such as scratches or dents. Each
segment was scanned, defects were filled with putty, and the segment was scanned
again. For each defect region, several sanding passes were performed with MetaWiz-
ard2, and the resulting surface was scanned a third time. Besides evaluating the
robustness of the execution module, the sanding trials help determining suitable
parameterizations for the force controller to achieve the desired surface quality
– i.e., empirical grounding of mat_to_vel_f, as no applicable data was available
in the literature. The contact force Fz, angle of attack α and number of succes-
sive sanding passes were varied to determine suitable values for validation in an
operational environment (see below).

Out of 96 total defects, 69 defects were correctly detected by the perception
module, with 27 false negatives and 7 false positives. False negatives were mainly

16OnRobot GmbH, Soest, Germany

196

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

© 2024 IEEE

Figure 4.19: Measured force trajectories for 3 different controller parameterizations
(force setpoints Fz). Four trajectories per parameterization are plotted (Alt et al.,
2024c).

RMSE / mm MAE / mm MAX / mm

0.372 (σ = 0.030) 0.348 (0.034) 1.046 (0,330)

Table 4.4: Root MSE between the planned tool path and the detected surface point
cloud (Alt et al., 2024c).

defects in regions with dark discolorations due to dirt, which caused holes in the
point clouds. The planning module planned suitable tool paths for all 12 sections.
The resulting Cartesian tool trajectory deviates from the ground-truth surface by
around 0.4 mm, depending on the error metric (see Table 4.4), which is more than
sufficiently accurate for hybrid force-position control. 69% of sanding attempts
were successful. Failed attempts were exclusively due to exceeding the force safety
limits of the UR10e collaborative arm, that has not been designed to absorb the
vibrations that occur during sanding of fiberglass. Measured force trajectories
for each of the three tested force setpoints are shown in Figure 4.19. The effect
of control parameters on surface roughness metrics is shown in Table 4.3. For
subsequent real-world validation, a force setpoint of 10 N and shallow angle of
attack α = 2◦ was chosen for fine sanding, while a contact force of 20 N was
chosen for rough sanding. Figure 4.20 sh ows the achieved surface qualities for two
surface segments. At forces above and including 10 N, vibrations led to measurably
oscillating behavior of the force controller, which did not affect the resulting surface
quality.

Real-world validation To validate MetaWizard2 under real-world conditions,
a field test was conducted at a partner company specializing in robotic surface
treatment.17 The experiment setup is shown in Figure 4.21. A large section of a wind

17SHL AG, Böttingen, Germany

197

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

Parameters Metrics

Fz / N α / ◦ Passes Ra1 / µm Ra2 / µm

10 5 5 199.57 122.44
10 2 10 169.45 104.25

5 5 5 123.46 162.02
5 2 10 225.01 119.82

Table 4.3: Evaluation of the surface roughness
after filling (Ra1) and after sanding (Ra2) for
four different parameter sets (Alt et al., 2024c).

Figure 4.20: Surface roughness
before (top) and after (bottom)
sanding for two different, filled
blade segments (Alt et al., 2024c).

turbine blade is secured on the floor. A UR10e collaborative robot arm18 is equipped
with a laser line scanner19 for perception. For surface treatment, an OnRobot
collaborative sander20 is mounted to the same robot, though perception and sanding
could, in principle, also be realized by two different robots. MetaWizard2 guides the
user through the sanding process. To determine the performance of the perception,
planning and execution modules for different surface characteristics, two trials are
conducted. In the first trial, the rotor blade is scanned as-is, and two passes over
the surface are performed. Then, fiberglass putty is applied to the surface to fill in
any remaining holes, creating a much rougher surface. Two further passes over the
surface are performed.

MetaWizard2 performed well under real-world conditions. The perception
module was robust against uncontrolled lighting conditions and provided suitable
surface point clouds both before and after putty was applied. It was found that the
optical characteristics of the putty necessitated the application of a reflective spray,
which did not alter the surface characteristics during sanding in an observable
way. The NLP pipeline was robust against the noisy industrial environment. Both
rough and fine sanding could be performed as intended, requiring a total of 8
natural-language user interactions per trial. Listing B.1 provides a transcript of an
interaction.

Discussion The experiment validates MetaWizard2 as a robot programming
system capable of solving real-world surface finishing tasks. Under real-world
conditions, the user to configure and execute a challenging remanufacturing task
without requiring expert knowledge or human demonstration at runtime. Rather,
the task and relevant task knowledge could be specified beforehand by domain
experts. Iterative sanding with different target surface characteristics demonstrates

18Universal Robots A/S, Odense, Denmark
19Gocator 2490, LMI Technologies Inc., Burnaby, Canada
20OnRobot GmbH, Soest, Germany

198

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

Bluetooth
headset

Graphical
user interface

OnRobot
sander

Rotor blade

Universal
Robots UR10e

Laser line
scanner

Universal
Robots UR10e

Figure 4.21: Hardware setup for wind turbine refabrication with MetaWizard2.
The rotor blade section is scanned with a flange-mounted laser line scanner (top
left). Surface defects are filled with fiberglass putty (bottom left). The surface
is sanded with a collaborative robot in an interactive process controlled through
natural-language interaction (right).

the benefit of interactive, dialogue-based grounding at runtime, as robot programs
can be altered (here: reparameterized) to adapt to changing circumstances, such
as different user requirements (here: rough v. fine sanding). The experiment
provided a first validation of MetaWizard2. A comprehensive evaluation should
address a range of diverse tasks and task variants and include scenarios that require
more dynamic human-machine interaction, such as handling of errors or acting in
dynamic multi-agent environments.

4.2.4.2 Generalization to Related Tasks

One of the core features of MetaWizard2 is the flexible and extensible metatask
representation that permits the definition of tasks and workflows via assertions to
a knowledge base. MetaWizard2 has been applied to two related surface treatment
tasks, purely by adding or modifying knowledge in the KB.

Deburring of gears In a first experiment, the task consists of deburring a gear.
The planning and real-world execution environments are shown in Figure 4.22.
For this application, the same metatask sequence was used as for sanding of wind
turbine blades. A new planning module was added, that uses a commercial planner
for automatic path generation on 3D models21 to generate a planned tool path.
The hardware setup consisted of a Fanuc LR Mate 200iD industrial manipulator22

21The CAD2Path planner of ArtiMinds RPS (Schmidt-Rohr et al., 2013)
22FANUC, Oshino-mura, Japan

199

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

Fanuc
LR Mate 200iD

ATI deburring
tool

Gear

Fanuc Force-
Torque-Sensor

Figure 4.22: Simulated (left) and real-world (center) experiment setup for gear
deburring with MetaWizard2.

1 MetaWizard2 : What task do you want me to help with?

2 Programmer : Deburring.

3 MetaWizard2 : Please specify the material of the workpiece.

4 Programmer : It 's steel.

5 MetaWizard2 : I've set the material of the workpiece to steel.

6 MetaWizard2 : Please specify the type of the workpiece.

7 Programmer : It 's a large gear.

8 MetaWizard2 : I've set the type of the workpiece to large gear.

9 MetaWizard2 : What tool should the robot use?

10 Programmer : Use an ATI deburring tool.

11 MetaWizard2 : Tool ATI deburring tool chosen. I've inserted the 3D model at

the default position relative to the robot.

12 MetaWizard2 : What is the desired finish?

13 Programmer : Rough.

14 # Program is simulated and executed.

15 MetaWizard2 : Is another run required?

16 Programmer : Yes.

17 MetaWizard2 : Should I change the finish type?

18 Programmer : No , thanks.

19 # Program is simulated and executed.

20 MetaWizard2 : Is another run required?

21 Programmer : No , that 's it.

Listing 4.11: Transcript of a dialogue between MetaWizard2 and a human
programmer for a deburring task (see Experiment 4.2.4.2).

equipped with a flange-mounted force-torque-sensor and a deburring tool.23 The
workpiece, robot, and tool were added to the KB along with their corresponding
3D and kinematic models. MetaWizard2 solved the task with a total of 5 natural-
language user interactions for a first pass, and one user interaction for a subsequent
pass. A transcript of the user interaction is shown in Listing 4.11. Note that
the symbol grounding mechanism allows humans to answer in a natural manner,
including additional phrases beyond the grounded concepts (e.g. “Use an ATI
deburring tool.”)

23ATI Industrial Automation Inc., Apex, USA

200

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

AIROS

sander

Rotational mold

Universal Robots

UR5e

Figure 4.23: Simulated (left) and real-world (center) experiment setup for sanding
of rotational molds with MetaWizard2.

Sanding of rotational molds A second experiment considers the task of sanding a
rotational mold. The planning and real-world execution environments are shown in
Figure 4.23. To realize this application, the iterative workflow shown in Figure 4.15
(right) was changed to a one-shot workflow (left) that terminates after sanding. A
UR5e collaborative manipulator24 was equipped with an AIROS disk sander.25 The
workpiece, robot, and tool were added to the KB along with their corresponding 3D
and kinematic models. The same planning module was used as for gear deburring.
MetaWizard2 solved the task with a total of 6 natural-language user interactions.
A transcript of the interaction is provided in Listing B.2 of the appendix.

4.2.5 Related Work

MetaWizard2 is rooted in the tradition of interactive, “wizard”-based robot pro-
gramming systems. A majority of interactive programming systems are centered
around GUIs for task-based programming (Ajaykumar et al., 2021). The interaction
in most graphical programming systems is driven by the human programmer, who
specifies and parameterizes a program by a combination of drag-and-drop interac-
tion, kinesthetic teaching on simulated or physical robots, and textual finetuning
of robot code. MetaWizard2 realizes a truly interactive programming paradigm,
in which the programming system actively asks natural-language questions to the
human programmer to ground symbols in the KB. MetaWizard2 must then be
contextualized with regard to conversational program synthesis systems and mul-
timodal systems that combine natural language with visual perception, graphical
programming and other modalities.

24Universal Robots A/S, Odense, Denmark
25Mirka Ltd., Jeppo, Finland

201

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

4.2.5.1 Multimodal Robot Programming Systems

Huang and Cakmak (2017) introduce Code3, a rapid programming system for
mobile manipulators. Its structure resembles that of MetaWizard2 in that it is
modular and multimodal, with dedicated modules for visual perception, drag-
and-drop graphical robot programming, and kinesthetic PbD. They empirically
show that multimodal programming enables non-roboticists to program robots
to perform mobile manipulation tasks. In a similar vein, Quintero et al. (2018)
propose an interactive, multimodal robot programming system, that combines
visualization in augmented reality with gesture-based user input, audio feedback
and natural-language voice commands, at a level of modularity and scope similar
to MetaWizard2. However, their use of natural language is limited to simple
commands, and their system is focused on the intuitive generation and adaption
of motion trajectories, rather than structured programs. Several robotics research
platforms (Chen et al., 2010; Higy et al., 2018; Asfour et al., 2019) as well as
commercially available robots (Pandey and Gelin, 2018; Ionescu and Schlund,
2021) offer built-in support for natural-language interaction, though that support
is typically limited to speech-to-text or text-to-speech-based command interfaces,
rather than full-fledged language-based programming. Buchina et al. (2016) and
Buchina et al. (2019) propose a robot programming system that translates natural-
language descriptions of robot tasks to a formal robot program representation
that can be translated to an executable robot program for a NAO robot. Like
MetaWizard2, it relies on an intermediate, structured program representation, but
its scope remains limited to open-loop control. They find that while participants
found natural-language to be an intuitive modality for interaction, they also found it
challenging to create programs that use abstraction, e.g. to avoid code duplication
for repetitive tasks. Most saliently, “the primary finding of the usability tests
is that the users require feedback from the robot” – i.e. that the ability of the
user to specify their intent via a natural modality is not sufficient for real-world
intuitive robot programming, and that an interactive programming pattern centered
around bidirectional communication would considerably improve the programming
experience.

4.2.5.2 Interactive Robot Programming Systems

One central aim of interactive robot programming systems is to achieve natural
human-robot interaction in programming. Gorostiza and Salichs (2011) define
naturalness in interactions in the words of Wilbur Schramm: “Communication
has become to be thought of as a relationship, an act of sharing, rather than
something someone does to someone else” (Schramm, 1954). They propose an
interactive system for sequencing predefined robot skills that parses human natural-
language inputs based on a grammar. Detected symbols are then semantically
matched to robot skills, control flow structures and parameters. User dialogue
occurs online, interweaved with execution, and the system is able to communicate

202

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

parts of its current belief state back to the programmer. Beschi et al. (2019) present
CAPIRCI, a robot programming system comprising a chat interface for high-level
robot programming. CAPIRCI actively asks questions to the programmer (“How
many times do I have to perform this task?”) at an abstraction level very similar to
MetaWizard2. Based on the chat, a graphical robot program is constructed, that
can then be adapted via a GUI. Details about the underlying data structures, or
whether any learning or KR&R methods were used, are not known.

Several publications put particular focus on natural-language dialogue for sym-
bol grounding. Deits et al. (2013) propose a dialogue-based system that emphasizes
the robot’s ability to ask clarifying questions to the human user, e.g. to resolve
ambiguous instructions. Like MetaWizard2, their system uses natural-language in-
teraction for symbol grounding, but places additional focus on the inverse problem
of grounding unconstrained natural language in real-world percepts. They propose
to use grounding graphs (Tellex et al., 2011), probabilistic graphical models of
the relationship between language concepts and real-world percepts. Rosenthal
and Veloso (2011) approach interactive robot programming by modeling human
programmers as “observation providers”, resources available for robots to obtain
information about their environment, but with an associated cost of asking, as
the human will be interrupted and must allocate time to respond. They integrate
this model into a POMDP representation to plan robot policies that incorporate
human interaction to acquire information. In their model, the robot proactively
initiates user interaction, and natural-language human-robot dialogue is an explicit
part of the program representation. Thomason et al. (2016) use natural-language
interaction to enable robots to learn grounding of linguistic symbols. They propose
a version of the “I Spy” linguistic game, in which a “learner” and a “teacher” take
turns. The teacher offers a description of an object and the learner guesses which
object the teacher meant, until the learner guesses correctly. Human and robot
switch roles, allowing the robot to learn both by guessing and by observing the
human’s guesses. In the context of robot programming, his symmetric teacher-
learner relationship holds great promise for teaching robots the perception skills
required to solve novel tasks. Cakmak and Thomaz (2012) approach dialogue-
based robot programming from an Active Learning perspective. They aim to enable
robots to ask good questions to ask for object labels, request demonstrations or ask
for the relevance of a feature in the context of a given task. They study human
question-asking and question-answering behavior to derive formulae for questions
that are most likely to elicit useful responses, and translate those learnings into a
question-asking system for a robot. Their approach is unique in that they address
the technical question of enabling a robot to ask good questions by studying how
humans ask questions, highlighting the need for studies of human behavior in order
to develop good technical robot programming systems.

203

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

4.2.5.3 Robot Programming with Vision-Language-Action Models

Criticism of grammar-based approaches (Chen et al., 2010; Gorostiza and Salichs,
2011; Buchina et al., 2016) is they require the human programmer to express
concepts in terms of an application-specific grammar with restricted syntax and
vocabulary. Deep LLMs and multimodal VLA models promise an alternative: Via
training on web-scale language and action datasets, deep neural architectures can
map linguistic concepts to visual percepts or robot actions for a wide range of tasks
and domains (Li et al., 2024). Ahn et al. (2022) were among the first to explicitly
recognize the potential of LLMs for using LLMs as a general-purpose platform
for symbol grounding. SayCan uses an LLM to score the likelihood that a given
robot skill will make progress toward achieving a high-level objective specified in
natural language. SayCan uses natural language both as an interface representation
to obtain inputs from a human user, but also as an internal representation for
reasoning and for explaining the resulting program to the programmer. Wu et
al. (2023c) propose SymbolLLM, a neurosymbolic reasoning system capable of
extracting symbolic semantics of activities from images. They use a vision-language
model to extract symbolic descriptions of images of scenes, and process the parsed
symbols in a symbolic reasoning systems to derive fuzzy logic rules describing the
observed activity. Hsu et al. (2023) propose LEFT, a system that uses an LLM to
ground human queries in multiple modalities such as 2D and 3D images, human
motions and robotic manipulation actions, but produces code in a logic-based
programming language that can then be executed in a logic programming system.
By querying it in natural language, human programmers can use LEFT to elicit
the latent knowledge implicit in LLMs, and to make it accessible as executable
logic rules which can then be used for symbolic reasoning. LLMs, however, only
produce approximately correct grounding results that reflect the comprehensiveness
and correctness of their training dataset (Pavlick, 2023). Combining LLMs with
symbol processing systems to neurosymbolic cognitive architectures may improve
the overall trustworthiness of the system, while maintaining its flexibility (Jokinen,
2024).

The use of large-scale deep neural models promises not only more generalizable
symbol grounding, but also novel, interactive programming paradigms. “ChatGPT
for robotics” (Vemprala et al., 2023), for example, proposes to take the human
programmer out of the deployment-improvement loop, and rather place them “on”
the loop, giving high-level natural-language instructions to a programming system
in which a LLM takes the primary role of instructing the robot. Similarly, several end-
to-end systems have been proposed, that directly synthesize executable robot code
(Liang et al., 2023; Singh et al., 2023; Wu et al., 2023a) or low-level robot actions
(Reed et al., 2022; Ghosh et al., 2024; O’Neill et al., 2024) from natural-language
task descriptions. While showing impressive generalization and high-level language
understanding abilities, current end-to-end program synthesis approaches often lack
the causal understanding (Ashwani et al., 2024), commonsense physics knowledge
(Yildirim and Paul, 2024) and “system 2”-level reasoning abilities (Bellini-Leite,

204

4.2. AN INTERACTIVE ROBOT PROGRAMMING ASSISTANT

2024) required to generalize to highly specialized domains, such as many industrial
robotics applications, for which little to no training data is included in web-scale
datasets. They do, however, demonstrate that natural language is not only an
intuitive modality for humans to interact with AI systems, but also a potentially
promising internal representation for knowledge representation within AI systems.

4.2.6 Discussion

MetaWizard2 is amodular robot program synthesis system centered around dialogue-
based symbol grounding as well as a metatask representation that models both
knowledge of the task itself as well as of the programming process to achieve at
the task. At the architecture level, modularity ensures that modules for percep-
tion, reasoning, interaction and program generation can be swapped to support
e.g. other sensory modalities, planners or reasoners. Due to the explicit metatask
representation, metaprogramming – changing the programming workflow – is
reduced to adding or modifying knowledge in the knowledge base, and does not
require reprogramming. As such, MetaWizard2 can be extended to incorporate
metacognition, i.e. automatic reasoning about the programming process itself, in
future work (Beetz et al., 2023).

The current iteration of MetaWizard2 grounds symbols by natural-language
interaction during the programming process. It addresses the core challenge of
symbol grounding, the matching of natural-language concepts to real-world entities,
by nearest-neighbor search in a word embedding space. While this is a universal
approach that avoids domain- or concept-specific heuristics and, depending on the
quality and breadth of the used embedding, generalizes to arbitrary domains, it
cannot account for complex semantics that spread across several syntactic chunks.
LLMs, that ingest input data spanning a context window of tens to hundreds of
thousands of tokens, promise an even more general and robust approach for concept
matching. Section 4.3.1.1 describes the use of LLMs for concept matching in the
context of MetaWizardLLM.

Likewise, MetaWizard2 can be extended by neurosymbolic vision-language
models like SymbolLLM (Wu et al., 2023c) or LEFT (Hsu et al., 2023) to auto-
matically ground the environment in symbols or symbolic rules and continuously
update the knowledge base. In this way, the behavior of MetaWizard2 can be
extended to dynamically react to changes in the environment, avoiding the need
for explicit perception routines as part of the metatask. For the considered sanding
use case, for example, MetaWizard2 asks the programmer whether the sanding pro-
cedure is finished or whether another pass is required. A large-scale neurosymbolic
vision-language model could learn a symbolic rule for task success over time, that
relates the perceived state of the environment to task success and avoids repeated
prompting of the human programmer. Likewise, as suggested by Rosenthal and
Veloso (2011), an explicit model of the human programmer as an information re-
source could enable MetaWizard2 to reason about which situations warrant human

205

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

dialogue, and in which situations heuristics or commonsense knowledge should be
used for grounding.

4.3 Prompt-based Program Synthesis with Large Lan-

guage Models

Sections 4.1 and 4.2 introduce MetaWizard and MetaWizard2, two members of a
family of program synthesis systems that permit human users to specify tasks in an
intuitive manner and automatically infer executable robot programs to solve them.
MetaWizard and MetaWizard2 use KR&R techniques with explicit, semisymbolic
representations of task and domain knowledge. Both approaches ease the burden of
programming for the user by imposing the modeling of task and domain knowledge
on domain experts.

The generalization abilities of large-scale multimodal foundation models suggest
that they represent vast amounts of latent knowledge. In the context of robotics,
VLA models trained on web-scale datasets have been used for motion (O’Neill et al.,
2024; Ghosh et al., 2024; Zitkovich et al., 2023) and task planning (Liang et al.,
2023; Singh et al., 2023; Vemprala et al., 2023) in a zero-shot manner, i.e. without
requiring task- or domain-specific finetuning. This section investigates the use of
LLMs and multimodal foundation models for interactive robot program synthesis.
It introduces MetaWizardLLM, a MetaWizard variant that combines the modular
architecture and dialog-based principle of MetaWizard2 with a novel task grounding
mechanism based on LLMs and multimodal RAG. It explores to what extent LLMs
and large-scale multimodal models represent generalizable, latent knowledge, and
to what extent they can implicitly reason about that knowledge to fulfil user queries
without dedicated finetuning.

The work presented in this section is the subject of ongoing research. In Experi-
ment 4.3.2, a functional prototype of MetaWizardLLM is validated in the context of
industrial gear assembly. Moreover, Experiment 4.3.2 showcases the integration of
the MetaWizardLLM with SPI into a framework for AI-enabled robot programming
that affords both robot program synthesis and optimization.

4.3.1 MetaWizardLLM

Modern LLMs trained on web-scale datasets have been shown to be capable of gen-
erating program code for executing tasks described in natural language (Poldrack
et al., 2023; Wang and Chen, 2023; Yang et al., 2024). The required understanding
of natural-language syntax and semantics, task and domain knowledge as well
as programming language syntax and semantics are implicitly represented in the
weights of the networks. In the domain of robotics, Liang et al. (2023) introduce
CaP, an LLM-based system for robot program synthesis that fulfills natural-language
user queries by generating executable python code. CaP generates and parame-

206

4.3. PROMPT-BASED PROGRAM SYNTHESIS WITH LARGE LANGUAGE MODELS

User

Transpiler
Underspecified plan

Natural-language
task description Low-level prompt

CAD Grounding
ModuleSkill

library

You are an assistant for
planning multi-step robot
actions for a robotic
manipulator.
...
In this scene, you can see
one small gear, one large
gear and a motor assembly...
...
def cad_point(object,
 prompt) -> Point3d:
 """
 Returns a point ...
 @param object: ...
...

Prompt
Generator

LLM Grounded-SAM

LLM
Dialogue
Module

LLM

Execution Module
User

Prompt
Object

features

"Pick up the small
gear and insert it
onto the shaft.
After insertion,
release the object
and depart to a
position a few
millimeters
above the shaft."

point_small_gear = object_location(
 "small_gear")
move_to_point(point_small_gear, 0, 0, 20)
grasp_relative(20)
point_shaft = cad_point("motor_assembly",
 "tip of the shaft")
move_to_point(point_shaft, 0, 0, 10)
insert(insertable="small_gear",
 receptacle="shaft")
open_gripper()
move_linear_relative_contact(0, 0, 5)

Figure 4.24: TheMetaWizardLLM robot program synthesis system. MetaWizardLLM
synthesizes executable robot programs from natural-language task descriptions.
Given a task description provided by a human programmer, underspecified plan is
generated by an LLM, which is grounded by a combination of RAG-based spatial
reasoning over a computer-aided design (CAD) model of the environment, as well
as natural-language dialogue with the programmer.

terizes function calls to a Python API for controlling the robot, a principle since
realized by several related program synthesis systems (Wu et al., 2023a; Singh
et al., 2023; Wang et al., 2024b; Luo et al., 2024). Based on the intuition that
LLMs can generate executable high-level program code without requiring task- or
domain-specific finetuning, MetaWizardLLM uses an LLM to bootstrap an under-
specified plan given a natural-language task description, and then grounds the plan
using natural-language dialog as well as a novel grounding module for reasoning
over CAD representations of the environment.

The architecture of MetaWizardLLM is shown in Figure 4.24. The two processing
steps realized by MetaWizardLLM – synthesis of underspecified plans and symbol
grounding via RAG over CAD models – are described in Sections 4.3.1.1 and 4.3.1.2.

4.3.1.1 LLM-based Generation of Underspecified Plans

To generate executable robot programs for high-level tasks, MetaWizardLLM con-
verts a high-level instruction into an underspecified plan, which is then grounded
through a combination of LLM-based inference over a CAD representation of the
environment as well as interactive user dialogue. For natural-language user inter-
action, such as for obtaining the initial instruction, MetaWizardLLM uses the same
dialog module as MetaWizard2, except that speech-to-text conversion is performed
via the Whisper speech processing network (Radford et al., 2023). For symbol
grounding, the embedding distance-based approach is replaced by a prompt-based

207

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

1 # Ask user for high-level task description , e.g. "Pick up the small gear and

insert it onto the spindle tip."

2 question = dialog_system.q_and_a("What task do you want me to help with?")

3
4 # Generate a prompt containing API description , description of the environment

and user query

5 prompt = prompt_generator.get_task_planning_prompt(question)

6
7 # Use an LLM to bootstrap an underspecified plan

8 llm = LLM(host="api.openai.com", port =443)

9 plan = llm(prompt)

10
11 # Parse the generated Python code and traverse the tree to ground the

underspecified plan

12 import ast

13 tree = ast.parse(plan)

14 grounding_module.visit(tree)

Listing 4.12: High-level pseudocode for the MetaWizardLLM program synthesis
and task grounding steps.

approach using the 8B variant of the LLama3 LLM (Dubey et al., 2024). The
prompts used for parsing concepts chosen by the user from a list of available op-
tions as well as for extracting the values of numerical parameters are provided in
Listings C.2 and C.1. The initial instruction is parsed as freeform natural-language
text to be processed by downstream LLMs (see below). The task to be solved is
described at a very high level of abstraction, such as “put the glass into the sink” or
“plug the cable into the connector”.

Prompt generation Given the instruction, a prompt is assembled to generate
an underspecified plan that performs the requested high-level task. Beyond the
instruction, the prompt contains a natural-language description of the environment,
additional natural-language information about the task domain and any constraints
that may be relevant to the task, as well as the API available to the plan-generating
LLM. The prompt structure follows the structure used by the OpenAI LLM API
(OpenAI, 2024b). It is divided into a system prompt, that provides the LLM with
a natural-language description of the role it is to perform, the expected output
format (e.g. Python code), a natural-language description of the scene, a list of
environment objects, as well as all available API functions including their signatures
and docstrings, but omitting function bodies. An exemplary prompt for the gear
assembly task considered in Experiment 4.3.2 is shown in Listing C.3. Beside the
system prompt, the prompt contains an assistant section, that provides the LLM with
one or more exemplary interactions to illustrate the usage of concepts introduced in
the system prompt, such as the semantics of functions. For the gear assembly task,
the assistant section contains an example of how some of the provided API functions
can be used to transfer an object from one point to another. The third section of the
prompt contains the user instruction. Note that the system prompt is the primary

208

4.3. PROMPT-BASED PROGRAM SYNTHESIS WITH LARGE LANGUAGE MODELS

What are the radii of the

holes on the front?

QueryCAD

Solution: [0.004, 0.006, 0.004]

hole_parts = cad_seg("holes", sides=["front"])

radii = []

for hole_part in hole_parts:

 radius = max(face.radius for face in hole_part.faces)

 radii.append(radius)

solution = radii

LLM
code Instruction: "holes", Shape: , , Sides: ["front"] GroundingDINO

SAM

bounding
boxes

masks

SegCAD

Render 8 views

GroundedSAM

Ray
tracing

Ray
tracing

Render
"front"

Pruning
& unify

Figure 4.25: Overview of the CAD grounding module. Given a textual prompt, an
LLM generates code, which in turn parameterizes and calls a DNN-based segmen-
tation pipeline (SegCAD) (Kienle et al., 2025).

source of concrete contextual knowledge of the task at hand, and any potential
specialized domain knowledge, for the LLM. Providing contextual knowledge via a
prompt alleviates the need for both finetuning and explicit, structured knowledge
representations, relying instead on prior knowledge implicitly represented in the
weights of the LLM to “understand” and interpret the system prompt. The overall
prompt is generated automatically from the user instruction, natural-language
domain and environment descriptions, as well as the source code of the Python
robot API. A generated prompt for a gear assembly task (see Experiment 4.3.2) is
shown in Listing C.3 of the appendix.

Plan generation The plan itself is generated by querying a GPT-4 omni (GPT-4o)
LLM (OpenAI, 2024a). Like other models from the GPT-4 model family, GPT-4o
directly outputs Python code with a very low likelihood of syntax errors (Poldrack
et al., 2023). The generated plan for a gear assembly task is shown in Figure 4.26
(right). As the robot API provided to the LLM via the system prompt contains
grounding functions such as cad_point or object_location, objects in the plan
are referred to by string identifiers, and poses as local variables, to which the return
values of the grounding functions are assigned. By parsing and traversing the
generated code with Python’s built-in abstract syntax tree (AST) parser, grounding
functions are mapped to their corresponding implementations in the respective
grounding module (for Experiment 4.3.2, the CAD grounding module). During
AST traversal, an executable ARTM robot program is incrementally constructed,
as generated API function calls are mapped to instantiations of the corresponding
ARTM primitives (e.g. Grasp Relative, Move to Point etc.)

4.3.1.2 Symbol Grounding via Retrieval-Augmented Generation

Object locations and features such as holes or pins are grounded by RAG over a CAD
representation of the environment (Kienle et al., 2025). An overview of QueryCAD,
the CAD grounding module, is shown in Figure 4.25.

209

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

QueryCAD follows a similar paradigm as MetaWizardLLM itself, in that it uses
an LLM to generate Python code given a natural-language query, and interprets
the generated code to answer the query. Code generation is performed by prompt-
ing GPT-4o (OpenAI, 2024a) with a prompt of similar structure as that used by
MetaWizardLLM. The generated code has access to an API of CAD processing func-
tions, which in turn parameterize and prompt a neural CAD processing pipeline
to perform low-level perception and reasoning tasks such as finding all instances
of a feature, such as holes,pegs or pins, on an object, or extracting numerical
information such as the poses of features relative to the object origin. The CAD
segmentation pipeline performs the following steps:

1. 2D rendering: Given a viewing angle, the CAD object is rendered to a 2D
image using orthographic projection. To facilitate segmentation and feature
recognition, the faces of the object are colored in contrasting colors.

2. Instance segmentation: The GroundedSAM image segmentation framework
(Ren et al., 2024), which combines the GroundingDINO (Liu et al., 2024a)
and Segment Anything (Kirillov et al., 2023) networks, is used to segment
the rendered image into regions that correspond to the prompt.

3. Image-to-CAD registration: To obtain the CAD faces corresponding to the
segmented regions in the 2D image, raytracing is performed from each pixel
of the segmentation mask to the 3D CAD object.

4. Multi-view rendering: As not all object features are visible from all viewing
angles, steps 1-3 are performed for each of 6 different viewing angles (top,
bottom, right, left, front and back), and the union of all segmented faces is
returned. If the prompt for the segmentation network specifies a particular
viewing angle, only the faces visible from that viewing angle are returned.

Kienle et al. (2025) explain the segmentation pipeline in additional detail. Note
that, following the RAG paradigm (Lewis et al., 2020), the prompt for the seg-
mentation pipeline is generated by evaluating the Python code in turn generated
by GPT-4o, and the segmentation pipeline accesses structured ground-truth data,
notably by exploiting the structure of CAD objects as graphs of faces and edges.
MetaWizardLLM uses QueryCAD the same way, by generating code that, when
interpreted, parameterizes a prompt for QueryCAD.

4.3.2 Experiments

MetaWizardLLM was validated on an industrial gear assembly scenario.

Experiment setup The experiment setup is shown in Figure 4.26. An ABB IRB
1200 industrial manipulator26 is equipped with a Schunk FT-AXIA80 force-torque

26ABB Ltd., Västerås, Sweden

210

4.3. PROMPT-BASED PROGRAM SYNTHESIS WITH LARGE LANGUAGE MODELS

Robot IDE

MetaWizardLLM
User Interface

ABB IRB 1200

Schunk Force-
Torque-Sensor

Gear
Electric
motor

1 point_small_gear = object_location("

small_gear")

2 move_to_point(point_small_gear , 0, 0,

20)

3 grasp_relative (20)

4 point_shaft = cad_point("

motor_assembly", "tip of the

shaft")

5 move_to_point(point_shaft , 0, 0, 10)

6 insert(insertable="small_gear",

receptacle="shaft")

7 open_gripper ()

8 move_linear_relative_contact (0, 0, 5)

Figure 4.26: Experiment setup (left) and generated underspecified plan (right) for
a gear assembly task.

sensor and a pneumatic gripper.27 The task consists of assembling the gearing
mechanism for an electric window motor,28 which is clamped to the table.29 The
robot is to pick up a gear at a specified position and insert in onto a shaft in the
motor housing.

For simulation, motion planning and execution, the ArtiMinds RPS industrial
robot IDE is used in a manner identical to Experiment 4.2.4. The robot API function
signatures and docstrings that form the main part of the system prompt for under-
specified plan generation are extracted directly from the Python source code of
the execution module, that instantiates ARTM skills and subprograms in the robot
IDE. This avoids explicit knowledge engineering and uses programming knowledge
already implicit in the code base.

The programmer initially specifies the task in natural language. MetaWiz-
ardLLM echoes its current belief state – what it understood from the user, and what
grounding task it is currently performing – back to the programer both in natural
language and graphically (see Figure 4.26 (left)).

Results A transcript of the user interaction is shown in Listing B.3 of the appendix.
The prompt generated from the robot API and the user query is shown in Listing
C.3. The underspecified plan generated by the LLM is shown in Figure 4.26 (right).
Underspecified plan generation is fully hidden from the user and does not require
user interaction. MetaWizardLLM grounded the approach, grasp and depart se-
quence to fully autonomously via the CAD grounding module, as the description
“the small gear” matched exactly one object in the scene (small_gear), whose
location was known. Note that the underspecified plan contains appropriate offsets
(here, 20 mm in the Z direction for move_to_point and grasp_relative), due

27Schunk SE & Co KG, Lauffen am Neckar, Germany
28Robert Bosch GmbH, Stuttgart, Germany
29The motor and clamping mechanism are provided by the Learning Factory for Global Production

at the Institute of Production Science (wbk) at Karlsruhe Institute of Technology.

211

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

Figure 4.27: Execution of the robot program generated by MetaWizardLLM.

to the requirement of approaching “above the target” specified in the docstring of
grasp_relative.

The insertion sequence (approach of the peg with the grasped gear, force-
controlled establishment of contact, force-controlled insertion, and departure with
an open gripper) was generated fully autonomously except for one ambiguity
concerning the “shaft” feature of the electric motor. QueryCAD identified two shafts
on the object, and asked the user which shaft they meant, both in natural language
and by highlighting the two shafts with different colors in a 3D rendering of the
electric motor. The user specified the intended shaft in natural language (“the
magenta part”). After interactive CAD-based grounding of the underspecified plan,
the resulting fully parameterized ARTM program was simulated and executed on
the robot, solving the task.

Discussion MetaWizardLLM permitted the synthesis of a fully grounded, exe-
cutable robot program for a gear insertion task given a minimal, natural-language
task description as well as a natural-language scene description. User interaction
was limited to the initial specification of the task, as well as the resolution of an
ambiguous object feature. The combination of natural-language interaction with
a GUI for displaying the belief state of the system (here, highlighting detected
object parts) shows promise, as it raises the level of abstraction of programming
to the point at which task-, domain-, robotics- or AI-specific knowledge are no
longer required on the part of the programmer. To fully ascertain the benefits and
limitations of MetaWizardLLM, larger-scale experiments on a range of different,
more complex use cases as well as multi-participant user studies are the subject of
future work.

4.3.3 Related Work

With CaP, Liang et al. (2023) established several of the core operating principles
of MetaWizardLLM. CaP leverage an LLM to generate Python code representing
nested policies at several levels of abstraction. They observe that due to the large
amount of Python code in web-scale text datasets, LLMs trained on such datasets
are highly proficient at composing and chaining abstractions used and expressed in
code (Chen et al., 2021), such as function calls or control flow structures. Based on
this observation, they propose a prompt structure that encodes existing knowledge

212

4.3. PROMPT-BASED PROGRAM SYNTHESIS WITH LARGE LANGUAGE MODELS

about robot skills, their semantics and the associated constraints as API functions,
their function signatures and docstrings as well as usage examples. This approach
enables LLMs not specifically finetuned for robot program synthesis to generate
Python code that combines and parameterizes calls to a robot control API to solve
tabletop and mobile manipulation tasks. Arenas et al. (2024) propose a framework
for prompt engineering based on CaP, that helps robot programmers use state-of-the-
art prompting techniques such as chain-of-thought, example- or instruction-based
prompts. ProgPrompt (Singh et al., 2023) follows a similar approach of generating
Python code that uses and parameterizes a robot API, with a prompt structure
similar to CaP. SayCan (Ahn et al., 2022) is the intellectual predecessor of CaP and
ProgPrompt, in that it generates natural-language plans given natural-language
descriptions. Generating Python code, however, has the additional advantage that
the generated outputs follow a predefined, easily parseable syntax with well-defined
semantics, and can be directly executed.

The paradigm of leveraging the particularly high robustness of LLMs for code
generation to solve non-coding tasks has been explored in prior work. Wang et
al. (2024b) show that LLM-based AI agents that represent policies as executable
code tend to perform better across a wide range of tasks than agents using other
representations. Yang et al. (2024) propose that code generation is powerful means
to enable LLMs to perform a wide variety of tasks at a high level of performance
by granting them access to (software) tools or (hardware) sensors and actuators.
They provide an overview of numerous works relying on code for tool use, and
further argue that code generation provides LLMs with several abilities required
by intelligent agents, such as advanced environment perception, planning, action
grounding or memory organization. Tool use via code generation provides a
flexible, general-purpose alternative to traditional RAG approaches, that perform
retrieval through predefined operations on structured data representations (Lewis
et al., 2020; Yu, 2022; Yu et al., 2022; Salemi and Zamani, 2024), or text-to-SQL
approaches, that generate sequences of database operations in a database DSL
(Baig et al., 2022; Fu et al., 2023; Gao et al., 2024). MetaWizardLLM explores
the paradigm of code-based tool use for robot program synthesis by generating an
underspecified plan that can ground itself by making function calls to a grounding
module: the grounding module, in turn, follows the same paradigm to flexibly
access information encoded in CAD data.

4.3.4 Discussion

MetaWizardLLM realizes robot program synthesis via LLM-based generation of an
underspecified plan, that is grounded via RAG over a CAD representation of the
environment. From a programmer’s perspective, the primary difference between
MetaWizardLLM and other MetaWizard variants is that the task is specified by a
short natural-language description. From a metaprogramming perspective, the
difference is more substantial. MetaWizardLLM realizes metaprogramming, the

213

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

specification of the behavior of the program synthesis system itself, via prompt
engineering, relying on semi-structured representations in natural language or
(pseudo-) code to represent task and domain knowledge. This makes it considerably
easier for domain experts to make highly specialized knowledge accessible to the
program synthesis system, facilitating the extension of the system to new use cases
or the adaptation of the system to related task variances. Via prompt engineering,
human metaprogrammers can influence the behavior of the system via an intuitive
modality. While this is alleviates the need for metaprogrammers to be proficient
in logic programming, it also means eschewing mechanistic interpretability – the
prompt engineer will generally not understand the mathematical computations by
which the LLM arrives at the generated plan by way of the prompt, and will not be
able to make hard a priori guarantees about the behavior of the program synthesis
system. Hybrid systems that combine mechanistically interpretable algorithms for
critical parts of the metatask, such as program generation, with opaque, LLM-based
modules for less critical aspects, such as text-to-speech conversion, may constitute
an acceptable tradeoff for many applications that do not require full interpretability.

In Experiment 4.3.2, MetaWizardLLM shows a surprising ability to plan, and
respect the pre- and postconditions of the used robot skills, despite the lack of
explicit mechanisms enforcing these conditions. Consider the implicit definition
of a precondition for the insertion skill in Listing C.3. In the docstring for insert,
three preconditions are specified in natural language: The caller must ensure that
the object and receptacle are aligned, that the object is grasped by the robot, and
that the robot is positioned above the receptacle. These preconditions are fulfilled
by the generated code, in that the object is first grasped before being inserted, and
that the approach movement is parameterized with the location of the shaft onto
which the gear is to be inserted, with an additional offset along the Z axis to ensure
that the gear is above the shaft before insertion. The planning mechanism by which
the preconditions are taken into account is implicit and arises during training of the
LLM. It is elicited at query time by the particular prompt structure, likely because
the preconditions for functions are often mentioned in docstrings, and the training
dataset contains large amounts of source code. In preliminary experiments, larger
models such as GPT-4o or Llama3 405B respected such planning constraints with
much greater reliability than smaller models such as Llama3 7B (Dubey et al.,
2024). The robustness of the implicit planning capabilities of MetaWizardLLM
and the influences of model sizes and other factors will be studied empirically on
larger-scale benchmarks.

Experiment 4.3.2 validates MetaWizardLLM on a simple industrial usecase.
Future work will qualitatively and quantitatively evaluate MetaWizardLLM on a di-
verse range of tasks and environments. Consideration of more complex applications
requires the integration of real-world perception modules, such as the RoboSherlock-
based perception module of MetaWizard. Multimodal vision-language foundation
models such as GPT-4o promise generalizable cross-modality reasoning abilities

214

4.4. DISCUSSION

that permit the implementation of general-purpose visual perception modules able
to ground near-arbitrary symbols in natural language.

Additional experimentation is required to determine the extent to whichMetaWiz-
ardLLM is limited by the lack of causal understanding of LLMs, and the resulting
“hallucinations” – erroneous model outputs that may be difficult to discern from
correct outputs – observed in a wide range of LLM-based applications (Gunjal et al.,
2024). Theory and early empirical results point to RAG as realized by the CAD
grounding module to reduce hallucinations and improve overall robustness (Lewis
et al., 2020; Chen et al., 2024). As model errors will always be present in ML
models, additional symbolic processing and validation may be required to ensure
that critical parts of the program synthesis pipeline, such as program execution,
are safe, particularly in human-robot collaborative applications.

4.4 Discussion

The family of program synthesis systems presented in this chapter bootstrap exe-
cutable robot programs by generating and manipulating programs in an explicit,
graphical, symbolic source program representation. MetaWizard and MetaWizard2
perform reasoning over a structured, semi-symbolic knowledge base to interpret
actions demonstrated in VR or to interactively bootstrap a task sequence through
dialogue with a human programmer. MetaWizardLLM combines LLMs for natural-
language understanding and code generation with a CAD backend to generate
and ground plans that satisfy a natural-language task description. All three are
general-purpose program synthesis systems that are not restricted to particular
tasks or domains; in fact, by virtue of being metaprogramming systems, they afford
task and domain transfer purely by adding additional task or domain knowledge.
This combination of universality and applicability – as the synthesized programs
concisely represent highly complex behavior, and are directly executable on the
robot – is achieved by virtue of the fact that the source program representation of
NRPs is a skill-based representation with known semantics: For each robot skill,
the (intended) robot behavior and possible failure modes are known, as are the
semantics of skill input parameters. Robot skills are combined to complex tasks
via symbolic composition, again with known and defined semantics. The symbolic
nature of NRP source programs facilitates the expression of task abstraction and
task grounding rules (Sections 4.1.4 and 4.1.5), metatasks (Section 4.2.2), and
structured prompts (Section 4.3.1.1), and allows for human programmers to read,
understand and modify the synthesized programs.

The development and study of the presented robot program synthesis systems
provides answers to the research questions posed in the beginning of the chapter.

1. How can humans express their intent in a way that permits precision

and detail where required, while avoiding redundant or unneeded speci-

fication?

215

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

MetaWizard, MetaWizard2 and MetaWizardLLM emphasize the use of intu-
itive, high-level interfaces such as VR demonstrations or natural-language dialogue.
To the programmer, programming occurs at a raised level of abstraction, and is
reduced to demonstrating the intended behavior, conversationally answering ques-
tions, or describing the task at hand in natural language. Both VR demonstrations
as well as natural language are inherently ambiguous and require interpretation to
serve as inputs to a technical program synthesis system. MetaWizard proposes a
Prolog-based reasoning mechanism for action interpretation, MetaWizard2 uses
token embeddings to interpret human inputs, and MetaWizardLLM relegates ac-
tion interpretation to an LLM. Each method has limitations: Rule-based action
interpretation requires possibly extensive specification of task knowledge; symbol
grounding by nearest-neighbor search in embedding space may disregard cross-
token context; and LLM-based action interpretation is subject to hallucinations. All
three approaches achieve sufficient performance for validation on real-world use
cases, and constitute promising avenues for further inquiry.

2. How can executable robot programs be synthesized from underspecified

task descriptions provided by human programmers?

In this chapter, two paradigms for program synthesis were explored: MetaWiz-
ard proposes an end-to-end paradigm, which generates executable robot programs
from human VR demonstrations by reasoning over a semisymbolic knowledge
base, bootstrapping a task sequence by searching the space of known tasks and
then grounding the resulting underspecified plan in sensory data and background
knowledge. MetaWizard2 and MetaWizardLLM propose an interactive paradigm,
in which robot programs are created online through interaction with a human
programmer, and programming, planning, execution and dialog are orchestrated
by a metatask or prompt that is, again, structured knowledge. Both approaches
emphasize the need to ground the symbols that make up programs in real-world
entities, such as objects or robot actions. The development of universal, multimodal
mechanisms that robustly and precisely identify symbols in real-world percepts is a
promising direction for future work, particularly given the generalization abilities
promised by large-scale, pretrained multimodal neural networks.

3. How can human expert knowledge be represented, stored and leveraged

for the purpose of automatic or interactive program synthesis?

The MetaWizard family of program synthesis systems shifts some of the burden
of programming – the specification of how the robot ought to behave to solve a
task – to a prior metaprogramming phase, in which the knowledge base is popu-
lated. Metaprogramming, however, must only be performed once, and then greatly
simplifies any subsequent programming. The meta-level question of how expert
domain and task knowledge can be codified as knowledge for use by AI systems is a
highly relevant research question in its own right. For most real-world applications,

216

4.5. CONCLUSION

domain experts are not ontology designers, logic programmers or prompt engineers,
and user-facing systems must be designed to facilitate knowledge transfer from
humans to machines. Future iterations of MetaWizard, MetaWizard2 and MetaWiz-
ardLLM will be given the ability to learn domain knowledge as they are used, from
interactions with human programmers or directly from sensory experience.

4. To what extent can explicit robot program representations support the

synthesis of robot programs that can solve complex tasks while being

interpretable by human programmers?

Like the program optimization algorithms proposed in Chapter 3, the MetaWiz-
ard program synthesis systems leverage the source program representation of NRPs
for program execution. This means that the synthesized robot behavior is inter-
pretable through a skill-based robot program with well-defined semantics: Each
robot action executes a robot skill, with a semantically meaningful parameterization
and known expected robot behavior. The synthesized programs can be read, modi-
fied and audited by human programmers; depending on the used representation,
they may be certified to comply with safety requirements or company standards.
MetaWizard is exclusively based on logic programming, traditional path planning
and code generation, and can be considered mechanistically interpretable, save for
the perception pipeline. MetaWizard2 relies on neural networks for NLP, which
reduces its mechanistic interpretability to an extent, but its main computational
mechanisms remain interpretable. MetaWizardLLM relies largely on black-box
LLMs for reasoning, but uses structured CAD data of the environment for symbol
grounding. In all three cases, tracing an inserted skill or synthesized program
back to individual entries in the knowledge base, real-world percepts or individual
CAD features may be challenging. The generation of user-facing explanations for
generated robot programs is an open research question that merits further inquiry.

4.5 Conclusion

4.5.1 Summary

This chapter introduced a family of program synthesis systems for NRPs. Section
4.1 introduced MetaWizard, a system for the end-to-end synthesis of NRP source
programs given human VR demonstrations. MetaWizard relies on an explicit,
semisymbolic representation of commonsense, domain and task knowledge as well
as reasoning algorithms for task abstraction and task grounding. Experiment 4.1.7
validates MetaWizard in the context of manipulation tasks in a retail context.

Section 4.2 introduced MetaWizard2, a dialog-based MetaWizard alternative
that synthesizes NRP source programs through interactive natural-language di-
alogue with a human programmer. Both the robot behavior to solve the task at
hand as well as the behavior of MetaWizard2 are encoded in a structured metatask

217

CHAPTER 4. INTERACTIVE AI-ENABLED ROBOT PROGRAM SYNTHESIS

representation, whose underspecified parameters are grounded by MetaWizard2
through proactive asking of questions. Experiment 4.2.4 validates MetaWizard2 on
a remanufacturing task as well as two related surface treatment tasks.

Section 4.3 presented MetaWizardLLM, a program synthesis system that lever-
ages a chain of LLMs for generating NRP source program given natural-language
task descriptions and interactive user dialogue. MetaWizardLLM bootstraps un-
derspecified plans by prompting a code-generating LLM with a description of
available robot skills as well as natural-language descriptions of the task and scene.
The underspecified plan grounds itself by RAG over a CAD representation of the
environment. MetaWizardLLM is validated on an industrial gear insertion task.

4.5.2 Outlook

The MetaWizard family of program synthesis systems remains under active develop-
ment, with the objective of integration into a commercial robot IDE (Schmidt-Rohr
et al., 2013). Future iterations of MetaWizard will place an emphasis on zero-shot
task and domain generalization as well as flexible grounding. The use of multimodal
foundation models that integrate vision, language and other modalities such as
tactile information (Kienle et al., 2024), CAD models (Kienle et al., 2025) or scene
graphs (Kenghagho Kenfack et al., 2020) promises to achieve both objectives with
the same underlying technology. Trained on a broad range of tasks and domains,
foundation models may endow AI systems with general-purpose reasoning abilities
and can solve many queries without requiring task- or domain-specific finetuning.
With the use of large-scale foundation models, the burden of metaprogramming will
be shifted away from knowledge engineering and toward prompt engineering, pro-
viding the model with useful, natural-language descriptions of knowledge (Marvin
et al., 2024). This perspective gives rise to the vision of MetaWizard being taught
new knowledge by domain experts via natural-language descriptions, facilitating
application in domains that require highly specific knowledge, such as artisan crafts
or high-precision industrial manufacturing.

The symbol grounding problem is another core challenge in program synthe-
sis for which multimodal foundation models may present an answer. Web-scale
multimodal datasets such as Open X-Embodiment (O’Neill et al., 2024) contain
language-annotated scenes, comprising low-level joint or end-effector data, for a
diverse range of robots, environments and application domains. Large VLA models
can solve a wide range of cognitive tasks, such as object recognition, localization,
navigation, or task planning through querying in natural language (Li et al., 2024).
Using techniques such as RAG, multiple multimodal models can be combined to
sophisticated mixture-of-expert systems via the shared medium of natural language.
Large-scale multimodal networks have become state-of-the-art for visual question
answering tasks (Liu et al., 2024b), indicating that they may constitute a powerful,
general-purpose technology for grounding symbols in real-world percepts.

218

CHAPTER 5

A Framework for Neurosymbolic Robot

Programming

The nature of robots as universal manipulators motivates an increasing number
of organizations to employ robots for the production of goods or the provision of
services. Many applications, such as the electronics assembly or shopping assistance
scenarios discussed in Section 1.1.1, require the solution of complex real-world
programming challenges, such as ensuring that process requirements are met over
the lifetime of the production cell, or that the robot reliably reacts to changes in
dynamic environments. Chapter 1 motivates the use of AI to automate the program-
ming of complex robot behavior through learning and data-driven optimization, and
motivates neurosymbolic programming as a solution to afford such functionality
without sacrificing control of robot behavior.

Chapters 2, 3 and 4 introduce representations and algorithms for neurosymbolic
robot programming. While providing solutions to programming problems such as
program creation and optimization, organizations or individuals seeking to use
them may not have the technical or organizational AI expertise or infrastructure
for implementing them into technical solutions they can productively use. To
enable robot programmers to apply the proposed algorithms and representations
to real-world programming problems, this chapter integrates them into a coherent
framework for neurosymbolic robot programming. Taking a lifecycle perspective,
Section 5.1.1 proposes a neurosymbolic robot programming workflow comprising
the initial program creation, optimization and deployment as well as program
maintenance and lifelong re-optimization that integrates seamlessly into the robot
program lifecycle common to most industrial and many service robotics applications.
Section 5.1.2 outlines an XUI that aims at enabling both AI novices and experts to
use neurosymbolic AI for robot program optimization. Section 5.1.4 introduces a
technical framework that embeds the algorithms and data structures presented in
this work in an industrial robot software ecosystem. Section 5.3 discusses the overall
framework with particular focus on real-world service and industry applications.
Section 5.4 charts avenues for further research.

219

CHAPTER 5. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

AI affordance

Program creation
Offline simulation

Program synthesis
Program refinement

Program parameterization
HW/SW integration

Parameter
fine-tuning

Process noise
compensation

Lifelong learning
Drift compensation

HW maintenance
SW reconfiguration

Parameter
optimization

Robot programmer

Automation engineer

Operational safety officer

Handover

operational
environment

Programming Commissioning Ramp-Up Operation

Figure 5.1: The five-step lifecycle of an industrial robot program, comprising human-
program interactions (black) and corresponding affordances for AI assistance (blue)
(Alt et al., 2024a).

5.1 A Framework for Neurosymbolic Robot Program-

ming

NRPs bridge the representational divide between robot programs that explicitly and
symbolically represent tasks for the purpose of interpretation and modification by
human programmers, and predictive models of robot programs that afford learning
and first-order optimization. Building on it, the SPI and MetaWizard families of
algorithms provide AI assistance to robot programmers. To enable programmers to
make use of them in real-world robot programming applications, they are integrated
into a framework for neurosymbolic robot programming that prescribes both a
workflow as well as a set of software tools comprising GUIs and APIs.

5.1.1 A Neurosymbolic Robot Programming Workflow

5.1.1.1 A Lifecycle Perspective on Robot Programming

To correspond to the reality of real-world robot programming applications, robot
programming as bidirectional communication between programmer and robot
introduced in Chapter 1 must not be conceptualized as a one-time interaction that
begins with the programmer specifying the intended behavior and ends with the
robot performing the programmed task. Rather, robot programming is a repeated
interaction in which the program is created, executed, read and modified many
times. The lifecycle of a robot program begins with its creation, by a human
programmer or by a robot program synthesis system, and ends when it cedes being
useful. In the interim, it may be executed many times, and changing environments
or changing requirements may mean frequent, sometimes even continuous, changes
to the program structure or parameterization.

In Alt et al. (2024a), I propose a five-stageRobot program
lifecycle

▷ robot program lifecycle for industrial
robot applications (see Figure 5.1):

220

5.1. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

1. Programming: The robot program is initially created. A suitable program
structure, such as a sequence of hierarchically composed skills, is instantiated
and parameterized to approximately solve the task at hand. In industrial
practice, this is typically performed by a skilled robot programmer using
a mixture of textual, teach-in and other software-assisted programming
methods (see Section 2.6).

2. Commissioning: The robot program is deployed on the robot hardware,
typically at a systems integrator or in a pre-production environment. This
involves integration of additional sensors and actuators as well as external
process control infrastructure such as programmable logic controllers (PLCs).
The program structure may be adjusted by skilled engineers in response to
preliminary tests. The program parameterization is adjusted in a process
of trial and error until given requirements for process metrics such as cycle
time, robustness or quality are met.

3. Handover: The programmed robot workcell undergoes safety certification
and acceptance testing, typically by human auditors and engineers. Besides
the fulfilment of process metrics and machinery safety regulations, adherence
to company-wide or industry-specific robot programming standards is en-
sured. Upon passing of all required tests and inspections, the robot workcell
is installed in a production environment.

4. Ramp-Up: Production begins, typically at a reduced pace, lower production
quality or robustness. Due to differences between the pre-production and
production environments, robot program parameters are incrementally ad-
justed to finetune the program to the operational environment and achieve
the required level of performance. In current industrial practice, parameter
adjustment is performed by skilled machine operators.

5. Operation: During operation, the program structure or, more typically, pro-
gram parameters are subject to change in response to changing process
requirements, workpiece variants, or changes to production hardware, e.g.
when worn gripper fingers are replaced during routine maintenance. Program
adjustments are typically made by skilled maintenance workers or machine
operators.

Industrial robot programs undergo changes to their parameterization or pro-
gram structure at every step of their lifecycle, implying a high potential for AI
assistance. However, due to the high safety and performance requirements of indus-
trial applications, robot programs must be readable and interpretable by humans,
particularly in the handover and operation stages, when the fundamental safety of
the program is first ascertained by human decisionmakers, and then must be guar-
anteed and potentially re-ascertained during the operation of the robot workcell,

221

CHAPTER 5. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

Move

Grasp

Search

Shadow model
library

Programming Commissioning Ramp-Up Operation

MetaWizard

Program
refinement

Program
synthesis

Parameter
optimizationGraphical Robot

Programming IDE

Lifelong
learning

Parameter
optimization

Experience
data

SPI SPI

Figure 5.2: Bridging the AI Adoption Gap with Neurosymbolic AI (BANSAI) pro-
poses a conceptual framework for AI-enabled robot programming that leverages
neurosymbolic robot program synthesis and optimization algorithms for initial
program creation and continuous re-optimization, without eschewing acceptance
testing and auditing by human experts (Alt et al., 2024a).

even as changes to the robot hardware, program structure and parameterization
are made.

The lifecycle of a robot program for a service application is very similar to that
of an industrial robot program. As service robotics applications typically involve dy-
namic, possibly unstructured environments, the initial robot program must contain
mechanisms for failure detection and recovery, giving greater importance to the
initial programming stage. The other stages are similar to their industrial coun-
terparts, except that the objective is not achievement of process metric objectives
and production targets, but rather safe operation and robust task achievement in
semi-structured or unstructured, dynamic environments.

5.1.1.2 AI-Assistance for the Complete Robot Programming Lifecycle

In Alt et al. (2024a), my colleagues and I proposeBANSAI ▷ BANSAI (Bridging the AI Adoption
Gap with Neurosymbolic AI), a conceptual framework that integrates the neurosym-
bolic representations and algorithms presented in the previous chapters into the
robot program lifecycle. We note that the programming, commissioning, ramp-up
and operation of robot programs involve human-program interactions that, in turn,
correspond to affordances for AI assistance (see Figure 5.1 (blue)). Figure 5.2
provides an overview of the proposed workflow.

1. Programming: The initial robot source program is co-created by a human
programmer and one of the MetaWizard program synthesis systems proposed
in Chapter 4. Initial robot program parameters are inferred from structured
knowledge (see Section 4.1), human-AI dialogue (see Section 4.2) or a
generative DL model (see Section 4.3).

222

5.1. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

2. Commissioning: During commissioning, an initial dataset is created as the
robot program is executed on the hardware with small perturbation to the
program inputs (see Section 2.7.1). Given a pretrained library of shadow
skills for commonly used robot skills such as searching, grasping or insertion,
as well as synthetic pretraining data, the need for real-world data can be
considerably reduced (see Section 3.2.1). An NRP shadow program for the
source program is trained and robot program parameters are optimized
via SPI (see Section 3.1.1) with respect to the relevant process metrics. If
required, the robot source program can be modified by human programmers,
as the source program remains interpretable and human-modifiable. If the
program structure is changed significantly, training data may have to be
collected again and parameters re-optimized using the updated shadow
program.

3. Handover: One of the core advantages of the NRP representation is that
handover does not change – the same auditing and acceptance testing mecha-
nisms can remain in place. This is crucial for industrial applications, in which
robot workcells (and the programs controlling them) must be certified to
comply with safety regulations, industry and company-wide standards.

4. Ramp-Up: During ramp-up, additional training data is collected as pro-
duction begins, and the shadow model is finetuned on the production envi-
ronment (see Section 3.2.1). Robot program parameters are optimized to
achieve the target process metrics in production. As during commissioning,
the robot program can be modified by human programmers if required.

5. Operation: During operation, data can be passively collected as the robot
program is continuously executed. Robot program parameters can be contin-
uously re-optimized, using an updated shadow program (“lifelong learning”,
see Section 3.2.2), to compensate e.g. workpiece variances (Alt et al., 2022b;
Kienle et al., 2024), wear and tear (Raible et al., 2023b) or other nonstation-
ary sources of noise, such as sudden shifts due to hardware replacements or
repairs.

The algorithms and representations introduced in this work realize an AI-
enabled robot programming workflow that seamlessly integrates into the process
of creating, deploying and maintaining industrial robot-based production systems
(Alt et al., 2024a). As the robot program lifecycle for service robotics applications
is similar, the same workflow can be applied in service domains. BANSAI leverages
the benefits of neurosymbolic programming – tractable learning, synthesis and
optimization, while ensuring human interpretability and modifiability – to provide
AI assistance functions that solve practical bottlenecks in robot programming. As
a conceptual framework, BANSAI proposes a general-purpose process model for
AI-enabled robot programming, similar in nature (albeit smaller in scope) to process
models for AI engineering such as PAISE® (Hasterok and Stompe, 2022).

223

CHAPTER 5. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

Dataset Definition Model Training Program Optimization

Layer-wise Relevance Propagation

Hyperparameter Specification Spec. of Objective Function

Hyperparameter Specification

Assessment & Vis. of Results

Assessment & Vis. of Model Quality

Data Preprocessing

Data Visualization

- Outlier Detection
- Normalization

Figure 5.3: The SPI program optimization workflow, realized by a wizard-like XUI.
At each step of the workflow, the XUI offers user-adaptive () or explainability
() features (Alt et al., 2024d).

5.1.2 User Interfaces for Neurosymbolic Robot Programming

BANSAI ties the algorithms and representations proposed in this work into a
coherent conceptual framework and workflow for user interaction. The application
of BANSAI for practical programming problems hinges, like most AI solutions, on
the ability of humans to interact with the AI in an intuitive manner (FakhrHosseini
et al., 2024). Moreover, particularly in safety-critical domains such as robotics, AI
adoption is contingent on fostering trust of human operators into the AI system
(Theis et al., 2023). Explainability of AI methods, such as the “explainability
of outcomes” afforded by the dual NRP representation and algorithms based on
surrogate models such as SPI, is a central contributing factor to trust in AI (Theis
et al., 2023; Chen, 2023; Agostinho et al., 2023). Another crucial factor is the
availability of XUIs for humans to use and interact with explainable AI systems
(Chromik and Butz, 2021; Bove et al., 2023; Füßl et al., 2024).

In Alt et al. (2024d), my colleagues and I present an XUI for SPI. It proposes a
wizard-like user experience, that guides users step-by-step through the data collec-
tion, shadow program training and parameter optimization procedures, offering
visualizations or explicit XAI functionalities at every step of the workflow. Figure
5.3 overview of the XUI from a user workflow perspective. The XUI organizes the
parameter optimization process into three steps:

Dataset definition The collection and curation of high-quality datasets is crucial
for successful deployment of any data-driven AI system (Peres et al., 2020). In appli-
cation domains such as industrial robotics, data collection and curation is typically
done by domain experts with little prior AI expertise, making it a crucial bottle-
neck and risk factor in AI deployment (Siaterlis et al., 2022). The proposed XUI
addresses this issue by providing two dedicated sub-workflows for data collection
and curation:

1. Dataset collection: In follow-up work to Alt et al. (2024d), we developed an
automatic data collection framework that permits the human programmer
to select the robot skill(s) or subprogram(s) in the source program whose

224

5.1. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

Figure 5.4: User interface for dataset selection, estimates of data quality, and
visualization of position (left) and force (right) trajectories in the dataset.

parameters are to be optimized (the critical skill).1 Based on this selection, the
critical subprogram is automatically determined via graph search on the source
program DAG. The critical subprogram contains all skills or subprograms
upstream of the critical skill for which shadow skills must be learned. This
corresponds to the subgraph of all non-deterministic skills or subprograms
preceding the critical skill, and is identified by traversing the topologically
sorted program DAG in reverse order (“backward”) from the critical skill,
stopping at the first encountered deterministic skill (with a fixed end state).
This permits the system to automatically identify all source skills for which
shadow skills are to be trained with one single click by the user. The system
then suggests intervals for input perturbation for each of these source skills,
allows the user to manually adapt them e.g. to ensure safety limits, and
automatically executes the source program a given amount of times on the
robot, storing the resulting robot data.

2. Dataset curation: The XUI provides GUI elements for displaying the collected
robot data as 2D or 3D trajectories (see Figure 5.3), as well as aggregated
metrics for dataset quality (see Figure 5.4). As SPI iteratively optimizes pro-
gram parameters, the shadow program is evaluated with different inputs over
the course of an optimization, requiring the trained shadow skills to exhibit
strong generalization. Their respective training datasets must, consequently,
cover a sufficiently broad range of the input space. In the XUI, the user is
warned if the variances along one or multiple input dimensions is very small.

Model training The training of ML models poses significant challenges to AI
novices, as the choice of appropriate hyperparameters for training depends signifi-
cantly on the application, the network architecture and the structure and quality of
the training data (Bischl et al., 2023). Moreover, the task of evaluating the quality
of a trained model is particularly challenging for AI novices (Yang et al., 2018; Yang

1Unpublished work. Credit to Cristian Gorun for the implementation.

225

CHAPTER 5. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

Figure 5.5: Visualization of predicted trajectories over the course of SPI prediction
in guided (left) and expert modes (right).

et al., 2020a). The proposed XUI offers user-adaptive mechanisms for hyperparam-
eter selection, leaving detailed hyperparameter selection to expert users and using
sensible defaults for novices (see Section 5.1.2.1). After model training, model
performance is visualized to the user by joint plotting of ground-truth test data,
held out from the training dataset, and model predictions, as well as by displaying
automatically computed, human-interpretable accuracy metrics (e.g. Cartesian
MAE between predicted and ground-truth end-effector poses) (see Section 5.1.2.2).
The user is warned if an error metric is below sensible defaults.

Program optimization In interviews with expert robot programmers conducted
during the development and evaluation of SPI, it has been observed that the
specification of the task objective Φ – the expression of domain-specific objectives,
such as “the cycle time must be below 5s, and insertion forces may not exceed
5N”, in terms of a weighted sum of differentiable error terms – constitutes the
largest challenge for practitioners using SPI. To that end, similar user adaptivity
and plotting mechanisms are realized as for model training. One core innovation
is the use of the learned shadow program as a surrogate of the real robot for
evaluating optimized parameter sets. For a given optimization result, the user is
instantly provided with a visualization of the corresponding posterior trajectory
output by the shadow program (see Figure 5.5). By avoiding the delay incurred
by executing the source program with optimized parameters on the real robot,
parameter optimization becomes interactive, and users arrives at suitable parameter
sets much more quickly than through trial and error on the real robot hardware.

5.1.2.1 User Assistance for AI Novices via User-Adaptive UI

Lack of AI expertise or data literacy (Leon-Urrutia et al., 2022) among industry
practitioners is one of the most significant challenges in the deployment of AI
systems (Li et al., 2021; Siaterlis et al., 2022; Arinez et al., 2020). To address
this “skills gap” (Jaiswal et al., 2024) and enable AI novices to use AI-based robot
program optimization, the proposed XUI offers two modes, a “guided” and an
“expert” mode, that add or remove user interface elements, configuration options,
visualizations and e.g. explanatory tooltips. One example is the specification of

226

5.1. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

hyperparameters and objective functions for parameter optimization. In “expert”
mode, users are able to specify the update rate, whether the GPU ought to be
used, and custom weights for each selected component of the objective function. In
“guided” mode, the optimizer uses predefined weights for the objective components,
GPU-accelerated optimization is enabled and the update rate is set to a default value
and subject to learning rate scheduling. I refer to Alt et al. (2024d) for additional
details on user adaptivity.

5.1.2.2 Explainability and Visualization of Outcomes

Explainability is one of the central factors in fostering trust in AI systems among
industry practitioners (Agostinho et al., 2023; Ferrario and Loi, 2022). The pro-
posed XUI contains two types of explainability features, designed to provide users
with an understanding of the data, model and optimizer behavior, as well as the
resulting robot behavior. First, Layer-wise Relevance Propagation (LRP) is applied
to trained models, computing the relative importance of model inputs (program
parameters) to model predictions. The results are visualized as a bar chart and
serve primarily as a “sanity check” on model performance, allowing domain experts
to gauge whether model behavior roughly corresponds to their expectation of robot
behavior over the training dataset. On a dataset containing motions with varying
dynamics, for example, velocity or acceleration parameters should have compara-
tively higher LRP scores. Second, data, model predictions and predicted trajectories
before and after optimization are plotted. The GUIs for model and optimization
evaluation feature elements for interactive modification of input parameters and
nearly-real-time visualization, allowing the user to explore and validate model or
program behavior for different inputs or hyperparameters (see Figure 5.5). I refer
to Alt et al. (2024d) for details.

5.1.3 Validation and User Study

The XUI, and the parts of BANSAI it covers, have been demonstrated on the gear
assembly scenario described in Section 4.3.2.2 The XUI has been validated in a
preliminary user study with 12 experienced robot programmers with different
levels of prior AI expertise. Given a predefined robot program and a given set
of robot data, participants were asked to use the XUI to perform the complete
SPI workflow, including model training. After performing the task, participants
completed a questionnaire containing questions on the perceived utility of the XUI
for each step of the workflow (e.g. “How useful was the interface to train models
and evaluate their quality?”), about specific user-adaptive features (e.g. “How often
did you feel assisted through provided textual guidance?”) as well as the NASA
TLX questionnaire (Hart, 2006) to assess cognitive load during the experiment.

2A video of the user interaction, as well as of the robot performing the task before and after
program optimization, can be found at https://www.youtube.com/watch?v=NCnJKBTKYh4.

227

https://www.youtube.com/watch?v=NCnJKBTKYh4

CHAPTER 5. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

In addition, the questionnaire contained several questions specifically focusing on
whether the user had a sense of understanding the system (e.g. “How well can you
assess the system’s capabilities?’).

Participants who self-selected as AI novices completed the task in an average of
32 minutes, including the time required for model training. Survey results across
both participant groups indicate high levels of perceived usefulness across all steps
of the process, with the highest utility perceived at the parameter optimization step.
The perceived cognitive load was low, and the responses indicate that both expert
and non-expert users gained a sufficient level of understanding of the system. Both
groups found it comparatively difficult to determine whether or not the system
behaved correctly, and indicated that the transparency of the model can be further
improved. One particularly interesting result of the preliminary study is that experts
took longer to complete the task (43 minutes on average) than AI novices, and
reported lower confidence in their own performance. Qualitative interviews after
the experiment indicate that experts took additional time to explore the XUI out of
curiosity, explaining the longer task completion time. I refer to Alt et al. (2024d)
for a detailed account and analysis of the user study. Future studies of SPI and the
proposed overall neurosymbolic robot programming framework will be designed
to avoid such exploration effects, e.g. by imposing a time limit or rewarding
participants for efficient task performance. Moreover, they will increase the number
of participants to achieve statistical significance, and follow a 2x2 between-subject
design with two independent variables: The level of explainability (high or low)
and the level of control (high or low) given to the user. This study design would
help disentangle the individual effects of explanations and user control on task
performance, cognitive load, and user satisfaction.

5.1.4 A Software Framework for Neurosymbolic Robot Program-

ming

Beyond the workflow and user experience (UX) aspects of AI-enabled robot program-
ming, the real-world deployment and use of AI for programming robots requires
technical infrastructure for data collection, storage and management, the training
and management of ML models, as well as integration with the underlying robot
hardware (Heimberger et al., 2023; Horvat and Heimberger, 2023; Uren and Ed-
wards, 2023). The algorithms and data structures proposed in Chapters 2, 3 and 4,
as well as the XUI described in this chapter are integrated into a coherent software
framework for neurosymbolic robot programming, that combines commercial, es-
tablished solutions for robot programming and data management with software
modules and services encapsulating the algorithms and data structures developed
in this work.

Figure 5.6 illustrates the proposedSoftware
framework

▷ software framework. It consists of the
following components:

228

5.1. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

1. Robot IDE: The ARTM industrial robot program representation is used as
a NRP source program representation. ARTM programs can be manually
composed, edited, simulated and executed in the ArtiMinds RPS industrial
robot IDE. Beyond manual programming, the RPS provides Python and
Hypertext Transfer Protocol (HTTP) APIs, allowing software systems to create,
modify, simulate and execute ARTM programs and retrieve e.g. simulation
results or program metadata.

2. Robot experience database: Robot experience data is crucial for training
NRP shadow programs. As programs are executed, raw robot data such as
timestamped joint angles, end-effector poses or force-torque readings are
streamed to the ArtiMinds LAR robot data platform, which semantically an-
notates it with the corresponding metadata (e.g. which skill a given trajectory
corresponds to) and stores it in a MariaDB relational database.

3. Data management and curation platform: ArtiMinds LAR provides user
interfaces and HTTP APIs for data access and management. It provides a
dataset abstraction as well as GUI elements for displaying data to human
programmers, which are used by the program optimization frontend.

4. AI backends: The AI technologies proposed in the previous chapter have
been implemented in a modular fashion. NRPs are implemented as PyTorch
DCGs with additional tooling for automatic shadow program creation for
the ARTM source program representation. SPI (see Section 3.1) as well as
the DGPMP2-ND differentiable motion planner (see Sections 2.5, 3.3) are
implemented as Python packages. SPI is deployed as a container on GPU-
accelerated ML hardware and exposes a HTTP API to enable clients, such as
the program optimization frontend, to train and optimize NRPs. The modular
structure of MetaWizardLLM (see Section 4.3 permits the deployment of
the required LLM and CAD grounding modules either on on-premise ML
hardware or in a cloud environment. They are loosely coupled with the
program synthesis frontend via a remote procedure call interface.

5. Program synthesis frontend: MetaWizardLLM provides a frontend for robot
program synthesis, allowing user interaction via spoken natural language,
written text and CAD visualization. It instantiates, parameterizes and triggers
the simulation and execution of robot programs via the HTTP interface of
the robot IDE.

6. Program optimization frontend: The frontend for program optimization
(see Section 5.1.2) uses user interface components and HTTP API endpoints
of the data management and curation platform, and integrates seamlessly
into its GUI and user workflow.

The framework forms the technical equivalent to BANSAI, by seamlessly inte-
grating neurosymbolic AI into a data-centric technology stack for robot program-

229

CHAPTER 5. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

ArtiMinds RPS
Robot IDE

ArtiMinds LAR
Data Management & Curation Platform

Raw robot
data

MariaDB
Robot Experience
Database

MetaWizardLLM
Program Synthesis Frontend

SPI XUI
Program Optimization Frontend

LLM Backend

SPI Backend

CAD Grounding
Module

C
o
m

p
il
er

b
a
ck

en
d

Prompt

Object
features

Training Data
Collection

Surrogate Model
Learning

repeat

Linear

+

...

...

tanh

-1

...

Duplication

Pointwise
operation

Real-World
Execution

Shadow
Program
Inversion

Executable
robot program

Neurosymbolic Robot Programming Technologies Programming, Execution & Data Environment

HTTP

H
T
T
P

HTTP

HTTP

XMLRPC

XMLRPC

Figure 5.6: A software framework for AI-enabled robot programming, that inte-
grates frontend and backend technologies for neurosymbolic robot programming
with an industrial robot programming and data environment via loosely coupled
interfaces.

ming. As BANSAI enables robot programmers to integrate AI assistance functions
into their existing robot programming workflow, the software framework permits
them to do so while continuing to use familiar software tools, communicating in
industry-standard manners. AI-specific implementation details are hidden behind
container-based deployment systems and well-defined, loosely coupled interfaces.

The framework has been used for the experiments in Chapters 3 and 4. While
primarily developed and tested for use cases in industrial contexts, the framework
can also be used in service contexts and has been evaluated on retail and household
assistance applications (see Experiments 3.1.3.3, 3.3.2.1 and 4.1.7.2).

5.2 Related Work

5.2.0.1 Conceptual Frameworks for AI-Enabled Robot Programming

The complexity of creating, deploying and using AI methods in real-world applica-
tion domains can be alleviated by conceptual frameworks that combine a range
of technologies, data structures or algorithms into a coherent workflow to solve
practical problems, such as robot programming.

Process-level frameworks In response to the complexity of real-world AI systems,
and the organizational and infrastructural demands they place on organizations
seeking to implement them, the Industry 4.0 (Plattform Industrie 4.0, 2019) and
Industry 5.0 (Xu et al., 2021) initiatives aim to establish AI as an engineering
discipline with standardized, general-purpose workflows, abstractions, roles and
artifacts (Staron et al., 2024). At the time of writing, PAISE® (Hasterok and Stompe,

230

5.2. RELATED WORK

2022) constitutes the most comprehensive process model for AI systems engineering.
It defines a workflow as well as corresponding roles and artifacts for the design,
development and deployment of AI systems with a focus on ML methods. PAISE®

relates elements from the ISO/IEC 15288 standard for system lifecycle processes
(IEEE Standards Association, 2023) by technical details and specializations for AI
systems engineering. Several related process models for AI systems engineering
have since been proposed (Martínez-Fernández et al., 2022; Wu, 2024). Like
BANSAI, PAISE® and related models consider the complete lifecycle of an AI system
from conception to maintenance. Unlike BANSAI, they do not consider the use
of AI systems to solve domain-specific problems such as robot programming, but
focus on the development of the AI systems themselves. In surgical robotics, several
conceptual frameworks and process models have been proposed, with the dual aims
of making AI-assisted robotic surgery tractable, and to ensure that the resulting
robot behavior correctly performs the intended surgical procedure at the required
standard of care (Oleari et al., 2019; O’Sullivan et al., 2020; Prokhorenko et
al., 2020; Marcus et al., 2024). Comparatively fewer conceptual frameworks with
sufficient generality have been proposed for robot programming for general-purpose
robotic manipulation. Hoebert et al. (2023) propose a framework for AI-assisted
robot programming that is similar to BANSAI in scope. They propose an ontological
representation of products, from which program synthesis systems can generate
plans, which are grounded and executed by perception and execution modules.
Along a similar vein, iRoPro (Liang et al., 2022) combines an interactive symbolic
program synthesis system similar to MetaWizard with a lifecycle-centric workflow
that permits users to modify or re-teach synthesized programs after they have been
executed. On the subsymbolic side of the representational spectrum, ChatGPT for
Robotics (Vemprala et al., 2023) proposes a robot programming workflow centering
around the use of LLMs for high-level planning and robot code generation. They
likewise consider programming as an iterative activity, that refines and modifies
an explicitly represented robot program, albeit by using exclusively subsymbolic
AI methods for planning and reasoning. BANSAI strikes a balance between the
symbolic and subsymbolic paradigms of robot programming, proposing to use
neurosymbolic AI methods and representations, and incorporating data-driven
approaches for program optimization and lifelong learning.

Cognitive architectures Cognitive architectures are conceptual frameworks for
creating, operating and understanding artificially intelligent systems. A cognitive
architecture “mirrors the system architecture, using the power of abstraction to
render the modeling, specification, and design of a complete complex system
tractable” (Vernon, 2022). CRAM (Beetz et al., 2010; Beetz et al., 2023) is a
cognitive architecture specifically designed to endow robots with the cognitive
mechanisms required to understand human intents, generate actionable plans,
execute them and reason about their own plans in light of acquired experience.
The NEEM abstraction for robot experience data (Beetz et al., 2018; Olivares-

231

CHAPTER 5. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

Alarcos et al., 2023) and the CPL (Beetz et al., 2023) provide general-purpose
concepts for representing episodic knowledge and robot plans, which serve as
a basis for downstream applications such as metacognition (Koralewski et al.,
2019; Kazhoyan et al., 2020) or program synthesis (Ramirez-Amaro et al., 2014;
Beßler et al., 2018; Nyga et al., 2018; Alt et al., 2023; Alt et al., 2024c). The
ArmarX (Burghart et al., 2006; Peller-Konrad et al., 2023), ISAC (Kawamura
et al., 2008) and CORTEX (Bustos et al., 2019) cognitive architectures provide
conceptual frameworks and software support for high-level cognition and low-level
control of humanoid robots. Trafton et al. (2013) propose ACT-R/E, an extension
of the ACT-R cognitive architecture (Ritter et al., 2019), with the aim of realizing
robot programming as bidirectional communication. ACT-R/E is not used as a
framework for controlling robot behavior, but as a framework used by robots to
understand, learn and accurately model human behavior and human cognition.
BANSAI provides a dedicated model for the robot programming process, and
integrates abstractions and representations from CRAM as the foundations of the
MetaWizard and MetaWizard2 program synthesis systems. In contrast to cognitive
architectures, which realize general-purpose mechanisms for robot cognition and
often incorporate low-level mechanisms for perception or motor control, BANSAI
places a dedicated focus on robot programming, and provides a workflow centered
around the creation, optimization and maintenance of robot programs.

5.2.0.2 Software Frameworks for AI-Enabled Robot Programming

BANSAI is accompanied by a software framework for AI-enabled robot program-
ming, that integrates the algorithms and representations proposed in this work
into a software ecosystem for industrial robot programming. The software frame-
work can be contextualized in light of related frameworks. The CRAM software
ecosystem, comprising the KnowRob KR&R system (Tenorth and Beetz, 2013; Beetz
et al., 2018), the SOMA ontology and extensions (Diab et al., 2019; Beßler et al.,
2020; Beßler et al., 2021), the RoboSherlock (Beetz et al., 2015) and RoboKudo
(Mania et al., 2024) perception systems, as well as a VR-based framework for
simulation and human demonstration (Bozcuoğlu and Beetz, 2017; Haidu et al.,
2018; Haidu and Beetz, 2021; Mania et al., 2021), provides a technical realization
of the CRAM cognitive architecture. Similar software frameworks have been devel-
oped for other cognitive architectures (Laird et al., 2012; Wei and Hindriks, 2013;
Vahrenkamp et al., 2015), providing tools for perception, planning, execution and
other tasks. While realizing the model of robot programming prescribed by the
respective cognitive architectures, robot programming frameworks built on top of
cognitive architectures are not designed for real-world deployment and require
considerable software engineering effort to use in production environments. Robot-
specific software frameworks such as iCub-HRI (Fischer et al., 2018), or commercial
manufacturer-specific robot programming frameworks such as the Franka AI Refer-
ence Platform (Haddadin et al., 2022) or the NEURA AI API and AI hub (NEURA

232

5.3. DISCUSSION

Robotics, 2024), provide AI technologies for PbD, reinforcement learning, or other
AI-enabled robot programming methods. Manufacturer-independent commercial
frameworks for AI-assisted robot programming such as the Micropsi MIRAI suite
for programming vision-guided manipulation tasks (Micropsi Industries, 2024) or
the Covariant Brain system for industrial bin picking (Covariant, 2024a) achieve
high degrees of integration and ease of deployment, but eschew interpretability by
directly controlling the robot. BANSAI and the software framework implementing
it maintain the notion of programming as bidirectional communication with an
explicitly represented program as the central artifact, ensuring the interpretability
of robot behavior throughout the program’s lifecycle.

5.3 Discussion

The framework for neurosymbolic robot programming presented in this work
enables robot programmers to leverage neurosymbolic AI methods for creating,
optimizing and maintaining robot programs. It addresses the crucial question
of how powerful, data-driven capabilities for automatic program synthesis and
optimization afforded by AI can be harnessed while retaining human control over
robot behavior. Its contribution to the resolution of this research question also charts
a path toward resolving the practical, open question of bringing state-of-the-art
AI methods to industrial practice. Particularly in the manufacturing industries,
there is an often-noted “gap” between the state of AI research and the degree to
which AI is adopted in practical applications (Alt et al., 2024a; Jaiswal et al., 2024;
Heimberger et al., 2024; FakhrHosseini et al., 2024; Uren and Edwards, 2023;
Horvat and Heimberger, 2023; Siaterlis et al., 2022). Several reasons for this gap
have been proposed. Three of the most commonly cited reasons are a lack of “AI
readiness” at an organizational level, expressed as a lack of established processes
and infrastructure for deployment and use of AI systems (Horvat and Heimberger,
2023; Heimberger et al., 2023), a lack of AI expertise at the level of individual
users (“skills gap”, Jaiswal et al. (2024) and Azmat et al. (2020)), as well as lack
of trust in AI among users and decisionmakers (Theis et al., 2023; Schepman and
Rodway, 2023). BANSAI contributes to bridging the AI adoption gap by addressing
each of these reasons in turn.

Predefined workflows and software infrastructure BANSAI proposes a work-
flow for AI-enabled robot programming that extends the robot programming work-
flow currently prevalent in industry. It prescribes a concrete series of steps to create,
parameterize and optimize robot programs using neurosymbolic methods and
provides industry practitioners with a process template and a set of technologies to
solve challenging robot programming problems. Like other engineering process
models, BANSAI helps alleviate the uncertainty faced by organizations planning
to use AI to program robots (Hasterok and Stompe, 2022). By extending and

233

CHAPTER 5. A FRAMEWORK FOR NEUROSYMBOLIC ROBOT PROGRAMMING

supplementing the conventional robot programming workflow, BANSAI imposes
little additional overhead on organizations, and suggests concrete algorithms and
data structures that implement it. The degree to which BANSAI facilitates AI
adoption for robot programming at an organizational level is the subject of future
research. Several components of BANSAI, such as SPI, DGPMP2-ND and parts of
MetaWizard, are available open-source. Other components will be made available
as part of a commercial robot programming suite (see Section 6.3). The use of a
software framework at a comparatively high technology readiness level considerably
reduces implementation and deployment costs, lowering the economic barriers to
AI adoption (Cubric, 2020).

Intuitive user interfaces BANSAI embraces the role of the human programmer
in the robot programming process, and proposes neurosymbolic technologies to
assist humans in the programming of robots. BANSAI emphasizes the use of
intuitive interaction modalities – an XUI for SPI, and natural-language dialogue or
human demonstrations for MetaWizard. Intuitive human-machine interaction is an
important prerequisite for the acceptance of AI by users (Sohn and Kwon, 2020).
Consequently, the focus of BANSAI on intuitive human-machine interaction may
facilitate AI adoption at the level of individual users, particularly for users with
limited AI expertise (Long and Magerko, 2020).

Interpretability The interpretability of AI methods is a crucial factor for AI accep-
tance, partly by fostering trust in AI systems. BANSAI emphasizes interpretability
in two ways. First, the use of NRPs as underlying robot program representation
ensures that only interpretable source programs are executed by robots, and that
neural representations are used only for synthesizing or optimizing interpretable
programs. Ensuring the interpretability of the representation that ultimately en-
codes robot behavior is a prerequisite for widespread use in industry (Siaterlis
et al., 2022; Agostinho et al., 2023; Theis et al., 2023; Heimberger et al., 2024)
and removes a crucial barrier to AI adoption. Second, the XUI for SPI as well as
the dialog-based user interaction principle of MetaWizard2 and MetaWizardLLM
serve to make the behavior of AI-enabled programming systems more transparent
to the user, by visualizing or verbalizing the behavior of the learned shadow model
or the belief state of the program synthesis system. Increasing the transparency
of AI methods has been identified as an important component of fostering trust
(Edmonds et al., 2019; Kok and Soh, 2020; Ferrario and Loi, 2022; Leichtmann
et al., 2023). Deriving causal explanations of model behavior, as well as computing
and visualizing model uncertainty, is the subject of ongoing and future research.

234

5.4. CONCLUSION

5.4 Conclusion

This section presented a framework for neurosymbolic programming, comprising
the BANSAI conceptual framework as well as a software framework for the AI-
enabled creation, optimization, maintenance and deployment of robot programs.
The framework comprises user interfaces and software infrastructure for the train-
ing and use of the algorithms and data structures presented in Chapters 3 and
4. BANSAI proposes a workflow for neurosymbolic programming that reflects the
way robots are programmed in industry, while the software framework integrates
neurosymbolic technologies for program synthesis and optimization into an indus-
trial robot software ecosystem. Neurosymbolic robot programming is, however, not
limited to industrial applications. The application of neurosymbolic robot program-
ming in service robotics promises to address several practical challenges. Many
use cases for service robots, such as everyday household assistance, are situated in
contexts in which neither prior AI nor robotics infrastructure exists, and in which
the “robot programmers” have neither robotics nor AI expertise. In such contexts,
a framework that provides both a comprehensive workflow covering the complete
robot program lifecycle, as well as comprehensive software solutions and infras-
tructure to realize it, is a crucial prerequisite to enable non-roboticists to deploy
and use robotic assistants in homes, supermarkets or hospitals. The evaluation of
neurosymbolic AI-enabled robot programming in service contexts is an important
avenue for future work.

235

CHAPTER 6

Conclusion

6.1 Summary

This work investigates neurosymbolic programming as a paradigm that enables
robots to capably solve complex manipulation tasks, while ensuring that human
programmers remain in control of robot behavior. It proposes that the combination
of subsymbolic, implicit representations such as neural networks with symbolic, ex-
plicit representations of programs or knowledge permits the realization of robot pro-
gramming as bidirectional communication between robot programmer and robot,
allowing the robot to automatically generate or optimize its behavior according to
the programmer’s intent through AI-enabled program synthesis or optimization,
while at the same time allowing the robot programmer to read, understand and
interact with the robot program. Neurosymbolic robot programming promises to en-
able AI assisted robot programming in domains in which training data is limited by
enabling generalization through explicit, structured representations of knowledge,
and the modularity afforded by symbolically composable program representations.
Neurosymbolic robot programming also affords the use of AI methods in domains
with high safety requirements, in which the ability for human programmers to
understand the robot behavior resulting from a program is crucial both for physical
safety as well as perceived trust.

Neurosymbolic robot programming hinges on bridging the representational
divide between programs that afford learning and optimization, and programs that
afford human interpretation and modification. To that end, a novel neurosymbolic
robot program representation was introduced (see Chapter 2). NRPs are a dual
robot program representation that associate a symbolic, skill-based robot program
(the source program) with a differentiable surrogate (shadow program). The shadow
program combines deep neural networks with differentiable planners to form a
predictive model of the associated source program, which can be trained to reflect
real-world robot behavior. The shadow DCG and the source program are related
by structural and semantic equivalence, permitting the automatic construction of

237

CHAPTER 6. CONCLUSION

shadow programs for given source programs as well as the transfer of e.g. opti-
mization results computed over the shadow program back into the source program
representation. The DGPMP2-ND differentiable collision-free motion planner was
introduced, which enables the creation of NRPs for complex robot programs in-
volving both Cartesian- and configuration-space constraints. The dual nature of
NRPs bridges the representational divide between symbolic and subsymbolic pro-
grams, permitting algorithms to leverage the benefits of either representation for
e.g. program synthesis or optimization.

Chapter 3 introduced SPI, a first-order optimizer for NRPs. SPI optimizes robot
program parameters by gradient descent over NRP shadow programs. Optimization
is performed using the learned model of robot behavior, reflecting the real-world
environment and robot dynamics. SPI optimizes robot program parameters with
respect to differentiable, user-provided, task-specific objective functions. In combi-
nation with sequential transfer learning on simulated or real-world data, SPI has
been shown to be highly data efficient and enables the lifelong optimization of
robot program parameters in the face of nonstationary noise processes such as wear
and tear, workpiece changes or sensor drift. By integrating the DGPMP2-ND differ-
entiable motion planner, SPI-DP extends SPI to jointly optimize motion trajectories
and robot program parameters.

Chapter 4 introduced the MetaWizard family of program synthesis systems,
that leverage structured representations of knowledge in combination with sub-
symbolic methods to bootstrap NRPs via intuitive human-AI interaction. It explores
three approaches, offering different user interaction paradigms or leveraging differ-
ent internal representations and algorithms for reasoning and symbol grounding.
MetaWizard accepts a human demonstration of a task in VR and generates an
executable NRP source program by symbolic reasoning over a knowledge base,
using semisymbolic or neural modules for grounding symbolic entities in physical
reality. MetaWizard2 models tasks as realizations of a metatask model and dynami-
cally grounds missing knowledge via natural-language dialogue with the human
programmer. MetaWizardLLM retains the dialogue-based paradigm of interactive
programming and leverages LLMs to bootstrap underspecified plans, which are
grounded via RAG over CAD representations of the environment.

The proposed representations and algorithms have been designed with the aim
of solving practical robot programming problems. To facilitate the application of
neurosymbolic robot programming in real-world applications, Chapter 5 introduces
a framework for AI-enabled robot programming. The BANSAI conceptual framework
outlines how neurosymbolic data structures and algorithms can be applied to
assist programmers in the creation, optimization, deployment and maintenance
of robot programs in industrial and service applications. To enable users and
organizations with limited AI experience and expertise to use neurosymbolic AI
for the optimization of robot programs, an XUI is proposed, that guides users
through the program learning and optimization workflow, while offering user-
adaptive assistance functions and visual explanations. It is integrated into a software

238

6.2. DISCUSSION

framework for neurosymbolic programming, that integrates the algorithms and data
structures introduced in this work into an industrial robot programming ecosystem.

6.2 Discussion

This work investigated the central research question introduced in Chapter 1:
How can robots be programmed to tractably solve complex tasks in real-

world environments, while leaving humans in control of robot behavior?

The proposed neurosymbolic robot programming framework proposes a technical
answer to this question. The following paragraphs examine the research question
from the perspectives of robot programming as an activity, an engineering discipline
and a field of scientific inquiry.

6.2.0.1 Robot Programming as an Activity

Neurosymbolic programming affirms programming as bidirectional communica-
tion between robot and human programmer, while augmenting the capabilities of
both the robot and the programmer via AI. It frees the human programmer from
specifying the initial robot program at the motion level; instead, they can state
their intent in natural language at the task level, and a robot program is inferred
automatically to perform the task. They are freed from manually specifying and
tweaking robot program parameters during ramp-up, deployment or maintenance,
which are instead optimized by a data-driven, first-order optimizer. The robot’s
capabilities, on the other hand, are optimized by AI methods at the structural,
parameter and motion level to better achieve the task through semantic under-
standing of user intent, AI-based grounding of underspecified plans, or iterative
optimization over a learned model of the dynamics of the task, the environment,
or itself. For the programmer, neurosymbolic programming shifts the activity of
programming from the explicit manipulation of programs to the instruction and
supervision of program-generating and program-optimizing AI algorithms, or, if AI
and the robot are conceptualized as a unitary technical system, to the instruction
and supervision of an intelligent robot.

The unique property of neurosymbolic robot programming as proposed in this
work is that this activity remains bidirectional and interactive: The use of an explic-
itly represented, symbolic robot program allows human programmers to understand
what the robot will do in response to an instruction, and tomodify the robot’s behav-
ior by modifying the instructions or by directly modifying the robot program. From
this perspective, neurosymbolic robot programming resembles traditional, symbolic
programming in robotics and general-purpose computing. It allows for ancillary
activities such as debugging, which involves repeated interaction with programs
to gain a causal understanding of the system’s behavior, enabling the detection of
programmatic reasons for observed errors. Unlike implicitly represented programs,
such as neural policies, NRP source programs can be debugged in a white-box

239

CHAPTER 6. CONCLUSION

manner, by reading and understanding the code that drives robot behavior. It also
allows for established workflows and processes related to programming, such as
auditing or certification, to remain unchanged, accelerating industry adoption. In-
terpretability is only ensured for the generated or modified robot program, however.
Neither the program optimizers nor the program synthesis systems presented in
this work are mechanistically interpretable. This satisfies the safety requirements of
many applications, particularly in industrial robotics, where the robot program as
an artefact is subject to scrutiny. In service applications, where program synthesis
and optimization may be performed online to react to changes in the environment,
interpretable metaprograms (program synthesizers and optimizers) would both
increase trust by users and facilitate debugging and metaprogramming to correct
and adapt the behavior of the neurosymbolic programming systems themselves. In-
creasing the interpretability of SPI and the MetaWizard program synthesis systems
is a crucial avenue of further research.

6.2.0.2 Robot Programming as an Engineering Discipline

Programming is an engineering discipline, involving the “application of scientific
knowledge to resolve conflicting constraints and requirements for problems of
immediate, practical significance” (Shaw, 1990). In robotics, programming is con-
cerned with applying knowledge about the domain, robot kinematics and dynamics,
planning, perception, commonsense and other types of knowledge to solve practical,
real-world problems by eliciting robot behavior – here, motions manipulating ob-
jects in the environment. Programming frameworks support engineers by providing
representations such as programming languages, task models, and GUIs, as well as
tools, such as compilers, planners, and simulators, that encapsulate general-purpose
methodologies or knowledge, reducing the cognitive burden on the programmer:
Effective innovations in programming raise the level of abstraction at which systems
are programmed (Kramer, 2007). Neurosymbolic robot programming raises the
level of abstraction for programming robots in three central ways.

First, it raises the representational level of abstraction: Programs are created
via interactive dialogue in natural language or via PbD, and optimized in a largely
automatic process controlled through a GUI. Natural-language interaction and
high-level user input enable programmers to program more complex tasks at a
given level of effort, or program tasks of a given complexity with a considerable
reduction in effort.

Second, it raises the semantic level of abstraction, as program synthesis and
optimization only require the programmer to state their intent in terms of task
objectives or demonstrations, rather than prescribe a solution to the task at hand.
Programming at a high semantic level alleviates the need for the programmer to
solve highly domain-specific optimization problem of finding and specifying good
robot behavior to solve the task, and permits them to focus instead on meaning-
fully describing the task. This permits domain experts to program robots without

240

6.2. DISCUSSION

requiring robotics-specific knowledge and contributes to the democratization of
robot programming.

Third, neurosymbolic robot programming shifts much of the engineering effort
from programming to metaprogramming. Instead of parameterizing programs
to solve real-world tasks, programmers parameterize program optimizers, and
instead of encoding task knowledge in robot programs, programmers encode task
knowledge explicitly (in KBs or prompts) or implicitly (in trained shadow programs)
in the data structures that enable program synthesis and optimization. The central
advantage of metaprogramming is that it must only be done once to cover a wide
range of programming applications: Trained shadow programs afford optimization
with respect to near-arbitrary task objectives, and a sufficiently large KB of tasks
affords synthesis of robot programs for a wide range of user queries or environments.
Neurosymbolic robot programming raises the level of abstraction of programming
by encapsulating lower-level aspects of programming, such as code generation
or iterative parameter optimization, to AI algorithms operating behind a shared,
neurosymbolic representation. Programmers reap the full benefits of abstraction
when this encapsulation is complete, i.e. both general, covering all tasks and use
cases, and robust, always yielding expected behavior. Achieving the required degree
of generality and robustness for seamless use in productive or everyday applications
remains the focus of ongoing research and development.

6.2.0.3 Robot Programming as a Field of Inquiry

Programming has long been considered a scientific discipline (Dijkstra, 1977), and
the development and study of programming systems has been a dynamic field of
scientific inquiry. The central scientific contribution of this work is an exploration of
the research question posed in Chapter 1 and again at the beginning of this section:
How can robots be programmed to tractably solve complex tasks in real-world
environments, while leaving humans in control of robot behavior?

One central thesis of this work is that bridging the representational divide
between symbolic and subsymbolic representations facilitates the design and de-
ployment of algorithms that afford powerful AI assistance, while representing robot
programs in a way that is interpretable and modifiable by human programmers.
The NRP representation, as well as the proposed algorithms for program opti-
mization and program synthesis, propose an avenue toward resolving the seeming
dichotomy between capability and control. At the same time, the investigation
of neurosymbolic robot programming methods poses several new open research
questions.

First, it remains to be investigated whether and to what degree the use of
a symbolic intermediary between human and robot constrains the breadth of
robot behavior that can be represented. Such a “safety tax” has been observed in
explainable AI systems, which often trade representational power for mechanistic
interpretability (Yampolskiy, 2022; Jensen et al., 2023; Dalrymple et al., 2024).

241

CHAPTER 6. CONCLUSION

This work has shown the ARTM to be a suitable representation, particularly for
industrial applications. Applications involving online control in highly dynamic
environments may require different source program representations.

Second, there may be application contexts in which the interpretability of the
source program – the program that is executed on the robot – may not suffice for
safety. One such use case is lifelong learning (see Section 3.2.2), where programs
are updated frequently, up to each program execution. The manual re-certification
or re-auditing of the source program is impractical. Future research will investigate
methods for automatically and provably ensuring the adherence of optimized or
synthesized source programs to predefined specifications.

Third, the degree to which neurosymbolic robot programming scales to very
large programs and highly complex, long-horizon tasks merits further, particularly
empirical, investigation. While the deep GRUs used in shadow programs are, in
principle, universal function approximators (Petrov et al., 2024), the performance of
deep neural networks has empirically been shown to scale with the training duration,
dataset size and network size following a power law with diminishing returns
(Kaplan et al., 2020). This indicates that there may be a degree of task complexity at
which the accurate prediction of robot behavior may become intractable, particularly
with limited amounts of real-world training data. Ongoing research is investigating
the use of multimodal Transformer architectures and pretrained foundation models
for the prediction of complex visuotactile robot behavior (Kienle et al., 2024).
Likewise, the use of pretrained LLMs for zero-shot generalization, data-efficient
finetuning and RAG is studied in the context of improving the tractability of program
synthesis for increasingly complex tasks (Alt et al., 2024b; Kienle et al., 2025).

The other central thesis of this work is that a conceptualization of AI-enabled
robot programming as bidirectional interaction between robot and programmer,
via the intermediary of an explicitly represented program, enables leveraging of
neurosymbolic AI to solve real-world programming problems. It is given credence by
the real-world experiments conducted in the context of this work. The experiments
validating MetaWizard2 and MetaWizardLLM, in particular, provide qualitative
evidence of the value of the role of the human programmer. In both experiments,
the programmer not only specifies the task, but also validates the generated robot
program before it is executed on the real robot. Particularly for MetaWizardLLM, the
symbolic nature of the generated source program, and its resulting interpretability,
acts as a crucial safeguard against possibly unsafe LLM outputs, fostering trust
in the program synthesis system (see Section 4.3.2). Likewise, strengthening
the bidirectional nature of programming by providing an XUI for SPI allowed
AI novices to use sophisticated AI technologies productively to solve a practical
program optimization task (see Section 5.1.2). The results obtained in this work
echo related work on human-AI collaboration and human-in-the-loop systems
(Grønsund and Aanestad, 2020; Wiethof and Bittner, 2021; Memmert and Bittner,
2022; Mosqueira-Rey et al., 2023), indicating that a central role for the human
programmer in the robot programming process may improve both the tractability

242

6.3. OUTLOOK

and safety of AI-enabled robot programming. BANSAI illustrates that neurosymbolic
AI methods permit the design of AI-enabled robot programming workflows that
seamlessly integrate into existing, human-centric workflows and infrastructure,
facilitating the use of AI in production contexts. The empirical quantification of
the benefit of using neurosymbolic AI in real-world field trials is a crucial area of
future investigation. Another set of research questions raised by this work concern
the degree to which neurosymbolic AI benefits human programmers, particularly
in contrast to other AI methods. The preliminary user study conducted in the
context of the XUI for SPI (Alt et al. (2024d), see Section 5.1.2) shows promising
results. A larger, double-blind study with multiple user groups is required to discern
the concrete benefits of AI assistance, interpretability, and user control on task
performance, user satisfaction and trust in the AI system. Likewise, a large-scale
study of the complete neurosymbolic AI framework on industrial and service robotics
applications is required to quantify the extent to which the neurosymbolic workflow
proposed by BANSAI and realized by the algorithms and data structures presented
in this work tractably solves complex robot programming problems in real-world
settings.

6.3 Outlook

The presented framework for neurosymbolic robot programming charts a path
toward AI-enabled programming of robot manipulation tasks. The results presented
in this work inspire future research and development to increase the breadth and
complexity of the tasks that can be addressed, as well as to increase the level of
technological maturity to enable its deployment and use in industry, household,
retail and other real-world settings.

At the time of writing, NRPs and SPI are undergoing integration into a com-
mercial robot programming environment. NRPs are integrated into the ArtiMinds
RPS and LAR software suites as a “neural digital twin” of the ARTM robot program
representation. It permits the use of available robot data on the LAR platform to
train a physically accurate, predictive model of a robot program in execution. SPI
has been patented (Alt et al., 2022a) and a version of SPI has been developed
that runs on GPU-equipped cloud or on-premise servers as a service, and can be
accessed by downstream applications via an API. In the research project EASY1, SPI
is being deployed in an edge-cloud context, in which model training is performed
on cloud servers, while parameter and trajectory optimization are performed in
the industrial edge or directly on the robot controller (Schultheis et al., 2024). In
the research project VADER2, SPI is integrated into the CatenaX industrial software

1Research project EASY (2022-2025), funded by the German Federal Ministry for Economic
Affairs and Climate Action under grant #01MD22002B.

2Research project VADER (2023-2025), funded by the German Federal Ministry for Economic
Affairs and Climate Action under grant #13IK026A.

243

CHAPTER 6. CONCLUSION

ecosystem (Schöppenthau et al., 2023) as an on-demand service for data-driven
program optimization.

A version of the XUI for SPI outlined in Section 5.1.2 has been integrated
into the LAR web frontend, and permits users to optimize ARTM robot programs
via SPI. Taken together, these developments form a commercial implementation
of the program optimization aspects of BANSAI (see Section 5.1.1). It has been
successfully validated in a first commercial project on an assembly use case in the
automotive industry.

Beyond commercial development, the NRP program representation is the sub-
ject of ongoing research and future publications. To enable NRPs to represent a
wider variety of complex tasks, multimodality is explored as a highly promising
avenue of research. The incorporation of 2D or 3D vision information, video im-
agery or sound promise to enable NRPs to represent visuotactile manipulation tasks.
The Multimodal Trajectory Transformer (MuTT) architecture extends the state
representation by 2D images of the scene, and permits the prediction of robot trajec-
tories in changing scenes without requiring finetuning (Kienle et al., 2024). Beside
multimodality, a core focus of research on NRPs is placed on the use and finetuning
of pretrained foundation models, that afford zero- or few-shot generalization for
novel environments or task variants. The use of large models pretrained on very
large datasets promises to allow NRPs shadow skills to represent skill executions
in arbitrary environments, avoiding the need to finetune them for the concrete
environment at hand. Beyond the use of pretrained models such as RT-2-X (O’Neill
et al., 2024), the use of physics simulators such as Isaac Sim (NVIDIA, 2024a) for
large-scale simulation of environments and task variants is explored. In addition,
a promising line of research investigates the extension of NRPs to probabilistic
models, such as Bayesian neural networks or variational autoencoders.

Like NRPs, SPI and SPI-DP are undergoing active research and development. A
focus is placed on increasing the stability of the optimizer on the borders of the
NRP’s training data domain, to avoid oscillation or divergence as in the inputs are
optimized beyond the range included in the training dataset. One promising ap-
proach involves regularizing the optimizer by injecting gradients that constrain the
optimizer to the parameter region seen in the training data. The stable optimization
of the branching conditions of NRPs with conditional branching (“if”) remains an
open research question. Future research will investigate the representation of task
objectives that cannot be expressed as differentiable functions over the posterior
trajectory in a straightforward manner, such as quality criteria defined in terms of
the manipulated objects (e.g. a button having been pushed, or two objects having
been stacked on top of each other). Applying the principle of neural surrogates to
task objectives appears promising: Training a differentiable model, such as a neural
network, to represent the task objectives and score the posterior trajectory, may
allow SPI to optimize robot program parameters with respect to a wider range of
task objectives. In a different line of work, SPI-DP is evaluated on a large array of

244

6.4. CONCLUSION

complex tasks from the COLOSSEUM manipulation benchmark (Pumacay et al.,
2024) to evaluate its performance in a wide variety of tasks and environments.

The MetaWizard family of robot program synthesis systems is likewise un-
dergoing active research. The primary subject of inquiry is the use of LLMs for
general-purpose reasoning as well as symbol grounding via RAG and other tech-
niques (Kienle et al., 2025). To provide useful AI assistance for programming in
complex service or industrial scenarios, future research must ascertain the degree
to which pretrained LLMs can zero-shot generalize to novel tasks and environ-
ments via prompt engineering, and to what extent external knowledge sources or
domain-specific finetuning are required. Future work will extend MetaWizardLLM
to generate error-handling routines for robust, fault-tolerant manipulation. Like-
wise, alternative modes of user interaction beyond natural-language dialogue are
explored, such as “autocompletion” of partially implemented program skeletons.
Ultimately, the program synthesis systems proposed in this work may be integrated
with parameter optimizers such as SPI to form a fully-fledged TAMP system, that
jointly synthesizes and parameterizes robot programs for a given task. Using NRPs
as a neural digital twin, such a system could evaluate candidate program structures
and parameterizations via prospection (Vernon et al., 2015; Neumann et al., 2020;
Picklum, 2024), without requiring real-world executions.

6.4 Conclusion

The central insight of this work is that the way programs are represented pro-
foundly influences what “programming” is. Textual programs invite an immediate,
interactive programming pattern in which the human programmer encodes the
desired robot behavior by means of a programming language. Skill-based robot
programming adds a layer of abstraction, transforming “programming” into the
combination and parameterization of motion planners and perception routines.
AI-enabled programming constitutes the next step on the ladder of abstraction, dele-
gating complex cognitive programming tasks to AI systems. The vision of AI-enabled
robot programming is that human programmers express what they want a robot to
do, and the robot figures out how to fulfil the programmer’s intents on its own. It is
tempting, therefore, to stop thinking about programs at all, and rather view robot
behavior as an emergent phenomenon engendered by an AI algorithm. The search
for explainable AI methods (Burkart and Huber, 2021) and the often-cited need
for explainability particularly in safety-critical systems (Ferrario and Loi, 2022;
Agostinho et al., 2023; Leichtmann et al., 2023), is evidence for the belief that there
is value in having a mechanistic, if not causal, understanding of system behavior.
As noted by Edsger Dijkstra, “it should be a trivial matter keep the happening
evoked by one’s program firmly within one’s intellectual grip” (Dijkstra, 1971).
As evidenced in this work, the choice and design of program representations has
great bearing on the degree to which human programmers can understand the

245

CHAPTER 6. CONCLUSION

robot behavior evoked by artificially intelligent programming assistants. Given
the complexity of real-world robotic manipulation, and the promise of AI to learn,
reason about and solve complex manipulation problems, the search for better robot
program representations is becoming an increasingly important and scientifically
rewarding field of study.

246

Bibliography

Abelson, H., G. J. Sussman, and J. Sussman (July 1996). Structure and Interpretation
of Computer Programs. 2nd ed. Cambridge, Mass.: The MIT Press. isbn: 978-0-
262-51087-5.

Abnar, S., M. Dehghani, B. Neyshabur, and H. Sedghi (Oct. 2021). “Exploring the
Limits of Large Scale Pre-Training”. In: International Conference on Learning
Representations.

Abu-Dakka, F. J., B. Nemec, J. A. Jørgensen, T. R. Savarimuthu, N. Krüger, and
A. Ude (Aug. 2015). “Adaptation of Manipulation Skills in Physical Contact
with the Environment to Reference Force Profiles”. In: Autonomous Robots 39.2,
pp. 199–217. issn: 1573-7527. doi: 10.1007/s10514-015-9435-2.

Adams, S., T. Cody, and P. A. Beling (Aug. 2022). “A Survey of Inverse Reinforcement
Learning”. In: Artificial Intelligence Review 55.6, pp. 4307–4346. issn: 1573-
7462. doi: 10.1007/s10462-021-10108-x.

Agostinho, C., Z. Dikopoulou, E. Lavasa, K. Perakis, S. Pitsios, R. Branco, S. Reji, J.
Hetterich, E. Biliri, F. Lampathaki, S. Rodríguez Del Rey, and V. Gkolemis (Dec.
2023). “Explainability as the Key Ingredient for AI Adoption in Industry 5.0
Settings”. In: Frontiers in Artificial Intelligence 6, p. 1264372. issn: 2624-8212.
doi: 10.3389/frai.2023.1264372.

Agrawal, P., R. Girshick, and J. Malik (2014). “Analyzing the Performance of Multi-
layer Neural Networks for Object Recognition”. In: Computer Vision – ECCV 2014.
Ed. by D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars. Cham: Springer Interna-
tional Publishing, pp. 329–344. isbn: 978-3-319-10584-0. doi: 10.1007/978-
3-319-10584-0_22.

Ahn, M., A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu,
K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian,
D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P.
Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers,
C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and
A. Zeng (Aug. 2022). “Do As I Can, Not As I Say: Grounding Language in
Robotic Affordances”. In: 6th Annual Conference on Robot Learning. arXiv. doi:
10.48550/arXiv.2204.01691. arXiv: 2204.01691 [cs].

247

https://doi.org/10.1007/s10514-015-9435-2
https://doi.org/10.1007/s10462-021-10108-x
https://doi.org/10.3389/frai.2023.1264372
https://doi.org/10.1007/978-3-319-10584-0_22
https://doi.org/10.1007/978-3-319-10584-0_22
https://doi.org/10.48550/arXiv.2204.01691
https://arxiv.org/abs/2204.01691

BIBLIOGRAPHY

Ajaykumar, G., M. Steele, and C.-M. Huang (Oct. 2021). “A Survey on End-User
Robot Programming”. In: ACM Computing Surveys 54.8, 164:1–164:36. issn:
0360-0300. doi: 10.1145/3466819.

Akbulut, M. T., U. Bozdogan, A. Tekden, and E. Ugur (May 2021a). “Reward Con-
ditioned Neural Movement Primitives for Population-Based Variational Policy
Optimization”. In: 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 10808–10814. doi: 10.1109/ICRA48506.2021.9560897.

Akbulut, M., E. Oztop, M. Y. Seker, H. X, A. Tekden, and E. Ugur (Oct. 2021b). “AC-
NMP: Skill Transfer and Task Extrapolation through Learning from Demonstra-
tion and Reinforcement Learning via Representation Sharing”. In: Proceedings
of the 2020 Conference on Robot Learning. PMLR, pp. 1896–1907.

Akcay, A. (Nov. 2016). Daimler Integra Standards for Robotics. Birmingham, UK.
Akrour, R., D. Sorokin, J. Peters, and G. Neumann (July 2017). “Local Bayesian

Optimization of Motor Skills”. In: International Conference on Machine Learning.
PMLR, pp. 41–50.

Alt, B., J. Dvorak, D. Katic, R. Jäkel, M. Beetz, and G. Lanza (Jan. 2024a). “BANSAI:
Towards Bridging the AI Adoption Gap in Industrial Robotics with Neurosymbolic
Programming”. In: Procedia CIRP. Vol. 130. Póvoa de Varzim, Portugal: Elsevier
B.V., pp. 532–537. doi: 10.1016/j.procir.2024.10.125. arXiv: 2404.13652
[cs].

Alt, B., R. Jäkel, and D. Katic (Feb. 2022a). “Method and System for Determin-
ing Optimized Program Parameters for a Robot Program”. WO2022022784A1
(Karlsruhe).

Alt, B., D. Katic, R. Jäkel, and M. Beetz (Oct. 2022b). “Heuristic-Free Optimization
of Force-Controlled Robot Search Strategies in Stochastic Environments”. In:
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Kyoto, Japan: IEEE, pp. 8887–8893. isbn: 978-1-6654-7927-1. doi: 10.1109/
IROS47612.2022.9982093.

Alt, B., D. Katic, R. Jäkel, A. K. Bozcuoglu, and M. Beetz (May 2021). “Robot
Program Parameter Inference via Differentiable Shadow Program Inversion”.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA).
Xi’an, China: IEEE, pp. 4672–4678. isbn: 978-1-7281-9077-8. doi: 10.1109/
ICRA48506.2021.9561206.

Alt, B., F. K. Kenfack, A. Haidu, D. Katic, R. Jäkel, and M. Beetz (Sept. 2023).
“Knowledge-Driven Robot Program Synthesis from Human VR Demonstrations”.
In: Proceedings of the 20th International Conference on Principles of Knowledge
Representation and Reasoning. Rhodes, Greece: IJCAI, pp. 34–43. isbn: 978-1-
956792-02-7. doi: 10.24963/kr.2023/4.

Alt, B., U. Keßner, A. Taranovic, D. Katic, A. Hermann, R. Jäkel, and G. Neumann
(Mar. 2024b). “Domain-Specific Fine-Tuning of Large Language Models for Inter-
active Robot Programming”. In: European Robotics Forum 2024. Ed. by C. Secchi
and L. Marconi. Vol. 32. Springer Proceedings in Advanced Robotics. Rimini,

248

https://doi.org/10.1145/3466819
https://doi.org/10.1109/ICRA48506.2021.9560897
https://doi.org/10.1016/j.procir.2024.10.125
https://arxiv.org/abs/2404.13652
https://arxiv.org/abs/2404.13652
https://doi.org/10.1109/IROS47612.2022.9982093
https://doi.org/10.1109/IROS47612.2022.9982093
https://doi.org/10.1109/ICRA48506.2021.9561206
https://doi.org/10.1109/ICRA48506.2021.9561206
https://doi.org/10.24963/kr.2023/4

BIBLIOGRAPHY

Italy: Springer Nature Switzerland, pp. 274–279. isbn: 978-3-031-76424-0.
doi: 10.1007/978-3-031-76424-0_49. arXiv: 2312.13905 [cs].

Alt, B., C. Kienle, D. Katic, R. Jäkel, and M. Beetz (May 2025). “Shadow Program
Inversion with Differentiable Planning: A Framework for Unified Robot Program
Parameter and Trajectory Optimization”. In: 2025 IEEE International Conference
on Robotics and Automation (ICRA). Atlanta, USA: IEEE. doi: 10.48550/arXiv.
2409.08678. arXiv: 2409.08678 [cs].

Alt, B., F. Stöckl, S. Müller, C. Braun, J. Raible, S. Alhasan, O. Rettig, L. Ringle, D.
Katic, R. Jäkel, M. Beetz, M. Strand, and M. F. Huber (May 2024c). “RoboGrind:
Intuitive and Interactive Surface Treatment with Industrial Robots”. In: 2024
IEEE International Conference on Robotics and Automation (ICRA). Yokohama,
Japan: IEEE, pp. 1–8. isbn: 979-8-3503-8457-4. doi: 10.1109/ICRA57147.
2024.10611143. arXiv: 2402.16542 [cs].

Alt, B., J. Zahn, C. Kienle, J. Dvorak, M. May, D. Katic, R. Jäkel, T. Kopp, M.
Beetz, and G. Lanza (Apr. 2024d). “Human-AI Interaction in Industrial Robotics:
Design and Empirical Evaluation of a User Interface for Explainable AI-Based
Robot Program Optimization”. In: Procedia CIRP. Vol. 130. Póvoa de Varzim,
Portugal: Elsevier B.V., pp. 591–596. doi: 10.1016/j.procir.2024.10.134. arXiv:
2404.19349 [cs].

Alur, R., A. Radhakrishna, and A. Udupa (2017). “Scaling Enumerative Program
Synthesis via Divide and Conquer”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Ed. by A. Legay and T. Margaria. Berlin, Heidelberg:
Springer, pp. 319–336. isbn: 978-3-662-54577-5. doi: 10.1007/978-3-662-
54577-5_18.

Alur, R., R. Singh, D. Fisman, and A. Solar-Lezama (Nov. 2018). “Search-Based
Program Synthesis”. In: Communications of the ACM 61.12, pp. 84–93. issn:
0001-0782. doi: 10.1145/3208071.

Amos, B., I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter (2018). “Differentiable
MPC for End-to-end Planning and Control”. In: Advances in Neural Information
Processing Systems. Vol. 31. Curran Associates, Inc.

Andrychowicz, M., M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul,
B. Shillingford, and N. de Freitas (Dec. 2016). “Learning to Learn by Gradient
Descent by Gradient Descent”. In: Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems. NIPS’16. Red Hook, NY, USA:
Curran Associates Inc., pp. 3988–3996. isbn: 978-1-5108-3881-9.

Ardizzone, L., J. Kruse, C. Rother, and U. Köthe (Sept. 2018). “Analyzing Inverse
Problems with Invertible Neural Networks”. In: International Conference on
Learning Representations.

Arenas, M. G., T. Xiao, S. Singh, V. Jain, A. Ren, Q. Vuong, J. Varley, A. Herzog, I.
Leal, S. Kirmani, M. Prats, D. Sadigh, V. Sindhwani, K. Rao, J. Liang, and A. Zeng
(May 2024). “How to Prompt Your Robot: A PromptBook for Manipulation Skills
with Code as Policies”. In: 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4340–4348. doi: 10.1109/ICRA57147.2024.10610784.

249

https://doi.org/10.1007/978-3-031-76424-0_49
https://arxiv.org/abs/2312.13905
https://doi.org/10.48550/arXiv.2409.08678
https://doi.org/10.48550/arXiv.2409.08678
https://arxiv.org/abs/2409.08678
https://doi.org/10.1109/ICRA57147.2024.10611143
https://doi.org/10.1109/ICRA57147.2024.10611143
https://arxiv.org/abs/2402.16542
https://doi.org/10.1016/j.procir.2024.10.134
https://arxiv.org/abs/2404.19349
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1145/3208071
https://doi.org/10.1109/ICRA57147.2024.10610784

BIBLIOGRAPHY

Arinez, J. F., Q. Chang, R. X. Gao, C. Xu, and J. Zhang (Aug. 2020). “Artificial
Intelligence in Advanced Manufacturing: Current Status and Future Outlook”.
In: Journal of Manufacturing Science and Engineering 142.11. issn: 1087-1357.
doi: 10.1115/1.4047855.

Asfour, T., M. Waechter, L. Kaul, S. Rader, P. Weiner, S. Ottenhaus, R. Grimm,
Y. Zhou, M. Grotz, and F. Paus (Dec. 2019). “ARMAR-6: A High-Performance
Humanoid for Human-Robot Collaboration in Real-World Scenarios”. In: IEEE
Robotics & Automation Magazine 26.4, pp. 108–121. issn: 1558-223X. doi:
10.1109/MRA.2019.2941246.

Ashwani, S., K. Hegde, N. R. Mannuru, M. Jindal, D. S. Sengar, K. C. R. Kathala, D.
Banga, V. Jain, and A. Chadha (Apr. 2024). Cause and Effect: Can Large Language
Models Truly Understand Causality? doi: 10.48550/arXiv.2402.18139. arXiv:
2402.18139 [cs].

Azmat, F., B. Ahmed, W. Colombo, and R. Harrison (June 2020). “Closing the
Skills Gap in the Era of Industrial Digitalisation”. In: 2020 IEEE Conference on
Industrial Cyberphysical Systems (ICPS). Vol. 1, pp. 365–370. doi: 10.1109/
ICPS48405.2020.9274788.

Bagnell, J. A., F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert, M. Kazemi, M. Klin-
gensmith, J. Libby, T. Y. Liu, N. Pollard, M. Pivtoraiko, J.-S. Valois, and R. Zhu
(Oct. 2012). “An Integrated System for Autonomous Robotics Manipulation”.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2955–2962. doi: 10.1109/IROS.2012.6385888.

Bahl, S., M. Mukadam, A. Gupta, and D. Pathak (2020). “Neural Dynamic Policies
for End-to-End Sensorimotor Learning”. In: Advances in Neural Information
Processing Systems. Vol. 33. Curran Associates, Inc., pp. 5058–5069.

Baig, M. S., A. Imran, A. Yasin, A. H. Butt, and M. I. Khan (Feb. 2022). “Natural
Language to SQL Queries: A Review”. In: International Journal of Innovations in
Science & Technology 4.1, pp. 147–162. issn: 2709-6130.

Bansak, K. C., E. Paulson, and D. Rothenhaeusler (Apr. 2024). “Learning Under Ran-
dom Distributional Shifts”. In: Proceedings of The 27th International Conference
on Artificial Intelligence and Statistics. PMLR, pp. 3943–3951.

Barraquand, J. and J.-C. Latombe (Dec. 1991). “Robot Motion Planning: A Dis-
tributed Representation Approach”. In: The International Journal of Robotics
Research 10.6, pp. 628–649. issn: 0278-3649. doi: 10.1177/02783649910100
0604.

Bates, T., K. Ramirez-Amaro, T. Inamura, and G. Cheng (Sept. 2017). “On-Line
Simultaneous Learning and Recognition of Everyday Activities from Virtual
Reality Performances”. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3510–3515. doi: 10.1109/IROS.2017.8206193.

Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind (2018). “Automatic
Differentiation in Machine Learning: A Survey”. In: Journal of Machine Learning
Research 18.153, pp. 1–43. issn: 1533-7928.

250

https://doi.org/10.1115/1.4047855
https://doi.org/10.1109/MRA.2019.2941246
https://doi.org/10.48550/arXiv.2402.18139
https://arxiv.org/abs/2402.18139
https://doi.org/10.1109/ICPS48405.2020.9274788
https://doi.org/10.1109/ICPS48405.2020.9274788
https://doi.org/10.1109/IROS.2012.6385888
https://doi.org/10.1177/027836499101000604
https://doi.org/10.1177/027836499101000604
https://doi.org/10.1109/IROS.2017.8206193

BIBLIOGRAPHY

Beck, A. (Sept. 2017). First-Order Methods in Optimization. Philadelphia, PA, USA:
SIAM-Society for Industrial and Applied Mathematics. isbn: 978-1-61197-498-
0.

Beetz, M., F. Bálint-Benczédi, N. Blodow, D. Nyga, T. Wiedemeyer, and Z.-C. Márton
(May 2015). “RoboSherlock: Unstructured Information Processing for Robot
Perception”. In: 2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1549–1556. doi: 10.1109/ICRA.2015.7139395.

Beetz, M., D. Bessler, A. Haidu, M. Pomarlan, A. K. Bozcuoglu, and G. Bartels (May
2018). “KnowRob 2.0 - A 2nd Generation Knowledge Processing Framework for
Cognition-Enabled Robotic Agents”. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 512–519. isbn: 978-1-5386-3081-5. doi:
10.1109/ICRA.2018.8460964.

Beetz, M., G. Kazhoyan, and D. Vernon (Apr. 2023). The CRAM Cognitive Architecture
for Robot Manipulation in Everyday Activities. doi: 10.48550/arXiv.2304.14119.
arXiv: 2304.14119 [cs].

Beetz, M., L. Mösenlechner, and M. Tenorth (Oct. 2010). “CRAM — A Cognitive
Robot Abstract Machine for Everyday Manipulation in Human Environments”.
In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1012–1017. doi: 10.1109/IROS.2010.5650146.

Behl, H. S., A. G. Baydin, R. Gal, P. H. S. Torr, and V. Vineet (Aug. 2020). “Au-
toSimulate: (Quickly) Learning Synthetic Data Generation”. In: Computer Vision
– ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXII. Berlin, Heidelberg: Springer-Verlag, pp. 255–271. isbn:
978-3-030-58541-9. doi: 10.1007/978-3-030-58542-6_16.

Bellini-Leite, S. C. (Aug. 2024). “Dual Process Theory for Large Language Models:
An Overview of Using Psychology to Address Hallucination and Reliability
Issues”. In: Adaptive Behavior 32.4, pp. 329–343. issn: 1059-7123. doi: 10.
1177/10597123231206604.

Bereska, L. and S. Gavves (Apr. 2024). “Mechanistic Interpretability for AI Safety -
A Review”. In: Transactions on Machine Learning Research. issn: 2835-8856.

Berkenkamp, F., A. Krause, and A. P. Schoellig (Oct. 2023). “Bayesian Optimization
with Safety Constraints: Safe and Automatic Parameter Tuning in Robotics”.
In: Machine Learning 112.10, pp. 3713–3747. issn: 1573-0565. doi: 10.1007/
s10994-021-06019-1.

Beschi, S., D. Fogli, and F. Tampalini (2019). “CAPIRCI: A Multi-modal System for
Collaborative Robot Programming”. In: End-User Development. Ed. by A. Malizia,
S. Valtolina, A. Morch, A. Serrano, and A. Stratton. Cham: Springer International
Publishing, pp. 51–66. isbn: 978-3-030-24781-2. doi: 10.1007/978-3-030-
24781-2_4.

Beßler, D. (Sept. 2022). “Ontological Representation of Activity Context for Flexible
Robot Task Execution”. PhD thesis. Bremen, Germany: University of Bremen.

Beßler, D., M. Pomarlan, and M. Beetz (July 2018). “OWL-enabled Assembly Plan-
ning for Robotic Agents”. In: Proceedings of the 17th International Conference on

251

https://doi.org/10.1109/ICRA.2015.7139395
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.48550/arXiv.2304.14119
https://arxiv.org/abs/2304.14119
https://doi.org/10.1109/IROS.2010.5650146
https://doi.org/10.1007/978-3-030-58542-6_16
https://doi.org/10.1177/10597123231206604
https://doi.org/10.1177/10597123231206604
https://doi.org/10.1007/s10994-021-06019-1
https://doi.org/10.1007/s10994-021-06019-1
https://doi.org/10.1007/978-3-030-24781-2_4
https://doi.org/10.1007/978-3-030-24781-2_4

BIBLIOGRAPHY

Autonomous Agents and MultiAgent Systems. AAMAS ’18. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, pp. 1684–
1692.

Beßler, D., R. Porzel, M. Pomarlan, M. Beetz, R. Malaka, and J. Bateman (2020).
“A Formal Model of Affordances for Flexible Robotic Task Execution”. In: ECAI
2020, pp. 2425–2432. doi: 10.3233/FAIA200374.

Beßler, D., R. Porzel, M. Pomarlan, A. Vyas, S. Höffner, M. Beetz, R. Malaka,
and J. Bateman (2021). “Foundations of the Socio-Physical Model of Activities
(SOMA) for Autonomous Robotic Agents<Span Ref-Type="Fn"
Rid="FAIA210379_fn001" Style="Display:None">
<Sup>1</Sup> ” in: Formal Ontology in Information
Systems. Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 159–
174. doi: 10.3233/FAIA210379.

Betker, J., G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee,
Y. Guo, W. Manassra, P. Dhariwal, C. Chu, Y. Jiao, and A. Ramesh (2023).
“Improving Image Generation with Better Captions”. In.

Bhardwaj, M., B. Boots, and M. Mukadam (May 2020). “Differentiable Gaussian
Process Motion Planning”. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 10598–10604. doi: 10.1109/ICRA40945.2020.
9197260.

Bhat, N. (June 2020). Pyttsx3.
Billard, A., S. Calinon, R. Dillmann, and S. Schaal (2008). “Robot Programming

by Demonstration”. In: Springer Handbook of Robotics. Ed. by B. Siciliano and
O. Khatib. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1371–1394. isbn:
978-3-540-23957-4 978-3-540-30301-5. doi: 10.1007/978-3-540-30301-5_60.

Biloš, M., J. Sommer, S. S. Rangapuram, T. Januschowski, and S. Günnemann (Nov.
2021). “Neural Flows: Efficient Alternative to Neural ODEs”. In: Advances in
Neural Information Processing Systems.

Bischl, B., M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann,
M. Becker, A.-L. Boulesteix, D. Deng, and M. Lindauer (2023). “Hyperparameter
Optimization: Foundations, Algorithms, Best Practices, and Open Challenges”.
In: WIREs Data Mining and Knowledge Discovery 13.2, e1484. issn: 1942-4795.
doi: 10.1002/widm.1484.

Blank, D. S., L. A. Meeden, and J. B. Marshall (1992). “Exploring the Symbol-
ic/Subsymbolic Continuum: A Case Study of RAAM”. In: The Symbolic and
Connectionist Paradigms: Closing the Gap. The Cognitive Science Series: Techni-
cal Monographs and Edited Collection. Hillsdale, NJ, US: Lawrence Erlbaum
Associates, Inc, pp. 113–148. isbn: 978-0-8058-1079-0 978-0-8058-1080-6.

Blattmann, A., R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fidler, and K.
Kreis (2023). “Align Your Latents: High-Resolution Video Synthesis With Latent
Diffusion Models”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 22563–22575.

252

https://doi.org/10.3233/FAIA200374
https://doi.org/10.3233/FAIA210379
https://doi.org/10.1109/ICRA40945.2020.9197260
https://doi.org/10.1109/ICRA40945.2020.9197260
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1002/widm.1484

BIBLIOGRAPHY

Bodenstedt, S., M. Wagner, B. P. Müller-Stich, J. Weitz, and S. Speidel (Dec. 2020).
“Artificial Intelligence-Assisted Surgery: Potential and Challenges”. In: Visceral
Medicine 36.6, pp. 450–455. issn: 2297-4725. doi: 10.1159/000511351.

Bonatti, R., S. Vemprala, S. Ma, F. V. Frujeri, S. Chen, and A. Kapoor (Nov. 2022).
“PACT: Perception-Action Causal Transformer for Autoregressive Robotics Pre-
training”. In: NeurIPS 2022 Foundation Models for Decision Making Workshop.

Bostrom, N. (2017). “Strategic Implications of Openness in AI Development”. In:
Global Policy 8.2, pp. 135–148. issn: 1758-5899. doi: 10.1111/1758-5899.
12403.

Bousmalis, K., G. Vezzani, D. Rao, C. M. Devin, A. X. Lee, M. B. Villalonga, T.
Davchev, Y. Zhou, A. Gupta, A. Raju, A. Laurens, C. Fantacci, V. Dalibard, M.
Zambelli, M. F. Martins, R. Pevceviciute, M. Blokzijl, M. Denil, N. Batchelor,
T. Lampe, E. Parisotto, K. Zolna, S. Reed, S. G. Colmenarejo, J. Scholz, A.
Abdolmaleki, O. Groth, J.-B. Regli, O. Sushkov, T. Rothörl, J. E. Chen, Y. Aytar,
D. Barker, J. Ortiz, M. Riedmiller, J. T. Springenberg, R. Hadsell, F. Nori, and
N. Heess (Sept. 2023). “RoboCat: A Self-Improving Generalist Agent for Robotic
Manipulation”. In: Transactions on Machine Learning Research. issn: 2835-8856.

Bove, C., M.-J. Lesot, C. A. Tijus, and M. Detyniecki (Mar. 2023). “Investigating
the Intelligibility of Plural Counterfactual Examples for Non-Expert Users: An
Explanation User Interface Proposition and User Study”. In: Proceedings of the
28th International Conference on Intelligent User Interfaces. IUI ’23. New York,
NY, USA: Association for Computing Machinery, pp. 188–203. isbn: 979-8-
4007-0106-1. doi: 10.1145/3581641.3584082.

Bowman, S. R., J. Hyun, E. Perez, E. Chen, C. Pettit, S. Heiner, K. Lukošiūtė, A. Askell,
A. Jones, A. Chen, A. Goldie, A. Mirhoseini, C. McKinnon, C. Olah, D. Amodei,
D. Amodei, D. Drain, D. Li, E. Tran-Johnson, J. Kernion, J. Kerr, J. Mueller,
J. Ladish, J. Landau, K. Ndousse, L. Lovitt, N. Elhage, N. Schiefer, N. Joseph,
N. Mercado, N. DasSarma, R. Larson, S. McCandlish, S. Kundu, S. Johnston,
S. Kravec, S. E. Showk, S. Fort, T. Telleen-Lawton, T. Brown, T. Henighan, T.
Hume, Y. Bai, Z. Hatfield-Dodds, B. Mann, and J. Kaplan (Nov. 2022).Measuring
Progress on Scalable Oversight for Large Language Models. arXiv: 2211.03540.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (Jan. 2011). “Distributed
Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers”. In: Foundations and Trends® in Machine Learning 3.1, pp. 1–122.
issn: 1935-8237. doi: 10.1561/2200000016.

Bozcuoğlu, A. K. and M. Beetz (May 2017). “A Cloud Service for Robotic Mental
Simulations”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2653–2658. doi: 10.1109/ICRA.2017.7989309.

Brockett, R. W. (1984). “Robotic Manipulators and the Product of Exponentials For-
mula”. In: Mathematical Theory of Networks and Systems. Ed. by P. A. Fuhrmann.
Berlin, Heidelberg: Springer, pp. 120–129. isbn: 978-3-540-38826-5. doi:
10.1007/BFb0031048.

253

https://doi.org/10.1159/000511351
https://doi.org/10.1111/1758-5899.12403
https://doi.org/10.1111/1758-5899.12403
https://doi.org/10.1145/3581641.3584082
https://arxiv.org/abs/2211.03540
https://doi.org/10.1561/2200000016
https://doi.org/10.1109/ICRA.2017.7989309
https://doi.org/10.1007/BFb0031048

BIBLIOGRAPHY

Brooks, R. A. (June 1990). “Elephants Don’t Play Chess”. In: Robotics and Au-
tonomous Systems. Designing Autonomous Agents 6.1, pp. 3–15. issn: 0921-
8890. doi: 10.1016/S0921-8890(05)80025-9.

— (Mar. 2019). A Better Lesson.
Brosset, P., S. Patsko, A. Khadikar, A.-L. Thieullent, J. Buvat, Y. Khemka, and A.

Jain (2019). Scaling AI in Manufacturing: A Practitioner’s Perspective. Tech. rep.
Capgemini Research Institute.

Bruyninckx, H. and J. De Schutter (Aug. 1996). “Specification of Force-Controlled
Actions in the "Task Frame Formalism" - A Synthesis”. In: IEEE Transactions on
Robotics and Automation 12.4, pp. 581–589. issn: 2374-958X. doi: 10.1109/
70.508440.

Buchina, N., S. Kamel, and E. Barakova (Aug. 2016). “Design and Evaluation
of an End-User Friendly Tool for Robot Programming”. In: 2016 25th IEEE
International Symposium on Robot and Human Interactive Communication (RO-
MAN), pp. 185–191. doi: 10.1109/ROMAN.2016.7745109.

Buchina, N. G., P. Sterkenburg, T. Lourens, and E. I. Barakova (Oct. 2019). “Natural
Language Interface for Programming Sensory-Enabled Scenarios for Human-
Robot Interaction”. In: 2019 28th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), pp. 1–8. doi: 10 .1109/RO-
MAN46459.2019.8956248.

Bull, A. D. (2011). “Convergence Rates of Efficient Global Optimization Algorithms”.
In: Journal of Machine Learning Research 12.88, pp. 2879–2904. issn: 1533-
7928.

Burghart, C., R. Mikut, R. Stiefelhagen, T. Asfour, H. Holzapfel, P. Steinhaus, and
R. Dillmann (Jan. 2006). “A Cognitive Architecture for a Humanoid Robot: A
First Approach”. In: 5th IEEE-RAS International Conference on Humanoid Robots.
Vol. 2005. Tsukuba, Japan: IEEE, pp. 357–362. isbn: 978-0-7803-9320-2. doi:
10.1109/ICHR.2005.1573593.

Burkart, N. and M. F. Huber (May 2021). “A Survey on the Explainability of
Supervised Machine Learning”. In: Journal of Artificial Intelligence Research
70, pp. 245–317. issn: 1076-9757. doi: 10.1613/jair.1.12228.

Buss, S. (May 2004). “Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least Squares Methods”. In: IEEE Transactions in
Robotics and Automation 17.

Bustos, P., L. Manso, A. Bandera, J. Bandera, I. García-Varea, and J. Martínez-Gómez
(June 2019). “The CORTEX Cognitive Robotics Architecture: Use Cases”. In:
Cogn. Syst. Res. 55.C, pp. 107–123. issn: 1389-0417. doi: 10.1016/j.cogsys.
2019.01.003.

Cakmak, M. and A. L. Thomaz (Mar. 2012). “Designing Robot Learners That Ask
Good Questions”. In: 2012 7th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pp. 17–24. doi: 10.1145/2157689.2157693.

Calandra, R., A. Seyfarth, J. Peters, and M. P. Deisenroth (May 2014). “An Experi-
mental Comparison of Bayesian Optimization for Bipedal Locomotion”. In: 2014

254

https://doi.org/10.1016/S0921-8890(05)80025-9
https://doi.org/10.1109/70.508440
https://doi.org/10.1109/70.508440
https://doi.org/10.1109/ROMAN.2016.7745109
https://doi.org/10.1109/RO-MAN46459.2019.8956248
https://doi.org/10.1109/RO-MAN46459.2019.8956248
https://doi.org/10.1109/ICHR.2005.1573593
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1016/j.cogsys.2019.01.003
https://doi.org/10.1016/j.cogsys.2019.01.003
https://doi.org/10.1145/2157689.2157693

BIBLIOGRAPHY

IEEE International Conference on Robotics and Automation (ICRA), pp. 1951–
1958. doi: 10.1109/ICRA.2014.6907117.

Chalkidis, I., M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androutsopoulos (Nov.
2020). “LEGAL-BERT: The Muppets Straight out of Law School”. In: Findings of
the Association for Computational Linguistics: EMNLP 2020. Ed. by T. Cohn, Y. He,
and Y. Liu. Online: Association for Computational Linguistics, pp. 2898–2904.
doi: 10.18653/v1/2020.findings-emnlp.261.

Chang, W., D. Kwon, and J. Choi (Mar. 2024). “Understanding Distributed Rep-
resentations of Concepts in Deep Neural Networks without Supervision”. In:
Proceedings of the AAAI Conference on Artificial Intelligence 38.10, pp. 11212–
11220. issn: 2374-3468. doi: 10.1609/aaai.v38i10.28999.

Chao, Y. R. (Apr. 1968). Language and Symbolic Systems. Reissue edition. Cambridge:
Cambridge University Press. isbn: 978-0-521-09457-3.

Chaudhuri, S., K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, and Y. Yue (Dec.
2021). “Neurosymbolic Programming”. In: Foundations and Trends® in Pro-
gramming Languages 7.3, pp. 158–243. issn: 2325-1107, 2325-1131. doi:
10.1561/2500000049.

Chen, J., H. Lin, X. Han, and L. Sun (Mar. 2024). “Benchmarking Large Language
Models in Retrieval-Augmented Generation”. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence 38.16, pp. 17754–17762. issn: 2374-3468. doi:
10.1609/aaai.v38i16.29728.

Chen, J.-T. and C.-M. Huang (2023). “Forgetful Large Language Models: Lessons
Learned from Using LLMs in Robot Programming”. In: Proceedings of the AAAI
Symposium Series 2.1, pp. 508–513. issn: 2994-4317. doi: 10.1609/aaaiss.
v2i1.27721.

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H.
Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power,
L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert,
F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J.
Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage,
M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I.
Sutskever, and W. Zaremba (July 2021). Evaluating Large Language Models
Trained on Code. doi: 10.48550/arXiv.2107.03374. arXiv: 2107.03374 [cs].

Chen, R. T. Q., Y. Rubanova, J. Bettencourt, and D. K. Duvenaud (2018). “Neural
Ordinary Differential Equations”. In: Advances in Neural Information Processing
Systems. Vol. 31. Curran Associates, Inc.

Chen, T., Q. Wang, Z. Dong, L. Shen, and X. Peng (Dec. 2023). “Enhancing Robot
Program Synthesis Through Environmental Context”. In: Advances in Neural
Information Processing Systems 36, pp. 3881–3893.

255

https://doi.org/10.1109/ICRA.2014.6907117
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.1609/aaai.v38i10.28999
https://doi.org/10.1561/2500000049
https://doi.org/10.1609/aaai.v38i16.29728
https://doi.org/10.1609/aaaiss.v2i1.27721
https://doi.org/10.1609/aaaiss.v2i1.27721
https://doi.org/10.48550/arXiv.2107.03374
https://arxiv.org/abs/2107.03374

BIBLIOGRAPHY

Chen, T.-C. T. (Mar. 2023). Explainable Artificial Intelligence (XAI) in Manufacturing:
Methodology, Tools, and Applications. Springer Nature. isbn: 978-3-031-27961-
4.

Chen, X., J. Ji, J. Jiang, G. Jin, F. Wang, and J. Xie (May 2010). “Developing
High-Level Cognitive Functions for Service Robots”. In: Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems: Volume 1
- Volume 1. AAMAS ’10. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, pp. 989–996. isbn: 978-0-9826571-1-9.

Cheng, C.-A., M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots, and N. Ratliff
(Apr. 2019). “RMPflow: A Computational Graph for Automatic Motion Policy
Generation”. In: arXiv:1811.07049 [cs]. arXiv: 1811.07049 [cs].

Cheng, Y., L. Sun, and M. Tomizuka (Apr. 2021). “Human-Aware Robot Task
Planning Based on a Hierarchical Task Model”. In: IEEE Robotics and Automation
Letters 6.2, pp. 1136–1143. issn: 2377-3766. doi: 10.1109/LRA.2021.305637
0.

Chernova, S. and M. Veloso (Sept. 2004). “An Evolutionary Approach to Gait
Learning for Four-Legged Robots”. In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3,
2562–2567 vol.3. doi: 10.1109/IROS.2004.1389794.

Chi, C., S. Feng, Y. Du, Z. Xu, E. Cousineau, B. C. Burchfiel, and S. Song (July 2023).
“Diffusion Policy: Visuomotor Policy Learning via Action Diffusion”. In: Robotics:
Science and Systems XIX. Vol. 19. isbn: 978-0-9923747-9-2.

Cho, K., B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio (Oct. 2014). “Learning Phrase Representations Using RNN
Encoder–Decoder for Statistical Machine Translation”. In: EMNLP. Doha, Qatar,
pp. 1724–1734. doi: 10.3115/v1/D14-1179.

Christiano, P. (May 2021). AI “Safety” vs “Control” vs “Alignment”.
Christiano, P. F., J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei (2017).

“Deep Reinforcement Learning from Human Preferences”. In: Advances in Neural
Information Processing Systems. Vol. 30. Curran Associates, Inc.

Chromik, M. and A. Butz (2021). “Human-XAI Interaction: A Review and Design
Principles for Explanation User Interfaces”. In: Human-Computer Interaction
– INTERACT 2021. Ed. by C. Ardito, R. Lanzilotti, A. Malizia, H. Petrie, A.
Piccinno, G. Desolda, and K. Inkpen. Lecture Notes in Computer Science. Cham:
Springer International Publishing, pp. 619–640. isbn: 978-3-030-85616-8. doi:
10.1007/978-3-030-85616-8_36.

Cieslak, C., A. Shah, B. Clark, and P. Childs (Sept. 2023). “Wind-Turbine Inspection,
Maintenance and Repair Robotic System”. In: ASME Turbo Expo 2023: Turbo-
machinery Technical Conference and Exposition. American Society of Mechanical
Engineers Digital Collection. doi: 10.1115/GT2023-101713.

Colledanchise, M. and P. Ögren (July 2018). Behavior Trees in Robotics and AI: An
Introduction. Boca Raton: CRC Press. isbn: 978-0-429-48910-5. doi: 10.1201/
9780429489105.

256

https://arxiv.org/abs/1811.07049
https://doi.org/10.1109/LRA.2021.3056370
https://doi.org/10.1109/LRA.2021.3056370
https://doi.org/10.1109/IROS.2004.1389794
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1007/978-3-030-85616-8_36
https://doi.org/10.1115/GT2023-101713
https://doi.org/10.1201/9780429489105
https://doi.org/10.1201/9780429489105

BIBLIOGRAPHY

Cooper, M. C. and J. Marques-Silva (Mar. 2023). “Tractability of Explaining Classifier
Decisions”. In: Artificial Intelligence 316, p. 103841. issn: 0004-3702. doi:
10.1016/j.artint.2022.103841.

Covariant (2024a). Covariant Brain. https://covariant.ai/covariant-brain/. Com-
pany Website.

— (Mar. 2024b). RFM-1: A World Model That Understands Physics.
Craig, J. J. (July 2004). Introduction to Robotics: Mechanics and Control. 3rd ed.

Upper Saddle River, N.J: Pearson. isbn: 978-0-201-54361-2.
Cubric, M. (Aug. 2020). “Drivers, Barriers and Social Considerations for AI Adoption

in Business and Management: A Tertiary Study”. In: Technology in Society 62,
p. 101257. issn: 0160-791X. doi: 10.1016/j.techsoc.2020.101257.

Cuomo, S., V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli (July
2022). “Scientific Machine Learning Through Physics–Informed Neural Net-
works: Where We Are and What’s Next”. In: Journal of Scientific Computing
92.3, p. 88. issn: 1573-7691. doi: 10.1007/s10915-022-01939-z.

Cutting-Decelle, A., R. Young, J. Michel, R. Grangel, J. Le Cardinal, and J. Bourey
(June 2007). “ISO 15531 MANDATE: A Product-process-resource Based Ap-
proach for Managing Modularity in Production Management”. In: Concurrent
Engineering 15.2, pp. 217–235. issn: 1063-293X. doi: 10.1177/1063293X070
79329.

D’Silva, V., D. Kroening, and G. Weissenbacher (July 2008). “A Survey of Automated
Techniques for Formal Software Verification”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 27.7, pp. 1165–1178. issn:
1937-4151. doi: 10.1109/TCAD.2008.923410.

Dalrymple, D. "., J. Skalse, Y. Bengio, S. Russell, M. Tegmark, S. Seshia, S. Omo-
hundro, C. Szegedy, B. Goldhaber, N. Ammann, A. Abate, J. Halpern, C. Barrett,
D. Zhao, T. Zhi-Xuan, J. Wing, and J. Tenenbaum (July 2024). Towards Guar-
anteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems. doi:
10.48550/arXiv.2405.06624. arXiv: 2405.06624 [cs].

Dautenhahn, K. (Feb. 2007). “Socially Intelligent Robots: Dimensions of Human–
Robot Interaction”. In: Philosophical Transactions of the Royal Society B: Biological
Sciences. doi: 10.1098/rstb.2006.2004.

De Schutter, J., T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbeliën, K.
Claes, and H. Bruyninckx (May 2007). “Constraint-Based Task Specification
and Estimation for Sensor-Based Robot Systems in the Presence of Geometric
Uncertainty”. In: The International Journal of Robotics Research 26.5, pp. 433–
455. issn: 0278-3649. doi: 10.1177/027836490707809107.

Deacon, T. W. (Apr. 1998). The Symbolic Species: The Co-evolution of Language and
the Brain. Illustrated Edition. New York, NY: W. W. Norton & Company. isbn:
978-0-393-31754-1.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan (Apr. 2002). “A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary
Computation 6.2, pp. 182–197. issn: 1941-0026. doi: 10.1109/4235.996017.

257

https://doi.org/10.1016/j.artint.2022.103841
https://doi.org/10.1016/j.techsoc.2020.101257
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1177/1063293X07079329
https://doi.org/10.1177/1063293X07079329
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.48550/arXiv.2405.06624
https://arxiv.org/abs/2405.06624
https://doi.org/10.1098/rstb.2006.2004
https://doi.org/10.1177/027836490707809107
https://doi.org/10.1109/4235.996017

BIBLIOGRAPHY

Degrave, J., M. Hermans, J. Dambre, and F. Wyffels (2019). “A Differentiable Physics
Engine for Deep Learning in Robotics”. In: Frontiers in Neurorobotics 13. issn:
1662-5218. doi: 10.3389/fnbot.2019.00006.

Deits, R., S. Tellex, P. Thaker, D. Simeonov, T. Kollar, and N. Roy (June 2013).
“Clarifying Commands with Information-Theoretic Human-Robot Dialog”. In: J.
Hum.-Robot Interact. 2.2, pp. 58–79. doi: 10.5898/JHRI.2.2.Deits.

DeMers, D. and K. Kreutz-Delgado (Jan. 1997). “Inverse Kinematics of Dextrous
Manipulators”. In: Neural Systems for Robotics. Ed. by O. Omidvar and P. van
der Smagt. Boston: Academic Press, pp. 75–116. isbn: 978-0-08-092509-7. doi:
10.1016/B978-0-08-092509-7.50008-7.

Denavit, J. and R. S. Hartenberg (June 1955). “A Kinematic Notation for Lower-Pair
Mechanisms Based on Matrices”. In: Journal of Applied Mechanics 22.2, pp. 215–
221. issn: 0021-8936. doi: 10.1115/1.4011045.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (June 2009). “ImageNet: A
Large-Scale Hierarchical Image Database”. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255. doi: 10.1109/CVPR.2009.520684
8.

Diab, M., M. Pomarlan, D. Beßler, A. Abkari, J. Rossel, J. Bateman, and M.
Beetz (2019). “An Ontology for Failure Interpretation in Automated Planning
and Execution”. In: Fourth Iberian Robotics Conference.

Dijkstra, E. W. (1971). EWD 316: A Short Introduction to the Art of Programming.
— (Apr. 1977). “Programming: From Craft to Scientific Discipline”. In: Proceedings

of the International Computing Symposium 1977. Ed. by E. Morlet and D. Ribbens.
Liège, Belgium: North-Holland, pp. 23–30.

Do, Q. and M. E. Hasselmo (Dec. 2021). “Neural Circuits and Symbolic Processing”.
In: Neurobiology of learning and Memory 186, p. 107552. issn: 1074-7427. doi:
10.1016/j.nlm.2021.107552.

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M.
Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby (Oct.
2020). “An Image Is Worth 16x16 Words: Transformers for Image Recognition
at Scale”. In: International Conference on Learning Representations.

Driess, D., J.-S. Ha, and M. Toussaint (July 2020). “Deep Visual Reasoning: Learning
to Predict Action Sequences for Task and Motion Planning from an Initial Scene
Image”. In: Robotics: Science and Systems XVI. doi: 10.15607/RSS.2020.XVI.003.

Driess, D., F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J.
Tompson, Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S.
Levine, V. Vanhoucke, K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch,
and P. Florence (July 2023). “PaLM-E: An Embodied Multimodal Language
Model”. In: Proceedings of the 40th International Conference on Machine Learning.
Vol. 202. ICML’23. Honolulu, Hawaii, USA: JMLR.org, pp. 8469–8488.

Dubey, A. et al. (Aug. 2024). The Llama 3 Herd of Models. doi: 10.48550/arXiv.
2407.21783. arXiv: 2407.21783 [cs].

258

https://doi.org/10.3389/fnbot.2019.00006
https://doi.org/10.5898/JHRI.2.2.Deits
https://doi.org/10.1016/B978-0-08-092509-7.50008-7
https://doi.org/10.1115/1.4011045
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.nlm.2021.107552
https://doi.org/10.15607/RSS.2020.XVI.003
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://arxiv.org/abs/2407.21783

BIBLIOGRAPHY

Dulęba, I. and M. Opałka (June 2013). “A Comparison of Jacobian-based Methods
of Inverse Kinematics for Serial Robot Manipulators”. In: International Journal
of Applied Mathematics and Computer Science 23.2, pp. 373–382.

Edmonds, M., F. Gao, H. Liu, X. Xie, S. Qi, B. Rothrock, Y. Zhu, Y. N. Wu, H. Lu, and
S.-C. Zhu (Dec. 2019). “A Tale of Two Explanations: Enhancing Human Trust
by Explaining Robot Behavior”. In: Science Robotics 4.37. issn: 2470-9476. doi:
10.1126/scirobotics.aay4663.

Ekvall, S. and D. Kragic (Sept. 2006). “Learning Task Models from Multiple Human
Demonstrations”. In: ROMAN 2006 - The 15th IEEE International Symposium
on Robot and Human Interactive Communication, pp. 358–363. doi: 10.1109/
ROMAN.2006.314460.

Elbanhawi, M. and M. Simic (2014). “Sampling-Based Robot Motion Planning: A
Review”. In: IEEE Access 2, pp. 56–77. issn: 2169-3536. doi: 10.1109/ACCESS.
2014.2302442.

Elhage, N., T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-
Dodds, R. Lasenby, D. Drain, C. Chen, R. Grosse, S. McCandlish, J. Kaplan, D.
Amodei, M. Wattenberg, and C. Olah (Sept. 2022). Toy Models of Superposition.
doi: 10.48550/arXiv.2209.10652.

ElMaraghy, H. A. and J. M. Rondeau (Mar. 1992). “Automatic Robot Program
Synthesis for Assembly”. In: Robotica 10.2, pp. 113–123. issn: 1469-8668,
0263-5747. doi: 10.1017/S0263574700007530.

Epic Games (Apr. 2019). Unreal Engine.
Ernst, H. A. (May 1962). “MH-1, a Computer-Operated Mechanical Hand”. In:

Proceedings of the May 1-3, 1962, Spring Joint Computer Conference. AIEE-IRE
’62 (Spring). New York, NY, USA: Association for Computing Machinery, pp. 39–
51. isbn: 978-1-4503-7875-8. doi: 10.1145/1460833.1460839.

Espiau, B., K. Kapellos, and M. Jourdan (1996). “Formal Verification in Robotics:
Why and How?” In: Robotics Research. Ed. by G. Giralt and G. Hirzinger. London:
Springer, pp. 225–236. isbn: 978-1-4471-1021-7. doi: 10.1007/978-1-4471-
1021-7_26.

FakhrHosseini, S., K. Chan, C. Lee, M. Jeon, H. Son, J. Rudnik, and J. Coughlin
(Feb. 2024). “User Adoption of Intelligent Environments: A Review of Tech-
nology Adoption Models, Challenges, and Prospects”. In: International Journal
of Human–Computer Interaction 40.4, pp. 986–998. issn: 1044-7318. doi:
10.1080/10447318.2022.2118851.

Fan, A., S. Bhosale, H. Schwenk, Z. Ma, A. El-Kishky, S. Goyal, M. Baines, O. Celebi, G.
Wenzek, V. Chaudhary, N. Goyal, T. Birch, V. Liptchinsky, S. Edunov, E. Grave, M.
Auli, and A. Joulin (Jan. 2021). “Beyond English-Centric Multilingual Machine
Translation”. In: The Journal of Machine Learning Research 22.1, 107:4839–
107:4886. issn: 1532-4435.

Fan, H., X. Liu, J. Y. H. Fuh, W. F. Lu, and B. Li (Jan. 2024). “Embodied Intelligence in
Manufacturing: Leveraging Large Language Models for Autonomous Industrial

259

https://doi.org/10.1126/scirobotics.aay4663
https://doi.org/10.1109/ROMAN.2006.314460
https://doi.org/10.1109/ROMAN.2006.314460
https://doi.org/10.1109/ACCESS.2014.2302442
https://doi.org/10.1109/ACCESS.2014.2302442
https://doi.org/10.48550/arXiv.2209.10652
https://doi.org/10.1017/S0263574700007530
https://doi.org/10.1145/1460833.1460839
https://doi.org/10.1007/978-1-4471-1021-7_26
https://doi.org/10.1007/978-1-4471-1021-7_26
https://doi.org/10.1080/10447318.2022.2118851

BIBLIOGRAPHY

Robotics”. In: Journal of Intelligent Manufacturing. issn: 1572-8145. doi: 10.
1007/s10845-023-02294-y.

FANUC America Corporation (2014). FANUC America Corporation SYSTEM R-30iA
and R-30iB Controller KAREL Reference Manual. Tech. rep. MARRC75KR07091E
Rev H. Rochester Hills, Michigan: FANUC America Corporation.

— (2023). 2023 Collaborative Robot Brochure.
Ferrario, A. and M. Loi (June 2022). “How Explainability Contributes to Trust

in AI”. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability,
and Transparency. FAccT ’22. New York, NY, USA: Association for Computing
Machinery, pp. 1457–1466. isbn: 978-1-4503-9352-2. doi: 10.1145/3531146.
3533202.

Fikes, R. E. and N. J. Nilsson (Dec. 1971). “Strips: A New Approach to the Application
of Theorem Proving to Problem Solving”. In: Artificial Intelligence 2.3-4, pp. 189–
208. issn: 00043702. doi: 10.1016/0004-3702(71)90010-5.

Finn, C., P. Abbeel, and S. Levine (July 2017a). “Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks”. In: Proceedings of the 34th International
Conference on Machine Learning. PMLR, pp. 1126–1135.

Finn, C. and S. Levine (May 2017). “Deep Visual Foresight for Planning Robot
Motion”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2786–2793. doi: 10.1109/ICRA.2017.7989324.

Finn, C., K. Xu, and S. Levine (2018). “Probabilistic Model-Agnostic Meta-Learning”.
In: Advances in Neural Information Processing Systems. Vol. 31. Curran Associates,
Inc.

Finn, C., T. Yu, T. Zhang, P. Abbeel, and S. Levine (Oct. 2017b). “One-Shot Vi-
sual Imitation Learning via Meta-Learning”. In: Proceedings of the 1st Annual
Conference on Robot Learning. PMLR, pp. 357–368.

Fischer, T., J.-Y. Puigbò, D. Camilleri, P. D. H. Nguyen, C. Moulin-Frier, S. Lallée, G.
Metta, T. J. Prescott, Y. Demiris, and P. F. M. J. Verschure (Mar. 2018). “iCub-HRI:
A Software Framework for Complex Human–Robot Interaction Scenarios on
the iCub Humanoid Robot”. In: Frontiers in Robotics and AI 5. issn: 2296-9144.
doi: 10.3389/frobt.2018.00022.

Flanagan, J. R., M. C. Bowman, and R. S. Johansson (Dec. 2006). “Control Strategies
in Object Manipulation Tasks”. In: Current Opinion in Neurobiology. Motor
Systems / Neurobiology of Behaviour 16.6, pp. 650–659. issn: 0959-4388. doi:
10.1016/j.conb.2006.10.005.

Fodor, J. A. (Jan. 1980). The Language of Thought. Cambridge, Mass: Harvard
University Press. isbn: 978-0-674-51030-2.

Frank, M. and P. Wolfe (1956). “An Algorithm for Quadratic Programming”. In:
Naval Research Logistics Quarterly 3.1-2, pp. 95–110. issn: 1931-9193. doi:
10.1002/nav.3800030109.

Franko, J., S. Du, S. Kallweit, E. Duelberg, and H. Engemann (Jan. 2020). “Design
of a Multi-Robot System for Wind Turbine Maintenance”. In: Energies 13.10,
p. 2552. issn: 1996-1073. doi: 10.3390/en13102552.

260

https://doi.org/10.1007/s10845-023-02294-y
https://doi.org/10.1007/s10845-023-02294-y
https://doi.org/10.1145/3531146.3533202
https://doi.org/10.1145/3531146.3533202
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1109/ICRA.2017.7989324
https://doi.org/10.3389/frobt.2018.00022
https://doi.org/10.1016/j.conb.2006.10.005
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.3390/en13102552

BIBLIOGRAPHY

Frans, K., J. Ho, X. Chen, P. Abbeel, and J. Schulman (Feb. 2018). “Meta Learning
Shared Hierarchies”. In: International Conference on Learning Representations.

Fu, H., C. Liu, B. Wu, F. Li, J. Tan, and J. Sun (Feb. 2023). “CatSQL: Towards
Real World Natural Language to SQL Applications”. In: Proc. VLDB Endow. 16.6,
pp. 1534–1547. issn: 2150-8097. doi: 10.14778/3583140.3583165.

Füßl, A., V. Nissen, and S. H. Heringklee (2024). “An Explanation User Interface
for a Knowledge Graph-Based XAI Approach to Process Analysis”. In: Advanced
Information Systems Engineering Workshops. Ed. by J. P. A. Almeida, C. Di Ciccio,
and C. Kalloniatis. Cham: Springer Nature Switzerland, pp. 72–84. isbn: 978-
3-031-61003-5. doi: 10.1007/978-3-031-61003-5_7.

Gabriel, I. (Sept. 2020). “Artificial Intelligence, Values, and Alignment”. In: Minds
and Machines 30.3, pp. 411–437. issn: 1572-8641. doi: 10.1007/s11023-020-
09539-2.

Gao, D., H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding, and J. Zhou (May 2024). “Text-
to-SQL Empowered by Large Language Models: A Benchmark Evaluation”. In:
Proc. VLDB Endow. 17.5, pp. 1132–1145. issn: 2150-8097. doi: 10.14778/
3641204.3641221.

Garrett, C. R., R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-
Pérez (Oct. 2020). “Integrated Task andMotion Planning”. In: arXiv:2010.01083
[cs]. arXiv: 2010.01083 [cs].

Garza, A., C. Challu, and M. Mergenthaler-Canseco (May 2024). TimeGPT-1. doi:
10.48550/arXiv.2310.03589. arXiv: 2310.03589 [cs, stat].

Georgievski, I. and M. Aiello (May 2015). “HTN Planning: Overview, Comparison,
and Beyond”. In: Artificial Intelligence 222, pp. 124–156. issn: 0004-3702. doi:
10.1016/j.artint.2015.02.002.

Ghadirzadeh, A., X. Chen, P. Poklukar, C. Finn, M. Björkman, and D. Kragic (Sept.
2021). “Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1274–1280. doi: 10.1109/IROS51168.2021.9636628.

Ghallab, M., D. S. Nau, P. Traverso, and G. Malik (May 2004). Automated Planning:
Theory and Practice. Amsterdam ; Boston: Morgan Kaufmann Publishers In.
isbn: 978-1-55860-856-6.

Ghosh, D., H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, J. Luo, Y. Tan, L. Chen, Q. Vuong, T. Xiao, P. Sanketi, D. Sadigh, C. Finn,
and S. Levine (July 2024). “Octo: An Open-Source Generalist Robot Policy”. In:
doi: 10.15607/RSS.2024.XX.090.

Gilpin, L. H., D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal (Oct. 2018).
“Explaining Explanations: An Overview of Interpretability of Machine Learn-
ing”. In: 2018 IEEE 5th International Conference on Data Science and Advanced
Analytics (DSAA), pp. 80–89. doi: 10.1109/DSAA.2018.00018.

Goldenberg, A., B. Benhabib, and R. Fenton (Mar. 1985). “A Complete Generalized
Solution to the Inverse Kinematics of Robots”. In: IEEE Journal on Robotics and
Automation 1.1, pp. 14–20. issn: 2374-8710. doi: 10.1109/JRA.1985.1086995.

261

https://doi.org/10.14778/3583140.3583165
https://doi.org/10.1007/978-3-031-61003-5_7
https://doi.org/10.1007/s11023-020-09539-2
https://doi.org/10.1007/s11023-020-09539-2
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://arxiv.org/abs/2010.01083
https://doi.org/10.48550/arXiv.2310.03589
https://arxiv.org/abs/2310.03589
https://doi.org/10.1016/j.artint.2015.02.002
https://doi.org/10.1109/IROS51168.2021.9636628
https://doi.org/10.15607/RSS.2024.XX.090
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1109/JRA.1985.1086995

BIBLIOGRAPHY

Google (July 2024). Python Client Library. Google LLC.
Gorostiza, J. F. and M. A. Salichs (Dec. 2011). “End-User Programming of a Social

Robot by Dialog”. In: Robotics and Autonomous Systems 59.12, pp. 1102–1114.
issn: 0921-8890. doi: 10.1016/j.robot.2011.07.009.

Gray, J. and B. Rumpe (June 2022). “Explicit versus Implicit Models: What Are Good
Languages for Modeling?” In: Software and Systems Modeling 21.3, pp. 839–841.
issn: 1619-1374. doi: 10.1007/s10270-022-01001-4.

Grønsund, T. and M. Aanestad (June 2020). “Augmenting the Algorithm: Emerging
Human-in-the-Loop Work Configurations”. In: The Journal of Strategic Informa-
tion Systems. Strategic Perspectives on Digital Work and Organizational Trans-
formation 29.2, p. 101614. issn: 0963-8687. doi: 10.1016/j.jsis.2020.101614.

Groth, O., C.-M. Hung, A. Vedaldi, and I. Posner (May 2021). “Goal-Conditioned
End-to-End Visuomotor Control for Versatile Skill Primitives”. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1319–1325.
doi: 10.1109/ICRA48506.2021.9560752.

Gugliermo, S., E. Schaffernicht, C. Koniaris, and F. Pecora (June 2023). “Learning
Behavior Trees From Planning Experts Using Decision Tree and Logic Factor-
ization”. In: IEEE Robotics and Automation Letters 8.6, pp. 3534–3541. issn:
2377-3766. doi: 10.1109/LRA.2023.3268598.

Gunjal, A., J. Yin, and E. Bas (Mar. 2024). “Detecting and Preventing Hallucinations
in Large Vision Language Models”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 38.16, pp. 18135–18143. issn: 2374-3468. doi: 10.1609/
aaai.v38i16.29771.

Guo, H., F. Wu, Y. Qin, R. Li, K. Li, and K. Li (July 2023). “Recent Trends in Task and
Motion Planning for Robotics: A Survey”. In: ACM Computing Surveys 55.13s,
289:1–289:36. issn: 0360-0300. doi: 10.1145/3583136.

Gupta, A., V. Kumar, C. Lynch, S. Levine, and K. Hausman (May 2020). “Relay
Policy Learning: Solving Long-Horizon Tasks via Imitation and Reinforcement
Learning”. In: Proceedings of the Conference on Robot Learning. PMLR, pp. 1025–
1037.

Gurumurthy, S., S. Kumar, and K. Sycara (May 2020). “MAME : Model-Agnostic
Meta-Exploration”. In: Proceedings of the Conference on Robot Learning. PMLR,
pp. 910–922.

Ha, J.-S., Y.-J. Park, H.-J. Chae, S.-S. Park, and H.-L. Choi (May 2021). “Distilling
a Hierarchical Policy for Planning and Control via Representation and Rein-
forcement Learning”. In: 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4459–4466. doi: 10.1109/ICRA48506.2021.9561017.

Haddadin, S., S. Parusel, L. Johannsmeier, S. Golz, S. Gabl, F. Walch, M. Sabaghian,
C. Jähne, L. Hausperger, and S. Haddadin (June 2022). “The Franka Emika
Robot: A Reference Platform for Robotics Research and Education”. In: IEEE
Robotics & Automation Magazine 29.2, pp. 46–64. issn: 1558-223X. doi: 10.
1109/MRA.2021.3138382.

262

https://doi.org/10.1016/j.robot.2011.07.009
https://doi.org/10.1007/s10270-022-01001-4
https://doi.org/10.1016/j.jsis.2020.101614
https://doi.org/10.1109/ICRA48506.2021.9560752
https://doi.org/10.1109/LRA.2023.3268598
https://doi.org/10.1609/aaai.v38i16.29771
https://doi.org/10.1609/aaai.v38i16.29771
https://doi.org/10.1145/3583136
https://doi.org/10.1109/ICRA48506.2021.9561017
https://doi.org/10.1109/MRA.2021.3138382
https://doi.org/10.1109/MRA.2021.3138382

BIBLIOGRAPHY

Haidu, A., D. Beßler, A. K. Bozcuoğlu, and M. Beetz (Oct. 2018). “KnowRobSIM —
Game Engine-Enabled Knowledge Processing Towards Cognition-Enabled Robot
Control”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4491–4498. doi: 10.1109/IROS.2018.8593935.

Haidu, A. andM. Beetz (Oct. 2016). “Action Recognition and Interpretation from Vir-
tual Demonstrations”. In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2833–2838. doi: 10.1109/IROS.2016.7759439.

— (May 2021). “Automated Acquisition of Structured, Semantic Models of Ma-
nipulation Activities from Human VR Demonstration”. In: 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 9460–9466. doi:
10.1109/ICRA48506.2021.9562016.

Hansen, J., F. Hogan, D. Rivkin, D. Meger, M. Jenkin, and G. Dudek (May 2022).
“Visuotactile-RL: Learning Multimodal Manipulation Policies with Deep Rein-
forcement Learning”. In: 2022 International Conference on Robotics and Automa-
tion (ICRA), pp. 8298–8304. doi: 10.1109/ICRA46639.2022.9812019.

Hart, S. G. (Oct. 2006). “Nasa-Task Load Index (NASA-TLX); 20 Years Later”. In:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50.9,
pp. 904–908. issn: 1071-1813. doi: 10.1177/154193120605000909.

Hasterok, C. and J. Stompe (Sept. 2022). “PAISE® – Process Model for AI Systems
Engineering”. In: at - Automatisierungstechnik 70.9, pp. 777–786. issn: 2196-
677X. doi: 10.1515/auto-2022-0020.

Haug, E. J. (Nov. 2021). “Manipulator Kinematics and Dynamics on Differentiable
Manifolds: Part I Kinematics”. In: Journal of Computational and Nonlinear Dy-
namics 17.021002. issn: 1555-1415. doi: 10.1115/1.4052652.

Hayes, B. and B. Scassellati (May 2016). “Autonomously Constructing Hierarchical
Task Networks for Planning and Human-Robot Collaboration”. In: 2016 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5469–5476.
doi: 10.1109/ICRA.2016.7487760.

He, F., T. Liu, and D. Tao (2019a). “Control Batch Size and Learning Rate to
Generalize Well: Theoretical and Empirical Evidence”. In: Advances in Neural
Information Processing Systems. Vol. 32. Curran Associates, Inc.

He, K., R. Girshick, and P. Dollar (Oct. 2019b). “Rethinking ImageNet Pre-Training”.
In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4917–
4926. doi: 10.1109/ICCV.2019.00502.

He, K., X. Zhang, S. Ren, and J. Sun (June 2016). “Deep Residual Learning for
Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778. doi: 10.1109/CVPR.2016.90.

Heimann, O. and J. Guhl (Sept. 2020). “Industrial Robot Programming Methods:
A Scoping Review”. In: 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). Vol. 1, pp. 696–703. doi: 10.1109/
ETFA46521.2020.9211997.

Heimberger, H., D. Horvat, and F. Schultmann (2023). “Assessing AI-Readiness
in Production—A Conceptual Approach”. In: Intelligent and Transformative

263

https://doi.org/10.1109/IROS.2018.8593935
https://doi.org/10.1109/IROS.2016.7759439
https://doi.org/10.1109/ICRA48506.2021.9562016
https://doi.org/10.1109/ICRA46639.2022.9812019
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1515/auto-2022-0020
https://doi.org/10.1115/1.4052652
https://doi.org/10.1109/ICRA.2016.7487760
https://doi.org/10.1109/ICCV.2019.00502
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ETFA46521.2020.9211997
https://doi.org/10.1109/ETFA46521.2020.9211997

BIBLIOGRAPHY

Production in Pandemic Times. Ed. by C.-Y. Huang, R. Dekkers, S. F. Chiu, D.
Popescu, and L. Quezada. Cham: Springer International Publishing, pp. 249–
257. isbn: 978-3-031-18641-7. doi: 10.1007/978-3-031-18641-7_24.

Heimberger, H., D. Horvat, and F. Schultmann (Aug. 2024). “Exploring the Factors
Driving AI Adoption in Production: A Systematic Literature Review and Future
Research Agenda”. In: Information Technology and Management. issn: 1573-
7667. doi: 10.1007/s10799-024-00436-z.

Higy, B., A. Mereta, G. Metta, and L. Badino (Feb. 2018). “Speech Recognition for
the iCub Platform”. In: Frontiers in Robotics and AI 5, p. 10. issn: 2296-9144.
doi: 10.3389/frobt.2018.00010.

Himes, M. D., J. Harrington, A. D. Cobb, A. G. Baydin, F. Soboczenski, M. D. O’Beirne,
S. Zorzan, D. Wright, Z. Scheffer, S. Domagal-Goldman, and G. Arney (Oct.
2020). “Accelerating Bayesian Inference via Neural Networks: Application to
Exoplanet Retrievals”. In: AAS Division of Planetary Science meeting 52, p. 207.07.

Hinton, G. E. (1989). Learning Distributed Representations of Concepts. Parallel
Distributed Processing: Implications for Psychology and Neurobiology. New
York, NY, US: Clarendon Press/Oxford University Press, p. 61. isbn: 978-0-19-
852178-5.

Hirzle, A., A. Alonso Garcia, and A. Burkhardt (Jan. 2008). Steuerungstechnische
Standards als Fundament für die Leittechnik. Tech. rep. DIV Deutscher Indus-
trieverlag GmbH.

Hoebert, T., W. Lepuschitz, M. Vincze, and M. Merdan (Feb. 2023). “Knowledge-
Driven Framework for Industrial Robotic Systems”. In: Journal of Intelligent
Manufacturing 34.2, pp. 771–788. issn: 1572-8145. doi: 10.1007/s10845-
021-01826-8.

Hoffmann, J., S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L.
Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican,
G. van den Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen,
J. W. Rae, O. Vinyals, and L. Sifre (Mar. 2022). Training Compute-Optimal Large
Language Models. doi: 10.48550/arXiv.2203.15556. arXiv: 2203.15556 [cs].

Hoffmann, J. (2011). “Everything You Always Wanted to Know about Planning: (But
Were Afraid to Ask)”. In: KI 2011: Advances in Artificial Intelligence. Ed. by J. Bach
and S. Edelkamp. Vol. 7006. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 1–13. isbn: 978-3-642-24454-4 978-3-642-24455-1. doi: 10.1007/978-3-
642-24455-1_1.

Hogg, C., H. Muñoz-Avila, and U. Kuter (2016). “Learning Hierarchical Task Models
from Input Traces”. In: Computational Intelligence 32.1, pp. 3–48. issn: 1467-
8640. doi: 10.1111/coin.12044.

Holeňa, M., D. Linke, U. Rodemerck, and L. Bajer (2010). “Neural Networks as
Surrogate Models for Measurements in Optimization Algorithms”. In: Analytical
and Stochastic Modeling Techniques and Applications. Ed. by K. Al-Begain, D.
Fiems, and W. J. Knottenbelt. Lecture Notes in Computer Science. Berlin, Hei-

264

https://doi.org/10.1007/978-3-031-18641-7_24
https://doi.org/10.1007/s10799-024-00436-z
https://doi.org/10.3389/frobt.2018.00010
https://doi.org/10.1007/s10845-021-01826-8
https://doi.org/10.1007/s10845-021-01826-8
https://doi.org/10.48550/arXiv.2203.15556
https://arxiv.org/abs/2203.15556
https://doi.org/10.1007/978-3-642-24455-1_1
https://doi.org/10.1007/978-3-642-24455-1_1
https://doi.org/10.1111/coin.12044

BIBLIOGRAPHY

delberg: Springer, pp. 351–366. isbn: 978-3-642-13568-2. doi: 10.1007/978-
3-642-13568-2_25.

Honnibal, M. and I. Montani (July 2024). Spacy: Industrial-strength Natural Lan-
guage Processing (NLP) in Python.

Hoos, H. H. (Feb. 2012). “Programming by Optimization”. In: Communications of
the ACM 55.2, pp. 70–80. issn: 0001-0782. doi: 10.1145/2076450.2076469.

Horne, B., M. Jamshidi, and N. Vadiee (Mar. 1990). “Neural Networks in Robotics:
A Survey”. In: Journal of Intelligent and Robotic Systems 3.1, pp. 51–66. issn:
1573-0409. doi: 10.1007/BF00368972.

Hornik, K. (1991). “Approximation Capabilities of Multilayer Feedforward Net-
works”. In: Neural Networks 4.2, pp. 251–257. issn: 08936080. doi: 10.1016/
0893-6080(91)90009-T.

Hornik, K., M. Stinchcombe, and H. White (Jan. 1989). “Multilayer Feedforward
Networks Are Universal Approximators”. In: Neural Networks 2.5, pp. 359–366.
issn: 0893-6080. doi: 10.1016/0893-6080(89)90020-8.

Horvat, D. and H. Heimberger (2023). “AI Readiness: An Integrated Socio-technical
Framework”. In: Proceedings of the 11th International Conference on Production
Research – Americas. Ed. by F. Deschamps, E. Pinheiro de Lima, S. E. Gouvêa da
Costa, and M. G. Trentin. Cham: Springer Nature Switzerland, pp. 548–557.
isbn: 978-3-031-36121-0. doi: 10.1007/978-3-031-36121-0_69.

Hoskins, D. A., J. N. Hwang, and J. Vagners (Mar. 1992). “Iterative Inversion of
Neural Networks and Its Application to Adaptive Control”. In: IEEE Transactions
on Neural Networks 3.2, pp. 292–301. issn: 1045-9227. doi: 10.1109/72.
125870.

Hospedales, T. M., A. Antoniou, P. Micaelli, and A. J. Storkey (2021). “Meta-Learning
in Neural Networks: A Survey”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–1. issn: 1939-3539. doi: 10.1109/TPAMI.2021.
3079209.

Hsu, J., J. Mao, J. Tenenbaum, and J. Wu (Dec. 2023). “What’s Left? Concept
Grounding with Logic-Enhanced Foundation Models”. In: Advances in Neural
Information Processing Systems 36, pp. 38798–38814.

Hu, Y., Q. Xie, V. Jain, J. Francis, J. Patrikar, N. Keetha, S. Kim, Y. Xie, T. Zhang, S.
Zhao, Y. Q. Chong, C. Wang, K. Sycara, M. Johnson-Roberson, D. Batra, X. Wang,
S. Scherer, Z. Kira, F. Xia, and Y. Bisk (Dec. 2023). Toward General-Purpose
Robots via Foundation Models: A Survey and Meta-Analysis. doi: 10.48550/arXiv.
2312.08782. arXiv: 2312.08782 [cs].

Hu, Y., L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand (Sept.
2019a). “DiffTaichi: Differentiable Programming for Physical Simulation”. In:
International Conference on Learning Representations.

Hu, Y., J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and
W. Matusik (May 2019b). “ChainQueen: A Real-Time Differentiable Physical
Simulator for Soft Robotics”. In: 2019 International Conference on Robotics and
Automation (ICRA), pp. 6265–6271. doi: 10.1109/ICRA.2019.8794333.

265

https://doi.org/10.1007/978-3-642-13568-2_25
https://doi.org/10.1007/978-3-642-13568-2_25
https://doi.org/10.1145/2076450.2076469
https://doi.org/10.1007/BF00368972
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/978-3-031-36121-0_69
https://doi.org/10.1109/72.125870
https://doi.org/10.1109/72.125870
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.1109/TPAMI.2021.3079209
https://doi.org/10.48550/arXiv.2312.08782
https://doi.org/10.48550/arXiv.2312.08782
https://arxiv.org/abs/2312.08782
https://doi.org/10.1109/ICRA.2019.8794333

BIBLIOGRAPHY

Hu, Z., Z. Gan, W. Li, W. Guo, X. Gao, and J. Zhu (Oct. 2022). “Learning From
Demonstrations Via Multi-Level and Multi-Attention Domain-Adaptive Meta-
Learning”. In: IEEE Robotics and Automation Letters 7.4, pp. 11910–11917. issn:
2377-3766. doi: 10.1109/LRA.2022.3207558.

Huang, C., O. Mees, A. Zeng, and W. Burgard (May 2023a). “Visual Language
Maps for Robot Navigation”. In: 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 10608–10615. doi: 10.1109/ICRA48891.2023.
10160969.

Huang, J. and M. Cakmak (Mar. 2017). “Code3: A System for End-to-End Program-
ming of Mobile Manipulator Robots for Novices and Experts”. In: Proceedings of
the 2017 ACM/IEEE International Conference on Human-Robot Interaction. HRI
’17. New York, NY, USA: Association for Computing Machinery, pp. 453–462.
isbn: 978-1-4503-4336-7. doi: 10.1145/2909824.3020215.

Huang, L., W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X.
Feng, B. Qin, and T. Liu (Nov. 2023b). A Survey on Hallucination in Large
Language Models: Principles, Taxonomy, Challenges, and Open Questions. doi:
10.48550/arXiv.2311.05232. arXiv: 2311.05232 [cs].

Huang, Y., L. Rozo, J. Silvério, and D. G. Caldwell (June 2019). “Kernelized Move-
ment Primitives”. In: The International Journal of Robotics Research 38.7, pp. 833–
852. issn: 0278-3649. doi: 10.1177/0278364919846363.

Huben, R., H. Cunningham, L. R. Smith, A. Ewart, and L. Sharkey (Oct. 2023).
“Sparse Autoencoders Find Highly Interpretable Features in Language Models”.
In: The Twelfth International Conference on Learning Representations.

Hurault, A. and J. Marques-Silva (2023). “Certified Logic-Based Explainable AI
– The Case of Monotonic Classifiers”. In: Tests and Proofs. Ed. by V. Prevosto
and C. Seceleanu. Lecture Notes in Computer Science. Cham: Springer Nature
Switzerland, pp. 51–67. isbn: 978-3-031-38828-6. doi: 10.1007/978-3-031-
38828-6_4.

IEEE Standards Association (May 2023). ISO/IEC/IEEE International Standard - Sys-
tems and Software Engineering–System Life Cycle Processes. Standard. Piscataway,
NJ.

Ijspeert, A. J., J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal (Feb. 2013).
“Dynamical Movement Primitives: Learning Attractor Models for Motor Be-
haviors”. In: Neural Computation 25.2, pp. 328–373. issn: 0899-7667. doi:
10.1162/NECO_a_00393.

Ijspeert, A. J., J. Nakanishi, and S. Schaal (Sept. 2002). “Learning Rhythmic Move-
ments by Demonstration Using Nonlinear Oscillators”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. Vol. 1, pp. 958–963. doi:
10.1109/IRDS.2002.1041514.

Ionescu, T. B. and S. Schlund (Jan. 2021). “Programming Cobots by Voice: A Human-
Centered, Web-Based Approach”. In: Procedia CIRP. 8th CIRP Conference of
Assembly Technology and Systems 97, pp. 123–129. issn: 2212-8271. doi:
10.1016/j.procir.2020.05.213.

266

https://doi.org/10.1109/LRA.2022.3207558
https://doi.org/10.1109/ICRA48891.2023.10160969
https://doi.org/10.1109/ICRA48891.2023.10160969
https://doi.org/10.1145/2909824.3020215
https://doi.org/10.48550/arXiv.2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.1177/0278364919846363
https://doi.org/10.1007/978-3-031-38828-6_4
https://doi.org/10.1007/978-3-031-38828-6_4
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1109/IRDS.2002.1041514
https://doi.org/10.1016/j.procir.2020.05.213

BIBLIOGRAPHY

Jaiswal, K., I. Kuzminykh, and S. Modgil (Sept. 2024). “Understanding the Skills
Gap between Higher Education and Industry in the UK in Artificial Intelligence
Sector”. In: Industry and Higher Education, p. 09504222241280441. issn: 0950-
4222. doi: 10.1177/09504222241280441.

Jäkel, R. (2013). “Learning of Generalized Manipulation Strategies in Service
Robotics”. PhD thesis. Karlsruhe: Karlsruhe Institute of Technology.

Jäkel, R. and G. Dirschl (May 2016). “Verfahren und System zur Programmierung
eines Roboters”. EP3013537A1.

Jäkel, R., S. W. Rühl, S. R. Schmidt-Rohr, M. Lösch, Z. Xue, and R. Dillmann
(2012). “Layered Programming by Demonstration and Planning for Autonomous
Robot Manipulation”. In: Advanced Bimanual Manipulation: Results from the
DEXMART Project. Ed. by B. Siciliano. Springer Tracts in Advanced Robotics.
Berlin, Heidelberg: Springer, pp. 1–57. isbn: 978-3-642-29041-1. doi: 10 .
1007/978-3-642-29041-1_1.

Janiak, M. and K. Tchoń (2008). “Extended Jacobian Inverse Kinematics and Ap-
proximation of Distributions”. In: Advances in Robot Kinematics: Analysis and
Design. Ed. by J. Lenarčič and P. Wenger. Dordrecht: Springer Netherlands,
pp. 138–146. isbn: 978-1-4020-8600-7. doi: 10.1007/978-1-4020-8600-7_15.

Jatavallabhula, K. M., M. Macklin, D. Fox, A. Garg, and F. Ramos (Mar. 2023).
“Bayesian Object Models for Robotic Interaction with Differentiable Probabilistic
Programming”. In: Proceedings of The 6th Conference on Robot Learning. PMLR,
pp. 1563–1574.

Jensen, C., R. Reed, R. Marks, M. El-Sharkawi, Jae-Byung Jung, R. Miyamoto, G. An-
derson, and C. Eggen (Sept. 1999). “Inversion of Feedforward Neural Networks:
Algorithms and Applications”. In: Proceedings of the IEEE 87.9, pp. 1536–1549.
issn: 00189219. doi: 10.1109/5.784232.

Jensen, M., N. Emery-Xu, and R. Trager (Feb. 2023). Industrial Policy for Advanced
AI: Compute Pricing and the Safety Tax. doi: 10.48550/arXiv.2302.11436.
arXiv: 2302.11436 [econ, q-fin].

Jiang, Z., F. Jovan, P. Moradi, T. Richardson, S. Bernardini, S. Watson, A. Weightman,
and D. Hine (2023). “A Multirobot System for Autonomous Deployment and
Recovery of a Blade Crawler for Operations and Maintenance of Offshore Wind
Turbine Blades”. In: Journal of Field Robotics 40.1, pp. 73–93. issn: 1556-4967.
doi: 10.1002/rob.22117.

Jin, W., Z. Wang, Z. Yang, and S. Mou (2020). “Pontryagin Differentiable Program-
ming: An End-to-End Learning and Control Framework”. In: Advances in Neural
Information Processing Systems. Vol. 33. Curran Associates, Inc., pp. 7979–7992.

Jokinen, K. (May 2024). “The Need for Grounding in LLM-based Dialogue Systems”.
In: Proceedings of the Workshop: Bridging Neurons and Symbols for Natural
Language Processing and Knowledge Graphs Reasoning (NeusymBridge) @ LREC-
COLING-2024. Ed. by T. Dong, E. Hinrichs, Z. Han, K. Liu, Y. Song, Y. Cao, C. F.
Hempelmann, and R. Sifa. Torino, Italia: ELRA and ICCL, pp. 45–52.

267

https://doi.org/10.1177/09504222241280441
https://doi.org/10.1007/978-3-642-29041-1_1
https://doi.org/10.1007/978-3-642-29041-1_1
https://doi.org/10.1007/978-1-4020-8600-7_15
https://doi.org/10.1109/5.784232
https://doi.org/10.48550/arXiv.2302.11436
https://arxiv.org/abs/2302.11436
https://doi.org/10.1002/rob.22117

BIBLIOGRAPHY

Jonschkowski, R., D. Rastogi, and O. Brock (June 2018). “Differentiable Particle
Filters: End-to-End Learning with Algorithmic Priors”. In: Robotics: Science and
Systems XIV. Vol. 14. isbn: 978-0-9923747-4-7.

Joublin, F., A. Ceravola, P. Smirnov, F. Ocker, J. Deigmoeller, A. Belardinelli, C.
Wang, S. Hasler, D. Tanneberg, and M. Gienger (Oct. 2023). CoPAL: Corrective
Planning of Robot Actions with Large Language Models. doi: 10.48550/arXiv.
2310.07263. arXiv: 2310.07263 [cs].

Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunya-
suvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A.
Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler,
T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pa-
cholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K.
Kavukcuoglu, P. Kohli, and D. Hassabis (Aug. 2021). “Highly Accurate Protein
Structure Prediction with AlphaFold”. In: Nature 596.7873, pp. 583–589. issn:
1476-4687. doi: 10.1038/s41586-021-03819-2.

Kaelbling, L. (1993). “Learning to Achieve Goals”. In: International Joint Conference
on Artificial Intelligence.

Kaelbling, L. P. and T. Lozano-Perez (May 2011). “Hierarchical Task and Motion
Planning in the Now”. In: 2011 IEEE International Conference on Robotics and
Automation. Shanghai, China: IEEE, pp. 1470–1477. isbn: 978-1-61284-386-5.
doi: 10.1109/ICRA.2011.5980391.

Kaelbling, L. P. and T. Lozano-Pérez (Aug. 2013). “Integrated Task and Motion
Planning in Belief Space”. In: The International Journal of Robotics Research
32.9-10, pp. 1194–1227. issn: 0278-3649. doi: 10.1177/0278364913484072.

Kaplan, J., S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei (Jan. 2020). Scaling Laws for Neural Language
Models. doi: 10.48550/arXiv.2001.08361. arXiv: 2001.08361 [cs, stat].

Kaushik, R., T. Anne, and J.-B. Mouret (Oct. 2020). “Fast Online Adaptation in
Robotics through Meta-Learning Embeddings of Simulated Priors”. In: 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 5269–5276. doi: 10.1109/IROS45743.2020.9341462.

Kavraki, L., P. Svestka, J.-C. Latombe, and M. Overmars (Aug. 1996). “Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces”. In:
IEEE Transactions on Robotics and Automation 12.4, pp. 566–580. issn: 2374-
958X. doi: 10.1109/70.508439.

Kawamura, K., S. Gordon, P. Ratanaswasd, E. Erdemir, and J. Hall (Dec. 2008).
“Implementation of Cognitive Control for a Humanoid Robot”. In: International
Journal of Humanoid Robotics 5, pp. 547–586. doi: 10.1142/S0219843608001
558.

Kazhoyan, G., A. Niedzwiecki, and M. Beetz (2020). “Towards Plan Transformations
for Real-World Mobile Fetch and Place”. In: IEEE International Conference on
Robotics and Automation (ICRA). doi: 10.1109/ICRA40945.2020.9197446.

268

https://doi.org/10.48550/arXiv.2310.07263
https://doi.org/10.48550/arXiv.2310.07263
https://arxiv.org/abs/2310.07263
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1177/0278364913484072
https://doi.org/10.48550/arXiv.2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/IROS45743.2020.9341462
https://doi.org/10.1109/70.508439
https://doi.org/10.1142/S0219843608001558
https://doi.org/10.1142/S0219843608001558
https://doi.org/10.1109/ICRA40945.2020.9197446

BIBLIOGRAPHY

Kenghagho Kenfack, F., F. A. Siddiky, F. Balint-Benczedi, and M. Beetz (Oct. 2020).
“RobotVQA — A Scene-Graph- and Deep-Learning-based Visual Question An-
swering System for Robot Manipulation”. In: 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 9667–9674. doi: 10.1109/
IROS45743.2020.9341186.

Kerley, C. I., L. Y. Cai, Y. Tang, L. L. Beason-Held, S. M. Resnick, L. E. Cutting, and
B. A. Landman (Feb. 2023). “Batch Size: Go Big or Go Home? Counterintuitive
Improvement in Medical Autoencoders with Smaller Batch Size”. In: Proceedings
of SPIE–the International Society for Optical Engineering 12464, 124640H. issn:
0277-786X. doi: 10.1117/12.2653643.

Khadir, A. C., H. Aliane, and A. Guessoum (Feb. 2021). “Ontology Learning: Grand
Tour and Challenges”. In: Computer Science Review 39, p. 100339. issn: 1574-
0137. doi: 10.1016/j.cosrev.2020.100339.

Kienle, C., B. Alt, O. Celik, P. Becker, D. Katic, R. Jäkel, and G. Neumann (Aug. 2024).
“MuTT: A Multimodal Trajectory Transformer for Robot Skills”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Abu Dhabi,
United Arab Emirates: IEEE, pp. 9644–9651. isbn: 979-8-3503-7770-5. doi:
10.1109/IROS58592.2024.10802198. arXiv: 2407.15660 [cs].

Kienle, C., B. Alt, D. Katic, and R. Jäkel (May 2025). “QueryCAD: Grounded Question
Answering for CAD Models”. In: 2025 IEEE International Conference on Robotics
and Automation (ICRA). Atlanta, USA: IEEE. doi: 10.48550/arXiv.2409.08704.
arXiv: 2409.08704 [cs].

Kim, M. J., K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov,
E. Foster, G. Lam, P. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake,
D. Sadigh, S. Levine, P. Liang, and C. Finn (June 2024). OpenVLA: An Open-
Source Vision-Language-Action Model. doi: 10.48550/arXiv.2406.09246. arXiv:
2406.09246 [cs].

Kingma, D. P. and J. Ba (2015). “Adam: A Method for Stochastic Optimization”.
In: 3rd International Conference for Learning Representations. San Diego: arXiv.
doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980 [cs].

Kirillov, A., E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. White-
head, A. C. Berg, W.-Y. Lo, P. Dollar, and R. Girshick (2023). “Segment Anything”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 4015–4026.

Kirkpatrick, J., R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath,
D. Kumaran, and R. Hadsell (Mar. 2017). “Overcoming Catastrophic Forgetting
in Neural Networks”. In: Proceedings of the National Academy of Sciences 114.13,
pp. 3521–3526. doi: 10.1073/pnas.1611835114.

Kirsh, D. (1990). “When Is Information Explicitly Represented?” In: Information,
Language and Cognition. Ed. by P. P. Hanson. University of British Columbia
Press.

269

https://doi.org/10.1109/IROS45743.2020.9341186
https://doi.org/10.1109/IROS45743.2020.9341186
https://doi.org/10.1117/12.2653643
https://doi.org/10.1016/j.cosrev.2020.100339
https://doi.org/10.1109/IROS58592.2024.10802198
https://arxiv.org/abs/2407.15660
https://doi.org/10.48550/arXiv.2409.08704
https://arxiv.org/abs/2409.08704
https://doi.org/10.48550/arXiv.2406.09246
https://arxiv.org/abs/2406.09246
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1073/pnas.1611835114

BIBLIOGRAPHY

Kirsh, D. (2006). “Implicit and Explicit Representation”. In: Encyclopedia of Cognitive
Science. John Wiley & Sons, Ltd. isbn: 978-0-470-01886-6. doi: 10.1002/
0470018860.s00166.

Klambauer, G., T. Unterthiner, A. Mayr, and S. Hochreiter (2017). “Self-Normalizing
Neural Networks”. In: Advances in Neural Information Processing Systems. Vol. 30.
Curran Associates, Inc.

Klee, S. D., G. Gemignani, D. Nardi, and M. Veloso (2015). “Graph-Based Task
Libraries for Robots: Generalization and Autocompletion”. In: AI*IA 2015 Ad-
vances in Artificial Intelligence. Ed. by M. Gavanelli, E. Lamma, and F. Riguzzi.
Vol. 9336. Cham: Springer International Publishing, pp. 397–409. isbn: 978-3-
319-24308-5 978-3-319-24309-2. doi: 10.1007/978-3-319-24309-2_30.

Klimek, M., H. Michalewski, and P. Mi\loś (Oct. 2017). “Hierarchical Reinforcement
Learning with Parameters”. In: Proceedings of the 1st Annual Conference on Robot
Learning. PMLR, pp. 301–313.

Knuth, D. E. (Jan. 1984). “Literate Programming”. In: The Computer Journal 27.2,
pp. 97–111. issn: 0010-4620. doi: 10.1093/comjnl/27.2.97.

Kober, J., J. A. Bagnell, and J. Peters (Sept. 2013). “Reinforcement Learning in
Robotics: A Survey”. In: The International Journal of Robotics Research 32.11,
pp. 1238–1274. issn: 0278-3649, 1741-3176. doi: 10.1177/02783649134957
21.

Koert, D., G. Maeda, R. Lioutikov, G. Neumann, and J. Peters (Nov. 2016). “Demon-
stration Based Trajectory Optimization for Generalizable Robot Motions”. In:
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids),
pp. 515–522. doi: 10.1109/HUMANOIDS.2016.7803324.

Kojima, T., S. (Gu, M. Reid, Y. Matsuo, and Y. Iwasawa (Dec. 2022). “Large
Language Models Are Zero-Shot Reasoners”. In: Advances in Neural Information
Processing Systems 35, pp. 22199–22213.

Kok, B. C. and H. Soh (Dec. 2020). “Trust in Robots: Challenges and Opportunities”.
In: Current Robotics Reports 1.4, pp. 297–309. issn: 2662-4087. doi: 10.1007/
s43154-020-00029-y.

Kolesnikov, A., L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby
(Aug. 2020). “Big Transfer (BiT): General Visual Representation Learning”. In:
Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part V. Berlin, Heidelberg: Springer-Verlag, pp. 491–
507. isbn: 978-3-030-58557-0. doi: 10.1007/978-3-030-58558-7_29.

Koralewski, S., G. Kazhoyan, and M. Beetz (2019). “Self-Specialization of General
Robot Plans Based on Experience”. In: IEEE Robotics and Automation Letters.
doi: 10.1109/LRA.2019.2928771.

Kornblith, S., J. Shlens, and Q. V. Le (2019). “Do Better ImageNet Models Transfer
Better?” In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2661–2671.

Kortenkamp, D., R. Simmons, and D. Brugali (2016). “Robotic Systems Architectures
and Programming”. In: Springer Handbook of Robotics. Ed. by B. Siciliano and O.

270

https://doi.org/10.1002/0470018860.s00166
https://doi.org/10.1002/0470018860.s00166
https://doi.org/10.1007/978-3-319-24309-2_30
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1109/HUMANOIDS.2016.7803324
https://doi.org/10.1007/s43154-020-00029-y
https://doi.org/10.1007/s43154-020-00029-y
https://doi.org/10.1007/978-3-030-58558-7_29
https://doi.org/10.1109/LRA.2019.2928771

BIBLIOGRAPHY

Khatib. Springer Handbooks. Cham: Springer International Publishing, pp. 283–
306. isbn: 978-3-319-32552-1. doi: 10.1007/978-3-319-32552-1_12.

Kotseruba, I. and J. K. Tsotsos (Jan. 2020). “40 Years of Cognitive Architectures:
Core Cognitive Abilities and Practical Applications”. In: Artificial Intelligence
Review 53.1, pp. 17–94. issn: 1573-7462. doi: 10.1007/s10462-018-9646-y.

Kramer, J. (Apr. 2007). “Is Abstraction the Key to Computing?” In: Communications
of the ACM 50.4, pp. 36–42. issn: 0001-0782. doi: 10.1145/1232743.1232745.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (Dec. 2012). “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems. Vol. 1. Lake Tahoe, Nevada, USA, pp. 1097–1105.

Kroemer, O., S. Niekum, and G. Konidaris (2021). “A Review of Robot Learning
for Manipulation: Challenges, Representations, and Algorithms”. In: Journal of
Machine Learning Research 22, pp. 1–82. arXiv: 1907.03146.

Krot, K. and V. Kutia (2019). “Intuitive Methods of Industrial Robot Programming
in Advanced Manufacturing Systems”. In: Intelligent Systems in Production
Engineering and Maintenance. Ed. by A. Burduk, E. Chlebus, T. Nowakowski,
and A. Tubis. Advances in Intelligent Systems and Computing. Cham: Springer
International Publishing, pp. 205–214. isbn: 978-3-319-97490-3.

Kulk, J. and J. S. Welsh (Oct. 2011). “Evaluation of Walk Optimisation Techniques for
the NAO Robot”. In: 2011 11th IEEE-RAS International Conference on Humanoid
Robots, pp. 306–311. doi: 10.1109/Humanoids.2011.6100827.

Kumar, N., T. Silver, W. McClinton, L. Zhao, S. Proulx, T. Lozano-Pérez, L. Kaelbling,
and J. Barry (July 2024). “Practice Makes Perfect: Planning to Learning Skill
Parameter Policies”. In: Robotics: Science and Systems 2024. Delft, Netherlands.
doi: 10.15607/RSS.2024.XX.040.

Lai, P.-K. (Jan. 2022). “DeepSCM: An Efficient Convolutional Neural Network
Surrogate Model for the Screening of Therapeutic Antibody Viscosity”. In:
Computational and Structural Biotechnology Journal 20, pp. 2143–2152. issn:
2001-0370. doi: 10.1016/j.csbj.2022.04.035.

Laird, J., K. R. Kinkade, S. Mohan, and J. Xu (2012). “Cognitive Robotics Using the
Soar Cognitive Architecture”. In: CogRob@AAAI.

Laird, J. E., A. Newell, and P. S. Rosenbloom (Sept. 1987). “SOAR: An Architecture
for General Intelligence”. In: Artificial Intelligence 33.1, pp. 1–64. issn: 0004-
3702. doi: 10.1016/0004-3702(87)90050-6.

Lallement, R., L. de Silva, and R. Alami (2014). “HATP: An HTN Planner for
Robotics”. In: 2nd ICAPS Workshop on Planning and Robotics. Portsmouth, USA.

Lan, G. (2020). First-Order and Stochastic Optimization Methods for Machine Learn-
ing. Springer Series in the Data Sciences. Cham: Springer International Publish-
ing. isbn: 978-3-030-39567-4 978-3-030-39568-1. doi: 10.1007/978-3-030-
39568-1.

Landin, P. J. (Jan. 1964). “The Mechanical Evaluation of Expressions”. In: The
Computer Journal 6.4, pp. 308–320. issn: 0010-4620. doi: 10.1093/comjnl/6.
4.308.

271

https://doi.org/10.1007/978-3-319-32552-1_12
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1145/1232743.1232745
https://arxiv.org/abs/1907.03146
https://doi.org/10.1109/Humanoids.2011.6100827
https://doi.org/10.15607/RSS.2024.XX.040
https://doi.org/10.1016/j.csbj.2022.04.035
https://doi.org/10.1016/0004-3702(87)90050-6
https://doi.org/10.1007/978-3-030-39568-1
https://doi.org/10.1007/978-3-030-39568-1
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1093/comjnl/6.4.308

BIBLIOGRAPHY

Lauri, M., D. Hsu, and J. Pajarinen (Feb. 2023). “Partially Observable Markov
Decision Processes in Robotics: A Survey”. In: IEEE Transactions on Robotics
39.1, pp. 21–40. issn: 1941-0468. doi: 10.1109/TRO.2022.3200138.

LaValle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path Planning.
Technical Report TR 98-11. Ames, IA: Iowa State University.

Lee, D., C. Szegedy, M. Rabe, S. Loos, and K. Bansal (Sept. 2019). “Mathematical
Reasoning in Latent Space”. In: International Conference on Learning Represen-
tations.

Leichtmann, B., C. Humer, A. Hinterreiter, M. Streit, and M. Mara (Feb. 2023).
“Effects of Explainable Artificial Intelligence on Trust and Human Behavior in a
High-Risk Decision Task”. In: Computers in Human Behavior 139, p. 107539.
issn: 0747-5632. doi: 10.1016/j.chb.2022.107539.

Lembono, T. S., A. Paolillo, E. Pignat, and S. Calinon (Apr. 2020). “Memory of Motion
for Warm-starting Trajectory Optimization”. In: IEEE Robotics and Automation
Letters 5.2, pp. 2594–2601. issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.
2020.2972893. arXiv: 1907.01474 [cs].

Leon-Urrutia, M., D. Taibi, V. Pospelova, S. Splendore, L. Urbsiene, and U.Marjanovic
(2022). “Data Literacy: An Essential Skill for the Industry”. In: Proceedings on
18th International Conference on Industrial Systems – IS’20. Ed. by B. Lalic, D.
Gracanin, N. Tasic, and N. Simeunović. Cham: Springer International Publishing,
pp. 326–331. isbn: 978-3-030-97947-8. doi: 10.1007/978-3-030-97947-8_43.

Levenberg, K. (1944). “A Method for the Solution of Certain Non-Linear Problems
in Least Squares”. In: Quarterly of Applied Mathematics 2.2, pp. 164–168. issn:
0033-569X, 1552-4485. doi: 10.1090/qam/10666.

Levesque, H. J. and R. J. Brachman (1987). “Expressiveness and Tractability in
Knowledge Representation and Reasoning”. In: Computational Intelligence 3.1,
pp. 78–93. issn: 1467-8640. doi: 10.1111/j.1467-8640.1987.tb00176.x.

Levine, S., C. Finn, T. Darrell, and P. Abbeel (Jan. 2016). “End-to-End Training of
Deep Visuomotor Policies”. In: The Journal of Machine Learning Research 17.1,
pp. 1334–1373. issn: 1532-4435.

Lewis, P., E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M.
Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela (2020). “Retrieval-
Augmented Generation for Knowledge-Intensive NLP Tasks”. In: Advances in
Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., pp. 9459–
9474.

Li, C., Z. Gan, Z. Yang, J. Yang, L. Li, L. Wang, and J. Gao (May 2024). “Multimodal
Foundation Models: From Specialists to General-Purpose Assistants”. In: Foun-
dations and Trends® in Computer Graphics and Vision 16.1-2, pp. 1–214. issn:
1572-2740, 1572-2759. doi: 10.1561/0600000110.

Li, G., Z. Jin, M. Volpp, F. Otto, R. Lioutikov, and G. Neumann (Apr. 2023a).
“ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Prim-
itives”. In: IEEE Robotics and Automation Letters 8.4, pp. 2325–2332. issn:
2377-3766. doi: 10.1109/LRA.2023.3248443.

272

https://doi.org/10.1109/TRO.2022.3200138
https://doi.org/10.1016/j.chb.2022.107539
https://doi.org/10.1109/LRA.2020.2972893
https://doi.org/10.1109/LRA.2020.2972893
https://arxiv.org/abs/1907.01474
https://doi.org/10.1007/978-3-030-97947-8_43
https://doi.org/10.1090/qam/10666
https://doi.org/10.1111/j.1467-8640.1987.tb00176.x
https://doi.org/10.1561/0600000110
https://doi.org/10.1109/LRA.2023.3248443

BIBLIOGRAPHY

Li, G., C. Yuan, S. Kamarthi, M. Moghaddam, and X. Jin (July 2021). “Data Science
Skills and Domain Knowledge Requirements in the Manufacturing Industry:
A Gap Analysis”. In: Journal of Manufacturing Systems 60, pp. 692–706. issn:
0278-6125. doi: 10.1016/j.jmsy.2021.07.007.

Li, X., M. Liu, H. Zhang, C. Yu, J. Xu, H. Wu, C. Cheang, Y. Jing, W. Zhang, H.
Liu, H. Li, and T. Kong (Oct. 2023b). “Vision-Language Foundation Models as
Effective Robot Imitators”. In: The Twelfth International Conference on Learning
Representations.

Liang, J., W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A.
Zeng (May 2023). “Code as Policies: Language Model Programs for Embodied
Control”. In: 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 9493–9500. doi: 10.1109/ICRA48891.2023.10160591.

Liang, Y., F. Hong, Q. Lin, S. Bi, and L. Feng (July 2017). “Optimization of Robot Path
Planning Parameters Based on Genetic Algorithm”. In: 2017 IEEE International
Conference on Real-time Computing and Robotics (RCAR), pp. 529–534. doi:
10.1109/RCAR.2017.8311917.

Liang, Y. S., D. Pellier, H. Fiorino, and S. Pesty (Jan. 2022). “iRoPro: An Interactive
Robot Programming Framework”. In: International Journal of Social Robotics
14.1, pp. 177–191. issn: 1875-4805. doi: 10.1007/s12369-021-00775-9.

Liao, P., W. Song, P. Du, and H. Zhao (Dec. 2021). “Multi-Fidelity Convolutional
Neural Network Surrogate Model for Aerodynamic Optimization Based on
Transfer Learning”. In: Physics of Fluids 33.12, p. 127121. issn: 1070-6631.
doi: 10.1063/5.0076538.

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick (2014). “Microsoft COCO: Common Objects in Context”. In: Computer
Vision – ECCV 2014. Ed. by D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars.
Lecture Notes in Computer Science. Cham: Springer International Publishing,
pp. 740–755. isbn: 978-3-319-10602-1. doi: 10.1007/978-3-319-10602-1_48.

Linden and Kindermann (June 1989). “Inversion of Multilayer Nets”. In: Interna-
tional 1989 Joint Conference on Neural Networks, 425–430 vol.2. doi: 10.1109/
IJCNN.1989.118277.

Liu, D. C. and J. Nocedal (Aug. 1989). “On the Limited Memory BFGS Method for
Large Scale Optimization”. In: Mathematical Programming 45.1, pp. 503–528.
issn: 1436-4646. doi: 10.1007/BF01589116.

Liu, P. and C. Y. Barlow (Apr. 2017). “Wind Turbine Blade Waste in 2050”. In:Waste
Management 62, pp. 229–240. issn: 0956-053X. doi: 10.1016/j.wasman.2017.
02.007.

Liu, S., Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, Q. Jiang, C. Li, J. Yang, H. Su, J. Zhu,
and L. Zhang (July 2024a). Grounding DINO: Marrying DINO with Grounded
Pre-Training for Open-Set Object Detection. doi: 10.48550/arXiv.2303.05499.
arXiv: 2303.05499 [cs].

Liu, X., T. Zhang, Y. Gu, I. L. Iong, Y. Xu, X. Song, S. Zhang, H. Lai, X. Liu, H. Zhao,
J. Sun, X. Yang, Y. Yang, Z. Qi, S. Yao, X. Sun, S. Cheng, Q. Zheng, H. Yu, H.

273

https://doi.org/10.1016/j.jmsy.2021.07.007
https://doi.org/10.1109/ICRA48891.2023.10160591
https://doi.org/10.1109/RCAR.2017.8311917
https://doi.org/10.1007/s12369-021-00775-9
https://doi.org/10.1063/5.0076538
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/IJCNN.1989.118277
https://doi.org/10.1109/IJCNN.1989.118277
https://doi.org/10.1007/BF01589116
https://doi.org/10.1016/j.wasman.2017.02.007
https://doi.org/10.1016/j.wasman.2017.02.007
https://doi.org/10.48550/arXiv.2303.05499
https://arxiv.org/abs/2303.05499

BIBLIOGRAPHY

Zhang, W. Hong, M. Ding, L. Pan, X. Gu, A. Zeng, Z. Du, C. H. Song, Y. Su, Y.
Dong, and J. Tang (Aug. 2024b). VisualAgentBench: Towards Large Multimodal
Models as Visual Foundation Agents. doi: 10.48550/arXiv.2408.06327. arXiv:
2408.06327 [cs].

Liu, Y., C. Chen, T. Wang, L. Cheng, and J. Qin (Aug. 2023). “Model-Agnostic Meta-
Learning for Fault Diagnosis of Industrial Robots”. In: 2023 28th International
Conference on Automation and Computing (ICAC), pp. 1–6. doi: 10 . 1109 /
ICAC57885.2023.10275255.

Lizotte, D., T. Wang, M. Bowling, and D. Schuurmans (Jan. 2007). “Automatic Gait
Optimization with Gaussian Process Regression”. In: Proceedings of the 20th
International Joint Conference on Artifical Intelligence. IJCAI’07. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., pp. 944–949.

Long, D. and B. Magerko (Apr. 2020). “What Is AI Literacy? Competencies and
Design Considerations”. In: Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. CHI ’20. New York, NY, USA: Association for
Computing Machinery, pp. 1–16. isbn: 978-1-4503-6708-0. doi: 10.1145/
3313831.3376727.

Loshchilov, I. and F. Hutter (Sept. 2018). “Decoupled Weight Decay Regularization”.
In: International Conference on Learning Representations.

— (July 2022). “SGDR: Stochastic Gradient Descent with Warm Restarts”. In:
International Conference on Learning Representations.

Lozano-Perez, T. (July 1983). “Robot Programming”. In: Proceedings of the IEEE
71.7, pp. 821–841. issn: 1558-2256. doi: 10.1109/PROC.1983.12681.

Luckcuck, M., M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher (2019). “A Summary
of Formal Specification and Verification of Autonomous Robotic Systems”. In:
Integrated Formal Methods. Ed. by W. Ahrendt and S. L. Tapia Tarifa. Cham:
Springer International Publishing, pp. 538–541. isbn: 978-3-030-34968-4. doi:
10.1007/978-3-030-34968-4_33.

Lund, K. W. and E. S. Madsen (Mar. 2024). “State-of-the-Art Value Chain Roadmap
for Sustainable End-of-Life Wind Turbine Blades”. In: Renewable and Sustainable
Energy Reviews 192, p. 114234. issn: 1364-0321. doi: 10.1016/j.rser.2023.
114234.

Luo, H., J. Wu, J. Liu, and M. F. Antwi-Afari (Oct. 2024). “Large Language Model-
Based Code Generation for the Control of Construction Assembly Robots: A
Hierarchical Generation Approach”. In: Developments in the Built Environment
19, p. 100488. issn: 2666-1659. doi: 10.1016/j.dibe.2024.100488.

Lutter, M., J. Silberbauer, J. Watson, and J. Peters (May 2021). “Differentiable
Physics Models for Real-world Offline Model-based Reinforcement Learning”.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA),
pp. 4163–4170. doi: 10.1109/ICRA48506.2021.9561805.

Lynch, C., M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet
(Mar. 2019). “Learning Latent Plans from Play”. In: Proceedings of Machine
Learning Research. arXiv: 1903.01973.

274

https://doi.org/10.48550/arXiv.2408.06327
https://arxiv.org/abs/2408.06327
https://doi.org/10.1109/ICAC57885.2023.10275255
https://doi.org/10.1109/ICAC57885.2023.10275255
https://doi.org/10.1145/3313831.3376727
https://doi.org/10.1145/3313831.3376727
https://doi.org/10.1109/PROC.1983.12681
https://doi.org/10.1007/978-3-030-34968-4_33
https://doi.org/10.1016/j.rser.2023.114234
https://doi.org/10.1016/j.rser.2023.114234
https://doi.org/10.1016/j.dibe.2024.100488
https://doi.org/10.1109/ICRA48506.2021.9561805
https://arxiv.org/abs/1903.01973

BIBLIOGRAPHY

Lynch, C. and P. Sermanet (July 2021). “Language Conditioned Imitation Learning
Over Unstructured Data”. In: Robotics: Science and Systems XVII. Vol. 17. isbn:
978-0-9923747-7-8.

Ma, Y., Z. Song, Y. Zhuang, J. Hao, and I. King (May 2024). A Survey on Vision-
Language-Action Models for Embodied AI. doi: 10.48550/arXiv.2405.14093.
arXiv: 2405.14093 [cs].

Magreñán, Á. A. and I. K. Argyros (Jan. 2018). “Gauss–Newton Method”. In: A
Contemporary Study of Iterative Methods. Academic Press, pp. 61–67. isbn:
978-0-12-809214-9. doi: 10.1016/B978-0-12-809214-9.00005-X.

Mandi, Z., P. Abbeel, and S. James (Oct. 2022). “On the Effectiveness of Fine-
tuning Versus Meta-reinforcement Learning”. In: Advances in Neural Information
Processing Systems.

Mania, P., F. K. Kenfack, M. Neumann, and M. Beetz (Sept. 2021). “Imagination-
Enabled Robot Perception”. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 936–943. doi: 10.1109/IROS51168.
2021.9636359.

Mania, P., S. Stelter, G. Kazhoyan, and M. Beetz (May 2024). “An Open and Flexible
Robot Perception Framework for Mobile Manipulation Tasks”. In: 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 17445–17451.
doi: 10.1109/ICRA57147.2024.10610743.

Manna, Z. and R. J. Waldinger (Mar. 1971). “Toward Automatic Program Synthesis”.
In: Communications of the ACM 14.3, pp. 151–165. issn: 0001-0782. doi:
10.1145/362566.362568.

Marco-Valle, A. (2020). “Bayesian Optimization in Robot Learning: Automatic
Controller Tuning and Sample-efficient Methods”. PhD thesis. Eberhard Karls
Universität Tübingen.

Marcus, H. J., P. T. Ramirez, D. Z. Khan, H. Layard Horsfall, J. G. Hanrahan, S. C.
Williams, D. J. Beard, R. Bhat, K. Catchpole, A. Cook, K. Hutchison, J. Martin, T.
Melvin, D. Stoyanov, M. Rovers, N. Raison, P. Dasgupta, D. Noonan, D. Stocken,
G. Sturt, A. Vanhoestenberghe, B. Vasey, and P. McCulloch (Jan. 2024). “The
IDEAL Framework for Surgical Robotics: Development, Comparative Evaluation
and Long-Term Monitoring”. In: Nature Medicine 30.1, pp. 61–75. issn: 1546-
170X. doi: 10.1038/s41591-023-02732-7.

Martin, P. and J. d. R. Millán (1997). “Combining Reinforcement Learning and Dif-
ferential Inverse Kinematics for Collision-FreeMotion of MultilinkManipulators”.
In: Biological and Artificial Computation: From Neuroscience to Technology. Ed. by
J. Mira, R. Moreno-Díaz, J. Cabestany, G. Goos, J. Hartmanis, and J. van Leeuwen.
Vol. 1240. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1324–1333. isbn:
978-3-540-63047-0 978-3-540-69074-0. doi: 10.1007/BFb0032593.

Martínez-Fernández, S., J. Bogner, X. Franch, M. Oriol, J. Siebert, A. Trendowicz,
A. M. Vollmer, and S. Wagner (Apr. 2022). “Software Engineering for AI-Based
Systems: A Survey”. In: ACM Transactions on Software Engineering and Method-
ology 31.2, 37e:1–37e:59. issn: 1049-331X. doi: 10.1145/3487043.

275

https://doi.org/10.48550/arXiv.2405.14093
https://arxiv.org/abs/2405.14093
https://doi.org/10.1016/B978-0-12-809214-9.00005-X
https://doi.org/10.1109/IROS51168.2021.9636359
https://doi.org/10.1109/IROS51168.2021.9636359
https://doi.org/10.1109/ICRA57147.2024.10610743
https://doi.org/10.1145/362566.362568
https://doi.org/10.1038/s41591-023-02732-7
https://doi.org/10.1007/BFb0032593
https://doi.org/10.1145/3487043

BIBLIOGRAPHY

Marvel, J. A., W. S. Newman, D. P. Gravel, G. Zhang, JianjunWang, and T. Fuhlbrigge
(Feb. 2009). “Automated Learning for Parameter Optimization of Robotic Assem-
bly Tasks Utilizing Genetic Algorithms”. In: 2008 IEEE International Conference
on Robotics and Biomimetics, pp. 179–184. doi: 10.1109/ROBIO.2009.4913000.

Marvin, G., N. Hellen, D. Jjingo, and J. Nakatumba-Nabende (2024). “Prompt
Engineering in Large Language Models”. In: Data Intelligence and Cognitive
Informatics. Ed. by I. J. Jacob, S. Piramuthu, and P. Falkowski-Gilski. Singapore:
Springer Nature, pp. 387–402. isbn: 978-981-99-7962-2. doi: 10.1007/978-
981-99-7962-2_30.

Masters, D. and C. Luschi (Apr. 2018). Revisiting Small Batch Training for Deep
Neural Networks. doi: 10.48550/arXiv.1804.07612. arXiv: 1804.07612 [cs,

stat].
Mateen, S. A., N. Malvia, S. A. Khader, D. Wang, D. Srinivasan, C.-F. J. Yang, L. Schu-

macher, and S. Manjanna (June 2024). “Thoracic Surgery Video Analysis for
Surgical Phase Recognition”. In: 2nd Robot-Assisted Medical Imaging Workshop.
Yokohama, Japan: arXiv. doi: 10.48550/arXiv.2406.09185. arXiv: 2406.09185
[cs].

McDermott, D. (1991). A Reactive Plan Language. Research Report YALEU/DCS/RR-
864. Yale University: Yale University.

Meier, F., A. Wang, G. Sutanto, Y. Lin, and P. Shah (Feb. 2022). Differentiable and
Learnable Robot Models. arXiv: 2202.11217 [cs].

Memmert, L. and E. Bittner (Jan. 2022). “Complex Problem Solving through Human-
AI Collaboration: Literature Review on Research Contexts”. In: Hawaii Interna-
tional Conference on System Sciences 2022 (HICSS-55).

Mericli, C., S. D. Klee, J. Paparian, and M. Veloso (May 2014). “An Interactive Ap-
proach for Situated Task Specification through Verbal Instructions”. In: Proceed-
ings of the 2014 International Conference on Autonomous Agents and Multi-Agent
Systems. AAMAS ’14. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, pp. 1069–1076. isbn: 978-1-4503-2738-1.

Meywerk, T., V. Herdt, and R. Drechsler (Nov. 2022). “Symbolic Fault Injection
for Plan-based Robotics”. In: 2022 22nd International Conference on Control,
Automation and Systems (ICCAS), pp. 1710–1715. doi: 10.23919/ICCAS55662.
2022.10003719.

Micropsi Industries (2024). Micropsi Industries | From Traditional Vision to AI Guid-
ance. https://www.micropsi-industries.com/blog/white-paper-from-traditional-
vision-to-ai-guidance. Company Website.

Mockus, J. (1989). Bayesian Approach to Global Optimization: Theory and Applica-
tions. Ed. by M. Hazewinkel. Vol. 37. Mathematics and Its Applications. Dor-
drecht: Springer Netherlands. isbn: 978-94-010-6898-7 978-94-009-0909-0.
doi: 10.1007/978-94-009-0909-0.

Mohseni-Kabir, A., S. Chernova, and C. Rich (2014). “Collaborative Learning of
Hierarchical Task Networks from Demonstration and Instruction”. In: Artificial

276

https://doi.org/10.1109/ROBIO.2009.4913000
https://doi.org/10.1007/978-981-99-7962-2_30
https://doi.org/10.1007/978-981-99-7962-2_30
https://doi.org/10.48550/arXiv.1804.07612
https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1804.07612
https://doi.org/10.48550/arXiv.2406.09185
https://arxiv.org/abs/2406.09185
https://arxiv.org/abs/2406.09185
https://arxiv.org/abs/2202.11217
https://doi.org/10.23919/ICCAS55662.2022.10003719
https://doi.org/10.23919/ICCAS55662.2022.10003719
https://doi.org/10.1007/978-94-009-0909-0

BIBLIOGRAPHY

Intelligence for Human-Robot Interaction. Association for the Advancement of
Artificial Intelligence, pp. 115–117.

Mölschl, L., J. J. Hollenstein, and J. Piater (Mar. 2023). Differentiable Forward
Kinematics for TensorFlow 2. doi: 10.48550/arXiv.2301.09954. arXiv: 2301.
09954 [cs].

Monarch, R. (July 2021). Human-in-the-Loop Machine Learning: Active Learning
and Annotation for Human-Centered AI. Sherlter Island, NY: Manning. isbn:
978-1-61729-674-1.

MongoDB (2023). MongoDB. MongoDB, Inc.
Morrison, B. W., J. N. Kelson, N. M. V. Morrison, J. M. Innes, G. Zelic, Y. Al-Saggaf,

and M. Paul (2023). “You’re Not the Boss of Me, Algorithm: Increased User
Control and Positive Implicit Attitudes Are Related to Greater Adherence to
an Algorithmic Aid”. In: Interacting with Computers 35.3, pp. 452–460. doi:
10.1093/IWC/IWAD028.

Mosbach, M., M. Andriushchenko, and D. Klakow (Sept. 2020). “On the Stability
of Fine-tuning BERT: Misconceptions, Explanations, and Strong Baselines”. In:
International Conference on Learning Representations.

Mosqueira-Rey, E., E. Hernández-Pereira, D. Alonso-Ríos, J. Bobes-Bascarán, and Á.
Fernández-Leal (Apr. 2023). “Human-in-the-Loop Machine Learning: A State of
the Art”. In: Artificial Intelligence Review 56.4, pp. 3005–3054. issn: 1573-7462.
doi: 10.1007/s10462-022-10246-w.

Mühe, H., A. Angerer, A. Hoffmann, andW. Reif (Sept. 2010).On Reverse-Engineering
the KUKA Robot Language. doi: 10.48550/arXiv.1009.5004. arXiv: 1009.5004
[cs].

Mukadam, M., J. Dong, X. Yan, F. Dellaert, and B. Boots (Sept. 2018). “Continuous-
Time Gaussian Process Motion Planning via Probabilistic Inference”. In: The
International Journal of Robotics Research 37.11, pp. 1319–1340. issn: 0278-
3649, 1741-3176. doi: 10.1177/0278364918790369. arXiv: 1707.07383.

Mukadam, M., X. Yan, and B. Boots (May 2016). “Gaussian Process Motion Plan-
ning”. In: 2016 IEEE International Conference on Robotics and Automation (ICRA),
pp. 9–15. doi: 10.1109/ICRA.2016.7487091.

Munkhdalai, T. and H. Yu (July 2017). “Meta Networks”. In: Proceedings of the
34th International Conference on Machine Learning. PMLR, pp. 2554–2563.

Myers, V., A. W. He, K. Fang, H. R. Walke, P. Hansen-Estruch, C.-A. Cheng, M.
Jalobeanu, A. Kolobov, A. Dragan, and S. Levine (Aug. 2023). “Goal Repre-
sentations for Instruction Following: A Semi-Supervised Language Interface to
Control”. In: 7th Annual Conference on Robot Learning.

Narodytska, N. (Oct. 2018). “Formal Verification of Deep Neural Networks”. In:
2018 Formal Methods in Computer Aided Design (FMCAD), pp. 1–1. doi: 10.
23919/FMCAD.2018.8603017.

Nau, D. S., Y. Cao, A. Lotem, and H. Muñoz-Avila (July 1999). “SHOP: Simple
Hierarchical Ordered Planner”. In: International Joint Conference on Artificial
Intelligence.

277

https://doi.org/10.48550/arXiv.2301.09954
https://arxiv.org/abs/2301.09954
https://arxiv.org/abs/2301.09954
https://doi.org/10.1093/IWC/IWAD028
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.48550/arXiv.1009.5004
https://arxiv.org/abs/1009.5004
https://arxiv.org/abs/1009.5004
https://doi.org/10.1177/0278364918790369
https://arxiv.org/abs/1707.07383
https://doi.org/10.1109/ICRA.2016.7487091
https://doi.org/10.23919/FMCAD.2018.8603017
https://doi.org/10.23919/FMCAD.2018.8603017

BIBLIOGRAPHY

Naumann, M. (2017). “Flexibel Automatisieren Mit Drag&bot”. In: Roboter in Der
Intralogistik. Stuttgart, Germany: Stuttgarter Produktionsakademie.

Neumann, M., S. Koralewski, and M. Beetz (Dec. 2020). URoboSim – An Episodic
Simulation Framework for Prospective Reasoning in Robotic Agents. doi: 10 .
48550/arXiv.2012.04442. arXiv: 2012.04442 [cs].

NEURA Robotics (2024). Technologies. Company Website.
Newell, A. (Apr. 1980). “Physical Symbol Systems”. In: Cognitive Science 4.2, pp. 135–

183. issn: 0364-0213. doi: 10.1016/S0364-0213(80)80015-2.
— (Jan. 1994). Unified Theories of Cognition. Reprint Edition. Cambridge, Mass:

Harvard University Press. isbn: 978-0-674-92101-6.
Ngo, R., L. Chan, and S. Mindermann (Oct. 2023). “The Alignment Problem from a

Deep Learning Perspective”. In: The Twelfth International Conference on Learning
Representations.

Ni, R. and A. H. Qureshi (Sept. 2022). “NTFields: Neural Time Fields for Physics-
Informed Robot Motion Planning”. In: The Eleventh International Conference on
Learning Representations.

— (Mar. 2024). “Physics-Informed Neural Motion Planning on Constraint Mani-
folds”. In: 2024 IEEE International Conference on Robotics and Automation (ICRA).
Yokohama, Japan: IEEE. doi: 0.1109/ICRA57147.2024.10610883.

Nichol, A., J. Achiam, and J. Schulman (Oct. 2018). “On First-Order Meta-Learning
Algorithms”. In: arXiv:1803.02999 [cs]. arXiv: 1803.02999 [cs].

Nilsson, N. J. (2007). “The Physical Symbol SystemHypothesis: Status and Prospects”.
In: 50 Years of Artificial Intelligence: Essays Dedicated to the 50th Anniversary of Ar-
tificial Intelligence. Ed. byM. Lungarella, F. Iida, J. Bongard, and R. Pfeifer. Berlin,
Heidelberg: Springer, pp. 9–17. isbn: 978-3-540-77296-5. doi: 10.1007/978-
3-540-77296-5_2.

Nofre, D., M. Priestley, and G. Alberts (2014). “When Technology Became Language:
The Origins of the Linguistic Conception of Computer Programming, 1950–
1960”. In: Technology and Culture 55.1, pp. 40–75. issn: 0040-165X. JSTOR:
24468397.

NVIDIA (2024a). Isaac Sim. https://developer.nvidia.com/isaac/sim. Company
Website.

— (Mar. 2024b). Project GR00T. https://developer.nvidia.com/project-gr00t.
Nyga, D., S. Roy, R. Paul, D. Park, M. Pomarlan, M. Beetz, and N. Roy (Oct. 2018).

“Grounding Robot Plans from Natural Language Instructions with Incomplete
World Knowledge”. In: Proceedings of The 2nd Conference on Robot Learning.
PMLR, pp. 714–723.

Nyholm, S. (July 2024). “AI, Robot Co-workers and Humans”. In: The De Gruyter
Handbook of Artificial Intelligence, Identity and Technology Studies. De Gruyter,
pp. 101–120. isbn: 978-3-11-072175-1. doi: 10.1515/9783110721751-006.

O’Neill, A. et al. (May 2024). “Open X-Embodiment: Robotic Learning Datasets and
RT-X Models : Open X-Embodiment Collaboration0”. In: 2024 IEEE International

278

https://doi.org/10.48550/arXiv.2012.04442
https://doi.org/10.48550/arXiv.2012.04442
https://arxiv.org/abs/2012.04442
https://doi.org/10.1016/S0364-0213(80)80015-2
https://doi.org/0.1109/ICRA57147.2024.10610883
https://arxiv.org/abs/1803.02999
https://doi.org/10.1007/978-3-540-77296-5_2
https://doi.org/10.1007/978-3-540-77296-5_2
http://www.jstor.org/stable/24468397
https://doi.org/10.1515/9783110721751-006

BIBLIOGRAPHY

Conference on Robotics and Automation (ICRA), pp. 6892–6903. doi: 10.1109/
ICRA57147.2024.10611477.

O’Sullivan, S., S. Leonard, A. Holzinger, C. Allen, F. Battaglia, N. Nevejans, F. W. B.
van Leeuwen, M. I. Sajid, M. Friebe, H. Ashrafian, H. Heinsen, D. Wichmann,
M. Hartnett, and A. G. Gallagher (2020). “Operational Framework and Training
Standard Requirements for AI-empowered Robotic Surgery”. In: The Interna-
tional Journal of Medical Robotics and Computer Assisted Surgery 16.5, e2020.
issn: 1478-596X. doi: 10.1002/rcs.2020.

Oistad, B. C., C. E. Sembroski, K. A. Gates, M. M. Krupp, M. R. Fraune, and S. Ša-
banović (2016). “Colleague or Tool? Interactivity Increases Positive Perceptions
of and Willingness to Interact with a Robotic Co-worker”. In: Social Robotics.
Ed. by A. Agah, J.-J. Cabibihan, A. M. Howard, M. A. Salichs, and H. He. Cham:
Springer International Publishing, pp. 774–785. isbn: 978-3-319-47437-3. doi:
10.1007/978-3-319-47437-3_76.

Okada, M., L. Rigazio, and T. Aoshima (June 2017). Path Integral Networks: End-to-
End Differentiable Optimal Control. doi: 10.48550/arXiv.1706.09597. arXiv:
1706.09597 [cs].

Olah, C. (Aug. 2015). Understanding LSTM Networks. Personal Blog.
Oleari, E., A. Leporini, D. Trojaniello, A. Sanna, U. Capitanio, F. Dehó, A. Larcher,

F. Montorsi, A. Salonia, F. Setti, and R. Muradore (May 2019). “Enhancing
Surgical Process Modeling for Artificial Intelligence Development in Robotics:
The SARAS Case Study for Minimally Invasive Procedures”. In: 2019 13th
International Symposium on Medical Information and Communication Technology
(ISMICT), pp. 1–6. doi: 10.1109/ISMICT.2019.8743931.

Olivares-Alarcos, A., A. Andriella, S. Foix, and G. Alenyà (May 2023). “Robot Ex-
planatory Narratives of Collaborative and Adaptive Experiences”. In: 2023 IEEE
International Conference on Robotics and Automation (ICRA). London, United
Kingdom: IEEE. doi: 10.1109/ICRA48891.2023.10161359.

OpenAI (Sept. 2023). ChatGPT. https://chat.openai.com. Large Language Model.
— (May 2024a). Hello GPT-4o. https://openai.com/index/hello-gpt-4o/.
— (Aug. 2024b). OpenAI API Reference.
Oquab, M., T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P.

Fernandez, D. Haziza, F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba,
R. Howes, P.-Y. Huang, S.-W. Li, I. Misra, M. Rabbat, V. Sharma, G. Synnaeve,
H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin, and P. Bojanowski (July 2023).
“DINOv2: Learning Robust Visual Features without Supervision”. In: Transactions
on Machine Learning Research. issn: 2835-8856.

Ost, J., F. Mannan, N. Thuerey, J. Knodt, and F. Heide (June 2021). “Neural Scene
Graphs for Dynamic Scenes”. In: 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2855–2864. doi: 10.1109/CVPR46437.
2021.00288.

Ouyang, L., J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S.
Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens,

279

https://doi.org/10.1109/ICRA57147.2024.10611477
https://doi.org/10.1109/ICRA57147.2024.10611477
https://doi.org/10.1002/rcs.2020
https://doi.org/10.1007/978-3-319-47437-3_76
https://doi.org/10.48550/arXiv.1706.09597
https://arxiv.org/abs/1706.09597
https://doi.org/10.1109/ISMICT.2019.8743931
https://doi.org/10.1109/ICRA48891.2023.10161359
https://doi.org/10.1109/CVPR46437.2021.00288
https://doi.org/10.1109/CVPR46437.2021.00288

BIBLIOGRAPHY

A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe (Apr. 2024). “Training
Language Models to Follow Instructions with Human Feedback”. In: Proceedings
of the 36th International Conference on Neural Information Processing Systems.
NIPS ’22. Red Hook, NY, USA: Curran Associates Inc., pp. 27730–27744. isbn:
978-1-7138-7108-8.

Pan, A., K. Bhatia, and J. Steinhardt (Oct. 2021). “The Effects of Reward Mis-
specification: Mapping and Mitigating Misaligned Models”. In: International
Conference on Learning Representations.

Pan, S. J. and Q. Yang (Oct. 2010). “A Survey on Transfer Learning”. In: IEEE
Transactions on Knowledge and Data Engineering 22.10, pp. 1345–1359. issn:
1041-4347. doi: 10.1109/TKDE.2009.191.

Pandey, A. K. and R. Gelin (July 2018). “A Mass-Produced Sociable Humanoid
Robot: Pepper: The First Machine of Its Kind”. In: IEEE Robotics & Automation
Magazine PP, pp. 1–1. doi: 10.1109/MRA.2018.2833157.

Pangercic, D., B. Pitzer, M. Tenorth, and M. Beetz (Oct. 2012). “Semantic Object
Maps for Robotic Housework - Representation, Acquisition and Use”. In: 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4644–
4651. doi: 10.1109/IROS.2012.6385603.

Pantano, M., T. Eiband, and D. Lee (Aug. 2022). “Capability-Based Frameworks for
Industrial Robot Skills: A Survey”. In: 2022 IEEE 18th International Conference
on Automation Science and Engineering (CASE). Mexico City, Mexico: IEEE Press,
pp. 2355–2362. doi: 10.1109/CASE49997.2022.9926648.

Paraschos, A., C. Daniel, J. R. Peters, and G. Neumann (2013). “Probabilistic Move-
ment Primitives”. In: Advances in Neural Information Processing Systems. Vol. 26.
Curran Associates, Inc.

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer (Oct. 2017). “Automatic Differentiation in PyTorch”. In:
NIPS 2017 Workshop Autodiff.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala (2019).
“PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., pp. 8026–8037.

Patacchiola, M., M. Sun, K. Hofmann, and R. E. Turner (Nov. 2023). “Comparing the
Efficacy of Fine-Tuning and Meta-Learning for Few-Shot Policy Imitation”. In:
Proceedings of The 2nd Conference on Lifelong Learning Agents. PMLR, pp. 878–
908.

Pateria, S., B. Subagdja, A.-h. Tan, and C. Quek (June 2021). “Hierarchical Rein-
forcement Learning: A Comprehensive Survey”. In: ACM Computing Surveys
54.5, 109:1–109:35. issn: 0360-0300. doi: 10.1145/3453160.

280

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/MRA.2018.2833157
https://doi.org/10.1109/IROS.2012.6385603
https://doi.org/10.1109/CASE49997.2022.9926648
https://doi.org/10.1145/3453160

BIBLIOGRAPHY

Patton, N., K. Rahmani, M.Missula, J. Biswas, and I. Dillig (Jan. 2024a). “Programming-
by-Demonstration for Long-Horizon Robot Tasks”. In: Proceedings of the ACM on
Programming Languages 8.POPL, 18:512–18:545. doi: 10.1145/3632860.

— (Jan. 2024b). “Programming-by-Demonstration for Long-Horizon Robot Tasks”.
In: Programming-by-Demonstration for Long-Horizon Robot Tasks 8.POPL, 18:512–
18:545. doi: 10.1145/3632860.

Paul, R. (Jan. 1977). “WAVE A Model Based Language for Manipulator Control”.
In: Industrial Robot: An International Journal 4.1, pp. 10–17. issn: 0143-991X.
doi: 10.1108/eb004473.

Pavlick, E. (June 2023). “Symbols and Grounding in Large Language Models”. In:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 381.2251, p. 20220041. doi: 10.1098/rsta.2022.0041.

Paxton, C., V. Raman, G. D. Hager, and M. Kobilarov (Sept. 2017). “Combining
Neural Networks and Tree Search for Task and Motion Planning in Challenging
Environments”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 6059–6066. doi: 10.1109/IROS.2017.8206505.

Peller-Konrad, F., R. Kartmann, C. R. Dreher, A. Meixner, F. Reister, M. Grotz, and
T. Asfour (June 2023). “A Memory System of a Robot Cognitive Architecture
and Its Implementation in ArmarX”. In: Robotics and Autonomous Systems 164.C.
issn: 0921-8890. doi: 10.1016/j.robot.2023.104415.

Peres, R. S., X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata (2020). “In-
dustrial Artificial Intelligence in Industry 4.0 - Systematic Review, Challenges
and Outlook”. In: IEEE Access 8, pp. 220121–220139. issn: 2169-3536. doi:
10.1109/ACCESS.2020.3042874.

Perlis, A. J. (July 1996). “Foreword”. In: Structure and Interpretation of Computer
Programs. 2nd ed. Cambridge, Mass.: The MIT Press. isbn: 978-0-262-51087-5.

Pervez, A. and D. Lee (Jan. 2018). “Learning Task-Parameterized Dynamic Move-
ment Primitives Using Mixture of GMMs”. In: Intelligent Service Robotics 11.1,
pp. 61–78. issn: 1861-2784. doi: 10.1007/s11370-017-0235-8.

Petrov, A., T. A. Lamb, A. Paren, P. H. S. Torr, and A. Bibi (June 2024). Universal
In-Context Approximation By Prompting Fully Recurrent Models. doi: 10.48550/
arXiv.2406.01424. arXiv: 2406.01424 [cs].

Petrucci, G., C. Ghidini, and M. Rospocher (2016). “Ontology Learning in the Deep”.
In: Knowledge Engineering and Knowledge Management. Ed. by E. Blomqvist,
P. Ciancarini, F. Poggi, and F. Vitali. Cham: Springer International Publishing,
pp. 480–495. isbn: 978-3-319-49004-5. doi: 10.1007/978-3-319-49004-5_31.

Picklum, M. (2024). “Probabilistic Action Prospection Based on Experiences - Repre-
sentation, Learning and Reasoning in Autonomous Robotic Agents”. PhD thesis.
Universität Bremen. doi: 10.26092/elib/2990.

Pierson, H. A. and M. S. Gashler (Aug. 2017). “Deep Learning in Robotics: A Review
of Recent Research”. In: Advanced Robotics 31.16, pp. 821–835. issn: 0169-1864.
doi: 10.1080/01691864.2017.1365009.

281

https://doi.org/10.1145/3632860
https://doi.org/10.1145/3632860
https://doi.org/10.1108/eb004473
https://doi.org/10.1098/rsta.2022.0041
https://doi.org/10.1109/IROS.2017.8206505
https://doi.org/10.1016/j.robot.2023.104415
https://doi.org/10.1109/ACCESS.2020.3042874
https://doi.org/10.1007/s11370-017-0235-8
https://doi.org/10.48550/arXiv.2406.01424
https://doi.org/10.48550/arXiv.2406.01424
https://arxiv.org/abs/2406.01424
https://doi.org/10.1007/978-3-319-49004-5_31
https://doi.org/10.26092/elib/2990
https://doi.org/10.1080/01691864.2017.1365009

BIBLIOGRAPHY

Pitis, S. (Oct. 2023). “Failure Modes of Learning Reward Models for LLMs and Other
Sequence Models”. In: ICML 2023 Workshop The Many Facets of Preference-Based
Learning.

Pitt, D. (2022). “Mental Representation”. In: The Stanford Encyclopedia of Philosophy.
Ed. by E. N. Zalta and U. Nodelman. Fall 2022. Metaphysics Research Lab,
Stanford University.

Plattform Industrie 4.0 (2019). 2019 Progress Report: Shaping Industrie 4.0. Tech.
rep. Federal Ministry for Economic Affairs and Energy (BMWi).

Pogančić, M. V., A. Paulus, V. Musil, G. Martius, and M. Rolinek (Apr. 2020).
“Differentiation of Blackbox Combinatorial Solvers”. In: Eighth International
Conference on Learning Representations.

Pogodin, R., Y. Mehta, T. Lillicrap, and P. E. Latham (2021). “Towards Biologically
Plausible Convolutional Networks”. In: Advances in Neural Information Processing
Systems. Vol. 34. Curran Associates, Inc., pp. 13924–13936.

Poldrack, R. A., T. Lu, and G. Beguš (Apr. 2023). AI-assisted Coding: Experiments
with GPT-4. doi: 10.48550/arXiv.2304.13187. arXiv: 2304.13187 [cs].

Poole, H. H. (1989). “Robot Languages”. In: Fundamentals of Robotics Engineering.
Ed. by H. H. Poole. Dordrecht: Springer Netherlands, pp. 249–270. isbn: 978-
94-011-7050-5. doi: 10.1007/978-94-011-7050-5_10.

Prakash, U., A. Chollera, K. Khatwani, P. K. J., and T. Bodas (Jan. 2024). “Practical
First-Order Bayesian Optimization Algorithms”. In: Proceedings of the 7th Joint
International Conference on Data Science & Management of Data (11th ACM IKDD
CODS and 29th COMAD). CODS-COMAD ’24. New York, NY, USA: Association
for Computing Machinery, pp. 173–181. isbn: 979-8-4007-1634-8. doi: 10.
1145/3632410.3632418.

Presutti, V. and A. Gangemi (2016). “Dolce+D&S Ultralite and Its Main Ontology
Design Patterns”. In: Ontology Engineering with Ontology Design Patterns. Ed.
by P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti. Vol. 25.
Studies on the Semantic Web. IOS Press, pp. 81–103. isbn: 978-1-61499-676-7.

Prokhorenko, L., D. Klimov, D.Mishchenkov, and Y. Poduraev (May 2020). “Surgeon–
Robot Interface Development Framework”. In: Computers in Biology andMedicine
120, p. 103717. issn: 0010-4825. doi: 10.1016/j.compbiomed.2020.103717.

Pulvermüller, F., M. Garagnani, and T. Wennekers (2014). “Thinking in Circuits:
Toward Neurobiological Explanation in Cognitive Neuroscience”. In: Biological
Cybernetics 108.5, pp. 573–593. issn: 0340-1200. doi: 10.1007/s00422-014-
0603-9.

Pumacay, W., I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox (July 2024).
“THE COLOSSEUM: A Benchmark for Evaluating Generalization for Robotic
Manipulation”. In: Robotics: Science and Systems XX. Delft, Netherlands. doi:
10.15607/RSS.2024.XX.133.

Qiao, Y.-L., J. Liang, V. Koltun, and M. Lin (Nov. 2020). “Scalable Differentiable
Physics for Learning and Control”. In: Proceedings of the 37th International
Conference on Machine Learning. PMLR, pp. 7847–7856.

282

https://doi.org/10.48550/arXiv.2304.13187
https://arxiv.org/abs/2304.13187
https://doi.org/10.1007/978-94-011-7050-5_10
https://doi.org/10.1145/3632410.3632418
https://doi.org/10.1145/3632410.3632418
https://doi.org/10.1016/j.compbiomed.2020.103717
https://doi.org/10.1007/s00422-014-0603-9
https://doi.org/10.1007/s00422-014-0603-9
https://doi.org/10.15607/RSS.2024.XX.133

BIBLIOGRAPHY

Quintero, C. P., S. Li, M. K. Pan, W. P. Chan, H. Machiel Van der Loos, and E.
Croft (Oct. 2018). “Robot Programming Through Augmented Trajectories in
Augmented Reality”. In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1838–1844. doi: 10.1109/IROS.2018.8593700.

Qureshi, A. H., J. Dong, A. Choe, and M. C. Yip (Oct. 2020). “Neural Manipulation
Planning on Constraint Manifolds”. In: IEEE Robotics and Automation Letters
5.4, pp. 6089–6096. issn: 2377-3766. doi: 10.1109/LRA.2020.3010220.

Racca, M., V. Kyrki, and M. Cakmak (Mar. 2020). “Interactive Tuning of Robot
Program Parameters via Expected Divergence Maximization”. In: Proceedings of
the 2020 ACM/IEEE International Conference on Human-Robot Interaction. HRI
’20. New York, NY, USA: Association for Computing Machinery, pp. 629–638.
isbn: 978-1-4503-6746-2. doi: 10.1145/3319502.3374784.

Radford, A., J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever (July
2023). “Robust Speech Recognition via Large-Scale Weak Supervision”. In:
Proceedings of the 40th International Conference on Machine Learning. Vol. 202.
ICML’23. Honolulu, Hawaii, USA: JMLR.org, pp. 28492–28518.

Raible, J., C. Braun, and M. Huber (Sept. 2023a). “Automatic Path Planning for
Robotic Grinding and Polishing Tasks Based on Point Cloud Slicing”. In: ISR
Europe 2023 - 56th International Symposium on Robotics. Stuttgart, Germany:
VDE Verlag.

Raible, J., O. Rettig, B. Alt, A. Yaman, I. Gauger, L. Biasi, S. Müller, D. Katic, M.
Strand, and M. F. Huber (Aug. 2023b). “Artificial Neural Network Guided
Compensation of Nonlinear Payload and Wear Effects for Industrial Robots”. In:
2023 IEEE 19th International Conference on Automation Science and Engineering
(CASE). Auckland, New Zealand: IEEE, pp. 1–8. isbn: 979-8-3503-2069-5. doi:
10.1109/CASE56687.2023.10260559.

Raji, I. D. and R. Dobbe (Dec. 2023). Concrete Problems in AI Safety, Revisited. doi:
10.48550/arXiv.2401.10899. arXiv: 2401.10899 [cs].

Ramirez-Amaro, K., M. Beetz, and G. Cheng (June 2017). “Transferring Skills to
Humanoid Robots by Extracting Semantic Representations from Observations
of Human Activities”. In: Artificial Intelligence. Special Issue on AI and Robotics
247, pp. 95–118. issn: 0004-3702. doi: 10.1016/j.artint.2015.08.009.

Ramirez-Amaro, K., T. Inamura, E. Dean-León, M. Beetz, and G. Cheng (Nov. 2014).
“Bootstrapping Humanoid Robot Skills by Extracting Semantic Representations
of Human-like Activities from Virtual Reality”. In: 2014 IEEE-RAS International
Conference on Humanoid Robots, pp. 438–443. doi: 10.1109/HUMANOIDS.
2014.7041398.

Rana, K., J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suenderhauf (Dec.
2023). “SayPlan: Grounding Large Language Models Using 3D Scene Graphs for
Scalable Robot Task Planning”. In: Proceedings of The 7th Conference on Robot
Learning. PMLR, pp. 23–72.

Ratliff, N., M. Zucker, J. A. Bagnell, and S. Srinivasa (May 2009). “CHOMP: Gra-
dient Optimization Techniques for Efficient Motion Planning”. In: 2009 IEEE

283

https://doi.org/10.1109/IROS.2018.8593700
https://doi.org/10.1109/LRA.2020.3010220
https://doi.org/10.1145/3319502.3374784
https://doi.org/10.1109/CASE56687.2023.10260559
https://doi.org/10.48550/arXiv.2401.10899
https://arxiv.org/abs/2401.10899
https://doi.org/10.1016/j.artint.2015.08.009
https://doi.org/10.1109/HUMANOIDS.2014.7041398
https://doi.org/10.1109/HUMANOIDS.2014.7041398

BIBLIOGRAPHY

International Conference on Robotics and Automation (ICRA). Kobe, Japan: IEEE,
pp. 489–494. isbn: 978-1-4244-2788-8. doi: 10.1109/ROBOT.2009.5152817.

Ratliff, N. D., J. Issac, D. Kappler, S. Birchfield, and D. Fox (July 2018). “Riemannian
Motion Policies”. In: arXiv:1801.02854 [cs]. arXiv: 1801.02854 [cs].

Reed, S., K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-maron,
M. Giménez, Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi,
A. Edwards, N. Heess, Y. Chen, R. Hadsell, O. Vinyals, M. Bordbar, and N. de
Freitas (Aug. 2022). “A Generalist Agent”. In: Transactions on Machine Learning
Research. issn: 2835-8856.

Ren, T., S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang, Y. Chen, F. Yan,
Z. Zeng, H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang, and L. Zhang (Jan. 2024).
Grounded SAM: Assembling Open-World Models for Diverse Visual Tasks. doi:
10.48550/arXiv.2401.14159. arXiv: 2401.14159 [cs].

Revach, G., N. Shlezinger, X. Ni, A. L. Escoriza, R. J. G. van Sloun, and Y. C. Eldar
(Jan. 2022). “KalmanNet: Neural Network Aided Kalman Filtering for Partially
Known Dynamics”. In: IEEE Transactions on Signal Processing 70, pp. 1532–1547.
issn: 1053-587X. doi: 10.1109/TSP.2022.3158588.

Ridnik, T., E. Ben-Baruch, A. Noy, and L. Zelnik-Manor (June 2021). “ImageNet-21K
Pretraining for the Masses”. In: Thirty-Fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1).

Ritter, F. E., F. Tehranchi, and J. D. Oury (May 2019). “ACT-R: A Cognitive Archi-
tecture for Modeling Cognition”. In: Wiley Interdisciplinary Reviews. Cognitive
Science 10.3, e1488. issn: 1939-5086. doi: 10.1002/wcs.1488.

Rocktäschel, T. (Mar. 2018). “Combining Representation Learning with Logic for
Language Processing”. PhD thesis. UCL (University College London).

Rombach, R., A. Blattmann, D. Lorenz, P. Esser, and B. Ommer (2022). “High-
Resolution Image Synthesis With Latent Diffusion Models”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–
10695.

Rombouts, J. O., P. R. Roelfsema, and S. M. Bohte (July 2013). “Biologically Plausible
Reinforcement Learning of Continuous Actions”. In: BMC Neuroscience 14.1,
P28. issn: 1471-2202. doi: 10.1186/1471-2202-14-S1-P28.

Rosenbloom, P. S. (2023). “Rethinking the Physical Symbol Systems Hypothesis”. In:
Artificial General Intelligence. Ed. by P. Hammer, M. Alirezaie, and C. Strannegård.
Cham: Springer Nature Switzerland, pp. 207–216. isbn: 978-3-031-33469-6.
doi: 10.1007/978-3-031-33469-6_21.

Rosenthal, S. and M. Veloso (July 2011). “Modeling Humans as Observation
Providers Using POMDPs”. In: 2011 RO-MAN, pp. 53–58. doi: 10.1109/ROMAN.
2011.6005272.

Ross, T., D. Zimmerer, A. Vemuri, F. Isensee, M. Wiesenfarth, S. Bodenstedt, F. Both,
P. Kessler, M. Wagner, B. Müller, H. Kenngott, S. Speidel, A. Kopp-Schneider,
K. Maier-Hein, and L. Maier-Hein (June 2018). “Exploiting the Potential of Un-
labeled Endoscopic Video Data with Self-Supervised Learning”. In: International

284

https://doi.org/10.1109/ROBOT.2009.5152817
https://arxiv.org/abs/1801.02854
https://doi.org/10.48550/arXiv.2401.14159
https://arxiv.org/abs/2401.14159
https://doi.org/10.1109/TSP.2022.3158588
https://doi.org/10.1002/wcs.1488
https://doi.org/10.1186/1471-2202-14-S1-P28
https://doi.org/10.1007/978-3-031-33469-6_21
https://doi.org/10.1109/ROMAN.2011.6005272
https://doi.org/10.1109/ROMAN.2011.6005272

BIBLIOGRAPHY

Journal of Computer Assisted Radiology and Surgery 13.6, pp. 925–933. issn:
1861-6429. doi: 10.1007/s11548-018-1772-0.

Rougier, N. P. (Mar. 2009). “Implicit and Explicit Representations”. In: Neural
Networks. What It Means to Communicate 22.2, pp. 155–160. issn: 0893-6080.
doi: 10.1016/j.neunet.2009.01.008.

Ruder, S. (Feb. 2019). “Neural Transfer Learning for Natural Language Processing”.
PhD thesis. National University of Ireland.

Rudin, C. (May 2019). “Stop Explaining Black Box Machine Learning Models
for High Stakes Decisions and Use Interpretable Models Instead”. In: Nature
Machine Intelligence 1.5, pp. 206–215. issn: 2522-5839. doi: 10.1038/s42256-
019-0048-x.

Rueß, H. and S. Burton (2022). Safe AI - How Is This Possible? Tech. rep. Fraunhofer
Institute for Cognitive Systems IKS.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (Oct. 1986). “Learning Represen-
tations by Back-Propagating Errors”. In: Nature 323.6088, pp. 533–536. issn:
1476-4687. doi: 10.1038/323533a0.

Russell, S. and P. Norvig (May 2021). Artificial Intelligence: A Modern Approach.
4th ed. Harlow: Pearson. isbn: 978-1-292-40113-3.

Rusu, R. B. and S. Cousins (May 2011). “3D Is Here: Point Cloud Library (PCL)”. In:
2011 IEEE International Conference on Robotics and Automation, pp. 1–4. doi:
10.1109/ICRA.2011.5980567.

Sacerdoti, E. (Sept. 1975). “The Nonlinear Nature of Plans”. In: International Joint
Conference on Artificial Intelligence.

Safronov, E., M. Colledanchise, and L. Natale (Oct. 2020). “Task Planning with Belief
Behavior Trees”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 6870–6877. doi: 10.1109/IROS45743.2020.9341562.

Salemi, A. and H. Zamani (July 2024). “Evaluating Retrieval Quality in Retrieval-
Augmented Generation”. In: Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR ’24. New
York, NY, USA: Association for Computing Machinery, pp. 2395–2400. isbn:
979-8-4007-0431-4. doi: 10.1145/3626772.3657957.

Salvador, S. and P. Chan (Oct. 2007). “Toward Accurate Dynamic Time Warping in
Linear Time and Space”. In: Intelligent Data Analysis 11.5, pp. 561–580. issn:
1088-467X.

Saveriano, M., F. J. Abu-Dakka, A. Kramberger, and L. Peternel (Nov. 2023). “Dy-
namic Movement Primitives in Robotics: A Tutorial Survey”. In: The Interna-
tional Journal of Robotics Research 42.13, pp. 1133–1184. issn: 0278-3649. doi:
10.1177/02783649231201196.

Scao, T. L. et al. (June 2023). BLOOM: A 176B-Parameter Open-Access Multilingual
Language Model. doi: 10.48550/arXiv.2211.05100. arXiv: 2211.05100 [cs].

Schaal, S. and C. G. Atkeson (Nov. 1998). “Constructive Incremental Learning from
Only Local Information”. In: Neural Computation 10.8, pp. 2047–2084. issn:
1530-888X. doi: 10.1162/089976698300016963.

285

https://doi.org/10.1007/s11548-018-1772-0
https://doi.org/10.1016/j.neunet.2009.01.008
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1109/IROS45743.2020.9341562
https://doi.org/10.1145/3626772.3657957
https://doi.org/10.1177/02783649231201196
https://doi.org/10.48550/arXiv.2211.05100
https://arxiv.org/abs/2211.05100
https://doi.org/10.1162/089976698300016963

BIBLIOGRAPHY

Schaal, S. (2006). “Dynamic Movement Primitives - A Framework for Motor Con-
trol in Humans and Humanoid Robotics”. In: Adaptive Motion of Animals and
Machines. Ed. by H. Kimura, K. Tsuchiya, A. Ishiguro, and H. Witte. Springer,
pp. 261–280. isbn: 978-4-431-31381-6. doi: 10.1007/4-431-31381-8_23.

Scheide, E., G. Best, and G. A. Hollinger (May 2021). “Behavior Tree Learning
for Robotic Task Planning through Monte Carlo DAG Search over a Formal
Grammar”. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). Xi'an, China: IEEE Press, pp. 4837–4843. doi: 10.1109/ICRA48
506.2021.9561027.

Schepman, A. and P. Rodway (Aug. 2023). “The General Attitudes towards Artificial
Intelligence Scale (GAAIS): Confirmatory Validation and Associations with
Personality, Corporate Distrust, and General Trust”. In: International Journal
of Human–Computer Interaction 39.13, pp. 2724–2741. issn: 1044-7318. doi:
10.1080/10447318.2022.2085400.

Scherlis, A., K. Sachan, A. S. Jermyn, J. Benton, and B. Shlegeris (July 2023).
Polysemanticity and Capacity in Neural Networks. doi: 10.48550/arXiv.2210.
01892. arXiv: 2210.01892 [cs].

Schmidt-Rohr, S. R., R. Jäkel, and G. Dirschl (2013). ArtiMinds Robot Programming
Suite. ArtiMinds Robotics GmbH.

Schöppenthau, F., F. Patzer, B. Schnebel, K. Watson, N. Baryschnikov, B. Obst,
Y. Chauhan, D. Kaever, T. Usländer, and P. Kulkarni (Jan. 2023). “Building a
Digital Manufacturing as a Service Ecosystem for Catena-X”. In: Sensors 23.17,
p. 7396. issn: 1424-8220. doi: 10.3390/s23177396.

Schramm, W. (1954). “How Communication Works”. In: Process and Effects of
Communication, pp. 3–26.

Schulman, J., J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel (June 2013).
“Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex
Optimization”. In: Robotics: Science and Systems IX. Vol. 09. isbn: 978-981-07-
3937-9.

Schultheis, A., B. Alt, S. Bast, A. Guldner, D. Jilg, D. Katic, J. Mundorf, T. Schlagen-
hauf, S. Weber, R. Bergmann, S. Bergweiler, L. Creutz, G. Dartmann, L. Malburg,
S. Naumann, M. Rezapour, and M. Ruskowski (Sept. 2024). “EASY: Energy-
Efficient Analysis and Control Processes in the Dynamic Edge-Cloud Continuum
for Industrial Manufacturing”. In: KI - Künstliche Intelligenz. issn: 1610-1987.
doi: 10.1007/s13218-024-00868-3.

Sejnowski, T. J. (Feb. 2023). “Large Language Models and the Reverse Turing Test”.
In: Neural Computation 35.3, pp. 309–342. issn: 0899-7667. doi: 10.1162/
neco_a_01563.

Seker, M. Y., M. Imre, J. Piater, and E. Ugur (June 2019). “Conditional Neural
Movement Primitives”. In: Robotics: Science and Systems. Vol. 15. isbn: 978-0-
9923747-5-4.

286

https://doi.org/10.1007/4-431-31381-8_23
https://doi.org/10.1109/ICRA48506.2021.9561027
https://doi.org/10.1109/ICRA48506.2021.9561027
https://doi.org/10.1080/10447318.2022.2085400
https://doi.org/10.48550/arXiv.2210.01892
https://doi.org/10.48550/arXiv.2210.01892
https://arxiv.org/abs/2210.01892
https://doi.org/10.3390/s23177396
https://doi.org/10.1007/s13218-024-00868-3
https://doi.org/10.1162/neco_a_01563
https://doi.org/10.1162/neco_a_01563

BIBLIOGRAPHY

Shah, D., B. Osiński, B. Ichter, and S. Levine (Mar. 2023). “LM-Nav: Robotic Nav-
igation with Large Pre-Trained Models of Language, Vision, and Action”. In:
Proceedings of The 6th Conference on Robot Learning. PMLR, pp. 492–504.

Shah, R., V. Varma, R. Kumar, M. Phuong, V. Krakovna, J. Uesato, and Z. Kenton
(Nov. 2022). Goal Misgeneralization: Why Correct Specifications Aren’t Enough
For Correct Goals. doi: 10.48550/arXiv.2210.01790. arXiv: 2210.01790 [cs].

Shaw, M. (Nov. 1990). “Prospects for an Engineering Discipline of Software”. In:
IEEE Software 7.6, pp. 15–24. issn: 1937-4194. doi: 10.1109/52.60586.

Shi, Z., J. Wei, and Y. Liang (Nov. 2023). “Provable Guarantees for Neural Net-
works via Gradient Feature Learning”. In: Thirty-Seventh Conference on Neural
Information Processing Systems.

Shimano, B. (Nov. 1979). “VAL: A Versatile Robot Programming and Control Sys-
tem”. In: COMPSAC 79. Proceedings. Computer Software and The IEEE Computer
Society’s Third International Applications Conference, 1979. Pp. 878–883. doi:
10.1109/CMPSAC.1979.762620.

Shimbun, N. K. (Dec. 1988). Poka-Yoke: Improving Product Quality by Preventing
Defects. Cambridge, Massachusetts: Taylor & Francis Inc. isbn: 978-0-915299-
31-7.

Shysheya, A., J. F. Bronskill, M. Patacchiola, S. Nowozin, and R. E. Turner (Sept.
2022). “FiT: Parameter Efficient Few-shot Transfer Learning for Personalized
and Federated Image Classification”. In: The Eleventh International Conference
on Learning Representations.

Siaterlis, G., N. Nikolakis, K. Alexopoulos, and S. Makris (Jan. 2022). “Adoption
of AI in EU Manufacturing. Gaps and Challenges”. In: Proceedings of the 33rd
International DAAAM Symposium 2022, pp. 0547–0550. isbn: 978-3-902734-
36-5. doi: 10.2507/33rd.daaam.proceedings.077.

Silver, T., R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez (Sept.
2021). “Learning Symbolic Operators for Task and Motion Planning”. In: 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3182–3189. doi: 10.1109/IROS51168.2021.9635941.

Singh, I., V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason,
and A. Garg (May 2023). “ProgPrompt: Generating Situated Robot Task Plans
Using Large Language Models”. In: 2023 IEEE International Conference on
Robotics and Automation (ICRA), pp. 11523–11530. doi: 10.1109/ICRA48891.
2023.10161317.

Skalse, J., N. H. R. Howe, D. Krasheninnikov, and D. Krueger (Apr. 2024). “Defining
and Characterizing Reward Hacking”. In: Proceedings of the 36th International
Conference on Neural Information Processing Systems. NIPS ’22. Red Hook, NY,
USA: Curran Associates Inc., pp. 9460–9471. isbn: 978-1-7138-7108-8.

Smith, D. R. (Sept. 1985). “Top-down Synthesis of Divide-and-Conquer Algorithms”.
In: Artificial Intelligence 27.1, pp. 43–96. issn: 0004-3702. doi: 10.1016/0004-
3702(85)90083-9.

287

https://doi.org/10.48550/arXiv.2210.01790
https://arxiv.org/abs/2210.01790
https://doi.org/10.1109/52.60586
https://doi.org/10.1109/CMPSAC.1979.762620
https://doi.org/10.2507/33rd.daaam.proceedings.077
https://doi.org/10.1109/IROS51168.2021.9635941
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1016/0004-3702(85)90083-9
https://doi.org/10.1016/0004-3702(85)90083-9

BIBLIOGRAPHY

Smits, R. (Oct. 2020). Orocos Kinematics and Dynamics Library. Open Robot Control
Software.

Smolensky, P. (Mar. 1988). “On the Proper Treatment of Connectionism”. In: Be-
havioral and Brain Sciences 11.1, pp. 1–23. issn: 1469-1825, 0140-525X. doi:
10.1017/S0140525X00052432.

Sobania, D., D. Schweim, and F. Rothlauf (Feb. 2023). “A Comprehensive Survey
on Program Synthesis With Evolutionary Algorithms”. In: IEEE Transactions on
Evolutionary Computation 27.1, pp. 82–97. issn: 1941-0026. doi: 10.1109/
TEVC.2022.3162324.

Sofianidis, G., J. M. Rozanec, D. Mladenic, and D. Kyriazis (2021). “A Review of
Explainable Artificial Intelligence in Manufacturing”. In: CoRR abs/2107.02295.
arXiv: 2107.02295.

Sohn, J., S. Lee, and S. Yoo (2016). “Amortised Deep Parameter Optimisation of
GPGPU Work Group Size for OpenCV”. In: Search Based Software Engineering.
Ed. by F. Sarro and K. Deb. Lecture Notes in Computer Science. Cham: Springer
International Publishing, pp. 211–217. isbn: 978-3-319-47106-8. doi: 10.1007/
978-3-319-47106-8_14.

Sohn, K. and O. Kwon (Apr. 2020). “Technology Acceptance Theories and Factors
Influencing Artificial Intelligence-based Intelligent Products”. In: Telematics and
Informatics 47, p. 101324. issn: 0736-5853. doi: 10.1016/j.tele.2019.101324.

Srinivas, A., A. Jabri, P. Abbeel, S. Levine, and C. Finn (July 2018). “Universal
Planning Networks: Learning Generalizable Representations for Visuomotor
Control”. In: Proceedings of the 35th International Conference on Machine Learn-
ing. PMLR, pp. 4732–4741.

Srinivas, N., A. Krause, S. Kakade, and M. Seeger (June 2010). “Gaussian Process
Optimization in the Bandit Setting: No Regret and Experimental Design”. In:
Proceedings of the 27th International Conference on International Conference on
Machine Learning. ICML’10. Madison, WI, USA: Omnipress, pp. 1015–1022.
isbn: 978-1-60558-907-7.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014).
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In:
Journal of Machine Learning Research 15, pp. 1929–1958.

Staffell, I. and R. Green (June 2014). “How Does Wind Farm Performance Decline
with Age?” In: Renewable Energy 66, pp. 775–786. issn: 0960-1481. doi: 10.
1016/j.renene.2013.10.041.

Staron, M., S. Abrahão, G. Lewis, H. Muccini, and C. Honnenahalli (Sept. 2024).
“Bringing Software Engineering Discipline to the Development of AI-Enabled
Systems”. In: IEEE Software 41.5, pp. 79–82. issn: 1937-4194. doi: 10.1109/
MS.2024.3408388.

Stöckl, F., M. Strand, S. Müller, M. Huber, J. Raible, C. Braun, D. Katic, B. Alt, and
H. Merkt (July 2023). “Autonomous Surface Grinding of Wind Turbine Blades”.
In: Intelligent Autonomous Systems 18. Ed. by S.-G. Lee, J. An, N. Y. Chong, M.

288

https://doi.org/10.1017/S0140525X00052432
https://doi.org/10.1109/TEVC.2022.3162324
https://doi.org/10.1109/TEVC.2022.3162324
https://arxiv.org/abs/2107.02295
https://doi.org/10.1007/978-3-319-47106-8_14
https://doi.org/10.1007/978-3-319-47106-8_14
https://doi.org/10.1016/j.tele.2019.101324
https://doi.org/10.1016/j.renene.2013.10.041
https://doi.org/10.1016/j.renene.2013.10.041
https://doi.org/10.1109/MS.2024.3408388
https://doi.org/10.1109/MS.2024.3408388

BIBLIOGRAPHY

Strand, and J. H. Kim. Cham: Springer Nature Switzerland, pp. 451–457. isbn:
978-3-031-44981-9. doi: 10.1007/978-3-031-44981-9_38.

Stone, A., T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong, P. Wohlhart, S.
Kirmani, B. Zitkovich, F. Xia, C. Finn, and K. Hausman (Aug. 2023). “Open-
World Object Manipulation Using Pre-Trained Vision-Language Models”. In: 7th
Annual Conference on Robot Learning.

Strazdas, D., J. Hintz, A.-M. Felßberg, and A. Al-Hamadi (2020). “Robots and
Wizards: An Investigation Into Natural Human–Robot Interaction”. In: IEEE
Access 8, pp. 207635–207642. issn: 2169-3536. doi: 10.1109/ACCESS.2020.
3037724.

Strudel, R., R. Garcia, I. Laptev, and C. Schmid (2021). “Segmenter: Transformer
for Semantic Segmentation”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7262–7272.

Stulp, F., G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud (Oct. 2013). “Learning
Compact Parameterized Skills with a Single Regression”. In: 2013 13th IEEE-
RAS International Conference on Humanoid Robots (Humanoids), pp. 417–422.
doi: 10.1109/HUMANOIDS.2013.7030008.

Stulp, F. and S. Schaal (Oct. 2011). “Hierarchical Reinforcement Learning with
Movement Primitives”. In: 2011 11th IEEE-RAS International Conference on
Humanoid Robots, pp. 231–238. doi: 10.1109/Humanoids.2011.6100841.

Su, L., X. Zuo, R. Li, X. Wang, H. Zhao, and B. Huang (Oct. 2023). A Systematic
Review for Transformer-based Long-term Series Forecasting. doi: 10.48550/arXiv.
2310.20218. arXiv: 2310.20218 [cs].

Summers, P. D. (Jan. 1977). “A Methodology for LISP Program Construction from
Examples”. In: Journal of the ACM 24.1, pp. 161–175. issn: 0004-5411, 1557-
735X. doi: 10.1145/321992.322002.

Sun, Q., Y. Liu, T.-S. Chua, and B. Schiele (2019). “Meta-Transfer Learning for
Few-Shot Learning”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 403–412.

Sun, R. (2017). “The CLARION Cognitive Architecture: Toward a Comprehensive
Theory of the Mind”. In: The Oxford Handbook of Cognitive Science. New York,
NY, US: Oxford University Press, pp. 117–133. isbn: 978-0-19-984219-3 978-0-
19-984417-3.

Sünderhauf, N., O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft,
P. Abbeel, W. Burgard, M. Milford, and P. Corke (Apr. 2018). “The Limits
and Potentials of Deep Learning for Robotics”. In: The International Journal
of Robotics Research 37.4-5, pp. 405–420. issn: 0278-3649. doi: 10.1177/
0278364918770733.

Sussman, G. J. (Oct. 2005). “Why Programming Is a Good Medium for Expressing
Poorly Understood and Sloppily Formulated Ideas”. In: Companion to the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications. OOPSLA ’05. New York, NY, USA: Association for

289

https://doi.org/10.1007/978-3-031-44981-9_38
https://doi.org/10.1109/ACCESS.2020.3037724
https://doi.org/10.1109/ACCESS.2020.3037724
https://doi.org/10.1109/HUMANOIDS.2013.7030008
https://doi.org/10.1109/Humanoids.2011.6100841
https://doi.org/10.48550/arXiv.2310.20218
https://doi.org/10.48550/arXiv.2310.20218
https://arxiv.org/abs/2310.20218
https://doi.org/10.1145/321992.322002
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1177/0278364918770733

BIBLIOGRAPHY

Computing Machinery, p. 6. isbn: 978-1-59593-193-1. doi: 10.1145/1094855.
1094860.

Sutton, R. S. (Mar. 2019). The Bitter Lesson.
Swanson, K., E. Wu, A. Zhang, A. A. Alizadeh, and J. Zou (Apr. 2023). “From

Patterns to Patients: Advances in Clinical Machine Learning for Cancer Diagnosis,
Prognosis, and Treatment”. In: Cell 186.8, pp. 1772–1791. issn: 0092-8674,
1097-4172. doi: 10.1016/j.cell.2023.01.035.

Tate, A. (1977). “Generating Project Networks”. In: Proceedings of the 5th Interna-
tional Joint Conference on Artificial Intelligence. Vol. 2. Cambridge, USA: Morgan
Kaufmann, pp. 888–893.

Taylor, R., P. Summers, and J. Meyer (Sept. 1982). “AML: A Manufacturing Lan-
guage”. In: The International Journal of Robotics Research 1.3, pp. 19–41. issn:
0278-3649. doi: 10.1177/027836498200100302.

Tellex, S. A., T. F. Kollar, S. R. Dickerson, M. R. Walter, A. Banerjee, S. Teller, and
N. Roy (2011). “Approaching the Symbol Grounding Problem with Probabilistic
Graphical Models”. In: AI Magazine 32.4, pp. 64–76. issn: 0738-4602. doi:
10.1609/aimag.v32i4.2384.

Tenorth, M. and M. Beetz (Apr. 2013). “KnowRob: A Knowledge Processing In-
frastructure for Cognition-Enabled Robots”. In: The International Journal of
Robotics Research 32.5, pp. 566–590. issn: 0278-3649, 1741-3176. doi: 10.
1177/0278364913481635.

— (June 2017). “Representations for Robot Knowledge in the KnowRob Frame-
work”. In: Artificial Intelligence. Special Issue on AI and Robotics 247, pp. 151–
169. issn: 0004-3702. doi: 10.1016/j.artint.2015.05.010.

Theis, S., S. Jentzsch, F. Deligiannaki, C. Berro, A. P. Raulf, and C. Bruder (2023).
“Requirements for Explainability and Acceptance of Artificial Intelligence in Col-
laborative Work”. In: Artificial Intelligence in HCI. Ed. by H. Degen and S.
Ntoa. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland,
pp. 355–380. isbn: 978-3-031-35891-3. doi: 10.1007/978-3-031-35891-3_22.

Thomason, J., J. Sinapov, M. Svetlik, P. Stone, and R. Mooney (July 2016). “Learning
Multi-Modal Grounded Linguistic Semantics by Playing "I Spy"”. In: International
Joint Conference on Artificial Intelligence.

Thompson, N. C., K. Greenewald, K. Lee, and G. F. Manso (July 2022). “The
Computational Limits of Deep Learning”. In: Ninth Workshop on Computing
within Limits. arXiv. doi: 10.48550/arXiv.2007.05558. arXiv: 2007.05558 [cs,

stat].
Thrun, S. and L. Pratt (1998). “Learning to Learn: Introduction and Overview”.

In: Learning to Learn. Ed. by S. Thrun and L. Pratt. Boston, MA: Springer US,
pp. 3–17. isbn: 978-1-4615-5529-2. doi: 10.1007/978-1-4615-5529-2_1.

Tong, X. and W. Lei (Jan. 2017). “A Systematic Analysis of Functional Safety
Certification Practices in Industrial Robot Software Development”. In: MATEC
Web of Conferences 100, p. 02011. doi: 10.1051/matecconf/201710002011.

290

https://doi.org/10.1145/1094855.1094860
https://doi.org/10.1145/1094855.1094860
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1177/027836498200100302
https://doi.org/10.1609/aimag.v32i4.2384
https://doi.org/10.1177/0278364913481635
https://doi.org/10.1177/0278364913481635
https://doi.org/10.1016/j.artint.2015.05.010
https://doi.org/10.1007/978-3-031-35891-3_22
https://doi.org/10.48550/arXiv.2007.05558
https://arxiv.org/abs/2007.05558
https://arxiv.org/abs/2007.05558
https://doi.org/10.1007/978-1-4615-5529-2_1
https://doi.org/10.1051/matecconf/201710002011

BIBLIOGRAPHY

Tosatto, S., G. Chalvatzaki, and J. Peters (May 2021). “Contextual Latent-Movements
Off-Policy Optimization for Robotic Manipulation Skills”. In: 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 10815–10821. doi:
10.1109/ICRA48506.2021.9561870.

Toussaint, M. (July 2015). “Logic-Geometric Programming: An Optimization-Based
Approach to Combined Task and Motion Planning”. In: Proceedings of the 24th
International Conference on Artificial Intelligence. IJCAI’15. Buenos Aires, Ar-
gentina: AAAI Press, pp. 1930–1936. isbn: 978-1-57735-738-4.

Toussaint, M., K. Allen, K. Smith, and J. Tenenbaum (June 2018). “Differentiable
Physics and Stable Modes for Tool-Use and Manipulation Planning”. In: Robotics:
Science and Systems XIV. Vol. 14. isbn: 978-0-9923747-4-7.

Toussaint, M. and M. Lopes (May 2017). “Multi-Bound Tree Search for Logic-
Geometric Programming in Cooperative Manipulation Domains”. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4044–4051.
doi: 10.1109/ICRA.2017.7989464.

Touvron, H., T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample
(Feb. 2023). LLaMA: Open and Efficient Foundation Language Models. doi: 10.
48550/arXiv.2302.13971. arXiv: 2302.13971 [cs].

Trafton, J. G., L. M. Hiatt, A. M. Harrison, F. P. Tamborello, S. S. Khemlani, and
A. C. Schultz (Feb. 2013). “ACT-R/E: An Embodied Cognitive Architecture for
Human-Robot Interaction”. In: Journal of Human-Robot Interaction 2.1, pp. 30–
55. doi: 10.5898/JHRI.2.1.Trafton.

Truhn, D., J. S. Reis-Filho, and J. N. Kather (Dec. 2023). “Large Language Models
Should Be Used as Scientific Reasoning Engines, Not Knowledge Databases”. In:
Nature Medicine 29.12, pp. 2983–2984. issn: 1546-170X. doi: 10.1038/s41591-
023-02594-z.

Ude, A., B. Nemec, T. Petrić, and J. Morimoto (May 2014). “Orientation in Cartesian
Space Dynamic Movement Primitives”. In: 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 2997–3004. doi: 10.1109/ICRA.2014.
6907291.

Universal Robots (2018a). PolyScope Manual.
— (Dec. 2018b). The URScript Programming Language. Tech. rep. Universal Robots.
Uren, V. and J. S. Edwards (Feb. 2023). “Technology Readiness and the Orga-

nizational Journey towards AI Adoption: An Empirical Study”. In: Interna-
tional Journal of Information Management 68, p. 102588. issn: 0268-4012. doi:
10.1016/j.ijinfomgt.2022.102588.

Urieli, D., P. MacAlpine, S. Kalyanakrishnan, Y. Bentor, and P. Stone (2011). “On
Optimizing Interdependent Skills: A Case Study in Simulated 3D Humanoid
Robot Soccer”. In: 10th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2011). Taipei, Taiwan.

291

https://doi.org/10.1109/ICRA48506.2021.9561870
https://doi.org/10.1109/ICRA.2017.7989464
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.5898/JHRI.2.1.Trafton
https://doi.org/10.1038/s41591-023-02594-z
https://doi.org/10.1038/s41591-023-02594-z
https://doi.org/10.1109/ICRA.2014.6907291
https://doi.org/10.1109/ICRA.2014.6907291
https://doi.org/10.1016/j.ijinfomgt.2022.102588

BIBLIOGRAPHY

Vahrenkamp, N., M. Wächter, M. Kröhnert, K. Welke, and T. Asfour (Apr. 2015).
“The Robot Software Framework ArmarX”. In: it - Information Technology 57.2,
pp. 99–111. issn: 2196-7032. doi: 10.1515/itit-2014-1066.

van Krieken, E., E. Acar, and F. van Harmelen (Jan. 2022). “Analyzing Differentiable
Fuzzy Logic Operators”. In: Artificial Intelligence 302, p. 103602. issn: 0004-
3702. doi: 10.1016/j.artint.2021.103602.

Vandegar, M. (June 2020). “Differentiable Surrogate Models to Solve Nonlinear
Inverse Problems”. MA thesis. Liège, Belgium: Université de Liège. Chap. Uni-
versité de Liège.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin (Dec. 2017). “Attention Is All You Need”. In: Proceedings
of the 31st International Conference on Neural Information Processing Systems.
NIPS’17. Red Hook, NY, USA: Curran Associates Inc., pp. 6000–6010. isbn:
978-1-5108-6096-4.

Vemprala, S., R. Bonatti, A. Bucker, and A. Kapoor (July 2023). ChatGPT for Robotics:
Design Principles and Model Abilities. doi: 10.48550/arXiv.2306.17582. arXiv:
2306.17582 [cs].

Verma, D., N. Winovich, L. Ruthotto, and B. v. B. Waanders (Feb. 2024). Neural
Network Approaches for Parameterized Optimal Control. doi: 10.48550/arXiv.
2402.10033. arXiv: 2402.10033 [math].

Vernon, D. (May 2022). “Cognitive Architectures”. In: Cognitive Robotics. Ed. by
A. Cangelosi and M. Asada. Intelligent Robotics and Autonomous Agents. Cam-
bridge, Massachusetts: MIT Press. isbn: 978-0-262-36932-9.

Vernon, D., M. Beetz, and G. Sandini (July 2015). “Prospection in Cognition: The
Case for Joint Episodic-Procedural Memory in Cognitive Robotics”. In: Frontiers
in Robotics and AI 2. issn: 2296-9144. doi: 10.3389/frobt.2015.00019.

Vernon, D., C. von Hofsten, and L. Fadiga (2011). “The iCub Cognitive Architecture”.
In: A Roadmap for Cognitive Development in Humanoid Robots. Ed. by D. Vernon,
C. von Hofsten, and L. Fadiga. Cognitive Systems Monographs. Berlin, Heidel-
berg: Springer, pp. 121–153. isbn: 978-3-642-16904-5. doi: 10.1007/978-3-
642-16904-5_7.

Villani, V., F. Pini, F. Leali, C. Secchi, and C. Fantuzzi (2018). “Survey on Human-
Robot Interaction for Robot Programming in Industrial Applications”. In: IFAC-
PapersOnLine 51.11, pp. 66–71. issn: 24058963. doi: 10.1016/j.ifacol.2018.
08.236.

Vollmer, A.-L. and N. J. Hemion (2018). “A User Study on Robot Skill Learning
Without a Cost Function: Optimization of Dynamic Movement Primitives via
Naive User Feedback”. In: Frontiers in Robotics and AI 5. issn: 2296-9144.

von Rueden, L., S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch,
M. Walczak, J. Pfrommer, A. Pick, R. Ramamurthy, J. Garcke, C. Bauckhage, and
J. Schuecker (2021). “Informed Machine Learning - A Taxonomy and Survey
of Integrating Prior Knowledge into Learning Systems”. In: IEEE Transactions

292

https://doi.org/10.1515/itit-2014-1066
https://doi.org/10.1016/j.artint.2021.103602
https://doi.org/10.48550/arXiv.2306.17582
https://arxiv.org/abs/2306.17582
https://doi.org/10.48550/arXiv.2402.10033
https://doi.org/10.48550/arXiv.2402.10033
https://arxiv.org/abs/2402.10033
https://doi.org/10.3389/frobt.2015.00019
https://doi.org/10.1007/978-3-642-16904-5_7
https://doi.org/10.1007/978-3-642-16904-5_7
https://doi.org/10.1016/j.ifacol.2018.08.236
https://doi.org/10.1016/j.ifacol.2018.08.236

BIBLIOGRAPHY

on Knowledge and Data Engineering, pp. 1–1. issn: 1558-2191. doi: 10.1109/
TKDE.2021.3079836.

Vu, B., T. Migimatsu, and J. Bohg (May 2024). COAST: Constraints and Streams for
Task and Motion Planning. doi: 10.48550/arXiv.2405.08572. arXiv: 2405.08572
[cs].

W3C (Feb. 2014). RDF 1.1 Turtle: Terse RDF Triple Language. Tech. rep. World Wide
Web Consortium.

Wake, N., A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi (2023). “Chat-
GPT Empowered Long-Step Robot Control in Various Environments: A Case
Application”. In: IEEE Access 11, pp. 95060–95078. issn: 2169-3536. doi:
10.1109/ACCESS.2023.3310935. arXiv: 2304.03893 [cs].

Wang, J. and Y. Chen (Nov. 2023). “A Review on Code Generation with LLMs:
Application and Evaluation”. In: 2023 IEEE International Conference on Medical
Artificial Intelligence (MedAI), pp. 284–289. doi: 10.1109/MedAI59581.2023.
00044.

Wang, J., C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and P. S. Yu (Aug.
2023a). “Generalizing to Unseen Domains: A Survey on Domain Generalization”.
In: IEEE Transactions on Knowledge and Data Engineering 35.8, pp. 8052–8072.
issn: 1558-2191. doi: 10.1109/TKDE.2022.3178128.

Wang, L., Y. Ling, Z. Yuan, M. Shridhar, C. Bao, Y. Qin, B. Wang, H. Xu, and
X. Wang (Oct. 2023b). “GenSim: Generating Robotic Simulation Tasks via
Large Language Models”. In: The Twelfth International Conference on Learning
Representations.

Wang, T., J. Chen, Q. Jia, S. Wang, R. Fang, H. Wang, Z. Gao, C. Xie, C. Xu, J.
Dai, Y. Liu, J. Wu, S. Ding, L. Li, Z. Huang, X. Deng, T. Yu, G. Ma, H. Xiao,
Z. Chen, D. Xiang, Y. Wang, Y. Zhu, Y. Xiao, J. Wang, Y. Wang, S. Ding, J.
Huang, J. Xu, Y. Tayier, Z. Hu, Y. Gao, C. Zheng, Y. Ye, Y. Li, L. Wan, X. Jiang,
Y. Wang, S. Cheng, Z. Song, X. Tang, X. Xu, N. Zhang, H. Chen, Y. E. Jiang, and
W. Zhou (Jan. 2024a). Weaver: Foundation Models for Creative Writing. doi:
10.48550/arXiv.2401.17268. arXiv: 2401.17268 [cs].

Wang, X., Y. Chen, L. Yuan, Y. Zhang, Y. Li, H. Peng, and H. Ji (July 2024b).
“Executable Code Actions Elicit Better LLM Agents”. In: Proceedings of the 41st
International Conference on Machine Learning. PMLR, pp. 50208–50232.

Wang, Y., Q. Yao, J. T. Kwok, and L. M. Ni (June 2020). “Generalizing from a Few
Examples: A Survey on Few-shot Learning”. In: ACM Computing Surveys 53.3,
63:1–63:34. issn: 0360-0300. doi: 10.1145/3386252.

Webster, M., C. Dixon, M. Fisher, M. Salem, J. Saunders, K. L. Koay, K. Dautenhahn,
and J. Saez-Pons (Apr. 2016). “Toward Reliable Autonomous Robotic Assistants
Through Formal Verification: A Case Study”. In: IEEE Transactions on Human-
Machine Systems 46.2, pp. 186–196. issn: 2168-2305. doi: 10.1109/THMS.
2015.2425139.

Wei, C. and K. V. Hindriks (2013). “An Agent-Based Cognitive Robot Architecture”.
In: Programming Multi-Agent Systems. Ed. by M. Dastani, J. F. Hübner, and

293

https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.1109/TKDE.2021.3079836
https://doi.org/10.48550/arXiv.2405.08572
https://arxiv.org/abs/2405.08572
https://arxiv.org/abs/2405.08572
https://doi.org/10.1109/ACCESS.2023.3310935
https://arxiv.org/abs/2304.03893
https://doi.org/10.1109/MedAI59581.2023.00044
https://doi.org/10.1109/MedAI59581.2023.00044
https://doi.org/10.1109/TKDE.2022.3178128
https://doi.org/10.48550/arXiv.2401.17268
https://arxiv.org/abs/2401.17268
https://doi.org/10.1145/3386252
https://doi.org/10.1109/THMS.2015.2425139
https://doi.org/10.1109/THMS.2015.2425139

BIBLIOGRAPHY

B. Logan. Berlin, Heidelberg: Springer, pp. 54–71. isbn: 978-3-642-38700-5.
doi: 10.1007/978-3-642-38700-5_4.

Weintrop, D., A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd, and D. Franklin
(2018). “Evaluating CoBlox: A Comparative Study of Robotics Programming
Environments for Adult Novices”. In: Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems - CHI ’18. Montreal QC, Canada: ACM
Press, pp. 1–12. isbn: 978-1-4503-5620-6. doi: 10.1145/3173574.3173940.

Weißmann, M., S. Bedenk, C. Buckl, and A. Knoll (2011). “Model Checking In-
dustrial Robot Systems”. In: Model Checking Software. Ed. by A. Groce and M.
Musuvathi. Berlin, Heidelberg: Springer, pp. 161–176. isbn: 978-3-642-22306-
8. doi: 10.1007/978-3-642-22306-8_11.

Wen, H., X. Chen, G. Papagiannis, C. Hu, and Y. Li (May 2021). “End-to-End
Semi-supervised Learning for Differentiable Particle Filters”. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5825–5831.
doi: 10.1109/ICRA48506.2021.9561889.

White, W. T. (May 2023). Introducing Intrinsic Flowstate.
Wielemaker, J., T. Schrijvers, M. Triska, and T. Lager (2012). “SWI-prolog”. In:

Theory and Practice of Logic Programming 12.1-2, pp. 67–96. issn: 1471-0684.
Wiethof, C. and E. Bittner (Dec. 2021). “Hybrid Intelligence – Combining the

Human in the Loop with the Computer in the Loop: A Systematic Literature
Review”. In: ICIS 2021 Proceedings.

Williams, R. J. (1986). “Inverting a Connectionist Network Mapping by Backprop-
agation of Error”. In: Proc. of 8th Annual Conference of the Cognitive Science
Society, pp. 859–865.

Wolf, Y., N. Wies, D. Shteyman, B. Rothberg, Y. Levine, and A. Shashua (Feb.
2024). Tradeoffs Between Alignment and Helpfulness in Language Models. doi:
10.48550/arXiv.2401.16332. arXiv: 2401.16332 [cs].

Wong, E. and J. Z. Kolter (2017). “Neural Network Inversion beyond Gradient
Descent”. In: OPTML 2017, p. 5.

Wu, F., W. Weimer, M. Harman, Y. Jia, and J. Krinke (July 2015). “Deep Parameter
Optimisation”. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. GECCO ’15. New York, NY, USA: Association for
Computing Machinery, pp. 1375–1382. isbn: 978-1-4503-3472-3. doi: 10.
1145/2739480.2754648.

Wu, J. J. (June 2024). “An Exploratory Study of V-Model in Building ML-Enabled
Software: A Systems Engineering Perspective”. In: Proceedings of the IEEE/ACM
3rd International Conference on AI Engineering - Software Engineering for AI.
CAIN ’24. New York, NY, USA: Association for Computing Machinery, pp. 30–40.
isbn: 979-8-4007-0591-5. doi: 10.1145/3644815.3644951.

Wu, J., R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz,
and T. Funkhouser (Dec. 2023a). “TidyBot: Personalized Robot Assistance with
Large Language Models”. In: Autonomous Robots 47.8, pp. 1087–1102. issn:
1573-7527. doi: 10.1007/s10514-023-10139-z.

294

https://doi.org/10.1007/978-3-642-38700-5_4
https://doi.org/10.1145/3173574.3173940
https://doi.org/10.1007/978-3-642-22306-8_11
https://doi.org/10.1109/ICRA48506.2021.9561889
https://doi.org/10.48550/arXiv.2401.16332
https://arxiv.org/abs/2401.16332
https://doi.org/10.1145/2739480.2754648
https://doi.org/10.1145/2739480.2754648
https://doi.org/10.1145/3644815.3644951
https://doi.org/10.1007/s10514-023-10139-z

BIBLIOGRAPHY

Wu, Y.-L., H.-H. Shuai, Z.-R. Tam, and H.-Y. Chiu (Oct. 2021). “Gradient Normaliza-
tion for Generative Adversarial Networks”. In: 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 6353–6362. doi: 10.1109/ICCV48922.
2021.00631.

Wu, S., T. Jakab, C. Rupprecht, and A. Vedaldi (Oct. 2023b). “DOVE: Learning De-
formable 3D Objects by Watching Videos”. In: International Journal of Computer
Vision 131.10, pp. 2623–2634. issn: 1573-1405. doi: 10.1007/s11263-023-
01819-5.

Wu, X., Y.-L. Li, J. Sun, and C. Lu (Dec. 2023c). “Symbol-LLM: Leverage Language
Models for Symbolic System in Visual Human Activity Reasoning”. In: Advances
in Neural Information Processing Systems 36, pp. 29680–29691.

Xie, S., L. Sun, Z. Wang, and G. Chen (May 2022). “A Speedup Method for Solving
the Inverse Kinematics Problem of Robotic Manipulators”. In: International
Journal of Advanced Robotic Systems 19.3, p. 17298806221104602. issn: 1729-
8806. doi: 10.1177/17298806221104602.

Xu, X., Y. Lu, B. Vogel-Heuser, and L. Wang (Oct. 2021). “Industry 4.0 and Indus-
try 5.0—Inception, Conception and Perception”. In: Journal of Manufacturing
Systems 61, pp. 530–535. issn: 0278-6125. doi: 10.1016/j.jmsy.2021.10.006.

Xu, Z., Z. Shi, J. Wei, F. Mu, Y. Li, and Y. Liang (Oct. 2023). “Towards Few-Shot
Adaptation of Foundation Models via Multitask Finetuning”. In: The Twelfth
International Conference on Learning Representations.

Yampolskiy, R. V. (May 2022). “On the Controllability of Artificial Intelligence: An
Analysis of Limitations”. In: Journal of Cyber Security and Mobility, pp. 321–404.
issn: 2245-4578. doi: 10.13052/jcsm2245-1439.1132.

Yang, D., F. Jiang, W. Wu, X. Fang, and M. Cao (June 2023). “Low-Complexity
Acoustic Echo Cancellation with Neural Kalman Filtering”. In: ICASSP 2023 -
2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. doi: 10.1109/ICASSP49357.2023.10096597.

Yang, K., J. Liu, J. Wu, C. Yang, Y. Fung, S. Li, Z. Huang, X. Cao, X. Wang, H. Ji, and
C. Zhai (Mar. 2024). “If LLM Is the Wizard, Then Code Is the Wand: A Survey
on How Code Empowers Large Language Models to Serve as Intelligent Agents”.
In: ICLR 2024 Workshop on Large Language Model (LLM) Agents.

Yang, Q., A. Steinfeld, C. Rosé, and J. Zimmerman (Apr. 2020a). “Re-Examining
Whether, Why, and How Human-AI Interaction Is Uniquely Difficult to Design”.
In: Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. CHI ’20. New York, NY, USA: Association for Computing Machinery,
pp. 1–13. isbn: 978-1-4503-6708-0. doi: 10.1145/3313831.3376301.

Yang, Q., J. Suh, N.-C. Chen, and G. Ramos (June 2018). “Grounding Interactive
Machine Learning Tool Design in How Non-Experts Actually Build Models”.
In: Proceedings of the 2018 Designing Interactive Systems Conference. DIS ’18.
New York, NY, USA: Association for Computing Machinery, pp. 573–584. isbn:
978-1-4503-5198-0. doi: 10.1145/3196709.3196729.

295

https://doi.org/10.1109/ICCV48922.2021.00631
https://doi.org/10.1109/ICCV48922.2021.00631
https://doi.org/10.1007/s11263-023-01819-5
https://doi.org/10.1007/s11263-023-01819-5
https://doi.org/10.1177/17298806221104602
https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.13052/jcsm2245-1439.1132
https://doi.org/10.1109/ICASSP49357.2023.10096597
https://doi.org/10.1145/3313831.3376301
https://doi.org/10.1145/3196709.3196729

BIBLIOGRAPHY

Yang, S., X. Yu, and Y. Zhou (June 2020b). “LSTM and GRU Neural Network
Performance Comparison Study: Taking Yelp Review Dataset as an Example”.
In: 2020 International Workshop on Electronic Communication and Artificial
Intelligence (IWECAI), pp. 98–101. doi: 10.1109/IWECAI50956.2020.00027.

Yeh, C.-K., W.-C. Wu, W.-J. Ko, and Y.-C. F. Wang (Feb. 2017). “Learning Deep
Latent Spaces for Multi-Label Classification”. In: Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence. AAAI’17. San Francisco, California,
USA: AAAI Press, pp. 2838–2844.

Yildirim, I. and L. A. Paul (May 2024). “From Task Structures to World Models:
What Do LLMs Know?” In: Trends in Cognitive Sciences 28.5, pp. 404–415. issn:
1364-6613, 1879-307X. doi: 10.1016/j.tics.2024.02.008.

Yonetani, R., T. Taniai, M. Barekatain, M. Nishimura, and A. Kanezaki (July 2021).
“Path Planning Using Neural A* Search”. In: Proceedings of the 38th International
Conference on Machine Learning. PMLR, pp. 12029–12039.

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson (Dec. 2014). “How Transferable
Are Features in Deep Neural Networks?” In: Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Systems - Volume 2. NIPS’14.
Cambridge, MA, USA: MIT Press, pp. 3320–3328.

Yu, T., C. Finn, S. Dasari, A. Xie, T. Zhang, P. Abbeel, and S. Levine (2018). “One-
Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning”.
In: Robotics: Science and Systems XIV, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, June 26-30, 2018. Ed. by H. Kress-Gazit, S. S. Srinivasa,
T. Howard, and N. Atanasov. doi: 10.15607/RSS.2018.XIV.002.

Yu, W. (July 2022). “Retrieval-Augmented Generation across Heterogeneous Knowl-
edge”. In: Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies: Stu-
dent Research Workshop. Ed. by D. Ippolito, L. H. Li, M. L. Pacheco, D. Chen, and
N. Xue. Hybrid: Seattle, Washington + Online: Association for Computational
Linguistics, pp. 52–58. doi: 10.18653/v1/2022.naacl-srw.7.

Yu, W., C. Zhu, Z. Li, Z. Hu, Q. Wang, H. Ji, and M. Jiang (Nov. 2022). “A Survey of
Knowledge-enhanced Text Generation”. In: ACM Comput. Surv. 54.11s, 227:1–
227:38. issn: 0360-0300. doi: 10.1145/3512467.

Yuan, J., B. Zhang, X. Yan, B. Shi, T. Chen, Y. Li, and Y. Qiao (Dec. 2023). “AD-PT:
Autonomous Driving Pre-Training with Large-scale Point Cloud Dataset”. In:
Advances in Neural Information Processing Systems 36, pp. 47914–47933.

Zeng, F., W. Gan, Y. Wang, N. Liu, and P. S. Yu (Nov. 2023). Large Language Models
for Robotics: A Survey. doi: 10.48550/arXiv.2311.07226. arXiv: 2311.07226
[cs].

Zhang, B., Z. Tian, Q. Tang, X. Chu, X. Wei, C. Shen, and Y. Liu (Dec. 2022). “SegViT:
Semantic Segmentation with Plain Vision Transformers”. In: Advances in Neural
Information Processing Systems 35, pp. 4971–4982.

Zheng, B., S. Verma, J. Zhou, I. W. Tsang, and F. Chen (2022). “Imitation Learning:
Progress, Taxonomies and Challenges”. In: IEEE Transactions on Neural Networks

296

https://doi.org/10.1109/IWECAI50956.2020.00027
https://doi.org/10.1016/j.tics.2024.02.008
https://doi.org/10.15607/RSS.2018.XIV.002
https://doi.org/10.18653/v1/2022.naacl-srw.7
https://doi.org/10.1145/3512467
https://doi.org/10.48550/arXiv.2311.07226
https://arxiv.org/abs/2311.07226
https://arxiv.org/abs/2311.07226

BIBLIOGRAPHY

and Learning Systems, pp. 1–16. issn: 2162-2388. doi: 10.1109/TNNLS.2022.
3213246.

Zhong, W., R. Cui, Y. Guo, Y. Liang, S. Lu, Y. Wang, A. Saied, W. Chen, and N.
Duan (June 2024). “AGIEval: A Human-Centric Benchmark for Evaluating
Foundation Models”. In: Findings of the Association for Computational Linguistics:
NAACL 2024. Ed. by K. Duh, H. Gomez, and S. Bethard. Mexico City, Mexico:
Association for Computational Linguistics, pp. 2299–2314. doi: 10.18653/v1/
2024.findings-naacl.149.

Zhong, Y., B. Shirinzadeh, X. Yuan, G. Alici, and J. Smith (2006). “A Cellular
Neural Network for Deformable Object Modelling”. In: Information Technology
For Balanced Manufacturing Systems. Ed. by W. Shen. Boston, MA: Springer US,
pp. 329–336. isbn: 978-0-387-36594-7. doi: 10.1007/978-0-387-36594-7_35.

Zhou, Y., J. Gao, and T. Asfour (June 2020). “Movement Primitive Learning and
Generalization: Using Mixture Density Networks”. In: IEEE Robotics & Automa-
tion Magazine 27.2, pp. 22–32. issn: 1070-9932, 1558-223X. doi: 10.1109/
MRA.2020.2980591.

Zhuang, F., Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He (Jan. 2021).
“A Comprehensive Survey on Transfer Learning”. In: Proceedings of the IEEE
109.1, pp. 43–76. issn: 1558-2256. doi: 10.1109/JPROC.2020.3004555.

Zitkovich, B., T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker,
A. Wahid, Q. Vuong, V. Vanhoucke, H. Tran, R. Soricut, A. Singh, J. Singh,
P. Sermanet, P. R. Sanketi, G. Salazar, M. S. Ryoo, K. Reymann, K. Rao, K.
Pertsch, I. Mordatch, H. Michalewski, Y. Lu, S. Levine, L. Lee, T.-W. E. Lee,
I. Leal, Y. Kuang, D. Kalashnikov, R. Julian, N. J. Joshi, A. Irpan, B. Ichter, J.
Hsu, A. Herzog, K. Hausman, K. Gopalakrishnan, C. Fu, P. Florence, C. Finn,
K. A. Dubey, D. Driess, T. Ding, K. M. Choromanski, X. Chen, Y. Chebotar, J.
Carbajal, N. Brown, A. Brohan, M. G. Arenas, and K. Han (Aug. 2023). “RT-2:
Vision-Language-Action Models Transfer Web Knowledge to Robotic Control”.
In: 7th Annual Conference on Robot Learning.

297

https://doi.org/10.1109/TNNLS.2022.3213246
https://doi.org/10.1109/TNNLS.2022.3213246
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.1007/978-0-387-36594-7_35
https://doi.org/10.1109/MRA.2020.2980591
https://doi.org/10.1109/MRA.2020.2980591
https://doi.org/10.1109/JPROC.2020.3004555

Appendix

APPENDIX A

Differentiable Shadow Programs: Predicted

Trajectories

Figure 2.9 shows exemplary prior, posterior and ground-truth trajectories for a
shadow skill p̄ for a Spiral Search Relative ARTM skill. p̄ has 6 stacked GRU
layers, a hidden size of 256, and a dropout rate of 0.2. It was trained on 10.000
simulated spiral searches over 250 epochs with a learning rate α = 1e − 4 and
a batch size of 16, and finetuned on 2717 real-world spiral search trajectories
collected on the Experiment setup described in Experiment 4.3.2 with a learning
rate of α = 1e− 5.

0.350 0.352 0.354

Pos. X [m]

0.319

0.320

0.321

0.322

0.323

0.324

0.325

0.326

P
o
s.

Y
[m

]

Real-world traj. θp

Prior traj. θ̃p̄

Posterior traj. θp̄

0 10 20 30 40

Time [s]

0.349

0.350

0.351

0.352

0.353

0.354

0.355

P
o
s.

X
[m

]

θp

θ̃p̄

θp̄

0 10 20 30 40

Time [s]

0.319

0.320

0.321

0.322

0.323

0.324

0.325

0.326

P
o
s.

Y
[m

]

θp

θ̃p̄

θp̄

(a) p̄ correctly predicts the time and location at which the hole is found. The regularizing
effect of the prior causes it to mispredict the final end-effector position by 0.6 mm along
the X axis.

Figure A.1: Ground-truth (solid), prior (red) and posterior (blue) Cartesian end-
effector trajectories predicted by shadow skill p̄ for a spiral search task.

301

APPENDIX A. DIFFERENTIABLE SHADOW PROGRAMS: PREDICTED TRAJECTORIES

0.348 0.350 0.352 0.354

Pos. X [m]

0.323

0.324

0.325

0.326

0.327

0.328

0.329

P
o
s.

Y
[m

]

Real-world traj. θp

Prior traj. θ̃p̄

Posterior traj. θp̄

0 10 20 30 40

Time [s]

0.348

0.349

0.350

0.351

0.352

0.353

0.354

0.355

P
o
s.

X
[m

]

θp

θ̃p̄

θp̄

0 10 20 30 40

Time [s]

0.323

0.324

0.325

0.326

0.327

0.328

0.329

P
o
s.

Y
[m

]

θp

θ̃p̄

θp̄

(b) p̄ is able to handle the degenerate case in which the hole is immediately found, and no
spiral motion is executed. As the end-effector positions along the very short trajectory are
constrained by the shape of the hole, the ground-truth trajectory resembles noise.

0.350 0.352 0.354 0.356

Pos. X [m]

0.316

0.318

0.320

0.322

0.324

0.326

0.328

P
o
s.

Y
[m

]

Real-world traj. θp

Prior traj. θ̃p̄

Posterior traj. θp̄

0 10 20 30 40

Time [s]

0.350

0.351

0.352

0.353

0.354

0.355

0.356

P
o
s.

X
[m

]

θp

θ̃p̄

θp̄

0 10 20 30 40

Time [s]

0.316

0.318

0.320

0.322

0.324

0.326

0.328

P
o
s.

Y
[m

]

θp

θ̃p̄

θp̄

(c) The ABB-specific resampling of the spiral trajectory into linear segments sometimes
induces a phase offset to the prior. p̄ learned to partially compensate these phase shifts, but
they remain a source of prediction errors.

Figure A.1: Ground-truth (solid), prior (red) and posterior (blue) Cartesian end-
effector trajectories predicted by shadow skill p̄ for a spiral search task.

302

APPENDIX B

Dialogue Transcripts

1 MetaWizard2 : What task do you want me to help with?

2 Programmer : Grinding.

3 MetaWizard2 : Please specify the material of the workpiece.

4 Programmer : Fiberglass.

5 MetaWizard2 : I've set the material of the workpiece to fiberglass.

6 MetaWizard2 : Please specify the type of the workpiece.

7 Programmer : Rotor blade.

8 MetaWizard2 : I've set the type of the workpiece to rotor blade.

9 MetaWizard2 : What tool should the robot use?

10 Programmer : OnRobot sander.

11 MetaWizard2 : Tool OnRobot sander chosen. I've inserted the 3D model at the

default position relative to the robot.

12 MetaWizard2 : What is the desired finish?

13 Programmer : Rough.

14 MetaWizard2 : The currently loaded RPS program does not contain a Path Loader

template. Creating one.

15 # Program is simulated and executed.

16 MetaWizard2 : Is another run required?

17 Programmer : Yes.

18 MetaWizard2 : Should I change the finish type?

19 Programmer : Yes.

20 # Program is simulated and executed.

21 MetaWizard2 : Is another run required?

22 Programmer : No.

Listing B.1: Transcript of a dialogue between MetaWizard2 and a human
programmer for a wind turbine blade refurbishing task (see Experiment 4.2.4.1).

1 MetaWizard2 : What task do you want me to help with?

2 Programmer : Surface treatment.

3 MetaWizard2 : To what value should I set the cutting depth?

4 Programmer : Two millimeters.

5 MetaWizard2 : I've set the material of the workpiece to 2.0 millimeter.

6 MetaWizard2 : Please specify the material of the workpiece. Viable options known

to me are listed below.

7 Programmer : It's aluminium.

8 MetaWizard2 : I've set the material of the workpiece to aluminium alloys.

9 MetaWizard2 : Please specify the shape of the workpiece. Viable options known to

me are listed below.

10 Programmer : It's a rotational mold.

11 MetaWizard2 : I've set the shape of the workpiece to rotational mold.

12 MetaWizard2 : I am inserting the workpiece into the RPS.

303

APPENDIX B. DIALOGUE TRANSCRIPTS

13 MetaWizard2 : What tool should the robot use? Viable tools that work for this task

are listed below.

14 Programmer : Use an orbital sander.

15 MetaWizard2 : Tool Mirka orbital sander chosen. I've inserted the 3D model at the

default position relative to the robot.

16 MetaWizard2 : Choose cutting speed for the grinder. Tell me minimal , medium or

maximal and I will calculate appropriate values based on the material of

the workpiece and the grinding tool in use.

17 Programmer : Let 's do medium.

18 MetaWizard2 : Adding template: Path Loader.

19 MetaWizard2 : Adding template: Move to Point.

20 # Program is simulated and executed.

Listing B.2: Transcript of a dialogue between MetaWizard2 and a human
programmer for sanding a rotational mold (see Experiment 4.2.4.2).

1 MetaWizardLLM : What task do you want me to help with?

2 Programmer : Pick up the small gear and insert it onto the shaft. After insertion ,

release the object and depart to a position a few millimetres above the

shaft.

3 MetaWizardLLM : small_gear chosen.

4 MetaWizardLLM : Looking for 'tip of the shaft '.

5 MetaWizardLLM : What part do you want to choose? the lime part or the magenta part

?

6 Programmer : The magenta part.

7 MetaWizardLLM : Chosen part: magenta

8 # Program is simulated and executed.

Listing B.3: Transcript of a dialogue between MetaWizardLLM and a human
programmer for a gear assembly task (see Experiment 4.3.2).

304

APPENDIX C

Prompts

1 <data>

2 <message role="system">

3 Your task is to extract numerical values from spoken language. Your

answer may only contain the numerical value and the unit identifier that

the user is most likely referring to.

4 Do not convert units into different ones.

5 Do not use exponents , e.g. 10^3 or 10e3 instead of 1000.

6 Do not write out quantities like thousand , million or billion instead

of numbers.

7 </message >

8 <message role="user">

9 <content type="text">

10 one point three meters.

11 </content >

12 </message >

13 <message role="assistant">

14 <content type="text">

15 1.3m

16 </content >

17 </message >

18 <message role="user">

19 <content type="text">

20 The acceleration is three thousand and ninety six point 1 four

meters per second squared.

21 </content >

22 </message >

23 <message role="assistant">

24 <content type="text">

25 3 ,096.14m/s^2

26 </content >

27 </message >

28 <message role="user">

29 <content type="text">

30 It weighs one million three hundred and five grams.

31 </content >

32 </message >

33 <message role="assistant">

34 <content type="text">

35 1 ,000 ,305g

36 </content >

37 </message >

38 <message role="user">

39 <content type="text">

40 {user_input}

41 </content >

305

APPENDIX C. PROMPTS

42 </message >

43 </data>

Listing C.1: Prompt for extracting numerical parameters from Llama3.

1 <data>

2 <message role="system">

3 You are an assistant that has to guess what a user means based on an

input and different options.

4 The input semantically relates to the options , with one of the options

being a match.

5 Only return the full , exact string of the matching element

6 Return nothing but the full string of this element .!

7 Only return 'unknown ' if no option fits.

8 </message >

9 <message role="user">

10 <content type="text">

11 'mexico ' ['africa ', 'europe ', 'north america ', 'south america ', '

asia', 'australia ']

12 </content >

13 </message >

14 <message role="assistant">

15 <content type="text">

16 'north america '

17 </content >

18 </message >

19 <message role="user">

20 <content type="text">

21 'material ' ['text', 'chair ', 'flower ']

22 </content >

23 </message >

24 <message role="assistant">

25 <content type="text">

26 'unknown '

27 </content >

28 </message >

29 <message role="user">

30 <content type="text">

31 'round ' ['cube', 'triangle ', 'circle ', 'prisma ', 'banana ']

32 </content >

33 </message >

34 <message role="assistant">

35 <content type="text">

36 'circle '

37 </content >

38 </message >

39 <message role="user">

40 <content type="text">

41 'car part' ['concrete ', 'steering wheel ', 'tombola ']

42 </content >

43 </message >

44 <message role="assistant">

45 <content type="text">

46 'steering wheel '

47 </content >

48 </message >

49 <message role="user">

50 <content type="text">

51 '{user_input}' {options}

52 </content >

53 </message >

54 </data>

Listing C.2: Prompt for parsing chosen options with Llama3.

306

1 <data >

2 <message role='system '>

3 You are an assistant for planning multi-step robot actions for a

robotic manipulator equipped with a simple gripper.

4 You will be able to call Python functions representing your possible

actions.

5 Every task is solvable using existing functions and the context given

to you. The output should always be a simple list of function calls ,

including their parameters.

6 Output only Python code. Do not output textual descriptions or any text

other than Python code. Avoid nested function calls , and create local

variables instead.

7
8 natural_language_scene_description = (

9 "In this scene , you can see one small gear , one large gear and a

motor assembly next to each other."

10 "Both gears are moveable objects. The motor assembly has two

features where the gears can be inserted."

11 "The small gear belongs onto the tip of the shaft , the large one

belongs in the gear hole."

12 "The small gear must be inserted before the large gear.")

13
14 moveable_objects = [

15 small_gear

16 large_gear

17]

18
19 stationary_objects = [

20 motor_assembly

21]

22
23 #These implementations are hidden

24 def cad_point(object_identifer: str , prompt: str) -> am_control_plugin_python.

data.common_data.Point3d:

25 """

26 Returns a point from the CAD-Environment based on a natural language

description of the point/feature.

27 @param object_identifier: string , identifier of the object.

28 @param prompt: string , natural language description of the point/

feature.

29 @return: Point3d that's being referred to in the prompt.

30 """

31 pass

32
33 def object_location(object_identifier: str) -> am_control_plugin_python.data.

common_data.Point3d:

34 """

35 Returns the location of an object from the CAD-Environment given the

identifier of the object.

36 @param object_identifier: string , identifier of the object.

37 @return: Point3d , the location of the object in world coordinates.

38 """

39 pass

40
41 def move_linear_relative_contact(offset_x: float , offset_y: float , offset_z:

float):

42 """

43 Move on a relative , linear Cartesian path until a minium force in Z is

measured.

44 @param offset_x: Relative motion along the X direction (in local tool

coordinates)

45 @param offset_y: Relative motion along the Y direction (in local tool

coordinates)

46 @param offset_z: Relative motion along the Z direction (in local tool

coordinates)

307

APPENDIX C. PROMPTS

47 """

48 pass

49
50 def move_to_point(point_to: am_control_plugin_python.data.common_data.Point3d ,

offset_x: float , offset_y: float , offset_z: float):

51 """

52 Move on a planned joint motion to a specified cartesian pose

53 The caller must ensure that the goal pose is reachable for the robot.

54 @param point_to: Target point.

55 @param offset_x: Relative positioning offset to point_to in mm

56 @param offset_y: Relative positioning offset to point_to in mm

57 @param offset_z: Relative positioning offset to point_to in mm

58 """

59 pass

60
61 def insert (*args , ** kwargs):

62 """

63 Inserts insertable into receptacle. This can refer to all kinds of peg-

in-hole tasks.

64 The caller must ensure that the insertable and receptacle are aligned

before calling insert.

65 The caller must ensure that the insertable is grasped by the robot

before calling insert.

66 The caller must ensure that the robot is positioned above the

receptacle before calling insert.

67 @param insertable: object to be inserted

68 @param receptacle: object that receives the inserted object

69 """

70 pass

71
72 def open_gripper (*args , ** kwargs):

73 """

74 Opens the gripper.

75 """

76 pass

77
78 def close_gripper (*args , ** kwargs):

79 """

80 Closes the gripper.

81 """

82 pass

83
84 def grasp_relative(offset_z: float):

85 """

86 Grasp an object. The grasping motion is defined relative to the current

position of the object. The caller must ensure the robot is positioned

above the target object before calling grasp_relative.

87
88 Robot opens gripper , moves down and closes gripper , grasping the object

.

89 After that , the robot moves back to the original position.

90 @param offset_z: Offset along the Z direction , in mm. An offset_z of 20

means that the robot moves down by 20 mm to grasp the object.

91 """

92 pass

93
94 </message >

95 Move the large gear from point a to point b.

96 <message role='assistant '>

97 point_a = cad_point("large_gear", "The point that is most likely point

a")

98 move_to_point(point_a , 20)

99 grasp_relative (20)

100 point_b = cad_point("motor_assembly", "point b as specified in the

scene context")

101 move_to_point_(point_b , 10)

308

102 </message >

103 <message role='user'>pick up the small Gear and insert it onto the shaft

after insertion release the object and depart to a position a few

millimetres above the shaft </message >

104 </data >

Listing C.3: Generated prompt for gear assembly with MetaWizardLLM.

309

APPENDIX D

List of Publications

This work includes elements derived from previously published research in inter-
national conferences, workshops, books and patents. The relevant prior work is
cited in the corresponding sections of this dissertation. This appendix presents a
comprehensive overview.

Conference Papers

Alt, B., F. Aumann, L. Gienger, F. Jordan, D. Katic, R. Jäkel, and B. Graf (2020).
“Modulare, Datengetriebene Roboterprogrammierung Für Die Lösung Komplexer
Handhabungsaufgaben in Alltagsumgebungen”. In: AAL-Kongress 2020. Berlin:
VDE Verlag, pp. 17–22. isbn: 978-3-8007-5342-0.

Alt, B., J. Dvorak, D. Katic, R. Jäkel, M. Beetz, and G. Lanza (Jan. 2024a). “BANSAI:
Towards Bridging the AI Adoption Gap in Industrial Robotics with Neurosymbolic
Programming”. In: Procedia CIRP. Vol. 130. Póvoa de Varzim, Portugal: Elsevier
B.V., pp. 532–537. doi: 10.1016/j.procir.2024.10.125. arXiv: 2404.13652
[cs].

Alt, B., D. Katic, R. Jäkel, and M. Beetz (Oct. 2022b). “Heuristic-Free Optimization
of Force-Controlled Robot Search Strategies in Stochastic Environments”. In:
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Kyoto, Japan: IEEE, pp. 8887–8893. isbn: 978-1-6654-7927-1. doi: 10.1109/
IROS47612.2022.9982093.

Alt, B., D. Katic, R. Jäkel, A. K. Bozcuoglu, and M. Beetz (May 2021). “Robot
Program Parameter Inference via Differentiable Shadow Program Inversion”.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA).
Xi’an, China: IEEE, pp. 4672–4678. isbn: 978-1-7281-9077-8. doi: 10.1109/
ICRA48506.2021.9561206.

Alt, B., F. K. Kenfack, A. Haidu, D. Katic, R. Jäkel, and M. Beetz (Sept. 2023).
“Knowledge-Driven Robot Program Synthesis from Human VR Demonstrations”.
In: Proceedings of the 20th International Conference on Principles of Knowledge

311

https://doi.org/10.1016/j.procir.2024.10.125
https://arxiv.org/abs/2404.13652
https://arxiv.org/abs/2404.13652
https://doi.org/10.1109/IROS47612.2022.9982093
https://doi.org/10.1109/IROS47612.2022.9982093
https://doi.org/10.1109/ICRA48506.2021.9561206
https://doi.org/10.1109/ICRA48506.2021.9561206

APPENDIX D. LIST OF PUBLICATIONS

Representation and Reasoning. Rhodes, Greece: IJCAI, pp. 34–43. isbn: 978-1-
956792-02-7. doi: 10.24963/kr.2023/4.

Alt, B., U. Keßner, A. Taranovic, D. Katic, A. Hermann, R. Jäkel, and G. Neumann
(Mar. 2024b). “Domain-Specific Fine-Tuning of Large Language Models for Inter-
active Robot Programming”. In: European Robotics Forum 2024. Ed. by C. Secchi
and L. Marconi. Vol. 32. Springer Proceedings in Advanced Robotics. Rimini,
Italy: Springer Nature Switzerland, pp. 274–279. isbn: 978-3-031-76424-0.
doi: 10.1007/978-3-031-76424-0_49. arXiv: 2312.13905 [cs].

Alt, B., C. Kienle, D. Katic, R. Jäkel, and M. Beetz (May 2025). “Shadow Program
Inversion with Differentiable Planning: A Framework for Unified Robot Program
Parameter and Trajectory Optimization”. In: 2025 IEEE International Conference
on Robotics and Automation (ICRA). Atlanta, USA: IEEE. doi: 10.48550/arXiv.
2409.08678. arXiv: 2409.08678 [cs].

Alt, B., F. Stöckl, S. Müller, C. Braun, J. Raible, S. Alhasan, O. Rettig, L. Ringle, D.
Katic, R. Jäkel, M. Beetz, M. Strand, and M. F. Huber (May 2024c). “RoboGrind:
Intuitive and Interactive Surface Treatment with Industrial Robots”. In: 2024
IEEE International Conference on Robotics and Automation (ICRA). Yokohama,
Japan: IEEE, pp. 1–8. isbn: 979-8-3503-8457-4. doi: 10.1109/ICRA57147.
2024.10611143. arXiv: 2402.16542 [cs].

Alt, B., J. Zahn, C. Kienle, J. Dvorak, M. May, D. Katic, R. Jäkel, T. Kopp, M.
Beetz, and G. Lanza (Apr. 2024d). “Human-AI Interaction in Industrial Robotics:
Design and Empirical Evaluation of a User Interface for Explainable AI-Based
Robot Program Optimization”. In: Procedia CIRP. Vol. 130. Póvoa de Varzim,
Portugal: Elsevier B.V., pp. 591–596. doi: 10.1016/j.procir.2024.10.134. arXiv:
2404.19349 [cs].

Kienle, C., B. Alt, D. Katic, and R. Jäkel (May 2025). “QueryCAD: Grounded Question
Answering for CAD Models”. In: 2025 IEEE International Conference on Robotics
and Automation (ICRA). Atlanta, USA: IEEE. doi: 10.48550/arXiv.2409.08704.
arXiv: 2409.08704 [cs].

Raible, J., O. Rettig, B. Alt, A. Yaman, I. Gauger, L. Biasi, S. Müller, D. Katic,
M. Strand, and M. F. Huber (Aug. 2023). “Artificial Neural Network Guided
Compensation of Nonlinear Payload and Wear Effects for Industrial Robots”. In:
2023 IEEE 19th International Conference on Automation Science and Engineering
(CASE). Auckland, New Zealand: IEEE, pp. 1–8. isbn: 979-8-3503-2069-5. doi:
10.1109/CASE56687.2023.10260559.

Stöckl, F., M. Strand, S. Müller, M. Huber, J. Raible, C. Braun, D. Katic, B. Alt, and
H. Merkt (July 2023). “Autonomous Surface Grinding of Wind Turbine Blades”.
In: Intelligent Autonomous Systems 18. Ed. by S.-G. Lee, J. An, N. Y. Chong, M.
Strand, and J. H. Kim. Cham: Springer Nature Switzerland, pp. 451–457. isbn:
978-3-031-44981-9. doi: 10.1007/978-3-031-44981-9_38.

312

https://doi.org/10.24963/kr.2023/4
https://doi.org/10.1007/978-3-031-76424-0_49
https://arxiv.org/abs/2312.13905
https://doi.org/10.48550/arXiv.2409.08678
https://doi.org/10.48550/arXiv.2409.08678
https://arxiv.org/abs/2409.08678
https://doi.org/10.1109/ICRA57147.2024.10611143
https://doi.org/10.1109/ICRA57147.2024.10611143
https://arxiv.org/abs/2402.16542
https://doi.org/10.1016/j.procir.2024.10.134
https://arxiv.org/abs/2404.19349
https://doi.org/10.48550/arXiv.2409.08704
https://arxiv.org/abs/2409.08704
https://doi.org/10.1109/CASE56687.2023.10260559
https://doi.org/10.1007/978-3-031-44981-9_38

Journal Papers

Schultheis, A., B. Alt, S. Bast, A. Guldner, D. Jilg, D. Katic, J. Mundorf, T. Schlagen-
hauf, S. Weber, R. Bergmann, S. Bergweiler, L. Creutz, G. Dartmann, L. Malburg,
S. Naumann, M. Rezapour, and M. Ruskowski (Sept. 2024). “EASY: Energy-
Efficient Analysis and Control Processes in the Dynamic Edge-Cloud Continuum
for Industrial Manufacturing”. In: KI - Künstliche Intelligenz. issn: 1610-1987.
doi: 10.1007/s13218-024-00868-3.

Patents

Alt, B., R. Jäkel, and D. Katic (Feb. 2022a). “Method and System for Determin-
ing Optimized Program Parameters for a Robot Program”. WO2022022784A1
(Karlsruhe).

313

https://doi.org/10.1007/s13218-024-00868-3

List of Abbreviations

AI artificial intelligence. i, 4, 5, 7–13, 15, 17–20, 22, 23, 34, 69, 70, 73, 76–79,
82, 84, 86, 87, 111, 126, 146, 148, 150, 152, 186, 205, 206, 212, 213, 217,
218, 221–237, 239–241, 243–245, 247, 248

API application programming interface. 30, 78, 81, 182, 189, 191, 207–209, 211,
213, 222, 231, 234, 245

ARTM ArtiMinds Robot Task Model. 30, 31, 33, 38, 44, 48–51, 53, 55, 69, 72, 73,
82, 88, 94, 97, 101, 102, 114, 120, 131, 134, 139, 148, 159, 160, 168–170,
172, 173, 176, 195, 209, 211, 212, 231, 244–246, 303

AST abstract syntax tree. 209

BANSAI Bridging the AI Adoption Gap with Neurosymbolic AI. 224–226, 229,
231–237, 240, 245, 246

BT Behavior Tree. 24, 33, 71

CAD computer-aided design. 207, 209–213, 215, 217, 218, 231, 240

CaP Code as Policies. 78, 182, 206, 212, 213

CNMP Conditional Neural Movement Primitive. 24, 67, 68, 79

CNN convolutional neural network. 57, 74, 105, 185

CPL CRAM Plan Language. 78, 168, 170, 185, 234

CRAM Cognitive Robot Abstract Machine. 26, 78, 83, 168, 171, 184, 185, 233,
234

CSP Constraint Satisfaction Problem. 69

DAG directed acyclic graph. 33, 227

DCG differentiable computation graph. 13, 20, 25, 35–37, 40, 41, 43, 44, 46–50,
52, 53, 57, 64, 77, 79, 80, 82, 84, 85, 90, 91, 105–107, 131, 132, 142, 144,
231, 239

315

DGPMP2 Differentiable Gaussian Process Motion Planning. 55–59, 61, 142

DGPMP2-ND Differentiable Gaussian Process Motion Planning for N-DoF Manipu-
lators. 13, 55, 58–64, 79, 100, 131–133, 135–140, 143, 144, 147, 231, 236,
240

DH Denavit-Hartenberg. 45

DL deep learning. 5–8, 10, 23, 224

DMP Dynamic Movement Primitive. 18, 25, 26, 28–31, 35, 39, 66–68, 79, 95, 96,
131

DNN deep neural network. 17, 40–42, 53, 67, 71, 80, 82, 105, 141, 142, 210

DoF degree of freedom. xv, 45, 46, 55, 57, 58, 66, 67, 82, 141, 150

DSL domain-specific language. 78, 213

DUL DOLCE+DnS Ultralite. 155, 158, 159

EOS end-of-sequence. 36, 37, 52, 92

FK forward kinematics. 36, 42, 44–46, 59–61, 90

FOMAML First-Order MAML. 118, 119, 126, 144

GMM Gaussian Mixture Model. 66, 122

GP Gaussian process. 55–59, 61, 62, 66–68, 133, 136, 138, 141, 142

GPMP2 Gaussian Process Motion Planning 2. 55, 57, 59

GPU graphics processing unit. 85, 91, 119, 229, 231, 245

GRU Gated Recurrent Unit. 39, 40, 52, 53, 109, 129, 147, 244, 303

GUI graphical user interface. 65, 72, 84, 146, 201, 203, 212, 222, 227, 229, 231,
242

HTN Hierarchical Task Network. 29, 69, 70, 81

HTTP Hypertext Transfer Protocol. 231

IAI Institute for Artificial Intelligence. v, 174, 178

IDE integrated development environment. 55, 148, 172, 173, 191, 211, 218, 231

IK inverse kinematics. 19, 36, 42, 44–47, 105

316

IRI Internationalized Resource Identifier. 158

KB knowledge base. 154–157, 187–189, 191, 192, 199–201, 243

KR&R Knowledge Representation & Reasoning. 12, 13, 78, 153, 154, 167, 171,
181, 184, 188, 189, 191, 196, 203, 206, 234

L-BFGS limited-memory Broyden–Fletcher–Goldfarb–Shanno. 46, 47

LAR Learning and Analytics for Robots. 148, 231, 245, 246

LfD Learning from Demonstration. 70, 107

LLM large language model. 76, 78, 79, 84, 152, 181–183, 204–218, 231, 233,
240, 244, 247

LM Levenberg-Marquardt. 46, 104

LRP Layer-wise Relevance Propagation. 229

MAE mean absolute error. 101, 102, 228

MAML Model-Agnostic Meta Learning. 118, 119, 126

MAP maximum a posteriori. 55–58

MES manufacturing execution system. 65

ML machine learning. 111, 112, 124, 141, 146, 215, 227, 230, 231, 233

MP Movement Primitive. 24, 34, 66–69, 71, 74, 107

MSE mean squared error. 37, 102, 119, 197

MuTT Multimodal Trajectory Transformer. 147, 148, 246

NEEM Narrative-Enabled Episodic Memory. 163–167, 174, 175, 184, 185, 233

NLP natural language processing. 189, 198, 217

NNII Neural Network Iterative Inversion. 105, 106, 124

NRP Neurosymbolic Robot Program. i, iii, 11–13, 15, 16, 20, 23–31, 33, 34, 36,
37, 39, 45, 47–52, 54, 55, 58, 62, 64, 77–86, 88–90, 102, 103, 107–113,
117–119, 129, 144, 146, 147, 151–153, 187, 215, 217, 218, 222, 225, 226,
231, 236, 239–241, 243, 245–247

NSGA-II Non-dominated Sorting Genetic Algorithm. 114–117, 122

317

ODE ordinary differential equation. 18, 37, 67, 79

OEM original equipment manufacturer. 65

OWL Web Ontology Language. 157

PbD Programming by Demonstration. 84, 202, 235, 242

PCB printed circuit board. 7, 32, 39, 50, 93, 95, 97, 120

PDDL Planning Domain Definition Language. 69, 71, 184

PGH Physical Grounding Hypothesis. 17

PID proportional-integral-derivative. 87

PLC programmable logic controller. 223

POMDP partially observable Markov decision process. 74, 203

ProDMP Probabilistic Dynamic Movement Primitive. 67, 68

ProMP Probabilistic Movement Primitive. 67, 68

PSSH Physical Symbol System Hypothesis. 17

QA quality assurance. 138, 139, 143, 147

RAG Retrieval-Augmented Generation. 128, 151, 206, 207, 209, 210, 213, 215,
218, 240, 244, 247

RDF Resource Description Framework. 154–158

RL Reinforcement Learning. 5, 67, 68, 74, 75, 81, 105–108, 141, 145

RMP Riemannian Motion Policies. 68

RPS Robot Programming Suite. 55, 131, 148, 172, 173, 191, 192, 211, 231, 245

RRT Rapidly Exploring Random Tree. 69

SDF signed distance field. 59, 135, 140, 143, 144

SELU scaled exponential linear unit. 40, 41

SGD stochastic gradient descent. 91, 105, 118, 126, 144

SOMA Socio-Physical Model of Activities. 155, 158–161, 163, 164, 166, 180, 188,
189, 234

318

SPI Shadow Program Inversion. 12, 13, 88–103, 105–117, 121–124, 128–133,
135, 140, 143–148, 150, 206, 222, 225–231, 236, 240, 242, 244–247

SPI-DP Shadow Program Inversion with Differentiable Planning. 130, 132–136,
138–144, 147, 240, 246

TAMP Task and Motion Planning. 24, 70, 71, 81, 142, 184, 185, 247

TCP tool center point. 35, 111, 156, 170

TF transformation. 155, 156, 163, 166, 171, 183

THT through-hole technology. 7, 93, 97, 120

UR Universal Robots. 72

URDF Unified Robot Description Format. 45, 155

UX user experience. 230

VLA vision-language-action. 76, 77, 125, 127, 128, 183, 204, 206, 218

VR virtual reality. 13, 78, 84, 100–104, 129, 151–153, 156, 163–166, 171, 173–
177, 180, 181, 183, 186, 215–217, 234, 240

WLK Williams, Linden and Kinderman. 105, 106

XAI explainable artificial intelligence. 23, 83, 146, 226

XUI Explanation User Interface. 148, 221, 226–230, 236, 240, 244–246

319

	List of Figures
	List of Tables
	Introduction
	AI-Enabled Robot Programming
	Learning and Self-Optimization
	The Role of the Human Programmer
	Control
	A New Robot Programming Paradigm

	Contributions
	Outline

	A Neurosymbolic Robot Program Representation
	A Question of Representation
	Symbolic and Subsymbolic Representations
	Explicit and Implicit Representations
	Neurosymbolic Representations

	Neurosymbolic Robot Programs: Overview
	Desiderata for a Neurosymbolic Program Representation
	A Dual Program Representation with a Differentiable Surrogate

	Source Program Representations
	A Formal Definition of Robot Skills
	Skill-based Robot Programs
	Discussion

	Differentiable Shadow Programs
	Shadow Skills
	Evaluating Shadow Skills
	Training Shadow Skills
	Shadow Programs
	Discussion

	Differentiable Motion Planning
	Differentiable Gaussian Process Motion Planning
	DGPMP2-ND: Differentiable Gaussian Process Motion Planning for N-DoF Manipulators
	Discussion

	Related Work
	Textual Program Representations
	Movement Primitives
	Task-Based Program Representations
	Deep Neural Networks
	Hybrid Representations

	Discussion
	Learning, Planning and Optimization
	Hardware and Task Agnosticity
	Human Interpretability
	Human Interaction
	Additional Desiderata

	Conclusion

	First-Order Robot Program Parameter Optimization
	Optimization of Robot Program Parameters via Inversion of Differentiable Shadow Programs
	Overview
	Differentiable Task Objectives
	Experiments
	Related Work
	Discussion

	Lifelong Learning and Optimization in Stochastic Environments
	Data-Efficient nrp Learning in Stochastic Environments
	Lifelong NRP Learning and Optimization in Nonstationary Environments
	Experiments
	Related Work
	Discussion

	Joint Optimization of Task Parameters and Motion Trajectories
	First-Order Parameter and Trajectory Optimization with Differentiable Motion Planning
	Experiments
	Related Work
	Discussion

	Discussion
	Conclusion
	Summary
	Outlook

	Interactive AI-Enabled Robot Program Synthesis
	Knowledge-Driven Robot Program Synthesis
	Overview
	Knowledge Representation
	From VR Human Demonstrations to NEEMs
	Task Abstraction
	Task Grounding
	Program Execution
	Experiments
	Related Work
	Discussion

	An Interactive Robot Programming Assistant
	Overview
	Metatask Representation
	Metatask Grounding
	Experiments
	Related Work
	Discussion

	Prompt-based Program Synthesis with Large Language Models
	MetaWizardLLM
	Experiments
	Related Work
	Discussion

	Discussion
	Conclusion
	Summary
	Outlook

	A Framework for Neurosymbolic Robot Programming
	A Framework for Neurosymbolic Robot Programming
	A Neurosymbolic Robot Programming Workflow
	User Interfaces for Neurosymbolic Robot Programming
	Validation and User Study
	A Software Framework for Neurosymbolic Robot Programming

	Related Work
	Discussion
	Conclusion

	Conclusion
	Summary
	Discussion
	Outlook
	Conclusion

	Bibliography
	Appendix
	Differentiable Shadow Programs: Predicted Trajectories
	Dialogue Transcripts
	Prompts
	List of Publications
	List of Abbreviations

