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Preface

The work presented in this thesis was carried out during my work in the working group

Cognitive Neuroinformatics affiliated to the University of Bremen. I started my research

regarding biological vision after I had finished my studies in mathematics at the University

of Bremen.

It turned out that having a background in mathematics is not always a blessing. As a

mathematician I always have an intrinsic motivation to understand the structures within an

abstract “mathematical” world. In the field of computational neuroscience including vision the

results have commonly an empirical nature. There the dilemma starts. Roughly spoken the

empirical world is “dirty” compared to the “nice” mathematical world. As fast as an empirical

result is described by an abstract structural relation, even faster another explanation can be

found. The number of possible explanations seems to be infinitely large. This causes big

problems in what we really think to know. In the relatively young field of neuroscience the

number of empirical results continuously increases. As a result, the number of conclusions

how the neural structure should work also increases. But what do we really know about these

structures if the conclusions are based on results within the abstract mathematical world?

This discussion kept and still keeps a lot of philosophers busy. However, I believe in the

existence of a relation between the empirical world and the abstract mathematical world.

The important point is that without explicitly knowing anything about the relation between

the empirical and the mathematical world, one has to be very careful in drawing conclusions

regarding the empirical world based on results derived in the abstract mathematical world.

But the advantage, in my opinion, of results developed in a mathematical way is their inherent

logic. Ignoring the criticism on the axiomatic system not to be complete, mathematical results

which are grounded on set theory and logic can be derived. Within this framework everything

is logical and structured. This circumstance is my understanding of “beauty in mathematics”.

Assuming that there exists a relation between the two worlds, I hope that this beauty can

somehow be transfered to the empirical world. Even if this can be done only partially, it

is a success. This hope motivated my work on the visual system. I started my adventure

through different disciplines like signal processing, linear system theory, nonlinear system

theory, differential geometry, topology, probability theory, and information theory.

First I would like to thank my supervisor Dr. Christoph Zetzsche for his motivation, teach-

ing, guidance and many comments which enabled me to develop my understanding of the

subject. I also would like to thank Prof. Dr. Kerstin Schill for the financial support and the

employment in her working group. I am heartily thankful to my co-authors Thomas Reinek-

ing, David Nakath, Konrad Gadzicki, Christoph Zetzsche, and Kerstin Schill for the beneficial

work on the articles which are part of this thesis. I am indebted to all of my colleagues for

their support and many discussions. I wish to thank my sister, Sarah Kluth, and my coworker,
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David Nakath, for proofreading and comments. At last and most importantly I wish to thank

my partner Karina Heidt who supports me in everything, cares for me and has complete

understanding.

Bremen, 3rd March 2015

Tobias Kluth
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Abstract

Biological vision and computer vision cannot be treated independently anymore. The digital

revolution and the emergence of more and more sophisticated technical applications caused a

symbiosis between the two communities. Competitive technical devices challenging the human

performance rely increasingly on algorithms motivated by the human vision system. On the

other hand, computational methods can be used to gain a richer understanding of neural

behavior, e.g. the behavior of populations of multiple processing units. The relations between

computational approaches and biological findings range from low level vision to cortical areas

being responsible for higher cognitive abilities.

In early stages of the visual cortex cells have been recorded which could not be explained by

the standard approach of orientation- and frequency-selective linear filters anymore. These

cells did not respond to straight lines or simple gratings but they fired whenever a more

complicated stimulus, like a corner or an end-stopped line, was presented within the receptive

field. Using the concept of intrinsic dimensionality, these cells can be classified as intrinsic-

two-dimensional systems. The intrinsic dimensionality determines the number of degrees of

freedom in the domain which is required to completely determine a signal. A constant image

has dimension zero, straight lines and trigonometric functions in one direction have dimension

one, and the remaining signals, which require the full number of degrees of freedom, have the

dimension two. In this term the reported cells respond to two dimensional signals only.

Motivated by the classical approach, which can be realized by orientation- and frequency-

selective Gabor-filter functions, a generalized Gabor framework is developed in the context

of second-order Volterra systems. The generalized Gabor approach is then used to design

intrinsic two-dimensional systems which have the same selectivity properties like the reported

cells in early visual cortex.

Numerical cognition is commonly assumed to be a higher cognitive ability of humans. The

estimation of the number of things from the environment requires a high degree of abstraction.

Several studies showed that humans and other species have access to this abstract information.

But it is still unclear how this information can be extracted by neural hardware. If one

wants to deal with this issue, one has to think about the immense invariance property of

number. One can apply a high number of operations to objects which do not change its

number. In this work, this problem is considered from a topological perspective. Well known

relations between differential geometry and topology are used to develop a computational

model. Surprisingly, the resulting operators providing the features which are integrated in

the system are intrinsic-two-dimensional operators. This model is used to conduct standard

number estimation experiments. The results are then compared to reported human behavior.

The last topic of this work is active object recognition. The ability to move the information

gathering device, like humans can move their eyes, provides the opportunity to choose the
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next action. Studies of human saccade behavior suggest that this is not done in a random

manner. In order to decrease the time an active object recognition system needs to reach a

certain level of performance, several action selection strategies are investigated. The strategies

considered within this work are based on information theoretical and probabilistic concepts.

These strategies are finally compared to a strategy based on an intrinsic-two-dimensional

operator.

All three topics are investigated with respect to their relation to the concept of intrinsic

dimensionality from a mathematical point of view.
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Zusammenfassung

Biologische und technische Sehsysteme können nicht mehr unabhängig voneinander betra-

chtet werden. Die digitale Revolution und die Entwicklung von immer komplexeren tech-

nischen Anwendungen haben zu einer Symbiose zwischen den beiden Felder geführt. Tech-

nische Systeme, die an die Leistungsfähigkeit des Menschen herankommen wollen, basieren

zunehmend auf Mechanismen des menschlichen Sehsystems. Auf der anderen Seite ermöglicht

das Nutzen technischer Ansätze den Gewinn neuer Erkenntnisse über die Funktionsweise kom-

plexer neuronaler Systeme, wie beispielsweise das Verhalten von Netzwerken bestehend aus

parallel geschalteten Verarbeitungseinheiten. Der Umfang dieser symbiotischen Verbindung

reicht von frühen Verarbeitungsstufen des visuellen Systems bis hin zu höheren kognitiven

Fähigkeiten.

In frühen Stufen des visuellen Kortex wurden Zellen gefunden, die nicht mehr allein durch

den linearen Orientierungs- und Frequenz-selektiven Ansatz erklärt werden können. Diese

Zellen reagieren nicht auf Linien oder einfache Gitterstrukturen, sondern werden durch kom-

plexere Stimuli im rezeptiven Feld, wie zum Beispiel eine Ecke oder ein Linienende, gereizt.

Unter Verwendung des Prinzips der intrinsischen Dimensionalität können diese Zellen als

intrinsisch zwei-dimensional klassifiziert werden. Die intrinsische Dimensionalität bestimmt

dabei die Anzahl der Freiheitsgrade im Definitionsbereich, die benötigt wird, um das Signal

komplett zu bestimmen. Ein konstantes Signal hat die intrinsische Dimensionalität Null, Lin-

ien oder trigonometrische Funktionen in eine Richtung haben die Dimensionalität Eins und

Signale, die beide Freiheitsgrade benötigen, haben die Dimensionalität Zwei. Die beobachteten

Neurone reagieren somit nur auf intrinsisch-zwei-dimensionale Signale. Basierend auf dem

klassischen Ansatz, der lineare Orientierungs- und Frequenz-selektive Gabor-Filter benutzt,

wird ein generalisiertes nichtlineares Gabor-Filter im Kontext der Volterra-Systeme zweiter

Ordnung entwickelt. Dieser Ansatz wird benutzt, um intrinsisch-zwei-dimensionale Systeme

zu implementieren, die die Selektivitätseigenschaften der beobachteten Neurone besitzen.

Die numerische Wahrnehmung des Menschen wird oft als eine höhere kognitive Fähigkeit

klassifiziert. Das Bestimmen der Anzahl aus der Umgebung erfordert ein hohes Abstrak-

tionsvermögen. Eine Vielzahl von Studien mit Menschen und anderen Spezies hat gezeigt, dass

die getesteten Individuen einen Zugang zu dieser Art von Information haben. Es ist jedoch im-

mer noch aktueller Forschungsgegenstand, wie das Gehirn und somit ein neuronales Netzwerk

diese Information aus der Umgebung extrahiert. Um mit dieser Problematik umgehen zu kön-

nen, muss die starke Invarianzeigenschaft, die sich hinter der Anzahl verbirgt, berücksichtigt

werden. Eine Vielzahl an Transformationen kann beispielsweise auf ein Objekt angewandt

werden, ohne dass sich dessen Anzahl verändert. Diese Problemstellung wird im Rahmen

dieser Arbeit aus Sicht der mathematischen Topologie untersucht. Die Verbindung zwischen

Topologie und Differentialgeometrie wird ausgenutzt, um ein implementierbares Modell zu
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entwickeln. Interessanterweise gibt es eine Verbindung zwischen den extrahierten Merkmalen

innerhalb des Modells und dem Konzept der intrinsischen Dimensionalität. Die extrahierten

Merkmale werden durch intrinsisch-zwei-dimensionale Operatoren zur Verfügung gestellt. Das

entwickelte Modell wird in typischen Experimenten der numerischen Wahrnehmung getestet

und mit menschlichem Verhalten verglichen.

Der letzte Themenbereich behandelt die aktive Objekterkennung. Die Fähigkeit den infor-

mationsbeschaffenden Sensor, wie der Mensch sein Auge, zu bewegen, ermöglicht es, die näch-

ste durchzuführende Aktion auszuwählen. Untersuchungen menschlicher Augenbewegungen

haben ergeben, dass diese Aktionsauswahl nicht zufällig passiert, sondern einer gewissen Sys-

tematik zu unterliegen scheint. Um die Geschwindigkeit des Erkennungsprozesses zu erhöhen,

beziehungsweise die Anzahl der durchgeführten Aktionen zum Erreichen einer bestimmten

Performanz zu verringern, werden unterschiedliche Auswahlverfahren zur Bestimmung der

nächsten Aktion untersucht. Die Strategien basieren sowohl auf informationstheoretischen,

als auch auf probabilistischen Größen. Letztendlich werden diese Ansätze mit einer Strategie

basierend auf einem intrinsisch-zwei-dimensionalen Operator verglichen.

Alle Themenbereiche werden auch im Hinblick auf ihren mathematischen Zusammenhang

zum Konzept der intrinsichen Dimensionalität untersucht.
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1 Introduction

The visual system of humans and animals is one of the most important modalities for inter-

acting with the world. It extracts relevant information nearly on-the-fly. Knowing what runs

in one’s direction, is it an enemy or not, can decide on survival. Similarly, the decision where

the higher amount of food is located plays an important role as well. Although the study of

vision has a long history, the definite knowledge about the functional principals underlying

the information extraction process is still limited. Nowadays, the study of biological vision

cannot be seen independent of computational applications anymore. The digital revolution

within the last decades, the emergence of fields like computer vision as a sub-discipline of com-

puter science, and the development of more and more sophisticated technical devices relying

on visual information caused a symbiosis between these fields. On the one hand, technical

applications trying to be as efficient as humans incorporate methods motivated by the human

visual system. Assuming that the visual system is optimally adapted to the natural world and

its structures, gives the justification to hope that applying biological principals yield better

technical systems. On the other hand, the study of more and more complex artificial sys-

tems in computer science helps to obtain new insights in reported brain functionalities. This

holds true for low level vision, i.e. information extracted in the early visual cortex, as well

as higher cognitive abilities of humans. In low level vision the modeling of neuronal behavior

can yield better strategies to encode natural images or to provide relevant features for high

level classification tasks. The understanding of higher cortical functionalities can yield better

algorithms to extract relevant information with computer vision systems. For example, the

number of objects or the identity of an object.

The subtitle of this work “nonlinear filter design and applications” recalls the content of this

work. Three different main topics are addressed here. On the one hand, functional models for

neurons in early visual cortex are developed and investigated. This belongs to the field of low

level vision. And on the other hand, higher cognitive abilities are investigated. In particular,

these applications are numerical cognition and active object recognition. But what motivates

the combination of these fields? One argument would be that all investigated functionalities

are realized in the human brain differing in their location only. This would be a relatively

weak argument for this compilation. The stronger argument is that each topic is influenced

significantly by a specific concept, the concept of intrinsic dimensionality. The influence is

considered within each chapter addressing another research question. This directly leads to

the three major questions affecting this work.

• How can neurons of the visual cortex be modeled so that they show a significantly
nonlinear behavior in line with the concept of intrinsic dimensionality? (Section 2)

• How can numerical cognition be modeled from operations determined by the concept of
intrinsic dimensionality so that human behavior can be explained? (Section 3)
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• How can the action selection for active object recognition be influenced by information
theoretical quantities and operations determined by the concept of intrinsic dimension-

ality? (Section 4)

Possible answers to these questions are presented in the referenced sections. Each section

contains a related work section and a mathematical preliminaries section. In particular,

the relation to the concept of intrinsic dimensionality for the second and the third research

question is stated in Section 3.2 and 4.2. A short overview about the biological vision system

is given in Section 1.1 and linear modeling approaches of functionalities in the early stages

of the visual pathway are presented in Section 1.2. The concept of intrinsic dimensionality is

introduced in a mathematical way in Section 1.3.

1.1 The visual pathway

This section gives a coarse overview about the anatomy and the physiology of the first parts

of the visual pathway. For considerations in more detail, the reader is referred to textbooks

like [34].

The visual information is gathered by the eye. An image is projected onto the retina which

is an area equipped with photoreceptor cells. This area is located at the inner surface of

the back part of the eye. One important observation regarding visual perception is that

there exist regional differences in the information processing within the visual field. This

goes back to first behavioral findings regarding letter perception in the periphery by Aubert

and Foerster in 1857 [3]. In 1935 Osterberg published his results about the receptor density

distribution on the retina in dependence on the eccentricity [60]. Two regions in the visual

field are distinguished, the periphery and the fovea. The information which is gathered by a

huge number of receptor cells on the retina is then processed by bipolar cells. The bipolar

cells send the information to retinal ganglion cells which encode different aspects of the visual

stimulus. Information like stimulus size, color, and movement, for example, is carried to the

thalamus and then to the visual cortex. The important parts which are considered in more

detail are the retina, the lateral geniculate nucleus, and the primary visual cortex V1.

The retina converts the projected image into neural responses. It is the innermost layer

of the eye consisting of neurons and supporting cells and covering the choroid. The retina is

derived from the neural tube such that it is part of the central nervous system. The neural

retina contains five types of neurons: visual receptor cells, horizontal cells, bipolar cells,

amacrine cells, and retinal ganglion cells. These cells are organized in multiple layers from

the outside to the inside within the retina. This means that the light passing through the lens

must pass through the other layers before it reaches the light-sensitive photo receptors. The

area which corresponds to the central visual field, i.e. the fovea, is organized differently. The

retina there consists of fewer layers such that a clearer image without obstacles is projected

to the retina. The remaining cells are located in the surrounding of the fovea so that this
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region is thicker. The union of both regions is referred to as macula. This part of the retina

corresponds to the region with the highest resolution in the visual field. The retinal ganglion

cells exit the retina in one specific region. There they build the optic nerve. In this region no

photo receptors are located which causes the “blind spot” in the visual field. Humans have

two kinds of photoreceptors, rods and cones. These types differ not only in their structure but

also in their functionality. Rods are responsible for scotopic vision. They are more sensitive

to light and can deal with low levels of illumination. The visual periphery is dominated by

this kind of photoreceptors. Cones are responsible for photopic vision. There exist three

different cell types which are sensitive to different bandwidths of the spectrum of light. Thus

they are color sensitive. The fovea consists of cones only. This region is characterized by

high visual acuity and color vision. The next layer within the retina consists of bipolar and

horizontal cells. These cells have synapses to the photoreceptors. The bipolar cells also have

synapses with the amacrine cells and the ganglion cells. Thus the horizontal cells have an

implicit connection to the ganglion cells only. There exist two types of bipolar cells, ON-cells

and OFF-cells. The ON-cells detect light regions in a dark background and OFF-cells detect

dark regions in a light background [20]. Bipolar cells do not generate action potentials. The

receptive field of bipolar cells, i.e. all photoreceptors having a synapse with the bipolar cell,

differs by the type of photoreceptor. The receptive field of cells with cones are very small, i.e.

up to one cone only. In contrast, the receptive fields with rods vary from a few up to fifty

or more receptors. The ganglion cells, whose axons exit the retina to the lateral geniculate

nucleus of the thalamus, are the connection to the brain. The receptive fields of the bipolar

cells which have synapse with the respective ganglion cell determine the receptive field of

the ganglion cell. A ganglion cell which has a synapse with an ON bipolar cell thus has an

ON-center/OFF-surround receptive field. Analogously, a ganglion cell which has a synapse

with an OFF bipolar cell has an OFF-center/ON-surround receptive field. In summary the

visual information is processed by ∼125 million photoreceptors which converge to ∼10 million
bipolar cells which again converge to ∼1 million ganglion cells. Further detail information
about the retina can be found in [19].

The axons of the ganglion cells terminate in the lateral geniculate nucleus (LGN) which is

responsible for visual perception. This is one destination beside three other nuclei (superior

colliculus - control of eye movements, pretectum - control of pupillary reflex, suprachiasmatic

nucleus - control of hormonal changes) [31, 62]. The LGN consists of three types of cells

and is structured in six layers. Two magnocellular layers consist of larger mLGN cells which

have a relatively large center-surround receptive field. These cells are insensitive to color and

they are most sensitive to the movement of visual stimuli. Four parvocellular layer consist of

smaller pLGN cells which have relatively small center-surround receptive fields. These cells

are sensitive to color and can detect contrasts which build the basis shape discrimination. The

third class of the smallest koniocellular neurons builds thin layers which are located between
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the six principal layers. These neurons have a stronger color sensitivity such that they are

well suited to support shape discrimination. The axons of these three cell types terminate in

different layers of the primary visual cortex.

The primary visual cortex (V1) is located in the occipital lobe of the brain. The brain region

is also referred to as striate cortex1. The striate cortex does the initial cortical processing of all

visual information and sends the information to higher cortical areas. V1 is structured in six

layers. The axons from the LGN terminate in layer 4 with lateral connections to layer 6. Layer

6 has a connection to the thalamus again. Other cortical areas are connected with layer 2 and

layer 3. And layer 5 has outputs to other subcortical regions. The area V1 differs from other

cortical regions in their number of neurons. Especially in layer 4 it has a higher density of

neurons [63]. V1 has other remarkable properties. First, it is retinotopically organized which

means that it contains a complete map of the visual field. Positions which are nearby in the

visual field are also nearby in V1 [1]. This visual field position to cortex position mapping is

not an isometric map. The small central part of the visual field corresponds to approximately

50% of the neurons located in V1 [80]. Second, this mapping transforms concentric circles and

radial lines in the visual field to orthogonal lines in V1 [70]. For further detail information

about the primary visual cortex, the reader is referred to [16].

1.2 Linear models in the visual system

The information processing in the visual pathway is commonly assumed to be parallel, i.e.

different kinds of information are extracted simultaneously. This goes back to Campbell and

Robson [11] who found out that the desensitization to high-contrast gratings depends on the

orientation and the spatial frequency of the grating. They concluded that the visual pathway

contains various orientation- and frequency-selective features which are processed in parallel

channels. It turned out that linear system theory plays an important role in modeling these

functionalities of the visual system. Before we start with examples from the literature in

which the observed phenomena were modeled successfully with linear systems, we recall the

following definition of a linear system. Any further information regarding properties of linear

systems can be found in standard textbooks, e.g. [78], and is not part of this work.

Definition 1.1 (Linear system). Let T : L2(R2)→ L2(R2) be an operator defining a system

which maps the input signal u to a response signal r, i.e. r = T (u). The operator T is a

linear operator if and only if

T (k1u1 + k2u2) = k1T (u1) + k2T (u2) (1.1)

for arbitrary signals u1, u2 ∈ L2(R2) and k1, k2 ∈ R. The system defined by the operator T is

1The name “striate cortex” is motivated by a visible stripe of axons which have their origin in the LGN and
which terminate in this region.
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(a) (b) (c)

Figure 1.1: The filter kernel of the Mexican hat function (σ = 0.025) is illustrated in (a). The
filter response (c) of the image (b) is computed by the convolution of the image
and the filter kernel.

then a linear system.

Remark 1.2. Let T be additionally shift-invariant, i.e. r(x−δx) = T (u(x−δx)) for arbitrary
δx and a given response function r = T (u). Knowing the impulse response h ∈ L1(R2)2 of

the system T , the linear shift-invariant system T is determined by

r(x) = T (u)(x) =

∫

R2

h(x− y)u(y) dy = (h ∗ u)(x). (1.2)

The receptive field of a neuron is defined by all cells which have a synapse with this neuron.

In the linear system the synaptic weighting of this receptive field corresponds to the impulse

response h. Positive function values of h define the excitatory part of the receptive field.

The negative function values define the inhibitory part. Thus the response of the neuron is

completely determined by this linear filter operation. The stimulus u can be split into various

filter outputs defined by different impulse responses. Consequently, the extracted information

can be processed in parallel.

The receptive field of retinal ganglion cells is circular symmetric with an excitatory center

and an inhibitory surrounding [47]. The interplay between excitatory and inhibitory regions

is also known as lateral inhibition and increases the contrast at sharp edges in the stimulus.

In order to model this functionality Marr and Hildreth [50], for example, proposed a filter

kernel defined by the Laplace operator applied to a two-dimensional Gaussian function. The

kernel is defined by

h(x) = − 1

πσ4

(

1− ‖x‖
2

2σ2

)

e−
‖x‖2

2σ2 , x ∈ R
2, (1.3)

where the size of the excitatory center can be controlled by the parameter σ. The filter kernel,

2h ∈ L1(R2) results from Young’s inequality for convolution.
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which is also referred to as Mexican hat function3, and example filter outputs are illustrated

in Figure 1.1. The linear system defined by this kernel allowed to explain physiological data

from retinal ganglion cells [51].

The receptive fields of cells in the visual cortex are more complicated. Hubel and Wiesel

[35] identified three different types of cells: simple cells, complex cells, and hypercomplex

cells4. The distinction criterion can be found in more detail in [76]. The authors also propose

a formal method to identify the cell type.

Simple cells have receptive fields similar to the receptive fields of ganglion cells. But the

fundamental difference is that this cell type additionally is selective to the orientation of the

stimulus. This results in an increase of selectivity in general. The simple cell behavior, i.e.

spatially localized receptive fields which consist of distinct elongated excitatory and inhibitory

regions, can be modeled by even- and odd-symmetric Gabor filter kernels [15, 52]

heven(V (φ)Tx) =heven(y) = e−
1
2
yTΣ−1y cos(fy1 + θ), x ∈ R

2, (1.4)

and hodd(V (φ)Tx) =hodd(y) = e−
1
2
yTΣ−1y sin(fy1 + θ), x ∈ R

2, (1.5)

where

V (φ) =

(

cos(φ) − sin(φ)

sin(φ) cos(φ)

)

is the rotation matrix into the rotated y coordinate system. Σ is the covariance matrix which

determines the speed of decrease in amplitude, f is the spatial frequency of the trigonometric

function, and θ determines the phase shift. The filter kernels in different instantiations and

corresponding example filter outputs are illustrated in Figure 1.2. This decomposition in

different orientations and spatial frequencies is the standard model of V1. Similar to simple

cells, complex cells are also orientation selective but they respond independent of the exact

position of the presented stimulus. These cells introduce a position invariance in a certain

neighborhood. The third cell type, the hypercomplex cell, also has an orientation-selective

property but it does not respond to elongated stimuli like lines or gratings. These cells

respond to end-stopped lines or corners, for example. Complex cells and hypercomplex cells

cannot be modeled linear-only anymore. The theoretical justification for not modeling the

behavior of these cells by a linear system is given in the following section.

3The Mexican hat function can be approximated by the difference of two Gaussian functions [50].
4The term hypercomplex was replaced by the term end-stopped as there is evidence that simple cells exist
which have the selectivity property [36].
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(a)

(b)

(c)

(d)

Figure 1.2: The even-symmetric (a) and the odd-symmetric (c) Gabor filter kernels (φ = 135◦,
f = 20π, Σ11 = 0.025, Σ22 = 0.05, and Σ21 = Σ12 = 0) are illustrated. The
filter response of the respective filters applied to the image in Figure 1.1(b) are
illustrated in (b) for the even-symmetric and in (d) for the odd-symmetric filter
kernel.

1.3 The concept of intrinsic dimensionality

The concept of intrinsic dimensionality was developed by Zetzsche and Barth in the early

nineties [86, 87]. It connects the dimensions of the input of a signal with the shape of the

signal. The intrinsic dimensionality of a signal is defined by the degrees of freedom in the

input space which are necessary to determine a constant path of function values within the

signal uniquely. In the following, we consider signals with a two-dimensional domain, i.e.

images, and their intrinsic dimensionality as defined in the following.

Definition 1.3 (Intrinsic dimensionality). Let u be a signal which is defined by a function

u : R2 → R, u ∈ L2(R2), with a compact support Ω ⊂ R
2. The intrinsic dimensionality id of
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u is then defined by

id(u) :=







0 , if ∀x ∈ Ω : u(x) = const.,

1 , if ∃v ∈ S1 ⊂ R
2 : ∀z ∈ Ω : ∀t ∈ R s.t. z + tv ∈ Ω : u(z + tv) = const.,

2 , else,

(1.6)

where S1 ⊂ R
2 is the two-dimensional unit sphere. A signal belonging to the class of signals

which have the same intrinsic dimensionality n is referred to as an inD-signal.

Remark 1.4. The degrees of freedom which are necessary to determine the constant path of

function values (amplitude) in the domain of a signal increases with the intrinsic dimension-

ality.

An i0D-signal is a constant function. It can only vary in its overall amplitude. An i1D-

signal’s domain has one characteristic direction which defines the lines in the domain on which

the signal amplitude does not vary, i.e. the signal can be written as a function of one variable

in an appropriately rotated coordinate system. Typical i1D-signals are dirac-lines, oriented

sign functions, or oriented two-dimensional sinus functions, for example. The class of i2D-

signals is the biggest class as it comprises all other possible signals which are not i0D or i1D.

An i2D-signal has no direction of constant amplitude. The amplitude varies in all, i.e. both,

dimensions of the domain. Easy examples are corners, crossing dirac-lines, or bounded lines.

An overview of examples for i0D-, i1D-, and i2D-signals can be found in Figure 1.3.

In order to analyze local regions in natural images, we need a modified definition of intrinsic

dimensionality to be able to characterize these regions within an image.

Definition 1.5 (Local intrinsic dimensionality). Let u ∈ L2(R2) be a signal. Let x0 be a

single point in the domain of u and Ωx0 ⊂ R
2 is a compact neighborhood around x0. The

local intrinsic dimensionality idloc of the signal u in the point x0 is defined by

idloc(x0, u) := id(u|Ωx0
). (1.7)

The point x0 with idloc(x0, u) = n is then referred to as an inD-point. The set of all inD-

points with respect to the signal u is defined by

In(u) := {x ∈ R
2|idloc(x, u) = n}. (1.8)

Many neurons in the early visual cortex, i.e. V1 and V2, exhibit a selectivity for i2D-

signals. That means they suppress or give reduced responses to i1D-signals while responding

strongly to i2D-signals. Such neurons have been called “hypercomplex” [35], “end-stopped”

[57], “dot-responsive” [64], or having “surround suppression” [14]. These reported neurons
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(a) i0D

(b) i2D

(c) i1D

(d) i2D

(e) i1D

(f) i2D

Figure 1.3: This figure shows typical signals of the i0D-, i1D-, and i2D-type within the region
Ω. A constant i0D-signal is illustrated in (a). A single line (c) and an edge (e)
are examples for i1D-signals. The bottom row shows typical i2D-signals like an
end-stopped line (b), a corner (d), or crossing lines (f).

share one essential property. None of them reacts to longer straight lines, extended sinusoidal

gratings, or any other elongated pattern, i.e. they do not react to i0D- and i1D-signals.

Instead, they respond to i2D-signals like spots, corners, line ends, and similar patterns. In

order to be able to deal with such i2D-selective systems, its formal meaning is clarified in the

following definition.

Definition 1.6 (i2D-system). Let T : L2(R2) → L2(R2) be an operator defining a shift-

invariant system which maps the input signal u to a response signal r, i.e. r = T (u). The

operator T is an i2D-operator, if and only if

r(x) = T (u)(x) = 0 , ∀x ∈ I0(u) ∪ I1(u), (1.9)

for arbitrary signals u ∈ L2(R2). The system defined by the operator T is then an i2D-system.

The response r is referred to as an i2D-feature.

Remark 1.7. Systems being shift-invariant are often referred to as time-invariant in the signal

processing literature. Shift-invariant means invariant with respect to the input argument, i.e.

r(x− δx) = T (u(x− δx)) for arbitrary δx and a given r = T (u).

The definition of an i2D-system on its own does not give much information about the

properties of the system. The following lemma cancels out a specific set of systems which is

not able to be an i2D-system and concludes this section.
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Lemma 1.8. No shift-invariant linear system T : L2(R2)→ L2(R2) with an impulse response

function unequal to zero can be an i2D-system.

Proof. The statement is proved by contradicting the counter statement: There exists a shift-

invariant linear system T with impulse response function unequal to zero which is an i2D-

system.

Let T be a shift-invariant linear operator and u be an arbitrary signal. We then can rewrite

every shift-invariant linear system by

T (u)(x) =

∫

R2

h(x− y)u(y) dy = 2πF−1(F(h)F(u))(x), (1.10)

where h ∈ L1(R2) is the respective impulse response of the linear system [4] and F is the
Fourier transform operator, see Section 2.2 for a definition. The system has to satisfy the

following equation for i0D-signals, i.e. u(x) = k = const., ∀x ∈ R
2.

0 =

∫

R2

h(x− y)u(y) dy = k

∫

R2

h(x− y) dy , ∀x ∈ R
2

⇔
∫

R2

h(y) dy = 0

⇔F(h)(0) = 0. (1.11)

The system also must not respond to i1D-signals, i.e. signals u for which the following holds:

∃v ∈ S1 : ∀x0 ∈ R
2 : ∀t ∈ R s.t. x0 + tv ∈ Ω : u(x0 + tv) = const.. Let u be an i1D-signal

with respect to the arbitrary direction v ∈ R
2, ‖v‖2 = 1, and let n ∈ R

2, ‖n‖2 = 1, n ⊥ v.

In particular

u(x) = ei(x·sn), s > 0, (1.12)

fulfill the i1D-property. The zero response requirement then becomes

0 =

∫

R2

h(y)u(x− y) dy

=

∫

R2

h(y)ei((x−y)·sn) dy

=ei(x·sn)
∫

R2

h(y)e−i(y·sn) dy

=ei(x·sn)2πF(h)(sn), ∀n ∈ S1, ∀s > 0. (1.13)

Equation (1.11) and (1.13) imply F(h) = 0. This contradicts the counter statement.

Remark 1.9. The shift-invariance is not a necessary precondition for the previous lemma.
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The statement can be proved in an analog way for more general linear systems like

T (u)(x) =

∫

R2

h(x, y)u(y) dy. (1.14)

This is non-relevant because shift-invariant systems are considered only within the context of

this work.

Given this lemma we can conclude that the behavior of the previously mentioned “hyper-

complex”, “end-stopped”, and “dot-responsive” cells or cells having a “surround suppression”

cannot be modeled by a linear system. For this reason more sophisticated models are required

which directly leads to the following section.
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2 A generalized Gabor approach for i2D-feature extraction

What kind of system is able to model neurons which are completely quiet whenever a “boring”

stimulus is presented and which are totally excited if a more complex stimulus, like a curved

line, an end-stopped line, a corner, etc., is presented? The rising evidence in the neurophysio-

logical literature for nonlinear neurons, which are highly selective to intrinsic two-dimensional

features, raises the question for new model approaches being able to describe both reported

phenomena. The formalism has to be powerful in such a way that it can describe the reported

linear phenomena as well as the highly nonlinear behavior of neurons in early visual cortex.

As has already been stated in the early nineties [86] and proved in Section 1.3 (Lemma 1.8),

we cannot draw on linear systems anymore. Linear systems alone are not powerful enough

to model an i2D-selective neuron, respectively an i2D-system, cf. Definition 1.6. The linear

approach to describe neural behavior in early stages of the visual system is well accepted

and it is able to explain a wide range of reported phenomena, cf. Section 1.2. The standard

model of linear, frequency-selective mechanisms is a systematic approach by using the formal

framework of linear systems theory. Furthermore it provides a low-parametric description by

the Gabor filters with center frequency, bandwidth, and orientation. This model gives a clear

account of neural selectivity. It has already been attempted to adapt and to modify the linear

approach or extend it by some “small” nonlinear operations. All effort was expended to be

able to explain phenomena which could not be explained by the linear model. A standard

model for these problems has not been established yet so that the primary question is: Does

a similar approach exist for nonlinear vision?

In this chapter we consider the simplest nonlinear extension of linear systems, the second-

order Volterra-series expansion of a nonlinear system, cf. Section 2.2. The concept of

orientation- and spatial frequency-selectivity is applied and adapted to the second-order

Volterra-system in Section 2.3 in order to provide a generalized Gabor framework to for-

mulate simple i2D-systems corresponding to functionalities reported in early stages of the

visual cortex. Furthermore in Section 2.4 multiple approaches including i2D-selective opera-

tors are considered and extended by a subsequent spatial pooling to extract relevant object

features.

2.1 Related Work

The concept of intrinsic two-dimensional features proposed by Zetzsche and Barth [87] can

be found in various applications reported in the literature. For example, i2D-features are

relevant for object recognition as shown in classic experiments of Attneave [2] and by the

“Recognition by Components”-theory [7]. i2D-features and their respective neurons appear

to have a role in the bottom-up control of saccadic eye movements [45, 68]. In natural scenes

there is a strong relation between statistical redundancies and i2D-features [87, 6, 88]. The
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probability of occurrence from i0D to i2D in natural images has a decreasing order [90]. As

a result i2D-features are highly predictive so that it is possible to reconstruct an image from

the mere knowledge of the i2D-regions only [6]. The i2D-features also can achieve a nonlinear

whitening of the higher-order-statistics as expressed by the bi-spectrum of natural images [91].

A generalization to continuous intrinsic dimensionality was considered in [46].

It was also shown that a multiplicative AND-like combination is required to obtain a system

which is optimally adapted to the statistics of natural scenes [92]. This AND-like combination

which can be interpreted as a multiplicative combination is an essential property of i2D-

systems as can be seen in the subsequent sections. The relation between higher-order statistics

and Volterra systems was considered explicitly in [93]. These findings were also used to

develop an optimized coding scheme for natural images [94] and to learn selectivity properties

of cortical cells of V2 and V4 [56].

That cortical neurons cannot be modeled by linear systems only, is supported by a variety

of neural findings. The cortical gain control [13] as a normalization of the output of a linear

unit is one example for the adaptation of the linear system approach to be able to explain

the behavioral findings of neurons. Another example is the complex cell found in early visual

cortex. For this cell type it is argued that in comparison to the linear simple cell the complex

cell has a phase invariance [12], i.e. it responds independently of the exact location of the

stimulus [41]. This phase invariance also cannot be modeled by a linear model. Therefore,

it has to be extended by a nonlinear mechanism, too. These are two examples of found

phenomena which can be explained by slight adaptations of the linear approach. But cells

which cannot be explained by the “semi-linear” approach have also been reported in the

literature. In visual cortex “hypercomplex” [35], “end-stopped” [57], and “dot-responsive” [64]

cells have been found. Even on the frog’s retina these highly nonlinear cells have been found

in the form of a “bug-detector” [49]. More recent findings also give evidence for i2D-selectivity

implemented by the neural hardware.

In [14] the authors investigated the influence between the center and the surround of the

classical receptive fields and it turned out that the recorded cells in V1 show a divisive surround

suppressed behavior similar to the mechanisms of cortical gain control. In [74] it is reported

that the suppression depends on the stimulus orientation presented to the receptive field and

it has its maximum for same orientations. In terms of intrinsic dimensionality this means that

i1D-signals are maximally suppressed. In V1 cells were found which respond to stimuli with

differently oriented gratings in the center and the surround [75]. But these cells do not respond

anymore if the center orientation and surround orientation is equal. Furthermore, cells were

found which prefer a specific angle between the two orientations. This is also supported by

similar findings in the cat’s striate cortex [73, 30]. The selectivity to specific opening angles

of oriented corners was also reported in [37]. In [72] the oriented gratings in the center and in

the surround were varied with respect to different properties like luminance, contrast, color,
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or orientation. The discontinuity between the center region and the surround region could

cause an response of an appropriately selective neuron. The authors reported no responses

in all cases where the center and the surround share the same properties, i.e. no response to

i1D-signals. But the cells fired whenever a property of the center and the surround differed.

A similar behavior was also reported in a study regarding discontinuities in presented stimuli

[69].

2.2 Mathematical preliminaries

In this chapter we review the most important mathematical definitions and equations which

are relevant for the further analysis and synthesis of nonlinear systems. The first important

definition is the Volterra series of a nonlinear system. The definition for signals with one-

dimensional arguments and further results regarding Volterra systems can be found in the

book by Schetzen [65]. As the main focus in this work is vision, his definition is extended to

signals with two-dimensional arguments.

Definition 2.1 (Volterra system). Let T be a shift-invariant and continuous operator which

maps the input signal u : R2 → R to an output signal r : R2 → R. Under certain conditions

(cf. following remark), it can be shown that the relation between the output and the input

can be expressed by

T (u)(x) =
∫

R2 h1(y1)u(x− y1) dy1 +
∫

R4 h2(y1, y2)u(x− y1)u(x− y2) d(y1, y2)
+
∫

R2n hn(y1, . . . , yn)
∏n

i=1 u(x− yi) d(y1, . . . , yn) + . . . (2.1)

where the functions hn are elements of the corresponding L
1(R2n) such that the integrals

exist5. This functional series is referred to as Volterra series and the functions hn are called

Volterra kernels of the system. An equivalent expression of the Volterra series is the operator

series

T (u)(x) = H1(u)(x) +H2(u)(x) + . . .+Hn(u)(x) + . . . (2.2)

with

Hn(u)(x) :=

∫

R2n

hn(y1, . . . , yn)Π
n
i=1u(x− yi) d(y1, . . . , yn). (2.3)

The operator Hn is called nth-order Volterra operator. A system which can be represented

by a finite number of Volterra operators with a maximum order of n is an nth-order Volterra

system.

5This follows from Young’s inequality and ‖u(•)u(•)‖2L2(R4) =
∫
R4 |u(x)u(y)|

2(.x, y) ≤ ‖u‖
2
L2(R2)‖u‖

2
L2(R2) ≤

∞ for u ∈ L2(R2).
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Remark 2.2. It was shown by Brilliant [10] that any continuous nonlinear system can be

approximated sufficiently well by the Taylor expansion if the input signal lies in L2(Ω) where

Ω is a compact subset of R2.

Within this work the second-order Volterra kernel and its spectral representation is of major

interest. In order to be able to design a nonlinear system in Fourier space, the 4-dimensional

Fourier transformation is required. In the following the n-dimensional Fourier transformation

is defined. Further information can be found in standard signal processing literature [77].

Definition 2.3 (n-dimensional Fourier transformation). Let f ∈ L1(Rn) be an integrable

function. The Fourier transformation of f is defined by

F(f)(x) := 1

(2π)
n
2

∫

Rn

f(z)e−ix·z dz. (2.4)

The following theorem is a generalization to n-dimensional integration domains of the sub-

stitution rule for integrals. It is an important tool to obtain the parametrization by orientation

of the nonlinear system kernel. A proof can be found in standard calculus textbooks like [33].

Theorem 2.4 (Transformation theorem). Let Ω ⊂ R
n be an open subset and let Φ : Ω →

Φ(Ω) be a diffeomorphism. Then f is integrable on Φ(Ω) if and only if the function x 7→
f(Φ(x))| det(DΦ(x))| is integrable on Ω. It also holds

∫

Φ(Ω)
f(y) dy =

∫

Ω
f(Φ(x))| det(DΦ(x)| dx. (2.5)

2.3 Generalized Gabor to obtain second-order selectivity

This section presents a generalized Gabor approach within the framework of nonlinear systems

and in line with the concept of intrinsic dimensionality. First, the classical Gabor approach for

linear systems is reviewed briefly. Second, the theoretical framework of second-order Volterra

systems is prepared such that thirdly common signals can be analyzed with respect to their

nonlinear representation. Finally, the generalized Gabor approach is developed and tested for

various parameter settings.

2.3.1 Classical Gabor approach

The main motivation for the filter design based on second-order Volterra systems is the clas-

sical Gabor filter approach. It turned out that this approach works well to describe the

behavior of simple cells in the early visual cortex, e.g. the cat’s striate cortex [39]. The

classical approach and its spectral representation is considered in the following. Subsequently

this approach is transfered to second-order Volterra systems to provide a framework which

can be parametrized low-dimensionally. The main goal is a low-parametrized approach which
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is able to explain the i2D-selectivity of reported neurons in early visual cortex. The following

definition includes the filter kernel presented in Section 1.2.

Definition 2.5 (Classical Gabor filter kernel). Given the rotation matrix V (φ) into the

coordinate system y rotated by the angle φ ∈ [0, 2π), i.e. y = V (φ)Tx with

V (φ) =

(

cos(φ) − sin(φ)

sin(φ) cos(φ)

)

, (2.6)

and the covariance matrix

Σ =

(

σ21 0

0 σ22

)

, (2.7)

the classical Gabor filter kernels, i.e. even-symmetric and odd-symmetric, are defined by the

product of a Gaussian function and a trigonometric function, i.e.

heven(x) =e
− 1

2
xTV (φ)Σ−1V (φ)T x cos(fr(x1 cos(φ) + x2 sin(φ))), (2.8)

and hodd(x) =e
− 1

2
xTV (φ)Σ−1V (φ)T x sin(fr(x1 cos(φ) + x2 sin(φ))), (2.9)

where fr ≥ 0 defines the spatial frequency of the trigonometric function.

Remark 2.6. The filter kernels are completely determined by the parameters φ, fr, σ1, and

σ2. φ determines the direction of the two-dimensional sinus- or cosine-wave and it determines

the orientation of the elliptic shaped Gaussian function. fr determines the frequency of the

trigonometric function in the direction of the first dimension of the rotated coordinate system.

σ1 determines the semi-axis of the elliptically-shaped Gaussian function in the first direction of

the rotated coordinate system, i.e. in the direction of the sinus- or cosine-wave. σ2 determines

the semi-axis in the second direction of the rotated coordinate system, i.e. in the direction in

which the trigonometric function is constant. In case the semi-axes of the Gaussian do not

correspond to the direction of the trigonometric wave function, the minor diagonal of Σ is

then unequal to zero.

The filter kernels are defined in state space which has two disadvantages. The first one

is that it is not obvious whether a filter decomposition of an input signal, i.e. an image, in

different filter channels is a complete representation of the signal. The second disadvantage is

that the filter operation implemented by a convolution operation is computationally expensive

compared to the solution by the Fourier transform. To overcome these disadvantages the

Fourier transform of the Gabor functions is provided in the following lemma. With the aid of

these kernels the system can be described in spectral space.
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Lemma 2.7. Given the Gabor filter kernels defined in Definition 2.5, the corresponding

Fourier transforms are

Heven(f)

=
1

4π| det(Σ−1/2)|
(

e−
1
2
(f−frv)TV (φ)ΣV (φ)T (f−frv) + e−

1
2
(f+frv)TV (φ)ΣV (φ)T (f+frv)

)

(2.10)

and

Hodd(f)

=
1

4π| det(Σ−1/2)| i
(

e−
1
2
(f−frv)TV (φ)ΣV (φ)T (f−frv) − e− 1

2
(f+frv)TV (φ)ΣV (φ)T (f+frv)

)

(2.11)

where v := (cos(φ), sin(φ))T .

Proof. The Fourier transform of the product of two functions f and g can be rewritten by

F(fg) = 1

2π
F(f) ∗ F(g). (2.12)

First, we start with the Fourier transform of the Gaussian function

g(x) := e−
1
2
xTV (φ)Σ−1V (φ)T x. (2.13)

In the following we write just V instead of V (φ) for convenience.

F(g)(x) = 1

2π

∫

R2

e−
1
2
zTV Σ−1V T ze−i(x·z) dz

=
1

2π

∫

R2

e−
1
2
zTV Σ−1V T z−i(x·z) dz. (2.14)

Substituting by Φ(z) := Σ−1/2V T z with DΦ(z) = V Σ−1/2 and det(DΦ(z)) = det(Σ−1/2)

yields

F(g)(x) = 1

2π

1

| det(DΦ)|

∫

R2

e−
1
2
Φ(z)TΦ(z)−i(x·V Σ1/2Φ(z))| det(DΦ)| dz

=
1

2π

1

| det(Σ−1/2)|

∫

R2

e−
1
2
yT y−i(x·V Σ1/2y) dy. (2.15)

Note that det(V ) = 1 by definition. By doing a quadratic expansion, the exponent can be
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rewritten by (〈•, •〉 denotes the standard scalar product)

− 1

2

(

〈y, y〉+ i2〈x, V Σ1/2y〉
)

=− 1

2

(

〈y, y〉+ 2〈iΣ1/2V Tx, y〉
)

=− 1

2

(

〈y + iΣ1/2V Tx, y + iΣ1/2V Tx〉+ 〈Σ1/2V Tx,Σ1/2V Tx〉
)

. (2.16)

We thus get

F(g)(x) = 1

2π

1

| det(Σ−1/2)|e
− 1

2
xTV ΣV T x

∫

R2

e−
1
2
(y+iΣ1/2V T x)T (y+iΣ1/2V T x) dy. (2.17)

Substituting by Θ(y) := y + iΣ1/2V Tx with DΘ(y) = Id and det(DΘ(y)) = 1 yields

F(g)(x) = 1

2π

1

| det(Σ−1/2)|e
− 1

2
xTV ΣV T x

∫

R2

e−
1
2
wTw dw

︸ ︷︷ ︸

=2π

=
1

| det(Σ−1/2)|e
− 1

2
xTV ΣV T x. (2.18)

The Fourier transform of the function c(x) := cos(fr(v · x)) is derived by using the cosine
represented by complex exponential functions. This yields

F(c)(x) = 1

2π

∫

R2

cos(fr(z · v))e−i(x·z) dz

=
1

2π

∫

R2

1

2
(eifr(v·z) + e−ifr(v·z))e−i(x·z) dz

=
1

4π

∫

R2

e−i(x−frv)·z + e−i(x+frv)·z dz

=
1

2
(δ(x− frv) + δ(x+ frv)), (2.19)

where δ is the δ-distribution. Analogously the Fourier transform of the sinus function s(x)

becomes

F(s)(x) = 1

2
i(δ(x− frv)− δ(x+ frv)). (2.20)

The convolution of the respective functions yields the assumption.

Remark 2.8. Note that the covariance matrix of the Gaussian function of the Fourier trans-

formed filter kernels is not Σ itself. The missing inversion in the formula has to be taken into
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account such that the covariance matrix in Fourier representation is

Σf =

(

σ2r 0

0 σ2φ

)

= Σ−1 =





1
σ2
1

0

0 1
σ2
2



 . (2.21)

σr determines the semi-axis of the Gaussian function in radial direction and is related to σ1

by σr = 1
σ1
. σφ = 1

σ2
determines the semi-axis which is orthogonal to the radial direction.

This direction can be approximately interpreted as an angular direction. But it is not the

angular direction which causes problems if one tries to find a perfect partition of unity by

Gabor filter functions. Other approaches using “Gabor-like” filters have been developed to

solve this problem [82, 94]. They thus can be applied to image encoding without causing any

significant distortions.

(a)

(b)

(c)

(d)

Figure 2.1: The Gabor filter kernels of Figure 1.2 are illustrated in Fourier space. The
even-symmetric filter kernel in (a) and (b) has positive amplitude only. The
odd-symmetric filter function in (c) and (d) is point-symmetric with respect to
the origin. Both filter functions are Gaussian functions shifted to the positions
(f cos(φ), sin(φ))T and −(f cos(φ), sin(φ))T . The standard deviations of the Gaus-
sian functions which characterize the elliptic shape are determined by Equation
(2.21).
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Remark 2.9. One common approach in the literature for the Gabor filter is edge detec-

tion [53]. Note that in the proposed parametrization of filter kernels an oriented edge with

orientation θ is not detected by a Gabor filter with the same orientation. The Gabor filter

which detects the oriented edge with orientation θ must have the orientation φ = θ − π
2 .

Odd-symmetric kernels are suitable to detect edges with a real step in its function value, like

the sign function. The even symmetric kernels are appropriate to detect lines.

The filter kernels are bandpass filters as can be seen in their Fourier transform in Equations

(2.10) and (2.11) and as illustrated in Figure 2.1. In summary the passband is defined by the

parameters

• orientation of the angular center frequency φ,

• radial center frequency fr,

• bandwidth in radial direction determined by σr, where the full width at half maximum
is given by 2

√

2 ln(2)σr), and

• bandwidth in direction orthogonal to the radial direction determined by σφ, where the
full width at half maximum is given by 2

√

2 ln(2)σr.

In Section 1.3 it is already stated that the abilities of linear systems defined by an impulse

response or its Fourier transform are strongly limited. An i2D-system cannot be realized by

this approach. We thus make use of second-order Volterra systems in the following.

2.3.2 Second-order Volterra system

A second-order Volterra system by Definition 2.1 is the sum of a linear first-order Volterra-

operator and the second-order Volterra operator. As linear systems have been studied in-

tensely in the past, we restrict the system of interest to the nonlinear system defined by

T (u)(x) =

∫

R4

h(x̃1, x̃2)u(x− x̃1)u(x− x̃2)
︸ ︷︷ ︸

:=g(x−x̃1,x−x̃2)

d(x̃1, x̃2) = (h ∗ g)((x, x)T )

=(2π)2F−1(F(h)
︸ ︷︷ ︸

=:H

F(g)
︸ ︷︷ ︸

=:G

)((x, x)T ) (2.22)

with the input signal u ∈ L2(R2) and the second-order kernel h ∈ L1(R4), which guarantees

the existence of the integral. As can be seen in the previous equation, by defining the function

g ∈ L2(R4) the system can be interpreted as a linear system of signals with a four-dimensional

domain. This means that results from multi-dimensional linear systems theory are applicable.

Before a generalized Gabor approach is applied to this kind of system, it has to be clarified how

specific signals are represented in this nonlinear fashion. Especially i0D and i1D signals must
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be analyzed to identify possible stop-bands in the spectral representation of h. In the following

a specific parametrization is applied to the Fourier transformation of g and subsequently its

Fourier transform G is investigated for various input signals u.

We introduce the parametrization φ(t) := x0+ t1v1+ t2v2, x0, v1, v2, t ∈ R
2, ‖v1‖ = ‖v2‖ =

1, |〈v1, v2〉| 6= 1, and t = (t1, t2)
T . Later investigations and the differentiation between i0D,

i1D, and i2D signals are easier with this parametrization as the specific directions v1 and v2

are explicit. For convenience in writing, the functions ũ and g̃ are defined within the following

equation

g(x, y) =u(x)u(y)

=u(φ(tx))u(φ(ty)) =: ũ(tx)ũ(ty)

=:g̃(tx, ty) (2.23)

with x, y, tx, ty ∈ R
2. Thus, ũ is assigned with two directions v1 and v2 and an origin x0.

This representation has the advantage that the definition of edges, corners, and crossing lines

with specific direction can be realized easily. Applying the definition of the n-dimensional

Fourier transform (cf. Definition 2.3) yields

F(g)(z1, z2) =
1

(2π)2

∫

R4

g(x, y)e−i(z1·x+z2·y) d(x, y) (2.24)

where z = (zT1 , z
T
2 )

T with z1, z2 ∈ R
2. We apply the coordinate transformation Φ(t) :=

(φ(tx), φ(ty))T , t = (tx, ty)T , with

DΦ(t)T =

[

v1 v2 0 0

0 0 v1 v2

]

, | det(DΦ)| =: k
!
6= 0 . (2.25)

With Theorem 2.4 and Equation (2.23) follows

F(g)(z) = k

(2π)2

∫

R4

g̃(tx, ty)e−i(z1·φ(t
x)+z2·φ(ty)) d(tx, ty)

=
k

(2π)2

∫

R2

ũ(tx)e−iz1·φ(t
x) dtx

︸ ︷︷ ︸

=:S(ũ)(z1)

∫

R2

ũ(ty)e−iz2·φ(t
y) dty. (2.26)

For the further analysis of signals the integral defined by S has to be determined for each

specific input signal. By using the definition of φ the operator S becomes

S(ũ)(z) =

∫

R2

ũ(t)e−iz·x0e−iz·(t1v1+t2v2) dt
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(a) (b)

Figure 2.2: A discretized δ-line (a) and sign function (b) are illustrated as typical i1D-signal
examples.

=e−iz·x0

∫

R2

ũ(t)e−iz·(V t) dt , V := [v1|v2]. (2.27)

In order to determine possible pass-bands and stop-bands in the four-dimensional frequency

space in which the filters are defined, common signal types are analyzed with respect to their

Fourier transform G.

2.3.3 Analysis of selected i0D, i1D, and i2D signals

The first signal type which is considered is the i0D-type, i.e. the constant function ũ(t) =

1, ∀t ∈ R
2. Without loss of generality let V be the identity and x0 = 0. It thus follows

S(ũ)(z) = 2πF(1)(z) = δ(z). (2.28)

Note that this F is the two-dimensional Fourier transform. Inserting in Equation (2.26) yields

F(g)(z) = δ(z1)δ(z2) =

{

∞ , z1 = z2 = 0

0 , else.
(2.29)

From this equation it can be concluded that the support of all i0D-functions in the frequency

domain is M0 := {0} ⊂ R
4.

The second signal type is the i1D-type. Here two cases are distinguished. The first case

is a simple line, i.e. ũ(t) = δ(t2), ∀t ∈ R
2. This describes the one-dimensional δ-line in

v1-direction. A discretized example is illustrated in Figure 2.2. With this definition of ũ it
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can be obtained that

S(ũ)(z) =e−iz·x0

∫

R

∫

R

δ(t2)e
−iz·(V t) dt2 dt1

=e−iz·x0

∫

R

e−i(z·v1)t1dt1

=e−iz·x0(2π)
1
2F(1)(z · v1)

=e−iz·x0δ(z · v1). (2.30)

Inserting in Equation (2.26) yields

F(g)(z) = ke−iz1·x0e−iz2·x0δ(z1 · v1)δ(z2 · v1) =
{

6= 0 , 〈z1, v1〉 = 0 ∧ 〈z2, v1〉 = 0

0 , else.
(2.31)

This holds for arbitrary directions v1 = v.

The second case of i1D-type signals is an edge, which means that the signal is constant

except for a jump in its function value. It is defined by ũ(t) = 1
2(1+sign(t2)). An illustration

of the signal can be found in Figure 2.2. It thus follows

S(ũ)(z) =e−iz·x0

∫

R2

1

2
(1 + sign(t2))e

−iz·(V t) dt

=e−iz·x0
1

2

(∫

R2

e−iz·(V t) dt+

∫

R

e−i(z·v1)t1
∫

R

sign(t2)e
−i(z·v2)t2 dt2 dt1

)

=e−iz·x0
1

2

(

2π

| det(V )|δ(z) +
∫

R

e−i(z·v1)t1
(2π)1/2

iπ(z · v2)
dt1

)

=e−iz·x0π

(
1

| det(V )|δ(z) + δ(z · v1)
1

iπ(z · v2)

)

. (2.32)

From this equation the same qualitative Fourier transform as in the first case can be derived,

i.e.

F(g)(z) =
{

6= 0 , 〈z1, v1〉 = 0 ∧ 〈z2, v1〉 = 0

0 , else.
(2.33)

In both cases the Fourier transform of the second-order function g has entries unequal to zero

in the following two-dimensional planes of the R
4 caused by the i1D signals. Let n ∈ R

2 be

the unit normal vector to v ∈ R
2. We define the plane T1 ⊂ R

4 for each n = (cos(ψ), sin(ψ))T ,

ψ ∈ [0, π] by

T1(n) : z = s1

(

n

0

)

+ s2

(

0

n

)

, ∀s1, s2 ∈ R. (2.34)
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The subset M1 := {z ∈ R
4|∃ψ ∈ [0, π] : n = (cos(ψ), sin(ψ))T ∧ z ∈ T1(n)} of R4 describes

the three-dimensional subset which comprises the support of all possible i1D-signals in the

frequency domain. With M0 ⊂M1 it also contains the i0D-functions. The Fourier transform

of a second-order Volterra kernel defining an i1D-selective system, which is not affected by

a i0D-signal, must be supported on M1 \M0 in the frequency domain. More importantly,

the support of an i2D-selective system must exclude M1 completely. The three-dimensional

set M1 is illustrated in Figure 2.3. The following theorem is motivated by the previous

considerations and states in which case a second-order Volterra system is an i2D-system.

(a) z4 = −0.25 (b) z4 = −0.1

(c) z4 = 0.1 (d) z4 = 0.25

Figure 2.3: In this figure the forbidden region M defined in Equation (2.36) is illustrated in
Cartesian coordinates for various fixed z4 (a)-(d). For z4 = 0 the whole z1 − z2
plane belongs to the forbidden region.

Theorem 2.10 (Second-order Volterra i2D-system). Let T be a second-order Volterra system

of the form

T (u)(x) =

∫

R4

h(x̃1, x̃2)u(x− x̃1)u(x− x̃2)
︸ ︷︷ ︸

:=g(x−x̃1,x−x̃2)

d(x̃1, x̃2)
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=(2π)2F−1(F(h)
︸ ︷︷ ︸

=:H

F(g)
︸ ︷︷ ︸

=:G

)((x, x)T ) (2.35)

and let the set M be given by

M =

{

z = s1

(

n(φ)

0

)

+ s2

(

0

n(φ)

)

∈ R
4

∣
∣
∣
∣
∣
n(φ) =

(

cos(φ)

sin(φ)

)

, s1, s2 ∈ R, and φ ∈ [0, π]

}

.

(2.36)

Then T is an i2D-system if and only if H(z) = 0 for all z ∈M .

Proof. Let u ∈ L2(R2) be a signal with the set of i0D- and i1D-points I0(u) ∪ I1(u). Let

x0 ∈ I0(u) ∪ I1(u) with respect to the neighborhood Ωx0 and the direction v ∈ S1 with

v = (cos(φ), sin(φ))T for a given angle φ. As x0 ∈ I0(u) ∪ I1(u) we can rewrite u by

u(x) = u(x0 + tv + sn) = ũ(t, s) = f(s) (2.37)

with an appropriate function f in the direction of n for all s, t ∈ R such that x0+tv+sn ∈ Ωx0 .

Without loss of generality let x0 = 0 and t ∈ [−a, a]. The Fourier transform of u thus becomes

F(u)(z) = 1

2π

∫

R2

u(x)e−i(x·z) dx

=
1

2π

∫

R2

ũ(t, s)e−i(v·z)t−i(n·z)s dt ds

=
1

2π

∫

R

∫

[−a,a]
e−i(v·z)t dt f(s)e−i(n·z)s ds

=
1

(2π)1/2
2 sin((v · z)a)

(v · z) F(f)(n · z). (2.38)

For a→∞ the Fourier transform becomes

F(u)(z) = δ(v · z)F(f)(n · z). (2.39)

With x0 = 0 the operator T becomes

T (u)(x0) = (2π)2
∫

R4

H(z1, z2)δ(v · z1)F(f)(n · z1)δ(v · z2)F(f)(n · z2)
︸ ︷︷ ︸

=(∗)

dz1 dz2. (2.40)

The support of (∗) is a subset ofM . Thus, the integral becomes zero if and only ifH(z1, z2) = 0

for (z1, z2)
T ∈M . This holds for arbitrary direction angles φ which concludes the proof.

Remark 2.11. Note that the limit a→∞ taken in the proof increases the neighborhood Ωx0

to infinite length in the direction of v. Restricting the neighborhood to a bounded interval



26 2 A generalized Gabor approach for i2D-feature extraction

in the direction of v is equivalent to a windowed Fourier transform which causes some side

effects by the sinus function emerging in the corresponding equation. Without taking the

limit an i2D-signal is created implicitly as it is assumed that the signal is zero outside the

neighborhood. For the moment this result is sufficient.

As a consequence i2D-type signals can be supported on the whole R
4 in the frequency

domain. An i2D-selective filter which is not affected by signals with lower intrinsic dimen-

sionality must be supported on R
4\M . In order to derive a generalized version of Gabor-filters,

different cases of i2D-signals are investigated. First, two “crossing lines” are considered. It is

assumed that the signal consists of two δ-lines in different directions v1 6= v2 intersecting in

x0. This means ũ(t) = δ(t1) + δ(t2), ∀t ∈ R
2. It thus follows

S(ũ)(z) =e−iz·x0

∫

R2

(δ(t1) + δ(t2))e
−iz·(V t) dt

=e−iz·x0(2π)1/2(δ(z · v1) + δ(z · v2)). (2.41)

The Fourier transform of g thus becomes qualitatively

F(g)(z) =e−iz1·x0e−iz2·x0
k

2π
(δ(z1 · v1)δ(z2 · v1) + δ(z1 · v1)δ(z2 · v2)

+δ(z1 · v2)δ(z2 · v1) + δ(z1 · v2)δ(z2 · v2))

=







6= 0 , [〈z1, v1〉 = 0 ∧ 〈z2, v1〉 = 0] (⊂M)

∨[〈z1, v1〉 = 0 ∧ 〈z2, v2〉 = 0]

∨[〈z1, v2〉 = 0 ∧ 〈z2, v1〉 = 0]

∨[〈z1, v2〉 = 0 ∧ 〈z2, v2〉 = 0] (⊂M),

0 , else.

(2.42)

Note that the Fourier transform of this signal type has function values unequal to zero on a

subset of M . This subset cannot be used to design an i2D-selective filter. But the set defined

by the constraints 〈z1, v1〉 = 0 ∧ 〈z2, v2〉 = 0 and 〈z1, v2〉 = 0 ∧ 〈z2, v1〉 = 0 can be used to

design a bandpass filter which is selective to signals with characteristic directions v1 and v2.

This means that the center frequency fcenter of a suitable bandpass should be positioned at

some point defined by

fcenter = s1

(

n1

0

)

+ s2

(

0

n2

)

or fcenter = s2

(

n2

0

)

+ s1

(

0

n1

)

(2.43)

where s1, s2 ∈ R with s1 6= 0 ∧ s2 6= 0 and n1, n2 ∈ R
2 with n1 ⊥ v1 and n2 ⊥ v2.

The second case is the so called “end-stopped” line. The signal is assumed to be one end
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point with a line leaving in direction v1. With ũ(t) = δ(t2)
1
2(1+ sign(t1)) the following holds

S(ũ)(z) =e−iz·x0

∫

R

1

2
(1 + sign(t1))

∫

R

δ(t2)e
−iz·(V t) dt2 dt1

=e−iz·x0

∫

R

1

2
(1 + sign(t1))e

−i(z·v1)t1dt1

=e−iz·x0(2π)
1
2F(1

2
(1 + sign(t1)))(z · v1)

=e−iz·x0
1

2
(2π)

1
2

(

δ(z · v1) +
1

iπ(z · v1)

)

=e−iz·x0
1

2
(2π)

1
2

{

δ(z · v1) , 〈z, v1〉 = 0,
1

iπ(z·v1) , else.
(2.44)

Using this result, it follows

F(g)(z)

=e−iz1·x0e−iz2·x0
k

4(2π)







δ(z1 · v1)δ(z2 · v1) , 〈z1, v1〉 = 0 ∧ 〈z2, v1〉 = 0 (⊂M),
δ(z1·v1)
iπ(z2·v1) , 〈z1, v1〉 = 0 ∧ 〈z2, v1〉 6= 0,
δ(z2·v1)
iπ(z1·v1) , 〈z1, v1〉 6= 0 ∧ 〈z2, v1〉 = 0,

− 1
π2(z1·v1)(z2·v1) , 〈z1, v1〉 6= 0 ∧ 〈z2, v1〉 6= 0 (∩M 6= ∅).

(2.45)

This signal type has significantly high complex function values in non-forbidden regions de-

fined by 〈z1, v1〉 = 0 ∧ 〈z2, v1〉 6= 0 and 〈z1, v1〉 6= 0 ∧ 〈z2, v1〉 = 0. The first line in the

case distinction lies in the forbidden region for i2D-operators and the last line intersects the

forbidden region as well as it decreases quadratically with the length of z1 and z2. Therefore,

the center frequency of a suitable bandpass filter fcenter could be

fcenter = s1

(

n1

0

)

+ t1

(

0

v1

)

or fcenter = t1

(

v1

0

)

+ s1

(

0

n1

)

(2.46)

where s1, t1 ∈ R with s1 6= 0 ∧ t1 6= 0 and n1 ∈ R
2 with n1 ⊥ v1.

The last signal of i2D-type, we consider, is an “oriented corner” constructed by two end-

stopped lines. The signal consists of two δ-lines which have the same origin but different

leaving directions v1 and v2. Thus, ũ(t) =
1
2δ(t1)(1+sign(t2))+δ(t2)

1
2(1+sign(t1)), v1 6= αv2,

α ∈ R, such that the following holds

S(ũ)(z) =e−iz·x0 [

∫

R

1

2
(1 + sign(t1))

∫

R

δ(t2)e
−iz·(V t) dt2 dt1

+

∫

R

1

2
(1 + sign(t2))

∫

R

δ(t1)e
−iz·(V t) dt1 dt2]
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=e−iz·x0(2π)
1
2

[

F(1
2
(1 + sign(t1)))(z · v1) + F(

1

2
(1 + sign(t2)))(z · v2)

]

=e−iz·x0(2π)
1
2
1

2

[

δ(z · v1) +
1

iπ(z · v1)
+ δ(z · v2) +

1

iπ(z · v2)

]

=e−iz·x0(2π)
1
2
1

2







δ(z · v1) + δ(z · v2) , 〈z, v1〉 = 0 ∧ 〈z, v2〉 = 0,
1

iπ(z·v1) + δ(z · v2) , 〈z, v1〉 6= 0 ∧ 〈z, v2〉 = 0,

δ(z · v1) + 1
iπ(z·v2) , 〈z, v1〉 = 0 ∧ 〈z, v2〉 6= 0,

1
iπ(z·v1) +

1
iπ(z·v2) , 〈z, v1〉 6= 0 ∧ 〈z, v2〉 6= 0,

=e−iz·x0(2π)
1
2
1

2







δ(z · v1) + δ(z · v2) , z = 0,
1

iπ(z·v1) + δ(z · v2) , 〈z, v2〉 = 0,

δ(z · v1) + 1
iπ(z·v2) , 〈z, v1〉 = 0,

1
iπ(z·v1) +

1
iπ(z·v2) , else.

(2.47)

The last step can be done because it is assumed that v1 6= αv2, α ∈ R. For the following

equation the notation is as follows. If it is assumed that 〈z, v〉 = 0, the case z = 0 is excluded.

Using this and the definition W := {z ∈ R
2|〈z, v1〉 6= 0 ∧ 〈z, v2〉 6= 0} we get

F(g)(z) =e−iz1·x0e−iz2·x0
k

4(2π)

·







(δ(z1 · v1) + δ(z1 · v2))(δ(z2 · v1) + δ(z2 · v2)) , z1 = 0 ∧ z2 = 0,

(δ(z1 · v1) + 1
iπ(z1·v2))(δ(z2 · v1) +

1
iπ(z2·v2)) , 〈z1, v1〉 = 0 ∧ 〈z2, v1〉 = 0,

( 1
iπ(z1·v1) + δ(z1 · v2))( 1

iπ(z2·v1) + δ(z2 · v2)) , 〈z1, v2〉 = 0 ∧ 〈z2, v2〉 = 0,

(δ(z1 · v1) + δ(z1 · v2))(δ(z2 · v1) + 1
iπ(z2·v2)) , z1 = 0 ∧ 〈z2, v1〉 = 0,

(δ(z1 · v1) + δ(z1 · v2))( 1
iπ(z2·v1) + δ(z2 · v2)) , z1 = 0 ∧ 〈z2, v2〉 = 0,

(δ(z1 · v1) + 1
iπ(z1·v2))(δ(z2 · v1) + δ(z2 · v2)) , z2 = 0 ∧ 〈z1, v1〉 = 0,

( 1
iπ(z1·v1) + δ(z1 · v2))(δ(z2 · v1) + δ(z2 · v2)) , z2 = 0 ∧ 〈z1, v2〉 = 0,

(δ(z1 · v1) + δ(z1 · v2))( 1
iπ(z2·v1) +

1
iπ(z2·v2)) , z1 = 0 ∧ z2 ∈W,

( 1
iπ(z1·v1) +

1
iπ(z1·v2))(δ(z2 · v1) + δ(z2 · v2)) , z2 = 0 ∧ z1 ∈W,

(δ(z1 · v1) + 1
iπ(z1·v2))(

1
iπ(z2·v1) + δ(z2 · v2)) , 〈z1, v1〉 = 0 ∧ 〈z2, v2〉 = 0,

( 1
iπ(z1·v1) + δ(z1 · v2))(δ(z2 · v1) + 1

iπ(z2·v2)) , 〈z1, v2〉 = 0 ∧ 〈z2, v1〉 = 0,

(δ(z1 · v1) + 1
iπ(z1·v2))(

1
iπ(z2·v1) +

1
iπ(z2·v2)) , 〈z1, v1〉 = 0 ∧ z2 ∈W,

( 1
iπ(z1·v1) + δ(z1 · v2))( 1

iπ(z2·v1) +
1

iπ(z2·v2)) , 〈z1, v2〉 = 0 ∧ z2 ∈W,
( 1
iπ(z1·v1) +

1
iπ(z1·v2))(δ(z2 · v1) +

1
iπ(z2·v2)) , 〈z2, v1〉 = 0 ∧ z1 ∈W,

( 1
iπ(z1·v1) +

1
iπ(z1·v2))(

1
iπ(z2·v1) + δ(z2 · v2)) , 〈z2, v2〉 = 0 ∧ z1 ∈W,

( 1
iπ(z1·v1) +

1
iπ(z1·v2))(

1
iπ(z2·v1) +

1
iπ(z2·v2)) , z1 ∈W ∧ z2 ∈W,
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=







∗+ i ∗ , (z1, z2) ∈M,

∞− i sign( 1
z1·v2 + 1

z2·v1 )∞ , 〈z1, v1〉 = 0 ∧ 〈z2, v2〉 = 0,

∞− i sign( 1
z1·v1 + 1

z2·v2 )∞ , 〈z1, v2〉 = 0 ∧ 〈z2, v1〉 = 0,

∗ − i sign( 1
z2·v1 + 1

z2·v2 )∞ , 〈z1, v1〉 = 0 ∧ z2 ∈W,
∗ − i sign( 1

z2·v1 + 1
z2·v2 )∞ , 〈z1, v2〉 = 0 ∧ z2 ∈W,

∗ − i sign( 1
z1·v1 + 1

z1·v2 )∞ , 〈z2, v1〉 = 0 ∧ z1 ∈W,
∗ − i sign( 1

z1·v1 + 1
z1·v2 )∞ , 〈z2, v2〉 = 0 ∧ z1 ∈W,

∗+ i 0 , z1 ∈W ∧ z2 ∈W.

(2.48)

The upper bundle of equations describes the behavior of the Fourier transform in the forbidden

region M . In the lower bundle of equations it can be seen that this kind of signal has

high imaginary values in particular in the two-dimensional planes described by the equations

〈z1, v1〉 = 0 ∧ 〈z2, v2〉 = 0 and 〈z1, v2〉 = 0 ∧ 〈z2, v1〉 = 0. The center frequency fcenter of a

suitable bandpass should be positioned at some point defined by

fcenter = s1

(

n1

0

)

+ s2

(

0

n2

)

or fcenter = s2

(

n2

0

)

+ s1

(

0

n1

)

(2.49)

where s1, s2 ∈ R with s1 6= 0∧s2 6= 0 and n1, n2 ∈ R
2 with n1 ⊥ v1 and n2 ⊥ v2. Note that in

these regions the considered signal class also has high real function values which are similar

to the first case “crossing lines” and can cause trouble in their distinction.

In summary, we derive from this analysis of i2D-type signals:

• “Crossing lines” can be detected by an even-symmetric real-valued filter kernel with

center frequency given by Equation (2.43). This filter also detects oriented corners with

the same leaving directions.

• “End-stopped lines” can be detected by an odd-symmetric imaginary-valued filter kernel

with center frequency given by Equation (2.46).

• “Oriented corners” can be detected by an odd-symmetric imaginary-valued filter kernel

with center frequency given by Equation (2.49).

The bandwidth of these filter kernels is considered within the following framework of gener-

alized Gabor-filter kernels.

2.3.4 Generalized Gabor approach

In order to design i2D-selective second-order Volterra systems, which are able to detect

i2D-signals, we define the following filter kernels in Fourier space analogously to the two-

dimensional case in Lemma 2.7.
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Definition 2.12 (Generalized Gabor filter). Let V ∈ R
4×4 be an orthonormal coordinate

transformation matrix, i.e. V −1 = V T and det(V ) = 1. Let Σ ∈ R
4×4 be a diagonal matrix

and fcenter ∈ R
4. The functions Heven : R4 → C and Hodd : R4 → C defined by

Heven(z) = k
(

e−
1
2
(z−fcenter)TV Σ−1V T (z−fcenter) + e−

1
2
(z+fcenter)TV Σ−1V T (z+fcenter)

)

(2.50)

and Hodd(z) = ki
(

e−
1
2
(z−fcenter)TV Σ−1V T (z−fcenter) − e− 1

2
(z+fcenter)TV Σ−1V T (z+fcenter)

)

(2.51)

are the generalized Gabor filter functions.

Remark 2.13. For further investigations we define the matrix V with respect to two orien-

tations φ1 and φ2 as follows

V = V (φ1, φ2) =

(

v1 n1 0 0

0 0 v2 n2

)

=









cos(φ1) − sin(φ1) 0 0

sin(φ1) cos(φ1) 0 0

0 0 cos(φ2) − sin(φ2)

0 0 sin(φ2) cos(φ2)









. (2.52)

The matrix Σ is defined by

Σ =









σ2v1 0 0 0

0 σ2n1
0 0

0 0 σ2v2 0

0 0 0 σ2n2









(2.53)

where σx determines the bandwidth in the direction of x. The center frequency fcenter is

defined by

fcenter = V (φ1, φ2)µ (2.54)

where µ = (µv1 , µn1 , µv2 , µn2)
T . µx determines the center frequency in the direction of x.

Similar to the classical Gabor approach, the generalized Gabor filter is determined by a

low number of parameters. Given the definitions in the previous remark, ten parameters are

necessary:

• Two angles φ1 and φ2 which define the orientations of interest.

• Four parameters µv1 , µn1 , µv2 , and µn2 to describe the center frequency where the

bandpass is located. The effect of this parameters strongly depends on the choice of φ1

and φ2.
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• Four parameters σv1 , σn1 , σv2 , and σn2 which determine the bandwidth of the bandpass

filter (given a σ the full width at half maximum is 2
√

2 ln(2)σ).

By using these parameters we can identify suitable parameter settings for the three cases of

i2D-type signals “crossing lines”, “end-stopped”, and “oriented corner”, which are analyzed in

the previous section. The constraints for the parameters in each case can be found in Table 1.

The center frequencies and the symmetry types result from the previous theoretical analysis.

The bandwidth parameters in the cases “crossing lines” and “oriented corner” are restricted

in a way that the support of the bandpass filter does not include the origin. This results in

the restriction of σn1 and σn2 . In order to be as orientation selective as possible, σv1 and

σv2 should be chosen sufficiently small. The upper boundary for σv1 is determined by the

intersection point of the forbidden region M1 and the curve defined by

g : z =

(

µn1n1

µn2n2

)

+ t

(

v1

0

)

, t ∈ R. (2.55)

Finding an intersection point of g and M1 is equivalent to find t, s1, s2, φ such that

(

µn1n1

µn2n2

)

+ t

(

v1

0

)

= s1

(

n(φ)

0

)

+ s2

(

0

n(φ)

)

. (2.56)

From the third and fourth dimension follows that φ = φ2 + π2. Using this in the equations

defined by the first and second dimension yields

t = tan(φ1 − φ2)µn1 . (2.57)

By definition this t is the distance between the center frequency and the point of intersection.

The constraint to σv1 thus becomes σv1 ≤ | tan(φ1−φ2)µn1 |/
√

2 ln(2). Analog considerations

with respect to σv2 yield σv2 ≤ | tan(φ2 − φ1)µn2 |/
√

2 ln(2).

The bandwidth parameters σn1 and σv2 of the case “end-stopped” are also chosen in a

way that the origin is excluded. The other two bandwidth parameters should be as big as

possible to capture the energy of an end-stopped line, c.p. Equation (2.45). To determine

these parameters, we have to find the intersection of the forbidden region M and the plane G

spanned by the directions of the missing bandwidth parameters, i.e.

G : z =

(

µn1n1

µv2v1

)

+ tv

(

v1

0

)

+ tn

(

0

n1

)

, tv, tn ∈ R. (2.58)

We thus must find all z ∈ R
4 with z ∈ G and z ∈ M . This means, find φ, s1, s2, tv, and tn
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such that

(

µn1n1

µv2v1

)

+ tv

(

v1

0

)

+ tn

(

0

n1

)

= s1

(

n(φ)

0

)

+ s2

(

0

n(φ)

)

. (2.59)

From this follows

µn1n1 + tvv1 =
s1
s2

(µv2v1 + tnn1) (2.60)

⇔
(

µn1 −
s1
s2
tn

)

n1 =

(
s1
s2
µv2 − tv

)

v1. (2.61)

With v1 ⊥ n1 follows

tv =
µn1µv2
tn

. (2.62)

Using this equation all points within the intersection are given by

z(t) =

(

µn1n1

µv2v1

)

+
µn1µv2
t

(

v1

0

)

+ t

(

0

n1

)

, t 6= 0. (2.63)

The point with the shortest distance to the center frequency then limits the maximum band-

width, i.e. find

argmint(‖fcenter − z(t)‖22) = argmint(
µ2n1

µ2v2
t2

+ t2). (2.64)

From this follows that the point with the shortest distance is determined by tn = tv =
√
µn1µv2 . This results in the constraints σv1 <

√
µn1µv2/

√

2 ln(2) and σn2 <
√
µn1µv2/

√

2 ln(2)

as can be found in Table 1. Note that if one parameter is close to the boundary of the con-

straint, the function value of the filter in a region close to the forbidden region is approximately

half the amplitude. In order to avoid responses to i0D- and i1D-signals, the parameter has

to be chosen sufficiently smaller than the determined boundaries.

2.3.5 Results

The three kinds of nonlinear Gabor filters, which were introduced in the previous section,

are parametrized as shown in Table 2. All filters are then applied to two different datasets

of stimuli which cover the cases of interest, i.e. i1D-signals, crossing lines, end-stopped

lines, and oriented corners. The first filter H1 is designed to detect crossing lines of specific

orientations φ1 and φ2. As a result of the previous analysis of i2D-signals this filter is even-

symmetric because of the real valued Fourier transform of the respective signal of crossing

lines in Equation (2.42). In order to capture the characteristic of the signal and to gain
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Case “crossing lines” “end-stopped” “oriented corner”

Symmetry even odd odd

φ1 ∈ [0, π) ∈ [0, π) ∈ [0, π)
φ2 6= φ1 = φ1 6= φ1
µv1 = 0 = 0 = 0
µn1 6= 0 6= 0 6= 0
µv2 = 0 6= 0 = 0
µn2 6= 0 = 0 6= 0

σv1 <
| tan(φ1−φ2)µn1 |√

2 ln(2)
<
√
µn1µv2√
2 ln(2)

<
| tan(φ1−φ2)µn1 |√

2 ln(2)

σn1 <
|µn1 |√
2 ln(2)

<
|µn1 |√
2 ln(2)

<
|µn1 |√
2 ln(2)

σv2 <
| tan(φ2−φ1)µn2 |√

2 ln(2)
<

|µv2 |√
2 ln(2)

<
| tan(φ2−φ1)µn2 |√

2 ln(2)

σn2 <
|µn2 |√
2 ln(2)

<
√
µn1µv2√
2 ln(2)

<
|µn2 |√
2 ln(2)

Table 1: This table shows the constraints to the parameters of the corresponding generalized
Gabor filter functions for the cases “crossing lines”, “end-stopped”, and “oriented
corner”. The angles φi determine the orientations of interest and the coordinate
transformation, the values µi specify the center frequency of the bandpass regions,
and the σi values determine the bandwidth of the passband regions. Note that the
boundaries for σi describe the distance to the forbidden region in the respective
direction where the filter has half of its amplitude.

Filter type H1: “crossing lines” H2: “end-stopped” H3: “oriented corner”

Symmetry even odd odd

φ1 30◦ 30◦ 30◦

φ2 60◦ 30◦ 60◦

µv1 0 0 0
µn1 0.4 −0.4 0.4
µv2 0 −0.4 0
µn2 0.4 0 0.4

σv1 0.02 0.05 0.02
σn1 0.1 0.3 0.1
σv2 0.02 0.02 0.02
σn2 0.1 0.3 0.1

Table 2: This table gives an overview over the parametrization of the three filter setups H1,
H2, and H3.
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a high response at the crossing position, the center frequency is chosen in the direction of

(n1, 0)
T and (0, n2)

T . The bandwidths in these directions, i.e. the parameters σn1 and σn2 ,

are chosen sufficiently high such that the orientations of interest are captured by the filter.

The bandwidth in the remaining two directions has to be as small as possible to obtain the

desired selectivity is guaranteed. The second reason for a small bandwidth is the risk of

an intersection of the filter kernel’s support and the forbidden region. The third filter H3,

which is designed to be sensitive to oriented corners with leaving directions determined by

the orientations φ1 and φ2, is parametrized like the filter H1. The argumentation is the same

with one important difference: As can be seen in Equation (2.48) the Fourier transform of a

corner has significant imaginary function values in the same regions compared to the crossing

lines. To capture this structure, the filter kernel is odd-symmetric and imaginary-valued. The

second filter H2 is designed to be sensitive to end-stopped lines which is a special case of

the oriented corners with the same orientations φ1 and φ2. The parametrization has to be

different because the equal orientations would cause an i1D-selectivity in the filter H3. The

previous investigation resulted in center frequencies in the directions (n1, 0)
T and (0, v2)

T and

in an imaginary-valued odd-symmetric design. The bandwidth in the direction of n1 should

be sufficiently large to capture the desired orientation. The bandwidth in the direction of

v1 must be sufficiently small as it determines the selectivity with respect to the orientation

similar to the other filters H1 and H3. As can be seen in Equation (2.45) the bandwidth in

the direction of n2 must be chosen sufficiently large to capture the structure of the signal.

The bandwidth in the direction of v2 is chosen smaller in order to not implement a corner-

selective filter. A selectivity to right angled corners cannot be avoided completely as the

center frequencies define this kind of selectivity. The support of the filter function in the

four-dimensional domain and its pose with respect to the forbidden region is illustrated in

Figure 2.4. From the illustration in polar coordinates where the forbidden region becomes a

plane it can easily be deduced that the essential support of the filter does not intersect the

forbidden region.

In order to test the selectivity properties of the filters H1, H2, and H3, two kinds of signals

are considered. The first kind consists of two lines intersecting in a point x0 where each line

has an orientation θ1 or θ2. An example stimulus is illustrated in Figure 2.5(a). In particular,

this kind of stimulus includes the i1D-case if θ1 = θ2. The second kind also consists of two

lines which have their origin in the point x0 and leave in the directions determined by the

angles θ1 and θ2. This kind of stimuli can be seen in Figure 2.5(b). For θ1 = θ2 a stimulus

becomes an end-stopped line. The two kinds of stimuli build two data sets, “crossing” and

“corner”. Each set consists of 3600 images of the size 50 × 50. The angles θ1 and θ2 were

varied from 0◦ to 180◦ with constant step size resulting in 60 orientations, i.e. a step of ∼ 3◦.

The point x0 is defined in pixel coordinates by (26, 26)T . Each picture constructed this way

is normalized.
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Cartesian

(a) z4 = 0.1

(b) z4 = 0.2

(c) z4 = 0.3

Polar

(d) z4 = 0.1

(e) z4 = 0.2

(f) z4 = 0.3

Figure 2.4: The support of the Gaussian filter kernel in Fourier space for the end-stopped filter
H2 is illustrated in Cartesian coordinates (left columns) and in polar coordinates
(right column) for various values of z4. The advantage of the illustration in polar
coordinates is that the forbidden region M becomes a plane and it can be seen
easily whether the support of the filter function intersects this region. The surface
of the ellipsoid determines the region where the filter has half of its amplitude.
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(a) “crossing” stimuli (b) “corner” stimuli

Figure 2.5: The two kinds of test stimuli are illustrated. The stimuli of the kind “crossing”
(a) are two δ-lines which intersect in the point x0. Each line has an orientation
θ1 and θ2. In particular the case θ1 = θ2 builds an i1D-signal. The stimuli of the
kind “corner” (b) are two δ-lines which have their origin in the point x0. Each line
has its leaving direction determined by the angle θ1 or θ2. In particular the case
θ1 = θ2 builds an end-stopped line.

All filters H1, H2, and H3 are applied to both datasets. The results of this analysis are

illustrated in Figure 2.6 and 2.7. The filter H1 is designed to be selective to crossing lines with

orientations 30◦ and 60◦. As can be seen in Figure 2.6(a) and Figure 2.7(a), the response of the

filter has high peaks for the desired orientations within the stimulus, cf. the green circles. The

response to i1D-signals encircled by the red ellipse is nearly perfectly inhibited. In comparison

to the “corner” dataset in Figure 2.6(d) the response to corners with the orientations of interest

is approximately four times smaller than the response to the crossing lines having the same

orientations. The filter H2 is designed to detect end-stopped lines with an orientation of

30◦. As can be seen in Figure 2.6(e) on the diagonal and in Figure 2.7(e) in the green circle,

this filter has a peak for the desired kind of stimuli. One side effect can be observed at the

combination of 30◦ and approximately 30◦ + 90◦ in the corner stimuli. This is a result of the

center frequency in the direction of v2(= v1). This filter also does not give a high response to

i1D-signals as can be seen in the red ellipse of Figure 2.7(b). The third filter H3 also shows

the expected i2D-selectivity to corners with orientations 30◦ and 60◦ as can be seen in Figure

2.7(f) in the green circles. The results in Figure 2.6(c) and (f) show that this filter has the

highest peaks for the desired corner stimuli.

Summarized, all filters show the expected behavior and can be used to implement the desired

i2D-selectivity. The three kinds of i2D-selectivity can be captured by those three proposed

kinds of filters. Consequently, these image features can be distinguished by their response on

the datasets. The only case which causes problems is the distinction between an end-stopped

line and a corner with open angle |θ2−θ1| = 90◦. This would require more sophisticated filter

implementations. All filters have in common that they show strong orientation selectivity

reported for cells in the visual cortex.
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“crossing” stimuli

(a) H1

(b) H2

(c) H3

“corner” stimuli

(d) H1

(e) H2

(f) H3

Figure 2.6: The results for the three filter types H1, H2, and H3 are illustrated as three-
dimensional surface plots where the first and second dimension determine the
orientations in the test stimulus θ1 and θ2 varying from 0◦ to 180◦. The third
dimension is the response of the respective filter at position (26, 26)T . The stimuli
had a size of 50× 50 pixels with x0 = (26, 26)T . The left column ((a)-(c)) shows
the results for the “crossing” stimuli and the right columns ((d)-(f)) shows the
results for the “corner” stimuli. The ith line corresponds to the results for the
filter function Hi for both kinds of test stimuli, i = 1, 2, 3. The scaling of both
results is the same such that the responses are comparable over the two kinds of
test stimuli for each filter function.
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“crossing” stimuli

(a) H1

(b) H2

(c) H3

“corner” stimuli

(d) H1

(e) H2

(f) H3

Figure 2.7: This figure is organized in the same way and shows the same data as in Figure
2.6. The major difference is that the responses are now color encoded and scaled
for each filter and kind of test stimuli such that a comparison between the kinds
of test stimuli is not possible in an easy way. In the left column the responses to
stimuli which belong to the class if i1D-signals are encircled by the red ellipse. The
green circles highlight the desired regions of response for each filter Hi, i = 1, 2, 3.
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2.4 Article: Statistical invariants of spatial form: From local AND to

numerosity
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Statistical Invariants of Spatial Form:

From Local AND to Numerosity

Christoph ZETZSCHE 1, Konrad GADZICKI and Tobias KLUTH

Cognitive Neuroinformatics, University of Bremen, Germany

Abstract Theories of the processing and representation of spatial form have to take

into account recent results on the importance of holistic properties. Numerous ex-

periments showed the importance of “set properties”, “ensemble representations”

and “summary statistics”, ranging from the “gist of a scene” to something like “nu-

merosity”. These results are sometimes difficult to interpret, since we do not ex-

actly know how and on which level they can be computed by the neural machinery

of the cortex. According to the standard model of a local-to-global neural hierarchy

with a gradual increase of scale and complexity, the ensemble properties have to

be regarded as high-level features. But empirical results indicate that many of them

are primary perceptual properties and may thus be attributed to earlier processing

stages. Here we investigate the prerequisites and the neurobiological plausibility

for the computation of ensemble properties. We show that the cortex can easily

compute common statistical functions, like a probability distribution function or an

autocorrelation function, and that it can also compute abstract invariants, like the

number of items in a set. These computations can be performed on fairly early lev-

els and require only two well-accepted properties of cortical neurons, linear sum-

mation of afferent inputs and variants of nonlinear cortical gain control.

Keywords. shape invariants, peripheral vision, ensemble statistics, numerosity

Introduction

Recent evidence shows that our representation of the world is essentially determined by

holistic properties [1,2,3,4,5,6]. These properties are described as “set properties”, “en-

semble properties”, or they are characterized as “summary statistics”. They reach from

the average orientation of elements in a display [1] over the “gist of a scene”[7,8], to the

“numerosity” of objects in a scene [9]. For many of these properties we do not exactly

know by which kind of neural mechanisms and on which level of the cortex they are

computed. According to the standard view of the cortical representation of shape, these

properties have to be considered as high-level features because the cortex is organized in

form of a local-to-global processing hierarchy in which features with increasing order of

abstraction are computed in a progression of levels [10]. At the bottom, simple and lo-

cally restricted geometrical features are computed, whereas global and complex proper-

ties are represented at the top levels of the hierarchy. Across levels, invariance is system-

1Corresponding Author: Christoph Zetzsche, Cognitive Neuroinformatics, FB3, University of Bremen, P.O.
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atically increased such that the final stages are independent of translations, rotations, size

changes, and other transformations of the input. However convincing this view seems on

first sight, it creates some conceptual difficulties.

The major difficulty concerns the question of what exactly is a low-level and a high-

level property. Gestalt theorists already claimed that features considered high-level ac-

cording to a structuralistic view are primary and basic in terms of perception. Further

doubts have been raised by global precedence effects [11]. Similar problems arise with

the recently discovered ensemble properties. The gist of a scene, a high-level feature

according to the classical view, can be recognized in 150 msec [7,12,13,14] and can be

modeled using low-level visual features [8]. In addition, categories can be shown to be

faster processed than basic objects, contrary to the established view of the latter as entry-

level representations [15]. A summary statistics approach, also based on low-level visual

features, can explain the holistic processing properties in the periphery of the visual field

[4,16,17]. What is additionally required in these models are statistical measures, like

probability distributions and autocorrelation functions, from which it is not known how

and on which level of the cortical hierarchy they can be realized.

One of the most abstract ensemble properties seems to be the number of elements

in a spatial configuration. However, the ability to recognize this number is not restricted

to humans with mature cognitive abilities but has also been found in infants and animals

[9,18], recently even in invertebrates [19]. Neural reactions to numerosity are fast (100

msecs in macaques [20]). And finally there is evidence for a “direct visual sense for

number” since number seems to be a primary visual property like color, orientation or

motion, to which the visual system can be adapted by prolonged viewing [21].

The above observations on ensemble properties raise a number of questions, from

which the following are addressed in this paper: Sect. 1: Can the cortex compute a prob-

ability distribution? Sect. 2: And also an autocorrelation function? By which kind of

neural hardware can this be achieved? Sect.3: Can the shape of individual objects also

be characterized by such mechanisms? Sect. 4: What is necessary to compute such an

abstract property like the number of elements in a spatial configuration? Can this be

achieved in early sensory stages?

1. Neural Computation of a Probability Distribution

Formally, the probability density function pe(e) of a random variable e is defined via the

cumulative distribution function: pe(e)  
dPe(e)

de
with Pe(e) = Pr[e ≤ e]. Their empirical

counterparts, the histogram and the cumulative histogram, are defined by use of indicator

functions. For this we divide the real line into m bins (e(i),e(i+1)] with bin size ∆e =
e(i+1)− e(i). For each bin i, an indicator function is defined as

Qi(e) = 1i(e) =

{

1, if e(i) < e≤ e(i+1)

0, else
(1)

An illustration of such a function is shown in Fig. 1a. From N samples ek of the ran-

dom variable e we then obtain the histogram as h(i) = 1
N ∑

N
k=1 Qi(ek). The cumulative

histogram He(e) can be computed by changing the bins to (e(1),e(i+1)] (cf. Fig. 1b), and

by performing the same summation as for the normal histogram. The reverse cumulative
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(a) (b) (c)

Figure 1. Indicator functions. Basic types are: (a) indicator function for computation of a classical histogram.

(b) indicator function for a cumulative histogram. (c) indicator function for a reverse cumulative histogram.

histogram H̄(i) is simply the reversed version of the cumulative histogram. The corre-

sponding bins are ∆ei = (e(i),e(m+1)] and the indicator functions are defined as (Fig. 1c)

Qi(e) = 1i(e) =

{

1, if e≥ e(i)

0, else
(2)

The corresponding system is shown in Fig. 2.

The three types of histograms have identical information content since they are re-

lated to each other as

h(i) = H((i+1))−H(i) = H̄(i)− H̄(i+1) and H(i) = 1− H̄(i) =
i

∑
j=1

h( j). (3)
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(a)

Albrecht and Hamilton (1982)

(b)

Figure 2. Computation of the reverse cumulative histogram. (a) shows the set of input variables e1 to en over

which the histogram should be computed. Each of these variables is input to a set of indicator functions Qi(ek).

For each bin of the histogram there is a summation unit Si which sums over all indicator function outputs with

index i, i.e. over all Qi(ek).

(b) The response functions of three neurons in the visual cortex [22]. They show a remarkable similarity to the

indicator functions for the reverse cumulative histogram. First, they come with different sensitivities. Second,

they exhibit an independence on the input strength: once the threshold and the following transition range is

exceeded the output remains constant and does no longer increase when the input level is increased.
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Figure 3. Neurobiological computation of a reverse cumulative histogram. The upper row shows several ex-

amples of input probability distributions. The second row shows the corresponding reverse cumulative his-

tograms computed by a dense set of simulated neurons. The third row shows the estimated probability distri-

butions as derived from the neural representation by use of Eq. (3).

How does all this relate to visual cortex? Has the architecture shown in Fig. 2a any

neurobiological plausibility? The final summation stage is no problem since the most

basic capability of neurons is computation of a linear sum of their inputs. But how about

the indicator functions? They have two special properties: First, the indicator functions

come with different sensitivities. An individual function does only generate a non-zero

output if the input e exceeds a certain level, a kind of threshold, which determines the

sensitivity of the element e(i) in Eq. (2) and Fig. 1c. To cover the complete range of

values, different functions with different sensitivities are needed (Fig. 2a). Second, the

indicator functions exhibit a certain independence of the input level. Once the input is

clearly larger than the threshold, the output remains constant (Fig. 1c).

Do we know of neurons which have such properties, a range of different sensitivi-

ties, and a certain independence of the input strength? Indeed, cortical gain control (or

normalization), as first described in early visual cortex (e.g. [22]) but now believed to

exist throughout the brain [23], yields exactly these properties. Gain-controlled neurons

(Fig. 2b) exhibit a remarkable similarity to the indicator functions used to compute the

reverse cumulative histogram, since they (i) come with different sensitivities, and (ii) pro-

vide an independence of the input strength in certain response ranges.

The computation of a reverse cumulative histogram thus is well in reach of the cor-

tex. We only have to modify the architecture of Fig. 2a by the smoother response func-

tions of cortical neurons. The information about a probability distribution available to the

visual cortex is illustrated in Fig. 3. The reconstructed distributions, as estimated from the

neural reverse cumulative histograms, are a kind of Parzen-windowed (lowpass-filtered)

versions of the original distributions.

2. Neural Implementation of Auto- and Cross-Correlation Functions

A key feature of the recent statistical summary approach to peripheral vision [4,6,24,16]

is the usage of auto- and cross-correlation functions. These functions are defined as

h(i) =
1

N

N/2

∑
k=−N/2+1

e(k)◦g(i+ k), (4)
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Figure 4. Different types of AND-like functions. Each function is of the type gk = g(si,s j), i.e. assigns

an output value to each combination of the two input values. The upper row shows the functions as surface

plots, the lower row as iso-response curves. Left: Mathematical multiplication of two inputs. Center: AND-like

combinations that can be obtained by use of cortical gain control (normalization). The upper left figure shows

the classical gain control without additional threshold. The upper right figure shows the same mechanism with

an additional threshold. This results in a full-fledged AND with a definite zero response in case that only one

of the two inputs is active. Right: The linear sum of the two input values for comparison purposes.

where autocorrelation results if e(k) = g(k) and where ◦ indicates multiplication. With

respect to their neural computation, the outer summation is no problem, but the cru-

cial function is the nonlinear multiplicative interaction between two variables. A neu-

ral implementation could make use of the Babylonian trick ab = 1
4
[(a+ b)2− (a− b)2]

[25,26,27], but this requires two or more neurons for the computation and thus far there

is neither evidence for such a systematic pairing of neurons nor for actual multiplicative

interactions in the visual cortex. However, exact multiplication is not the key factor: a

reasonable statistical measure merely requires provision of a matching function such that

e(k) and g(i+ k) generate a large contribution to the autocorrelation function if they are

similar, and a small contribution if they are dissimilar. For this, it is sufficient to provide

a neural operation which is AND-like [27,28]. Surprisingly, such an AND-like operation

can be achieved by the very same neural hardware as used before, the cortical gain con-

trol mechanism, as shown in [28]. Cortical gain control [22,29] applied to two different

features si(x,y) and s j(x,y) can be written as

gk(x,y) = g(si(x,y),s j(x,y)) := max



0,
si + s j

(
√

s2
i + s2

j + ε)
√

2
−Θ



 (5)

where k = k(i, j), ε is a constant which controls the steepness of the response and Θ is a

threshold. The resulting nonlinear combination is comparable with an AND-like opera-

tion of two features and causes a substantial nonlinear increase of the neural selectivity,

as illustrated in Fig. 4.

Of course there will be differences between a formal autocorrelation function and

the neurobiological version, but the essential feature, the signaling of good matches in

dependence of the relative shifts will be preserved (Fig. 5).
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(a) (b)

Figure 5. Mathematical and neurobiological autocorrelation functions. (a) shows a test input and (b) the cor-

responding mathematical (red dotted) and neurobiological (blue) autocorrelation function.

Figure 6. Different shapes and the corresponding integral features. We used parameter combinations of six

different orientations θi = (i− 1)π/6, i = 1, . . . ,6, and four different scales ri = 2−i, i = 1, . . . ,4. The radial

half-bandwidth was set to fr,h = 1
3

r and the angular half-bandwidth was constant with fθ ,h = π/12. Each

parameter combination creates pairs of variables for each x,y-position which are AND-combined by the gain

control mechanism described in Eq. (5) as gk(x,y) = g(si(x,y),s j(x,y)).

3. Figural Properties from Integrals

We extracted different features sr,θ from the image luminance function l = l(x,y) by

applying a Gabor-like filter operation sr,θ (x,y) = (l ∗F−1(Hr,θ ))(x,y) where F−1 de-

notes the inverse Fourier transformation and the filter kernel Hr,θ is defined in the spec-

tral space. We distinguish two cases (even and odd) which can be seen in the following

definition in polar coordinates:

Heven
r,θ ( fr, fθ ) :=

{

cos2
(

π

2
fr−r
2 fr,h

)

cos2
(

π

2
fθ−θ

2 fθ ,h

)

,( fr, fθ ) ∈Ωr,θ

0 ,else,

with Ωr,θ := {( fr, fθ )| fr ∈ [r− 2 fr,h,r + 2 fr,h]∧ fθ ∈ [θ − 2 fθ ,h,θ + 2 fθ ,h]∩ [θ + π −
2 fθ ,h,θ +π+2 fθ ,h]}, where fr,h denotes the half-bandwidth in radial direction and fθ ,h
denotes the half-bandwidth in angular direction. Hodd

r,θ is defined as the Hilbert trans-

formed even symmetric filter kernel.

Various AND combinations of these oriented features (see caption Fig. 6) are ob-

tained by the gain-control mechanism described in Eq. (5). The integration over the

whole domain results in global features Fk :=
∫

R2 gk(x,y) d(x,y) which capture basic

shape properties (Fig. 6).

4. Numerosity and Topology

One of the most fundamental and abstract ensemble properties is the number of elements

of a set. Recent evidence (see Introduction) raised the question at which cortical level
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the underlying computations are performed. In this processing, a high degree of invari-

ance has to be achieved, since numerosity can be recognized largely independent of other

properties like size, shape and positioning of elements. Models which address this ques-

tion in a neurobiologically plausible fashion, starting from individual pixels or neural re-

ceptors instead of an abstract type of input, are rare. To our knowledge, the first approach

in this direction has been made in [30]. A widely known model [31] has a shape-invariant

mapping to number which is based on linear DOG filters of different sizes, which sub-

stantially limits the invariance properties. A more recent model is based on unsupervised

learning but has only employed moderate shape variations [32]. In [30] we suggested

that the necessary invariance properties may be obtained by use of a theorem which con-

nects local measurements of the differential geometry of the image surface with global

topological properties [30,33]. In the following we will build upon this concept.

The key factor of our approach is a relation between surface properties and a topo-

logical invariant as described by the famous Gauss-Bonnet theorem. In order to apply

this to the image luminance function l = l(x,y) we interpret this function as a surface

S := {(x,y,z)∈R
3|(x,y)∈Ω,z = l(x,y)} in three-dimensional real space. We then apply

the formula for the Gaussian curvature

K(x,y) =
lxx(x,y)lyy(x,y)− lxy(x,y)

2

(1+ lx(x,y)2 + ly(x,y)2)2
, (6)

where subscript denotes the differentiation in the respective direction (e.g. lxy =
∂ 2l
∂x∂y

).

The numerator of (6) can also be written as D = λ1λ2 where λ1,2 are the eigenvalues of

the Hessian matrix of the luminance function l(x,y) which represent the partial second

derivatives in the principal directions. The values and signs of the eigenvalues give us

the information about the shape of the luminance surface S in each point, whether it

is elliptic, hyperbolic, parabolic, or planar. Since Gaussian curvature results from the

multiplication of the second derivatives λ1,2 it is zero for the latter two cases. It has been

shown that this measure can be generalized in various ways, in particular towards the use

of neurophysiologically realistic Gabor-like filters instead of the derivatives [27,30]. The

crucial point, however, is the need for AND combinations of oriented features [27,30]

which can be obtained as before by the neural mechanism of cortical gain control [28].

The following corollary from the Gauss-Bonnet theorem is the basis for the invari-

ance properties in the context of numerosity.

Corollary 4.1 Let S⊂ R
3 be a closed two-dimensional Riemannian manifold. Then

∫

S
K dA = 4π(1−g) (7)

where K is the Gaussian curvature and g is the genus of the surface S.

We consider the special case where the luminance function consists of multiple objects

(polyhedra with orthogonal corners) with constant luminance level. We compare the sur-

face of this luminance function to the surface of a cuboid with holes that are shaped like

the polyhedra. The trick is that the latter surface has a genus which is determined by the

number of holes in the cuboid and which can be determined by the integration of the

local curvature according to Eq. (7). If we can find the corresponding contributions of
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the integral on the image surface, we can use this integral to count the number of ob-

jects. We assume the corners to be locally sufficiently smooth such that the surfaces are

Riemannian manifolds. The Gaussian curvature K then is zero almost everywhere except

on the corners. We hence have to consider only the contributions of the corners. It turns

out that these contributions can be computed from the elliptic regions only if we use dif-

ferent signs for upwards and downwards oriented elliptic regions. We thus introduce the

following operator which distinguishes the different types of ellipticity in the luminance

function. Let λ1 ≥ λ2, then the operator N(x,y) := |min(0,λ1(x,y))|− |max(0,λ2(x,y))|
is always zero if the surface is hyperbolic and has a positive sign for positive elliptic-

ity and a negative one for negative ellipticity. We thus can calculate the numerosity fea-

ture which has the ability of counting objects in an image by counting the holes in an

imaginary cuboid as follows:

F =

∫

Ω

N(x,y)

(1+ lx(x,y)2 + ly(x,y)2)
3
2

d(x,y). (8)

The crucial feature of this measure are contributions of fixed size and with appropriate

signs from the corners. The denominator can thus be replaced by a neural gain control

mechanism and an appropriate renormalization. For the implementation here we use a

shortcut which gives us straight access to the eigenvalues. The numerator D(x,y) of (6)

can be rewritten as

D(x,y)= lxxlyy−
1

4
(luu−lvv)

2 =
1

4
[(lxx+lyy)

2−((lxx− lyy)
2 +(luu− lvv)

2)
︸ ︷︷ ︸

=:ε2

] =
1

4
(∆l2−ε

2)

(9)

with u := xcos(π/4)+ ysin(π/4) and v := −xsin(π/4)+ ycos(π/4). The eigenvalues

then are λ1,2 =
1
2
(∆l±|ε|) and we can directly use them to compute N(x,y). Application

of this computation to a number of test images is shown in Fig. 7.

 

 

50 100 150 200 250

50

100

150

200

250

image1s−1

 

 

50 100 150 200 250

50

100

150

200

250

1.0

 

 

50 100 150 200 250

50

100

150

200

250

image3s−4

 

 

50 100 150 200 250

50

100

150

200

250

2.99

v

 

 

50 100 150 200 250

50

100

150

200

250

4.0

rechteckstruktur01c

 

 

50 100 150 200 250

50

100

150

200

250

1.01

Figure 7. Based on a close relation to topological invariants the spatial integration of local curvature fea-

tures can yield highly invariant numerosity estimates. The numerical values in the last row are the normalized

integrals of the filter outputs (middle row).

170

2 A generalized Gabor approach for i2D-feature extraction 47



5. Conclusion

Recent evidence shows that ensemble properties play an important role in perception and

cognition. In this paper, we have investigated by which neural operations and on which

processing level statistical ensemble properties can be computed by the cortex. Compu-

tation of a probability distribution requires indicator functions with different sensitivi-

ties, and our reinterpretation of cortical gain control suggests that this could be a basic

function of this neural mechanism. The second potential of cortical gain control is the

computation of AND-like feature combinations. Together with the linear summation ca-

pabilities of neurons this enables the computation of powerful invariants and summary

features. We have repeatedly argued that AND-like feature combinations are essential

for our understanding of the visual system [27,30,34,35,36,28]. The increased selectivity

of nonlinear AND operators, as compared to their linear counterparts, is a prerequisite

for the usefulness of integrals over the respective responses [30,28]. We have shown that

such integrals of AND features are relevant for the understanding of texture perception

[37], of numerosity estimation [30], and of invariance in general [28]. Recently, integrals

over AND-like feature combinations in form of auto- and cross-correlation functions

have been suggested for the understanding of peripheral vision [4,16,17].

A somewhat surprising point is that linear summation and cortical gain control, two

widely accepted properties of cortical neurons, are the only requirements for the com-

putation of ensemble properties. These functions are already available at early stages of

the cortex, but also in other cortical areas [23]. The computation of ensemble properties

may thus be an ubiquitous phenomenon in the cortex.
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50 3 Role of curvature i2D-features in numerical cognition

3 Role of curvature i2D-features in numerical cognition

The usability of i2D-operators to obtain desired kinds of selectivity is shown in Section 2.3.

Beside the selectivity property, it has been shown in particular in Section 2.4 that the use of

i2D-operators extended by an integration operation can be used to describe certain invariant

properties. In this section, the main focus lies on the invariant property numerosity. In simple

words, numerosity deals with the number of objects: “How many objects did you see?” is one

typical question addressing the numerical cognition of humans. Or the questions “Where is

more food?” or “Where are less raptors?”, which are essential for survival, require the ability

to differentiate between different quantities and to determine their relations, e.g. less or more.

The main question considered in this chapter is how the number of objects can be estimated

by vision. And furthermore, what kind of operations are required to compute an estimate.

The interesting point is that there exists a mathematical relation between two kinds of i2D-

operators and a topological invariant which can be used to give an estimate for the number

of objects represented in a scene. The Gauss-Bonnet theorem relates the Gaussian curvature

and the geodesic curvature of curved surfaces to the Euler characteristic of topological spaces.

In Section 3.2 both operators, Gaussian curvature and geodesic curvature, are derived from

differential geometry and it is shown that these operators are i2D-operators. Section 3.3

provides a first algorithmic solution to the problem which is then extended and related to

behavioral findings in Section 3.4. Before the technical consideration starts, a brief overview

about numerical cognition is given in the following Section 3.1 to extend the descriptions in

the articles presented in Sections 3.3 and 3.4.

3.1 Related work

Numerical cognition goes back to first investigations by Jevons in 1871 [38]. In a self-

experiment Jevons tried to estimate the number of black beans which were presented for

a small time period making sequential counting impossible. The number of beans varied from

3 to 15. He observed that he did the estimation very well in the determination of numbers

up to a cardinality of 4. For higher numbers a systematic error occurred. The estimation

performance decreased with an increase in the number of beans.

In numerical cognition it is important to distinguish between three types of cognition. The

first distinction can be done by the amount of time which is available to the subject. If one

has unlimited time, one can just sequentially count where the performance is even very well

for the whole number line. This is sequential counting which requires knowledge about what

is meant by “one”, i.e. a discretized representation of number. If one has strictly limited time,

two kinds of cognition are reported. Up to a number of 4 the answer can be given nearly

immediately without any significant errors. This phenomenon is called subitizing [40]. The

last effect, which was also reported by Jevons, is the numerosity estimation. If the time of
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stimulus presentation is strictly limited and the number is higher than 4, the subjects make

systematic errors. These systems are commonly assumed to build two distinct subsystems.

One accounts for subitzing and the other is responsible for the numerosity estimation [22].

The numerosity estimation, which is also referred to as “number sense” [17], is the deter-

mination of the cardinality of objects and is independent of the kind of visual presentation

influenced by quantities like the cumulative area, object size, or object density. It also has

been shown that numerosity estimation is an ability which is not restricted to humans. There

exist various examples for the successful numerosity estimation performed by animals: Koehler

did experiments with birds, like pigeons and jackdaws [44]. The birds were trained to pick

a specific number of grains. In an experiment a larger number of grains were available to

the birds. In the majority of trials they picked up the number they were trained to. The

successful trials were reported up to a number of 6 grains. This shows that the estimation of

cardinality does not require a symbolic number representation like humans have access to, e.g.

the Arabic digits. Other species like rhesus monkeys are also able to estimate the numerosity

and even more they are able to distinguish between different cardinalities [32]. Gray parrots

are also able to perform simple arithmetic tasks with respect to a total number of 6 [61].

The estimation of numerosity was not only reported for human adults [83] but it was

also shown that even six month old infants were able to do a number distinction task [85].

Furthermore, infants are also able to perform simple arithmetic tasks like 1+1 = 2 or 2−1 = 1

[84]. The development of children was also investigated with respect to the development of

mathematical competence and their ability in numerosity estimation. In experiments with

14-year-old children it was found out that the mathematical ability is correlated with the

acuity in numerosity estimation [29].

The numerosity estimation is not only restricted to the estimation of the cardinality of

objects. It was also discovered that the quantity of physical properties like sound volume,

space, and time shows similar characteristics [8]. This is in line with the opinion that there

must be a generalized system for magnitude estimation [24, 79].

Two important phenomena which characterize the numerosity estimation are reported in

the literature. The distance effect and the size effect [18]. The distance effect describes

the error behavior in the comparison of two cardinalities. The smaller the distance between

the two cardinalities, the more errors are done by the observer. Or equivalently, the larger

the numerical distance, the easier two cardinalities can be distinguished. This effect does

not only occur in the comparison of visually presented cardinalities. It also occurs in the

comparison of Arabic digits which allows the conclusion that the Arabic digits are transformed

into the approximative representation for comparison. The size effect states that with constant

numerical distance the distinction between two cardinalities becomes more difficult with higher

absolute cardinalities. For example, the numbers 4 and 5 are easier to distinguish than the

numbers 8 and 9. Both effects can be explained by the Weber-Fechner law.
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Weber reported that two heavy weights have to differ more than two lighter weights to

observe a difference in weight [81]. This corresponds to the reported size effect in numerosity

estimation. Weber formulated the following law: In order to be able to distinguish two sensory

stimuli, they must differ at least by a fraction k of the stimulus intensity I. The difference in

stimulus intensity ∆I thus becomes

∆I = kI. (3.1)

The fraction k = ∆I/I is also referred to as the Weber fraction.

In 1860, Fechner extended Weber’s law that it is related to the perceived stimulus intensity

explicitly [21]. The larger the stimulus intensity, the larger the difference in stimulus intensity

must be to cause equal differences in perceived stimulus intensity. Fechner observed that the

perceived stimulus intensity S is a logarithmic function of the stimulus intensity I with a

constant factor k, i.e.

S = k ln(I). (3.2)

The relation extended by a constant summand is also referred to as Weber-Fechner law. This

law corresponds to the distance effect in numerosity estimation. It states that an exponential

increase in stimulus intensity is perceived linearly only.

The reported effects allow two possible explanations for the mental representation of number

[22]. On the one hand, the numerosity can be represented linearly. Then the uncertainty in

the belief in a specific numerosity increases with the absolute cardinality. On the other hand,

the number line is represented logarithmically with constant uncertainty at all numerosities.

Neural findings give rising evidence for the logarithmic representation [55].

In order to avoid repetition the reader is referred to Sections 3.3 and 3.4 as further related

works and background information are considered within the context of the presented articles.

3.2 Mathematical preliminaries

A coarse introduction of the concepts of differential geometry is given. These concepts are

applied to derive the curvature operators used to develop a model for numerosity estimation.

And finally it is shown that these operators belong to the class of i2D-operators. The intention

of this section is not to present the complete theory. For this purpose, the reader is referred to

standard differential geometry textbooks, e.g. [5, 26, 48]. The parts which are important for

later considerations are presented and applied to one “case of interest”. The studied case is a

curved surface in the three-dimensional space which is defined by a function in its z-coordinate

and parametrized by its x- and y-coordinates. Let l : Ω ⊂ R
2 → R be a function of the class

C3(Ω), i.e. three times continuously differentiable. The surface of interest is then defined

by (x, y, l(x, y))T , (x, y)T ∈ Ω. But before we consider surfaces in the three dimensional
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space, we start with the consideration of space curves. A space curve p is a subset of the

three-dimensional space which is defined by a parametrization, e.g. p(t) = (x(t), y(t), z(t))T ,

t ∈ I ⊂ R. A particular case, which is of major interest for later consideration with respect

to numerosity estimation, is a space curve with constant height which lies on the surface

(x, y, l(x, y))T . All presented theoretical quantities are derived for this case. In each point on

a space curve three important characteristic vectors can be determined: the tangent vector,

the principal normal vector, and the binormal vector.

Definition 3.1 (Tangent vector). Let X : I ⊂ R→ R
3 be a differentiable space curve. Then

the tangent vector T is defined by

T (t) =
X ′(t)
‖X ′(t)‖ . (3.3)

Corollary 3.2. If a space curve is given implicitly by l(x(t), y(t)) = c with the parametrization

X(t) = (x(t), y(t), l(x(t), y(t)))T , then the tangent vector is given by

T (t) =






ly

−lx
0




 (l2x + l2y)

−1/2. (3.4)

Proof. Using the constraint l(x(t), y(t)) = c, we get

X ′(t) =






x′

y′

x′lx(x, y) + y′ly(x, y)




 . (3.5)

The definition of the curve yields

x′lx(x, y) + y′ly(x, y) = 0. (3.6)

We thus get

T (t) =






x′

− lx(x,y)
ly(x,y)

x′

0




 (x′2 +

lx(x, y)
2

ly(x, y)2
x′2)−1/2 =






ly

−lx
0




 (l2x + l2y)

−1/2. (3.7)

Definition 3.3 (Principal normal vector). At any point with T (t) 6= 0 the principal normal
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vector is defined by

P (t) :=
T ′

‖T ′‖ . (3.8)

Corollary 3.4. For the implicitly given curve (l(x(t), y(t)) = c) the principal normal is given

by

P (t) = − 1

(l2x + l2y)
1/2






lx

ly

0




 . (3.9)

Proof. The tangent vector for a general space curve (x(t), y(t), c)T is given by

T (t) =
1

(x′2 + y′2)1/2






x′

y′

0




 . (3.10)

The derivative of the tangent vector thus becomes

T ′(t) =
1

(x′2 + y′2)1/2






x′′

y′′

0




− x′x′′ + y′y′′

(x′2 + y′2)3/2






x′

y′

0






=
1

(x′2 + y′2)3/2











x′′x′2 + x′′y′2

y′′x′2 + y′′y′2

0




−






x′′x′2 + y′′x′y′

x′′x′y′ + y′′y′2

0











=
1

(x′2 + y′2)3/2






x′′y′2 − y′′x′y′
y′′x′2 − x′′x′y′

0






=
x′′y′ − y′′x′
(x′2 + y′2)3/2






y′

−x′
0




 . (3.11)

With this result the principal normal vector is given by

P (t) =
1

(x′2 + y′2)1/2






y′

−x′
0




 . (3.12)
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With x′ = ly and y
′ = −lx follows

P (t) = − 1

(l2x + l2y)
1/2






lx

ly

0




 .

Definition 3.5 (Binormal vector). The binormal vector B is defined by the vector product

of th orthogonal vectors T and P , i.e.

B = T × P. (3.13)

Remark 3.6. For the implicitly defined curve X the binormal vector is

B = − 1

l2x + l2y











ly

−lx
0




×






lx

ly

0









 =






0

0

−1




 . (3.14)

Definition 3.7. The triple of vectors (T, P,B) associated to each point of a continuous space

curve is called the Frenet frame.

With the knowledge of the Frenet frame specific properties of the curve can be determined.

One example is the curvature of a space curve which is used subsequently to determine the

desired operators.

Definition 3.8 (Curvature). Let X ∈ C(I)2 be a parametrized curve. The curvature κ : I →
R
+ is defined as

κ(t) =
‖T ′(t)‖
s′(t)

(3.15)

where s′(t) = ‖X ′(t)‖. By multiplication both sides with T ′(t), it follows

T ′(t) = s′(t)κ(t)P (t). (3.16)

Corollary 3.9. If a space curve is given implicitly by l(x(t), y(t)) = c with the parametrization

X(t) = (x(t), y(t), l(x(t), y(t)))T , then the curvature is given by

κ(t) =
l2xlyy + l2ylxx − 2lxlylxy

(l2x + l2y)
3/2

. (3.17)

Proof. Using T ′ from Equation (3.11) and using P from Equation (3.12) in Equation (3.16)
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yield

x′′y′ − y′′x′
(x′2 + y′2)3/2






y′

−x′
0




 = (x′2 + y′2)1/2κ

1

(x′2 + y′2)1/2






y′

−x′
0




 .

With x′ = ly, y
′ = −lx, x′′ = lyxly − lyylx, and y′′ = −(lxxly − lxylx) follows

κ(t) =
x′′y′ − y′′x′
(x′2 + y′2)3/2

=
1

(l2x + l2y)
3/2

(x′′y′ − y′′x′)

=
1

(l2x + l2y)
3/2

(lx(lyxly − lyylx)− ly(lxxly − lxylx))

=
l2xlyy + l2ylxx − 2lxlylxy

(l2x + l2y)
3/2

.

The curvature is a property of the space curve but if the the space curve is assumed to lie

on a parametrized surface, further quantities can be determined with the aid of the curvature

of the space curve. In order to deal with parametrized surfaces, this term is specified in the

following definition.

Definition 3.10. S ⊂ R
3 is called a parametrized surface if

∀p ∈ S : ∃U ⊂ R
2, V (p) ⊂ R

3, X ∈ C(U,R3) : X(U) = V ∩ S (3.18)

where V (p) is an open neighborhood of p. X is called a parametrization.

The parametrization plays an important role as it enables one to determine properties of

the described objects, e.g. surfaces or space curves on a surface. The previously described

case of interest makes use of a specific kind of parametrization. The described surface is given

by the parametrization X(u, v) = (u, v, l(u, v))T . An important space in the study of curved

surfaces is the tangent space which is defined with the aid of tangent vectors as follows.

Definition 3.11 (Tangent space). Let S ⊂ R
3 be a parametrized surface, p ∈ S, and M is

the set of tangent vectors to S in p. If dim(M) = 2, M is called the tangent space and it is

denoted by TpS. Then the set {p+ v|v ∈ TpS} is called the tangent plane.

This formal definition of the tangent space does not take a specific parametrization into

account. How the tangent space and the tangent plane is determined by a given parametriza-

tion and more importantly whether the tangent space exists, is considered in the following

proposition.
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Proposition 3.12. Let S ⊂ R
3 be a parametrized surface with the parametrization X : U ⊂

R
2 → R

3. Assume X is injective and p = X(u0, v0). Then the set of tangent vectors forms a

subspace of R3 if and only if

Xu(u0, v0)×Xv(u0, v0) 6= 0. (3.19)

The corresponding tangent plane is then defined by

{x ∈ R
3|(x− p) · (Xu(u0, v0)×Xv(u0, v0)) = 0}. (3.20)

Further considerations require more regularity with respect to the parametrization which

is provided by a regular surface as defined in the following.

Definition 3.13. S ⊂ R
3 is a regular surface if for all p ∈ S exists an open set U ⊂ R

2, an

open neighborhood V (p) ⊂ R
3, and a surjective continuous function X : U → S ∩ V (p) such

that

(i) X is differentiable,

(ii) X is a homeomorphism, i.e. X is continuous and X−1 exists and is also continuous,

(iii) X satisfies the regularity condition (ker(DX(u, v)) = {0} ).

The following proposition is an important result and guarantees in the “case of interest”

that the surface is a regular surface.

Proposition 3.14. Let U ⊂ R
2 be open. Then if a function f : U → R is differentiable, the

set

S = {(u, v, f(u, v)) ∈ R
3|(u, v) ∈ U} (3.21)

is a regular surface.

Similar to the principal normal vector of a space curve, the unit normal vector of a surface

is defined by the vector which is orthogonal to the tangent plane.

Definition 3.15 (Unit normal vector). Let S ⊂ R
3 be a regular surface, p ∈ S, X a

parametrization of a neighborhood of p, and p = X(q). Then the unit normal vector is

defined by

N(q) =
Xu ×Xv

‖Xu ×Xv‖
(q). (3.22)

The quantities of the previous definitions are determined for the studied case in the following

remark. These findings play an important role in the subsequent derivation of the geodesic

curvature and the Gaussian curvature.
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Remark 3.16. Let l : U ⊂ R
2 → R be a differentiable function. The surface S ⊂ R

3 defined

by S := {X(x, y) = (x, y, l(x, y))T |(x, y) ∈ U} is a regular surface and X : U → R
3 is the

parametrization. The tangent and unit normal vectors in p = X(x0, y0), p ∈ S, then become

Xx(x, y) =






1

0

lx




 , Xy(x, y) =






0

1

ly




 , and N(x, y) =

1

(1 + l2x + l2y)
1/2






−lx
ly

1




 .

(3.23)

The first fundamental form is an important mapping defined with respect to the tangent

space. With the aid of the first fundamental form, quantities of the intrinsic geometry of the

surface can be computed. This means quantities with respect to the surface itself, e.g. length

of curves on the surface or the area of regions on the surface. But more importantly in the

context of this work is the relation to the Gaussian curvature.

Definition 3.17 (First fundamental form). Let S be a regular surface. The first fundamental

form Ip(·, ·) is the restriction of the usual dot product in R
3 to the tangent plane TpS . That

means Ip(x, y) = x · y for all x, y ∈ TpS with respect to the standard basis of R3.

The first fundamental form is defined on the tangent space of the surface. But it remains

unclear how the parametrization of the surface influences it. The following proposition gives

an answer to this question.

Proposition 3.18. Let Ip : TpS × TpS → R be the first fundamental form at a point p on a

regular surface S. Given a regular parametrization X : U → R
3, the matrix associated with

the first fundamental form Ip with respect to the basis B = {Xu, Xv} is

g =

(

g11 g12

g21 g22

)

=

(

Xu ·Xu Xu ·Xv

Xv ·Xu Xv ·Xv

)

. (3.24)

The first fundamental form can be expressed by the quadratic form Ip(x, y) = xT gy for x and

y being points on the tangent plane and expressed in the basis B.
In literature the coefficients of the matrix associated with the first fundamental form are

often denoted by E, F , and G such that

g =

(

Xu ·Xu Xu ·Xv

Xv ·Xu Xv ·Xv

)

=:

(

E F

F G

)

. (3.25)

The following formula by Brioschi relates the first and second derivatives of the coefficients

of the first fundamental form to the Gaussian curvature. In particular it gives an explicit

formula which enables one to determine the Gaussian curvature. The theorem and a proof

can be found in [26].
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Theorem 3.19 (Brioschi’s formula). Let S be a regular surface with its parametrization

X : U → R
3. Then the Gaussian curvature of X is given by

K =
1

(EG− F 2)2






∣
∣
∣
∣
∣
∣
∣

−1
2Evv + Fuv − 1

2Guu
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

∣
∣
∣
∣
∣
∣
∣




 .

(3.26)

Corollary 3.20. Let l : U ⊂ R
2 → R be a differentiable function. The surface S ⊂ R

3 defined

by S := {X(x, y) = (x, y, l(x, y))T |(x, y) ∈ U} is a regular surface and X : U → R
3 is the

parametrization. Then the Gaussian curvature is given by

K =
lxxlyy − l2xy
(1 + l2x + l2y)

2
. (3.27)

Proof. By using Equation (3.23) the quantities E, F , and G become

E = 1 + l2x, F = lxly, and G = 1 + l2y

with

Ex = 2lxlxx, Ey = 2lxlxy, Eyy = 2(l2xy + lxlxyy)

Fx = lxxly + lxlyx, Fy = lxyly + lxlyy, Fxy = lxxyly + lxxlyy + lxlyxy + l2xy

Gx = 2lylyx, Gy = 2lylyy, Gxx = 2(l2xy + lylyxx).

With Equation (3.26) follows

K =
1

(1 + l2x + l2y)
2






∣
∣
∣
∣
∣
∣
∣

lxxlyy − l2xy lxlxx lylxx

lxlyy 1 + l2x lxly

lylyy lxly 1 + l2y

∣
∣
∣
∣
∣
∣
∣

−

∣
∣
∣
∣
∣
∣
∣

0 lxlxy lylxy

lxlxy 1 + l2x lxly

lylxy lxly 1 + l2y

∣
∣
∣
∣
∣
∣
∣






=
1

(1 + l2x + l2y)
2

[
(lxxlyy − l2xy)(1 + l2x)(1 + l2y) + 2l2xl

2
ylxxlyy

− l2ylxxlyy(1 + l2x)− l2xlxxlyy(1 + l2y)− l2xl2y(lxxlyy − l2xy)
−2l2xl2yl2xy + l2xl

2
xy(1 + l2y) + l2yl

2
xy(1 + l2x)

]

=
lxxlyy − l2xy
(1 + l2x + l2y)

2

[
(1 + l2x)(1 + l2y)− l2y(1 + l2x)− l2x(1 + l2y) + l2xl

2
y

]

︸ ︷︷ ︸

=1

.

Remark 3.21. The definition of the Gaussian curvature is not given in this section as it re-
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quires knowledge about the second fundamental form. The shortcut without this knowledge

would not be possible without Brioschi’s formula and Gauss’ prominent Theorema Egregium,

which states that the Gaussian curvature can be computed without knowledge of the sec-

ond fundamental form, by using first and second derivatives of the coefficients of the first

fundamental form only. The interested reader is referred to standard differential geometry

literature [5, 26, 48]. The following is a constructive description of what is meant by Gaussian

curvature. From the definition it can be derived that the Gaussian curvature K is the product

of the two principal curvatures k1 and k2 in each point on a regular surface S, i.e.

K = k1k2. (3.28)

Let TpS denote the tangent plane and N1 and N2 are two orthogonal planes which are both

orthogonal to TpS. The curvature kni of the intersection curves in Ni is termed the normal

curvature. If N1 and N2 are chosen so that the corresponding kni become extreme values, the

normal curvatures with respect to N1 and N2 are the principal curvatures k1 and k2. The

product of the principal curvatures is then the Gaussian curvature.

The last quantity which is considered describes a specific type of curvature of curves on a

surface. This is the geodesic curvature. Given a curved surface and a curve on the surface.

Then the geodesic curvature in one point is the curvature of the curve which results from

the projection of the curve to the tangent plane. The following lemma describes how this

curvature can be determined.

Lemma 3.22 (Geodesic curvature). Let S be a regular surface with parametrization X : U ⊂
R
2 → R

3. And let Y : I ⊂ R → S be a space curve on S. Given the Frenet frame (T, P,B)

and the unit normal vector N , the geodesic curvature can be calculated by

κg = κP · U (3.29)

where

U = N × T. (3.30)

Corollary 3.23. Let l : U ⊂ R
2 → R be a differentiable function. The surface S ⊂ R

3 defined

by S := {X(x, y) = (x, y, l(x, y))T |(x, y) ∈ U} is a regular surface and X : U → R
3 is the

parametrization. Furthermore a space curve on S is given implicitly by l(x(t), y(t)) = c with

Y (t) = (x(t), y(t), l(x(t), y(t)))T . Then the geodesic curvature of Y is given by

κg =
l2xlyy + l2ylxx − 2lxlylxy

(l2x + l2y)
3/2(1 + l2x + l2y)

1/2
. (3.31)
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Proof. Given the vectors P , N , and T from Equations (3.9), (3.23), and (3.4), we get

U =
1

(l2x + l2y)
1/2(1 + l2x + l2y)

1/2






lx

ly

l2x − l2y




 . (3.32)

With

P · U =
1

(1 + l2x + l2y)
1/2

(3.33)

and the curvature κ from Equation (3.17) it follows

κg =
l2xlyy + l2ylxx − 2lxlylxy

(l2x + l2y)
3/2(1 + l2x + l2y)

1/2
. (3.34)

We now have the Gaussian curvature and the geodesic curvature, the elementary quantities

in the Gauss-Bonnet theorem, which play the key role in the subsequent model for numerosity

estimation. But the relation to the concept of intrinsic dimensionality is still unclear. The

following theorem makes the relation explicit as it shows that both, the Gaussian curvature

and the geodesic curvature, define i2D-operators.

Theorem 3.24. The operators Ti : C
2(Ω)→ C(Ω), i = 1, 2, with compact Ω ⊂ R

2 defined by

T1(u)(x) :=

∂2

∂x2
1
u ∂2

∂x2
2
u− ( ∂2

∂x1∂x2
u)2

(1 + ( ∂
∂x1

u)2 + ( ∂
∂x2

u)2)2
(3.35)

and

T2(u)(x) :=
( ∂
∂x1

u)2 ∂2

∂x2
2
u+ ( ∂

∂x2
u)2 ∂2

∂x2
1
u− 2 ∂

∂x1
u ∂
∂x2

u ∂2

∂x1∂x2
u

(( ∂
∂x1

u)2 + ( ∂
∂x2

u)2)3/2(1 + ( ∂
∂x1

u)2 + ( ∂
∂x2

u)2)1/2
(3.36)

are i2D-operators.

Proof. Let u ∈ C2(Ω) and x ∈ I0(u) ∪ I1(u) with respect to Bǫ = {x ∈ R
2|‖x‖2 < ǫ} for an

arbitrary ǫ > 0. Then there exists a direction v ∈ S1 such that for all t ∈ R with tv ∈ Bǫ the

following holds

u(x) = u(x+ tv). (3.37)
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The directional derivative in the direction of v then becomes

Dvu(x) = lim
t→0

u(x+ tv)− u(x)
t

= 0. (3.38)

u is continuosly differentable by definition such that it is also totally differentiable. For totally

differentiable functions the following relation to the directional derivate holds

Dvu = ∇xu · v = v1
∂

∂x1
u+ v2

∂

∂x2
u. (3.39)

With Equation (3.38) we obtain the relation

∂

∂x1
u = k

∂

∂x2
u (3.40)

where k := −v2/v1. In the following it is shown that the nominator of the operators T1 and
T2 becomes zero within this setup. The nominator of T1 becomes

∂2

∂x21
u
∂2

∂x22
u− (

∂2

∂x1∂x2
u)2 = k

∂2

∂x1∂x2
u
1

k

∂2

∂x2∂x1
u− (

∂2

∂x1∂x2
u)2 = 0.

The nominator of T2 becomes

(
∂

∂x1
u)2

∂2

∂x22
u+ (

∂

∂x2
u)2

∂2

∂x21
u− 2

∂

∂x1
u
∂

∂x2
u

∂2

∂x1∂x2
u

=(k
∂

∂x2
u)2

∂2

∂x2∂x1
u+ k(

∂

∂x2
u)2

∂2

∂x1∂x2
u− 2k

∂

∂x2
u
∂

∂x2
u

∂2

∂x1∂x2
u = 0.

Both operators thus fulfill the requirements to be an i2D-operator.
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3.3 Article: Spatial numerosity: A computational model based on a

topological invariant
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3.4 Article: Numerosity as a topological invariant
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The ability for a fast recognition of the number of objects in our environment is a fundamental cognitive

function. However, it is far from clear which computations and which actual neural processing mech-

anisms are used to provide us with such a skill. Here we try to provide a detailed and comprehensive

analysis of this issue, which comprises both the basic mathematical foundations and the peculiarities

imposed by the structure of the visual system and by the neural computations provided by the visual

cortex. We suggest that numerosity should be considered as a mathematical invariant. Making use of

concepts from mathematical topology, like connectedness, the Betti numbers, and the Gauss-Bonnet

theorem, we derive the basic computations which are suited for the computation of this invariant. We

show that the computation of numerosity is possible in a neurophysiologicaly plausible fashion, using

only computational elements which are known to exist in the visual cortex. We further show that a

fundamental feature of numerosity perception, its Weber property, arises naturally assuming noise in

the basic neural operations. It is hoped that our results can provide a general framework for the future

research on the invariance properties of the numerosity system.

Keywords: numerosity, topological invariance, Betti numbers, Euler characteristic, Gaussian cur-

vature, functional model

Introduction

The information about the number of objects in the environment can be extracted in a fast and effortless

fashion by the visual systems of humans and other species. Access to this information is a crucial factor in

evolution: How many predators am I confronted with? On which tree can I get the larger amount of food?

Questions like these show that survival can essentially depend on having access to this type of knowledge. It is

therefore not surprising that the estimation of number, or of its approximation “numerosity” (Brannon, 2006),

is also considered to be a fundamental property of cognition.

Humans recognize numbers rapidly and precisely up to four (“subitizing” (Kaufman, Lord, Reese, & Volk-

mann, 1949)) but they also estimate it rapidly for larger numbers, although there with increasing errors. A typical

characteristic of the numerosity system is that the errors depend on the set size in accordance with the Weber-

Fechner law (Gallistel & Gelman, 1992). Whether these characteristics support the idea of two clearly distinct

subsystems or reflect different operation modes of a general number system is still under debate (Feigenson,
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Dehaene, & Spelke, 2004; Piazza, Mechelli, Butterworth, & Price, 2002; Ross & Burr, 2010). The estimation

of numerosity was not only reported for human adults (Whalen, Gallistel, & Gelman, 1999) but it was also

shown that even six-month-old infants were able to do a number distinction task (Xu & Spelke, 2000). Inves-

tigation of the development of mathematical competence and the ability for numerosity estimation in children

suggested that mathematical ability is correlated with the acuity in numerosity estimation (Halberda, Mazzocco,

& Feigenson, 2008). But number estimation is not restricted to humans with mature cognitive abilities, it has

also been found in infants and animals (Brannon, 2006; Nieder, Freedman, & Miller, 2002), recently even in

invertebrates (Gross et al., 2009).

In general, numerosity is one of the most abstract properties in the environment and its perception is

almost independent of spatial attributes like orientation (Allik, Tuulmets, & Vos, 1991) and of the shape of

the objects (Strauss & Curtis, 1981). It is also not confined to a specific sensory modality (Starkey, Spelke, &

Gelman, 1990). And finally, numerosity estimation extends beyond the estimation of the cardinality of objects.

The quantity of physical properties like sound volume, space, and time shows similar characteristics (Bonn &

Cantlon, 2012). This suggests that there might exist a generalized system for magnitude estimation (Gallistel &

Gelman, 2000; Walsh, 2003).

The standard view of cortical organization as a local-to-global processing hierarchy (Hegde & Felleman,

2007) which goes from basic sensory properties towards the representation of the most abstract properties on

top of the hierarchy would suggest that numerosity has to be considered a very high-level feature. On the other

hand, single cell recordings show that neural reactions to numerosity are quite fast, approximately 100 msecs

in macaques (Roitman, Brannon, & Platt, 2007). Likewise, human evoked potentials show number-specific

responses as early as 75 msecs (Park, DeWind, Woldorff, & Brannon, 2015). This indicates that number pro-

cessing starts at a relatively early level. The reaction times in numerosity estimation tasks are independent of the

number of elements, suggesting that numerosity is processed in parallel (Mandler & Shebo, 1982). Physiologi-

cal results also argue for a parallel extraction of numerosity (Nieder et al., 2002). In addition, there is evidence

for a “direct visual sense for number” since number seems to be a primary visual property like color, orientation,

or motion, to which the visual system can be adapted by prolonged viewing (Ross & Burr, 2010). And finally,

there is an ongoing debate about whether we have a true sense of number (Ross & Burr, 2010; Anobile, Cicchini,

& Burr, 2014) or whether our apparent number sense is in fact just a variant of texture perception, namely the

perception of texture density (Durgin, 2008; Dakin, Tibber, Greenwood, Kingdom, & Morgan, 2011; Raphael,

Dillenburger, & Morgan, 2013).

All this shows that the understanding of numerosity should be regarded as a constitutive element for our

understanding of perception and cognition. And for this it is of obvious importance to understand how nu-

merosity is computed by the visual system. However, as yet there is no agreement upon a canonical structure

for models which address the problem of numerosity perception. Rather, there exists a variety of different model

approaches (e.g., (Dakin et al., 2011; Dehaene & Changeux, 1993; Meck & Church, 1983; Stoianov & Zorzi,

2012; Verguts & Fias, 2004; Zetzsche & Barth, 1990b)), and it is unclear how they are exactly related to each

other, and whether they all share some common basis. It is also important to note that some of these models

cannot be considered as full computational models that can be realized in a neurobiologically realistic fashion.

Such models have to account for the complete processing chain, from the retinal image, over neurobiologically

plausible transformation stages, to the final number assignment.

The first model that matched these criteria has to our knowledge been suggested by (Zetzsche & Barth,
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1990b), and their earlier results constitute an important basis for our present analysis. A very influential model

that also matches the criteria (up to the point that it is only a 1-D model) has been suggested by Dehaene and

Changeux (Dehaene & Changeux, 1993). This model is based on different processing stages, with the essential

components being Difference-Of-Gaussian (DOG) filters of different sizes and an accumulation system. The

DOG filters restrict the model to represent all stimuli as blob-like features, which limits its invariance properties

with respect to the shape of the elements in a stimulus. Whether human observers show related deviations from

invariance which can be attributed to a blob-like representation remains to be determined.

A more recent model by Dakin et al. (Dakin et al., 2011) uses texture density computed by a ratio of

pooled high and low spatial frequency filter outputs. Assuming that the high spatial frequencies are largely de-

termined by the number of objects, an estimate for numerosity is determined by the product of area and density.

By definition the pooled high frequency output depends on the length of the object contours presented in the

stimulus. The model tests so far used stimuli consisting of similar objects such that numerosity is approximately

proportional to accumulated contour length. The degree of invariance of the model with respect to comparisons

involving elements of very different shape, and therefore substantially different contour length, has not yet been

systematically tested.

Another model by Stoianov and Zorzi (Stoianov & Zorzi, 2012), which can also be seen to match the

criteria, is based on unsupervised learning in a deep recurrent network. Neural network models are very valuable

in so far as they demonstrate that a capability like numerosity perception can indeed be learned by a biological

system (Hornik, Stinchcombe, & White, 1989). The training images were binary and the elements presented

had rectangular shapes, so that only moderate shape variations were investigated. Whether this model and its

abstract mathematical counterpart (Stoianov & Zorzi, 2012; Cappelletti, Didino, Stoianov, & Zorzi, 2014) can

provide the desired invariance properties for arbitrarily shaped elements thus remains to be determined.

In our view, this situation suggests that a systematic account of the logical, mathematical, and compu-

tational requirements for a ”sense of number” is highly desirable. A formal analysis through a hierarchy of

abstraction similar to Marr’s approach (Marr, 1982) and a discussion of the relation to the philosophy of mathe-

matics can be found in (Kluth & Zetzsche, 2015). Simplified early variants of the model which represent objects

as ”‘rectangular”’ polygons and make use of a generalized eigenvalue operation are described in (Zetzsche &

Barth, 1990b; Zetzsche, Gadzicki, & Kluth, 2013). First results on the present version of the model have been

presented in a conference paper (Kluth & Zetzsche, 2014). In this paper the focus is on the invariance properties

of the model, on its neural realization, and on its quantitative predictions regarding human behavior.

The paper is organized as follows. We start with a specification of the preconditions and of the general

problem statement, and present then the specific questions that have to be answered. In the following section we

describe our approach to the problem: numerosity should be considered as a mathematical invariant, and the

zeroth Betti number, a specific topological invariant, should be considered as the ideal solution. We then derive

a realistic approximation of the ideal solution by considering the image luminance function as a curved surface

and by making use of the Gauss-Bonnet theorem to compute the number of simply connected components in

the image. This solution is then tested for a variety of differently shaped elements being arranged in varying

configurations. In the next step we consider the neurobiological plausibility of the suggested computations and

show that required hardware can be assumed to be available in the visual cortex. The relation of the model to

human behavior is investigated in the following section. Here we investigate how reasonable assumptions about

the neural noise lead to predictions about the behavior in different tasks and about the corresponding Weber

3 Role of curvature i2D-features in numerical cognition 83



fractions. The paper is closed with a discussion in which we compare our model to other suggested models,

identify the different invariance properties of the models, and consider what testable predictions can be deduced

form this comparison.

Mathematical Principles and Models

Definition of the Problem

The common mathematical basis for numbers is given in set theory. The cardinality of a set is closely

related to our understanding of what is meant by numerosity as it describes how many elements the set contains.

But representations of numbers seem to be somewhat arbitrarily chosen because numbers are just a formal

construction to provide a label for the equivalence classes of the relation “having the same cardinality”. The

definitions of the natural numbers and their Arabic digits are both concepts which can have an effect on numeri-

cal cognition. However, they do not provide a basis for the mental representation of numbers as species without

access to these concepts are also able to estimate the number of objects in a configuration. Another problem is

that the concept of cardinality in set theory is based on a clear distinction between the elements within a set, and

this cannot be assumed as a general property of the perceptual process. As a consequence, set theory does not

provide the tools and concepts to properly describe how the number of objects in the real world is derived by

perceptual processes from basic properties of these objects. The biological representation of number a derived

from perceptual processes is also referred to as numerosity.

In the context of the perception of numerosity we thus have to consider a perspective which is different

from the abstract mathematical realm.. Here we are confronted with the problem of inferring numerosity from

the physical world. Constitutional aspects of this problem are the notions of space and object. We envisage space

here as the continuous real valued space R3. We further assume that this 3-D space is not completely empty but

contains a configuration of matter, i.e. at each position (x, y, z) we have either some matter of type mj (with

multiple assignments not allowed) or empty space (vacuum). Is it possible to assign in a meaningful way a

numerosity to this spatial configuration of matter? And what are the requirements for such an assignement? The

critical concept here is the notion of an object. We think here of ordinary objects like dogs, trees, tables, etc..

But what makes up an object formally? At least since Descartes a very common conception of a physical object

(body) is that of a contiguous bounded region of matter in 3-dimensional space. This region is distinguished

from its surround. The approach of establishing objects by such a contiguous region of matter is also supported

from a perceptual point of view by evidence from Gestalt theory. The connectedness of pieces strongly affects

grouping into one object (Palmer & Rock, 1994). Moreover, it has been shown that this kind of connectedness

also has an effect on numerosity estimation (Franconeri, Bemis, & Alvarez, 2009; He, Zhang, Zhou, & Chen,

2009). One critical issue here is how the distinction between object and surround is established. For the

context of this paper we will not further pursue this question and will just assume that this is achieved in some

reasonable fashion. An object is thus restricted to a connected subset of the real world which means that it

cannot be represented by a union of elements, i.e. disjoint subsets.

The world in which we live can be assumed to be four-dimensional if we consider the time as an additional

dimension. Within the context of this paper we restrict the world and the objects to be static such that they can

be represented by and within a three-dimensional vector space, the real valued space R
3. We then have our

configuration of one or more contiguous regions of 3-D space and we can assign a label to each point (x, y, z)
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?
numerosity

Figure 1: A variety of three-dimensional simply connected objects are illustrated and build a scene. The main question is, how
the numerosity of objects can be determined from such a scene. In a strict manner this illustration gives only an idea about
the three-dimensional case because they are not able to show the general three-dimensional case as mapping the setup to
a two-dimensional image is automatically the application to estimation via sensors. The shown objects (mushrooms) differ in
their position, size, and shape. There exist multiple possible approaches of how the numerosity can be estimated. If time is not
limited one may sequentially count the objects. For the case of up to four objects the number can be determined immediately,
named subitizing. We want to deal with the full range of numbers and we therefore investigate the approximate number sense
which estimates the numerosity under a strict time limitation.

of the interior of the region belonging to an object, the objecthood label. We further assume that there exists

something like a “background” in form of the complement of the union of all object regions (in physical terms

this could be air, water, vacuum, etc.), and we can assign the background label to all points of this background.

For simplicity, let us also assume that any two objects can come arbitrarily close together but can never have full

contact so that there is always at least a tiny bit of background in between them. A configuration c(x, y, z) can

then be defined by the associated objecthood function. In mathematical terms this means, if multiple objects

Oi are given as subsets of the R
3 building a configuration set C = ∪iOi, the objecthood function defining a

configuration becomes the characteristic function with respect to C. Figure 1 shows an example for a possible

configuration.

Having specified the formal conditions so far, we now address the following questions:

1. How can we assign a numerosity to this configuration in a mathematically reasonable way?

2. How can we compute this numerosity from visual measurements?

3. How can this computation be realized with the available neural hardware of the human visual cortex?

4. How does all this relate to the human perception of numerosity?

Numerosity is an Invariant

As a first step we consider the mathematical problem behind the number assignment problem addressed by

the first question. Let us consider the set C which has all possible configurations c(x, y, z) as elements, i.e. all

the configurations of objects in the above specified sense. The relation ∼ defines the equinumerosity relation,

i.e. two configurations are equinumerous if each configuration has the same numerosity. The set C is then

structured into subsets according to the equivalence relation ∼ which means that each subset is an equivalence

class with respect to∼. Let us define the property N(c(x, y, z)) as the numerosity of objects in the configuration
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c. Since whenever ci ∼ cj then N(ci) = N(cj) for two configurations ci and cj , the property N , respectively

the numerosity, is an invariant under the relation ∼. Note that the fundamental difference to the classical set

theoretical approach is as follows. Given a configuration c with respect to a union of objects Oi, we only have

access to C = ∪iOi. But determination of cardinality in a set theoretical manner would require access to

{O1, . . . , On}, i.e. an explicit distinction between the objects. So let us look somewhat closer on the nature of

the invariant N .

Invariant properties are usually specified with respect to transformations T which map an object configura-

tion to another one. Which transformations T have to be considered? The simplest class are obviously changes

of positions (Figure 2a), and of course the numerosity N(c(T [x, y, z])) should not be influenced by such trans-

formations T . The same is true for other geometric properties, like size and orientation changes (Figure 2b,c),

and in general every affine geometric transformation T should be admissible while leaving the number value

invariant. However, geometric transformations are not sufficient since in addition to changes of the geometric

properties of the objects it should also be possible to change their shapes. Is there a class of transformations

which enables an arbitrary change of the shapes of the objects? And what is the appropriate mathematical for-

malism that can provide suitable invariants with respect to this class of transformations? We suggest that the

appropriate formalism is provided by topology. Loosely stated, topology is the mathematical discipline that

deals with those problems that do not depend on the exact shape of the objects and configurations involved.

The topological structure of the support of a configuration or more generally a topological space is described

by the series of Betti numbers. The k-th Betti number is the rank of the k-th simplicial co-homology group. A

more intuitive interpretation of this number is that it measures the number of k-dimensional holes of the space.

The zeroth Betti number is the most interesting one with respect to numerosity estimation as it is the number

of connected components. Each configuration consists of multiple contiguous objects so that the zeroth Betti

number of the support C is equivalent to the number of objects.

It is interesting to ask whether the proposed invariant is a topological invariant. Then it is obvious that

the operations are restricted to homeomorphisms, i.e. continuous and bijective mappings whose inverse is also

continuous. This class of operations not only includes the geometric transformations illustrated in Figure 2a,b,c

but also allows the complete change of shape appearance of the objects as illustrated in Figure 2d. Homeomor-

phisms are structure conserving in the sense that the kind of connectedness does not change. Cutting, tearing,

and gluing of objects, for example, are no homeomorphisms in general and could cause a change of a topologi-

cal invariant. The proposed invariant has the desired property as it can be identified by the zeroth Betti number,

which is a topological invariant. But the zeroth Betti number can be seen as a “stronger” invariant as it does not

change its value for a broader class of operations. This class of operations allows non-homeomorphic transfor-

mations like the mapping from a sphere to a torus without changing the invariant’s value. It is only important

that each object remains somehow connected.

There is a class of closely related algorithms in digital topology, i.e. the research area dealing with the

computation of topological properties in image processing. This class of algorithms is usually referred to as

“connected component labeling”. As the name states, the algorithms are based on a labeling strategy, and

the number of connected components results as a by-product from the number of different labels having been

assigned on termination of the algorithm. The main problem with these algorithms is that current knowledge of

numerosity perception assumes a parallel, almost instantaneous process. To our knowledge, there are no hints

on a specific temporal dependence on reaction times for numerosity estimation. The only exception is sequential
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Figure 2: The different kinds of invariance properties required for numerosity estimation are illustrated in the two-dimensional
case. The left column shows the different operations to which the numerosity should be invariant in isolation. The right column
shows the combination of different operations with increasing complexity from top to bottom. The kind of operations are
partitioned in two groups, geometric invariances and topological invariances. Geometric invariances are defined with respect
to operations which change position, size and orientation of the objects. The topological invariances are additionally defined
with respect to operations which change the shape of the object (formally defined with respect to homeomorphisms). Each
topological invariance is automatically a geometric invariance.
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counting, respectively mental counting, which is assumed to rely on different mechanisms (Mandler & Shebo,

1982; Trick & Pylyshyn, 1994). However, the known algorithms from digital topology for computation of the

number of connected components have all a substantial serial component. Many of them show a direct runtime

dependence on the number of objects (see, e.g., (He, Chao, Suzuki, & Wu, 2009)), whereas it is a hallmark

of numerosity perception that the reaction times are independent of the number of objects in the stimulus. In

the moment it is not possible to determine the number by a connected component labeling algorithm which

is compatible with our current knowledge on numerosity perception and the neural architecture of the visual

cortex. However, this does not at all rule out the possibility that new insights on the former or the latter, or both,

will turn up in the future. This issue should not be removed from the research agenda.

An important special case results from the assumption that all objects are approximately simply connected,

i.e. objects have no holes. In this case the zeroth Betti number equals another important topological invariant,

the Euler characteristic. The important point to note is that whereas the former formal argumentation enables

a precise mathematical specification of number for a given configuration of physical objects (provided the

assumptions are valid), the following steps are prone to approximations and thereby inevitably entail deviations

and errors, as compared to the ideal solution. In particular, we derive the proposed computational model, which

is applicable to images, from the Euler characteristic.

Sensor Implementation

Estimating the numerosity of objects requires access to the Euler characteristic of the object. The challeng-

ing part of the information gathering process is, how this quantity can be estimated by a given modality. Given

the abstract formulation of the problem it is a comfortable starting position. The main focus is to identify the

relation between the necessary information and the information provided by a sensor. Sequential tactile scan-

ning of the object’s surface or visual sensing are imaginable sensor strategies for human number estimation.

Multisensory approaches would also be possible and with additional technical sensor devices, as they are used

in robots, the number of possibilities for number estimation becomes quite high. In this article we restrict the

investigation to the human visual system. Here we restrict the visual stimulus to be luminance only such that we

have a sensory representation of the scene by the luminance function l = l(x, y). An example for the luminance

function of a slightly lightened three-dimensional cube is illustrated in Figure 3a. But it remains unclear how

this is related to the real world. The interplay between lighting and reflectance properties of the object’s surface

result in a mapping from the real world to the sensed luminance function. For further considerations in this

direction see (Phong, 1975; Schlick, 1993) and for its relation to human perception, we refer to (Koenderink &

Doorn, 2003). However, for our investigations we make a very simplified assumption on the real world to the

luminance mapping. The sensor operator G maps this physical properties of a configuration c to the luminance

function l : R2 → R
+
0 such that the sensory process becomes G(c) = l. Assuming G is an orthogonal projec-

tion not incorporating lighting the resulting luminance level is always constant for the objects. In particular, this

case for objects resulting in right-angled polygons as projections was considered in previous works (Zetzsche

& Barth, 1990b; Zetzsche et al., 2013). If we assume planar surfaces to be projected this way, the resulting

setup matches common visual stimuli in psychological studies, e.g. (He, Zhang, et al., 2009; Piazza, Izard,

Pinel, Le Bihan, & Dehaene, 2004). However, we assume that G takes lighting of the objects into account

such that it does not result in a constant luminance level on objects. Additionally, we assume the operator G

to preserve the differentiability on the objects surface. The configuration c is thus mapped to an almost every-
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Figure 3: In (a) the image of a slightly lightened three-dimensional cube is shown. (b) shows the luminance function of the
image in (a) as a two-dimensional surface embedded in the three-dimensional space. Applying differential operators to the
luminance surface (b) becomes numerically instable because of emerging discontinuities which require the incorporation of
additional arcs in the general solution.

where sufficiently smooth function l. The background is assumed to be uniform and clearly separated from the

objects. The discontinuity between objects and the environment is thus projected to the luminance function, cf.

Figure 3a. In the following we apply the Gauss-Bonnet theorem to the luminance function in order to estimate

the numerosity of perceived objects, i.e. the Euler characteristic is related to local features of the luminance

function. We investigate the luminance surface Ω ⊂ R
3 which is defined by the perceived luminance function

l, i.e. Ω := {(x, y, z) ∈ R
3|x, y ∈ R, z = l(x, y)}. For example, in Figure 3b the luminance surface of the

luminance function in Figure 3a is shown.

The Gauss-Bonnet theorem provides a connection between topology and differential geometry and relates

the Gaussian curvature of two-dimensional surfaces to their Euler characteristic. It thus becomes reasonable to

represent the number in terms of the Euler characteristic with the aid of the following theorem.

Theorem 1 (Gauss-Bonnet) Let S ⊂ R
3 be a regular oriented surface (of class C3), and let R be a compact

region of S with the boundary ∂R. Suppose that ∂R is a simple, closed, piecewise regular, positively oriented

curve. Assume ∂R consists of k regular arcs ∂Ri (of class C2), and let θi be the external angles of the vertices

of ∂R. Then
∫

R

K dS +

k∑

i=1

∫

∂Ri

κg ds+

k∑

i=1

θi = 2πχ(R) (1)

where K is the Gaussian curvature, κg is the geodesic curvature, and χ is the Euler characteristic.

The Euler characteristic is a topological invariant which maps a number to any subset within a topological

space. This number then characterizes the kind of connectivity of the subset. For example, the surface of a

sphere (no holes) has a different characteristic number than the surface of a torus (one hole). However, being a

topological invariant, the Euler characteristic of an object stays constant if a homeomorphism is applied to it.

Theorem 1 provides a solution which incorporates the luminance surface properties directly. Assuming a

smooth space curve Γ which is the boundary of a closed region S on the luminance surface Ω, i.e. Γ = ∂S, it
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results ∫

S

K dS +

∫

Γ

κg ds = 2πχ(S), (2)

where κg denotes the geodesic curvature and the Gaussian curvature K is given by

K(x, y) =
lxx(x, y)lyy(x, y)− lxy(x, y)

2

(1 + lx(x, y)2 + ly(x, y)2)2
, (3)

where the subscript letters denote the derivative in the respective direction. The consideration of the space curve

Γ is necessary because the integral of the Gaussian curvature over the whole luminance surface of arbitrary

luminance functions would result in the same quantity. This means that in this case all images have the same

Euler characteristic (Barth, Ferraro, & Zetzsche, 2001). Using the parametrization φ(x, y) := (x, y, l(x, y))T

of the surface S ⊂ Ω and the Gaussian curvature given by equation 3, the first integral can be computed by

∫

S

K dS =

∫

R2

lxx(x, y)lyy(x, y)− lxy(x, y)
2

(1 + lx(x, y)2 + ly(x, y)2)3/2
︸ ︷︷ ︸

=:K̃(x,y)

χS(φ(x, y)) d(x, y), (4)

where χS is the characteristic function with respect to the set S. In order to calculate the second integral, the

geodesic curvature of the boundary curve Γ must be estimated. Using the parametrization θ : I → R
3 with

θ(t) := (x(t), y(t), l(x(t), y(t)))T of the boundary curve and the assumption l(x(t), y(t)) = const., ∀t ∈ I ,

we can determine the geodesic curvature by

κg(t) = κ̃g(x(t), y(t)) =
l2xlyy + l2ylxx − 2lxlylxy

(l2x + l2y)
3/2(1 + l2x + l2y)

1/2
. (5)

The additional assumption of constant height allows to eliminate the second derivatives of the parametrization.

The second integral in equation 2 thus becomes

∫

Γ

κg ds =

∫

R

l2xlyy + l2ylxx − 2lxlylxy

(l2x + l2y)
3/2(1 + l2x + l2y)

1/2
(x′2 + y′2)1/2χΓ(θ(t)) dt, (6)

where χΓ is the characteristic function with respect to the set Γ. Assuming constant height, the first derivative

of the parametrization yields x′ = −(ly/lx)y′. Consequently, the geodesic curvature depends only on differ-

ential operators applied to the luminance function and one first derivative x′ or y′ of the parametrization of the

boundary curve. Finally, the numerosity of objects N from a union S of pairwise disjoint regions of luminance

surfaces can be determined by

2πN =

∫

R2

K̃(x, y)χ̃S(x, y) d(x, y) +

∫

R

κ̃g(x(t), y(t))χ̃Γ(x(t), y(t)) dt, (7)

where χ̃S(x, y) := χS(φ(x, y)) and χ̃Γ(x(t), y(t)) := (x′2 + y′2)1/2χΓ(θ(t)). The computation now depends

on three quantities K̃, χ̃S , κ̃g depending on surface properties and the quantity χ̃C which has to extract curve

properties. All quantities have in common that they represent local properties of the luminance surface. Re-

garding the implementation, images are assumed to be positive real-valued matrices. In order to replace the

continuous operators by their discretized approximations we have to guarantee sufficient smoothness on the
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Figure 4: Various stimuli (size 100 × 100 pixels) and the corresponding responses of the model defined by Equation 7 are
illustrated. Stimuli vary with respect to different criteria like cumulative area (a), number change by morphing (b), convex and
concave shape (c), contrast of a single object (d), large numbers of convex (e) and concave (f) objects.

luminance surface. If this is not satisfied, high numerical errors can emerge. In order to obtain the differen-

tiability in the discrete representation, each stimulus is additionally low pass filtered using a Gaussian kernel

g : [−1, 1] × [−1, 1] → R with fixed standard deviation σ = 0.04 for all computations considered within this

article. The images are assumed to be defined by functions l : [−1, 1] × [−1, 1] → [0, 1]. The discretization

assumed to be done with a step size of ∆x = ∆y = 1
50 results in image matrices with 100 × 100 pixels. The

threshold height is determined by half the maximum luminance value within an image.

The model’s behavior for stimuli commonly used in vision research is illustrated in Figure 4. More complex

stimuli are shown in Figure 5. The model shows a strong invariance with respect to cumulative area of the region

covered by objects as can be seen in Figure 4a. Furthermore the model is also invariant to changes in object

shape from convex to concave objects as can be seen in Figure 4c. The second column, i.e. Figure 4b, shows a

circle morphed into two circles. The slight change from the top stimulus to the middle one is due to numerical

instability at the connecting points of the contours. The model shows a strong change in the response when the

two circles are not connected anymore, cf. the bottom stimulus in Figure 4b. This selectivity with respect to

numerosity is one of the most important properties of the model. It is also present for larger numbers of objects

as can be seen in Figure 4e and f.

By definition the proposed model is invariant to contrast to some degree. The threshold which is defined

with respect to maximum contrast causes the invariance illustrated in Figure 4d. The slight changes are caused

by numerical differences in the curvature computation which highly depends on the absolute level of luminance.

The contrast invariance is also present for multiple objects as can be seen in the top and middle stimuli of Figure

5f. The bottom stimulus shows objects with different contrast. In this case the threshold to determine the

integration domain was chosen smaller, i.e. 30% of maximum luminance (denoted by Nt). The invariance with

respect to contrast is preserved as the model output changes only slightly. Note that the model can only be

contrast invariant to some degree. The lower the threshold the higher is the influence of the standard deviation
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Nt=2.8568

Nt=2.8694

N2=1.3016

N4=1.0517

N2=4.7133

N4=4.0717

N2=8.0137

N4=7.4058

Figure 5: Various stimuli (size 100 × 100 pixels) and the corresponding responses of the model defined by Equation 7 are
illustrated (N2: σ = 2∆x; N4: σ = 4∆x; Nt: σ = 2∆x and the threshold is 0.3 times the maximum luminance value). Stimuli
vary with respect to different criteria like grating texture (a), convex and concave object morphing (b), increasing number of
convex and concave binary (c) and grating-textured objects (d), textured concave objects (e), and contrast variations of multiple
rectangles (f).

σ of the Gaussian filter. This means that the minimum spatial distance between two objects which is necessary

to distinguish them in terms of numerosity is increased. One should find a systematic underestimation in the

numerosity estimation when using stimuli which include a mixture of low and high contrast objects spatially

placed with the critical distance for constant contrast. For further illustrations of illuminated 3D-objects and

threshold dependent responses we refer to (Kluth & Zetzsche, 2014).

We also tested the model on more complex stimuli including various numerosities of convex and concave

objects with different luminance patterns (constant, sinusoidal gratings, and texture), cf. Figure 5a-e. In all

cases with piecewise constant luminance patterns the model (N = N2), which uses the parameters for further

investigations within this article, works well and the desired selectivity and invariance properties are present.

In a few cases the model fails. In particular the introduction of sinusoidal gratings (cf. Figure 5a (middle), b

(bottom), and d) or texture (cf. Figure 5e) on the objects results in larger deviations from the expected model

output. More sophisticated luminance patterns have a larger spatial region which requires a certain degree of

regularity for the differentiation. If the regularity is not given, the size of this spatial region strongly determines

the amount of error within the computation of the differentials. We tested this error cause by increasing the

standard deviation of the Gaussian filter to increase the regularity of the differentiated signal. By using twice

the standard deviation (N4; σ = 4∆x) of the previously used one (N = N2; σ = 2∆x) the model (N4)

becomes a perfect enumerator (deviations smaller than 0.02) for constant and sinusoidal luminance patterns as

can be seen in all cases of Figure 5a-d. The deviations in the texture case are slightly higher which is due to the

higher degree of regularity which is required on the objects. Further increasing the standard deviation solves

this issue but could cause a spatial pooling of close objects or an exclusion of small objects. For σ = 6∆x and a

threshold of 30% maximum luminance the outputs for the middle and the bottom stimulus of Figure 5e become
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Figure 6: Various stimuli of three circles with different number of connecting lines and the corresponding model responses are
illustrated. The image size is varied from 100×100 pixels (a) to 200×200 pixels (c). The relative size of the circles is constant.
The absolute width of the connecting lines is constant resulting in a decrease in relative width to circle size.

4.0145 and 7.0336. Thus spatial pooling has no effect in this case such that the model output is improved by

changing these parameters.

That connectedness matters was also shown in (Franconeri et al., 2009; He, Zhang, et al., 2009). In

Figure 6a the kind of stimuli used in this study and the corresponding model responses are illustrated. A

line connecting the circles strongly affects the response of the model such that the response is reduced with

every inserted line from the top to the bottom stimulus. This implies that the perceived numerosity should be

underestimated by the introduction of connecting lines. This is in line with the findings reported in (He, Zhang,

et al., 2009). The stimuli are compared to stimuli with a higher image size, cf. Figure 6a-c. The relative size

of the circles is constant for all stimuli but the relative width of the connecting lines varies from column a to c.

The model responses in each line of the figure change which is due to numerical issues caused by a combination

of the constant absolute standard deviation of the Gaussian filter g and the change of the size of the integration

domain. In each column we can observe an approximately constant difference in response from top to bottom

which illustrates the desired selectivity of numerosity estimation with respect to the number of objects present

in the stimulus. We can also observe that the constant difference decreases from the left column to the right

one. This effect could additionally be caused by the decreased line width resulting in higher numerical errors

in the gradient computation at the connecting points of the lines and circles. This implies that the sensitivity to
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the connecting lines emerges up to a certain line width. The thinner the connecting lines, the less influence they

have.

Neural Implementation

A crucial question which immediately arises for any model being based on heavily theoretical arguments is

whether such a model is still neurobiologically plausible. In order to investigate how the computations required

by our numerosity model can be provided by the neural hardware available in the visual we derived a possible

architecture for the implementation of Equation 7 which is illustrated in Figure 7. The processing direction

is from left to right. First the input is filtered with a 2D-Gaussian kernel. The filtered input is then used

to compute the first- and second-order derivatives of the luminance function, as well as the threshold value

used to control the boundary curve. The computation of the derivatives builds the second path (blue block

“Linear filter”) with its origin in the filtered input image. The threshold value in the model depends on the

maximum of the whole Gaussian-filtered luminance function. Given the derivatives of the luminance function,

a bunch of multiplications must be realized, compare the red block “GC-Product” in Figure 7. The resulting

products then must be summed (blue block “GC-Sum”). The output of this stage is fed into a ratio computation

stage (block “GC-Norm”). After this stage, we finally have two local nonlinear features available, K̃(x, y)

and κ̃g(x, y). These are assumed to be computed across the whole visual field but are selectively gated by the

threshold mechanism such that κ̃g values are only passed at the boundary locations, and the K̃ values are only

passed within the interior regions to the final global summation stage (blue block “Integration”). This global

summation provides the estimate of the numerosity of the input pattern.

Now let us consider the neurophysiological plausibility of these operations in a step-by-step fashion: The

Gaussian filtering operation is commonly assumed to be available from the earliest stage of the visual system,

in particular it could be realized in the Ganglion cells of the retina (Kuffler, 1953; Marr & Hildreth, 1980). The

key operations in the model are directional derivatives of first and second order (combined with the Gaussian

filter for regularization). Translated in receptive field properties these are orientation-selective mechanisms with

odd and even symmetry. It is well known that Gaussian derivatives are well suited for the description of neurons

in the primary visual cortex , e.g. (Koenderink & Van Doorn, 1990; Lindeberg, 2013; Marr & Ullman, 1981;

Martens, 1990; Young, 1987; Young & Lesperance, 2001). In particular, it has been argued that they can be

approximated in a plausible fashion as DOOG filters (Difference Of Offset Gaussians, (Young, 1987; Young &

Lesperance, 2001)). And it has been suggested that curvature-selective operators can thus be easily realized by

the available cortical hardware (Zetzsche & Barth, 1990a, 1990b).

In addition to the linear filtering operation this requires the nonlinear AND-like multiplication of two

signals. One possibility that this could be directly realized in the dendritic tree of a neuron (Mel, 1993; Koch &

Segev, 2000). Alternatively, combinations of subunits could be used to realize the Babylonian trick and compute

the product by the sum of squared spatial filter outputs (Adelson & Bergen, 1985; Resnikoff & Wells Jr, 2015;

Zetzsche & Barth, 1990a), i.e. ab = 1/4[(a + b)2 − (a − b)2]. Finally, it can be shown that the nonlinear

mechanism of cortical gain control can be combined with subsequent nonlinear transducer functions to realize

an AND-like interaction (Zetzsche & Nuding, 2005). Thus there exists no principle obstacle to prevent the

neural implementation of a multiplicative interaction. Furthermore, it has been shown that certain forms of end-

stopping, of the hypercomplex property, and of extra-classical receptive field properties show a close relation

to the computation of curvature (Zetzsche & Barth, 1990a, 1990b; Zetzsche & Roehrbein, 2001; Zetzsche &
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Input 

Linear filter GC-Product GC-Sum GC-Norm Integration 

Figure 7: This figure illustrates a possible architecture of the proposed model and how the error is introduced in the system. The information precessing direction is from left to right
and each box represents one processing step. The processing steps in which noise is included have a slightly darker background color. The ◦ in each box is a placeholder for the
input coming from the left direction. Linear operation stages are blue and nonlinear ones are red. The stimulus is fed in the system as a luminance function l in the input stage (green
box). Then the additive normally distributed noise ηin ∼ N(0, σin) is added. The convolution with a Gaussian kernel g and applying the differential operator can be interpreted as one
linear filter processing stage, i.e. the convolution with the respective derivative of the Gaussian kernel. The results of the linear filter operation are fed into the next noise-adding-unit
where different samples of ηlin ∼ N(0, σlin) are added to each input. The following multiplication (GC-Product), summation (GC-Sum), and division (GC-Norm) build the cortical gain
control stage which results in an estimate for the required curvature quantities. Finally the curvature quantities are integrated (blue box) resulting in an estimate for the numerosity N .
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Nuding, 2005).

The resulting products then must be summed again (blue block “GC-Sum”) which is an undisputed ability

of neurons. The output of this operation is fed into a divisive operation. That neurons can implement such

an operation is shown by the established role of the divisive normalization mechanism in models of the visual

cortex (Abbott, Varela, Sen, & Nelson, 1997; Carandini & Heeger, 2012; Geisler & Albrecht, 1992; Heeger,

1992; Schwartz & Simoncelli, 2001). It has even been argued that such an operation should be regarded as a

”‘canonical”’ neural computation (Carandini & Heeger, 2012). The gain control layer, which is illustrated by

the rightmost red box in Figure 7, results directly in an estimate for the required curvature quantities K̃(x, y)

and κ̃g(x, y).

Although it can be assumed that these features are computed throughout the visual field, the implementation

of equation 7 requires a selective gating before feeding them into the global summation stage. The first part of

this process is the determination of a level for the boundary curve. For simplicity, we have here assumed

that this is achieved by selecting the 50% level of the maximum luminance value. Neural computation of the

maximum is a well-known principle discussed in the context of winner-take-all networks (Kaski & Kohonen,

1994; Mead & Ismail, 2012) electing the boundary which determines the region where the surface curvature

operations setting the value for the Maximum operations are also routinely used in models of the visual cortex

(Lampl, Ferster, Poggio, & Riesenhuber, 2004; Serre, Wolf, & Poggio, 2005). However, we do not put special

weight to the use of this principle since for the successful application of equation 7 the specific method used to

determine a boundary curve plays no crucial role. It might thus as well be based on some other mechanism, e.g.

on the determination of some equilibrium level (Dayan & Abbott, 2001; Grossberg, 1988). Once the boundary

is selected, what remains to be achieved is the gating operation, i.e., it has to be controlled which values are

passed to the global integration mechanism. This type of operation is a special case of the general principle of

neural gain modulation which is an essential neural mechanism in sensorimotor processing (Salinas & Thier,

2000), and which is also used in the visual cortex (Reynolds & Chelazzi, 2004).

To summarize: the curvature operators K̃ and κ̃g depend only on derivatives of the luminance function

which can be realized by neurophysiologically realistic filters. The multiplicative “AND”-like combination of

these features can be computed by a variety of plausible neural mechanisms. And the ratio operations are closely

related to the well established principle of cortical gain control. The outputs of the curvature operators are

globally integrated in a gated fashion, which is also an established neural principle known as gain modulation.

The computation of equation 7 can thus easily be achieved by the available neural hardware in the visual cortex.

Simulation Experiments on Weber Fraction

In the following we extend the proposed model such that noise is taken into account. We modeled additive

normally distributed noise ηin ∼ N (0, σin) at the input and neural noise ηlin ∼ N (0, σlin) at the linear filter

outputs. Both curvature operators, K̃ and κ̃g , are influenced by both types of noise. The structure of the

curvature operators and their resulting quantities as products of noise affected quantities is an optimal basis for

a log-normally distributed resulting quantity (Buzsáki & Mizuseki, 2014). This noise behavior was reported in

several studies regarding approximate number estimation. The influence of noise in the system which computes

the Gaussian curvature as well as the geodesic curvature is illustrated in Figure 7. The digital quantity described

by the perfect model thus becomes an analog quantity from which the desired information must be extracted.

In the following we focus on two different standard tasks to analyze the proposed model and to compare its
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Figure 8: Mean model output with standard deviation plotted against the true number in the stimuli for the zero noise case
((σin, σlin) = (0, 0)) on (a) dataset (TR), (b) dataset (R), and (c) dataset (C).

performance with the behavioral results from experiments with humans. The first task is the discrimination

whether it is a specific number or not (same-different), and the second task is to decide whether a stimulus is

larger than a reference stimulus (larger-smaller) (Piazza et al., 2004).

All investigations are based on three synthetic datasets of binary images generated in a similar fashion as

described in (Stoianov & Zorzi, 2012). The 30 × 30 pixel binary images contained up to 32 randomly-placed

non-overlapping objects with variable surface area and shape. The cumulative area of the objects was varied

from 32 to 256 pixels with a step of 32 resulting in 8 levels of cumulative area. For each tupel of number and

cumulative area 200 images of size 30 × 30 pixel were computed and then resized to 100 × 100 pixel. The

datasets thus consist of 51,200 100 × 100 binary images with 32 different numbers and 8 levels of cumulative

area. The datasets are distinguished by the kind of shape and whether they are for training or testing. One

dataset (R) has rectangular objects, as used for the analysis in (Stoianov & Zorzi, 2012), and the other one (C)

consists of circular objects, which are commonly used in behavioral experiments. Both are used as test sets. We

generated a third dataset (TR) consisting of rectangles to obtain the parameters for the optimal estimators. We

trained optimal estimators tuned to a specific numerosity Ntuned and a fixed task. Detailed information about

the optimal estimators can be found in appendix A1. See Table 1 for an overview of the trained parameters

given the subsequently motivated noise levels. The joint relative frequencies of the true numerosities and the

response of the estimator were obtained from two distinct datasets (rectangles (R), circles (C)). We then fitted a

continuous function to the conditional relative frequencies of the estimator’s response given the true numerosity

to obtain the internal Weber fraction. Further technical details can be found in appendix A2.

Before we start considering noise in the system, we investigate the output of the noise-free model on each

dataset. The mean model output and the corresponding standard deviation for each true number of objects

within the stimulus are illustrated in Figure 8. All datasets have in common that the model is nearly the identity

(black curve) and has very small standard deviations for small numbers. In this case the mathematical model

is approximated well by the discretization. For larger numbers the standard deviation increases which can have

two reasons. On the one hand, the mean object size decreases with a higher number of objects such that the

Gaussian filter could just smooth them below the threshold. And on the other hand, with a higher number

of objects the probability increases that two objects are too close such that they could be counted as one. In

both cases, we expect a smaller model output which is confirmed by Figure 8 where the mean model output

(blue line) falls below the identity (black line) for larger numbers of objects in all datasets. The increase of the

standard deviations is in line with the increased probability that one of the previously described cases occurs for

3 Role of curvature i2D-features in numerical cognition 97



� � �

Figure 9: The SNR curves with respect to the standard deviation of the noise for the dataset (R) are illustrated for the input
stage (a) and the linear filter stage (b). The plotted information of (a) and (b) can be found in Table 3. The required mean bit
rates to encode the signals of each stage are shown in (c). The noise parameters chosen for the empirical investigation of
numerosity judgment tasks are highlighted with red circles in (a)-(c).

Table 1: Parameters of optimal estimators. In all cases the noise levels were σin = 0.4 and σlin = 2.

same-different smaller-larger

Ntuned Dataset lb d t

8 TR 4.6633 5.6566 9.0050

R 4.6633 5.3333 8.6834

C 5.6281 4.6868 8.8442

12 TR 8.2010 5.6566 11.7387

R 8.3618 5.9798 12.0603

C 8.8442 5.6566 12.3819

16 TR 11.0955 7.2727 14.9548

R 11.0955 6.7879 14.7940

C 12.2211 6.4646 15.1156

larger numbers.

The remaining free parameters to control the system behavior are the standard deviations σin and σlin of

the additive noise in the system. In order to make reasonable assumptions on the noise parameters, we analyzed

the datasets with respect to their signal-to-noise values (SNR) at different stages of the architecture, see Table

3. The technical details can be found in appendix A3. The SNR values at the input stage plotted against the

the noise parameter σin can be found in Figure 9a. Analogously the SNR curves for the derivatives of the

luminance function with respect to σlin are illustrated in Figure 9b. For further consideration with respect to

the information encoded by a single unit the mean value of the curves was computed. Note that the mean curve

and the curve for luminance l cover each other in Figure 9a. The same holds true for the pairs lx/ly and lxx/lyy

in Figure 9b. Figure 9c shows the rate which is required to encode the signals at the different stages with the

corresponding SNR without loss of signal quality. Details about the relation between SNR and the rate can

be found in the appendix. This rate can now be related to findings in the literature regarding single neurons and

their encoding rate of transmitted signals. The transmitted information is reported with a range from 5 bits to

30 bits per second for a single neuron (Reich, Mechler, Purpura, & Victor, 2000). Assuming a mean firing rate

code and a time window of approximately 200 ms we get a rate interval of 1-6 bits which can be compared with

the rates in Figure 9c (gray window). At the linear filter we thus chose the standard deviation which corresponds

to half the maximum of the reported rate interval, i.e. σlin = 2. At the input stage we chose the worst case
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with σin = 0.4. These two cases are highlighted with a red circles in Figure 9. These parameters were used to

simulate the model behavior in both numerosity judgment tasks. Note that the mean peak signal-to-noise ratio

(PSNR) of the first layer is approximately 40 dB higher than the respective SNR, cf Table 3. A higher rate of

approximate 6-7 bits is required to guarantee the same signal quality for the whole signal amplitude. Multiple

units encoding the same quantity could be used to overcome this issue.

The results of the rectangle dataset (R) for the specified noise parameter configuration are shown in Figure

10. We find that in both tasks the performance of the artificial estimators shows a very similar behavior compared

to a human estimator (Piazza et al., 2004). On the linear axis shown in the first row of the figure, an increase of

the variance with increasing tuned numerosity can be seen in the same-different task and a decrease in steepness

with increase of tuned numerosity can be observed in the smaller-larger task. If we consider the same data on a

logarithmic scale of the true numerosity, the effects are not observable anymore as can be seen in the second row.

The third row shows the same data plotted on a logarithmic scale of the ratio between the true numerosity and

the tuned numerosity of the estimator. For all tuned numerosities the curves are nearly identical which implies

a behavior relying on the Weber-Fechner law. In the last row of Figure 10 all data points on the logarithmic

scale of the ratio were also used to fit one continuous function. The tuning curves were used to obtain the

internal Weber fraction w, an index to describe the discriminability between two numbers. In both tasks we

find internal Weber fractions in the dimension of human behavior, 0.167 in the same-different task and 0.169

in the smaller-larger task on the rectangle dataset. In comparison Piazza et al. (Piazza et al., 2004) reported

corresponding Weber fractions of 0.17 and 0.174. In summary the computational results agree excellent with

behavioral results (Piazza et al., 2004, 2010; Halberda et al., 2008) and can compete with recent computational

results (Stoianov & Zorzi, 2012) (w = 0.15 in larger-smaller task).

We found slightly different but similar Weber fractions on the circle dataset, see Table 2. In the same-

different task we observe a better numerosity discrimination in the circles dataset (C) for the numbers 8 and 16

and worse discrimination for the number 16. These differences can may be explained by the optimal estimator

parameters in Table 1. The parameters for the evaluation were obtained from the dataset (TR). Comparing

these parameters with the parameters obtained from the datasets (R) and (C) should provide explanations for the

observed differences. The parameters are determined by maximizing the true positive rate and minimizing the

false negative rate, cf. appendix. For number 8 in the same-different task the parameters of (R) nearly match the

parameters of the training set such that the Weber fraction of (R) is a good baseline. Compared to the interval of

the training set the interval of (C) is a subset with a smaller length. This directly implies that the used parameter

setting differs from the optimum of the receiver operator characteristic in the dataset (C). As the interval is a

subset, the true positive rate is at least the same or higher. This can be interpreted as a constant or a lower

valley in the curve in Figure 10c, for example. If the true positive rate is constant, a better Weber fraction would

emerge only if the false positive rate is smaller. For the curve in Figure 10c this would imply that the values next

to the tuned numerosity 8 must be higher, i.e. the curve becomes steeper. If the true positive rate is higher, the

false positive rate can stay constant or decrease to explain the observed effect of a smaller Weber fraction. But

a smaller false positive rate is not reasonable in this setup because the interval of the estimator is larger than the

optimal interval for dataset (C). This implies that in the worst case more different stimuli are classified as the

same. The most reasonable case is that the true positive rate increased and the false positive rate is constant. For

number 12 the intervals are similar for all datasets resulting in similar Weber fractions. For number 16 we find

a similar parameter setup compared to number 8 (optimal interval of (C) is subset of estimator interval (TR))
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Table 2: Parameters of the continuous data fitting functions. In all cases the noise levels were σin = 0.4 and σlin = 2. The
parameters of the optimal estimators were obtained from the dataset TR, see Table 1.

same-different smaller-larger

Ntuned Dataset w c δ w c

8 R 0.170 0.0968 0.412 0.158 -0.172

C 0.14 0.137 0.408 0.150 -0.128

12 R 0.151 0.0551 0.277 0.151 -0.0502

C 0.149 0.107 0.270 0.172 -0.015

16 R 0.150 0.0352 0.263 0.152 -0.024

C 0.175 0.0799 0.267 0.203 0.00166

{8, 12, 16} R 0.167 0.054 0.299 0.169 -0.0655

C 0.176 0.104 0.303 0.197 -0.0353

but the Weber fraction is worse for (C). Here it is reasonable that the false positive rate increased resulting in a

worse Weber fraction.

In the larger-smaller task the same arguments hold true for number 8 but number 12 and 16 are more

complicated. The threshold of (C) does not differ much from the estimators threshold (TR) for number 16 but

the difference in Weber fraction is quite high. In this task the similar threshold also implies a constant or higher

true positive rate but here the distinction is done between two sets both consisting of multiple numbers. Even

if the true positive rate stays constant, which is reasonable for number 16, the distribution over the whole set of

larger numbers can change dramatically. This could result in a worse Weber fraction.

Finally, we went one step further and analyzed various noise parameter combinations. The resulting Weber

fractions on the rectangle dataset (R) are illustrated in Figure 11. In both tasks we find a similar distribution

of Weber fractions. The only difference can be observed for high noise levels in the upper right corner of the

right illustrations of Figure 11. This could be caused by numerical instability of the fitting algorithm which

relies on the resulting error in the numerosity quantity obtained from the model. However, the Weber fraction

for these noise parameters is beyond the reported Weber fractions for humans (children ∼ 0.3). In both tasks

the distribution in vertical direction seems to have a discontinuity for lower linear noise σlin. This discontinuity

is a result of the non continuous luminance function in the dataset. The standard deviation of the Gaussian filter

is not sufficient to compensate the discontinuity in the stimulus signal function. The regularity required for

the model computation (i.e. differentiability) is not guaranteed. This implies that the input noise stabilizes the

system to a certain degree. Changing the standard deviation of the Gaussian filter should move the discontinuity

in the Weber fraction distribution in Figure 11, in particular an increase of the standard deviation shifts this line

towards the bottom of the illustartion, i.e. towards a smaller σin-value.

We also highlighted a height line for a constant Weber fraction w = 0.15 to demonstrate that various

parameter combinations can result in the same fraction value. The qualitative difference between two cases

(red and blue circle) is illustrated for the larger-smaller task in Figure 12. A smaller noise parameter at the

linear filters in combination with higher noise at the input has quantitatively the same overall Weber fraction

but qualitatively it does not show the same reported log-normally distributed noise behavior for all numbers,

see Figure 12a. This supports the previous suggestion that the noise at the linear filter outputs which are fed

into the multiplication is the essential reason for the log-normal behavior of the model, which is in line with the

literature (Buzsáki & Mizuseki, 2014).
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Figure 10: Computational results from same-different and larger-smaller tasks where the estimators were trained on the TR
dataset and the evaluation was done on the R dataset. The noise parameters were σin = 0.4 and σlin = 2 and the corre-
sponding estimator parameters can be found in Table 1. In the left column the graphs show the relative frequencies of the
estimators response to “different” and in the right column the relative frequencies of the response “larger” are shown. In both
cases the relative frequencies are plotted against functions of the true numerosities in the stimulus. The resulting data points
from the evaluation process are shown as squares, rhombuses, and triangles. The continuous graphs are the fitted log-normal
distributions as described in the Materials and Methods section. The graphs are skewed on a linear scale (a,e) and become
symmetric on a logarithmic scale (b,f). Plotting the frequencies against the ratio with the reference numerosity Ntuned on a
logarithmic scale shows that the graphs for all reference numerosities are approximately covering each other (c,g). Using data
points of all reference numerosities in the logarithm of the ratio scale to fit the continuous functions yields the overall numerosity
discrimination ability (d,h) regarding the previously illustrated reference numerosities.
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Figure 11: The distribution of Weber fractions over various noise combinations of input noise σin and linear filter output
noise σlin is illustrated for (a) the same-different task and (b) the larger smaller task. The Weber fractions are a result of
the evaluation of the dataset (R) with the parameters for the optimal estimators obtained from the dataset (TR). The black line
shows a constant Weber fraction of w = 0.15 within the shown distributions. The red and the blue circle highlight the parameter
instantiations used for Figure 12.
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Figure 12: The response of the optimal estimator in the case of the larger-smaller task for different noise parameter combina-
tions (σin, σlin) is shown on a log scale. The noise parameter combinations are (a) (0.8, 0) and (b) (0.4, 2) resulting in similar
overall Weber fractions (a) w = 0.172 and (b) w = 0.169.
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Discussion

In this paper, we proposed a general mathematical approach to the computation of numerosity. We sug-

gested to formalize the problem and its solution by considering numerosity as a mathematical invariant. We

then developed a model which takes the restrictions imposed by the structure of the visual system and the

known neurophysiology into account. The proposed model was applied to visual stimuli and finally validated

in computational experiments.

We first considered the problem on an abstract level with the goal to provide a formal mathematical so-

lution without having to consider the specific constraints induced by the human visual system and the neural

computations of the visual cortex. For this, we formalized it as the problem of an assignment of the property

number to a configuration c of objects in three-dimensional space R
3 (Figure 1). We then argued, that number

specified in this sense has to be regarded as a mathematical invariant (Figure 2). This simple fact is in our view

a central contribution of this paper: The understanding and modeling of numerosity should be considered as

an investigation of the specific invariance properties that have to be provided by the perceptual processes and

neural computations.

The special nature of this invariant - numerosity does not depend on the shape of the objects involved -

suggested to consider the problem in the context of topology. Since the crucial property that constitutes an

object is the fact that it occupies a connected region of space, the appropriate formal invariant turned out to be

the zeroth Betti number, which counts the number of connected components of a topological space. It should be

noted that this invariant represents the ideal solution to the problem of numerosity, and should hence be taken

into account in future investigations, both in experimental and in model research. However, if we consider its

computational properties, it turns out that the Betti number is not compatible with the established properties

of numerosity perception: the biological numerosity system acts quite fast (Roitman et al., 2007; Park et al.,

2015) and it is based on parallel computations, since there exists no hints on a dependence of processing time

on the number of elements in the set (Mandler & Shebo, 1982). Connected component labeling algorithms from

digital topology are able to estimate the number of components as a by-product of the labelling process but

these algorithms are inherently sequentially and require multiple passes through the image, e.g. (He, Chao, &

Suzuki, 2007; Suzuki, Horiba, & Sugie, 2003) .

This led us to the consideration of an alternative approach that is suited for a parallel implementation. It

turned out, that such a solution can be achieved if we are willing to accept slightly more idealized conditions

regarding the definition of what constitutes an object. If we consider objects as simply connected entities in

topological terms, a solution which is fully parallel and has also a high degree of neurophysiological plausibility

can be found, since the required invariant then becomes equivalent to the Euler characteristic χ(C). This in turn

is computable via the famous Gauss-Bonnet theorem by measuring in a local, point-wise fashion the surface

curvature of the objects in the set. By this we have specified numerosity as an invariant that can be computed in

parallel by making use of local mathematical operations (derivatives).

Up to here, our analysis abstracted from the specific conditions of the visual system insofar as the objects

and their surfaces are assumed to be defined in 3-D space. If we assume that the visual system is able to create

some sort of 3-D representation of the environment (even a 2 1/2 D representation (Marr, 1982) may suffice),

the problem of numerosity can indeed be solved by direct application of Gauss-Bonnet to this representation.

However, we do not want to be logically dependent on this specific assumption, since there exist also theories
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which assume that the handling of 3-D information in the early stages of the visual system (e.g. for 3-D

object recognition) is based on a representation which consists of multiple views of which each is only a two-

dimensional image (Wallis & Bülthoff, 1999).

We also considered alternatives of how Gauss-Bonnet can be applied directly to the processing of two-

dimensional images (optical projections of the the 3-D configurations to 2-D retinal images). It turned out that

this is basically possible by interpreting the 2-D luminance function as a surface (Figure 3). It can be shown that

this leads to three further model variants that represent different strategies in how to deal with deviations from

the ideal conditions of the theory (Kluth & Zetzsche, 2014). In this article we use the specific variant model

which takes the deviations along the object borders explicitly into account by a second term (cf. equation 2).

It can be assumed that this yields the most stable model version, because it combines the robust large-area

integration of the surface curvature with a correction term.

Our analysis being largely based on formal mathematical considerations raises the immediate question of

empirical support. Regarding the neurophysiological plausibility we have shown that the model can be easily

realized by the available neural hardware. The local core operations are first- and second-order derivatives which

correspond to oriented mechanisms with odd and even symmetry. It is well known that Gaussian derivatives

are well suited for the description of neurons in the primary visual cortex, e.g. (Koenderink & Van Doorn,

1990; Lindeberg, 2013; Marr & Ullman, 1981; Martens, 1990; Young, 1987; Young & Lesperance, 2001).

The computation of the local curvature terms requires an AND-like multiplication which can be provided by

a number of neuropysiologically plausible mechanisms, cf. sect. “Neural Implementation” (Mel, 1993; Koch

& Segev, 2000; Adelson & Bergen, 1985; Resnikoff & Wells Jr, 2015; Zetzsche & Barth, 1990a; Zetzsche

& Nuding, 2005). Furthermore, it has been shown that certain forms of end-stopping, of the hypercomplex

property, and of extra-classical receptive field properties show a close relation to the computation of curvature

(Zetzsche & Barth, 1990a, 1990b; Zetzsche & Roehrbein, 2001; Zetzsche & Nuding, 2005). The computation

of the curvature terms further requires a ratio operation. This is very similar to the mechanism of cortical

gain control which is available at early stages of the visual cortex and is regarded as a ”‘canonical”’ neural

computation of the cortex which exists in various versions (Carandini & Heeger, 2012).

Essential questions regarding the proposed model are whether it leads to clear testable predictions and how

it compares to other existing models. In the following comparison we will only consider models which can be

considered as ”‘image processing models”’. This criterion can range from models which process only binary

images to ”‘full image processing models”’ which accept an arbitrary gray level image as input and compute the

corresponding numerosity. As mentioned before, the first numerosity model of this type has to our knowledge

been suggested in (Zetzsche & Barth, 1990b). This model can be regarded as a simplified version of the present

one which represents shapes as polygons with +/-90 deg corners and straight segments aligned to the Cartesian

grid. Aside from this it is based on the same invariance principle and will lead to similar predictions, such that

we will not further considerate it as separate model in the following discussion. The classic model by (Dehaene

& Changeux, 1993) can be considered as a restricted version of a full image processing model since it is only

suited for one-dimensional images. Of greatest interest for the comparison are two more recent models which

match the criteria. These are the ”‘contrast energy model”’ (Dakin et al., 2011; Morgan, Raphael, Tibber, &

Dakin, 2014) and the neural network of (Stoianov & Zorzi, 2012). The latter one exists in two versions, as full

neural network and as an abstracted mathematical model version (Stoianov & Zorzi, 2012; Cappelletti et al.,

2014) which will be considered as ”‘network model”’ in the following comparison.
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The model of (Dehaene & Changeux, 1993), henceforth designated as ”‘normalization model”’, differs

from the two other models and from our one not only in being only one-dimensional but also with respect to

the invariance principle being used. In the normalization model the invariance is not achieved in an implicit

fashion by the distributed computation of local features but with an explicit ”‘normalization stage”’ in which

input objects are mapped to a standard representation which does no longer vary in dependence on the shape

properties of the input objects. This is achieved by regarding each object as ”‘blob”’ which is represented by

a dedicated ”‘blob detector”’. This principle can generate a certain size invariance but cannot cope with the

different shape variations which become only fully apparent in the 2-D case, for example in form of elongated

line-like elements. A single blob matching system will not be able to bring such different element types as

lines, circles, and non-convex shapes which can additionally be arranged in quite different spatial patterns into

one standardized form without interference between the invariance and the numbering properties. The existence

of a blob matching stage as opposed to the spatially distributed computation of local features, as performed

in the contrast energy model, the network model and our model, is a structural property which should also be

testable on the neural level. While the model of (Dehaene & Changeux, 1993) predicts the existence of local

units which represent a single object in an invariant fashion, the invariance in the other models is an emergent

property which will only become apparent in a final spatial summation stage comprising several objects.

The comparison of the contrast energy model and the network model with our model is described on a very

detailed level in appendix A4. Here we will thus only discuss the essential differences. The comparison of the

models can be done with two methods, by consideration of the underlying invariance principle and by direct

comparison of the detailed computations. We will start with the first approach.

On a closer look, the contrast energy model exist in two variants. In the first variant, the invariance is

basically attributed to the high-frequency filtering stage and the low-frequency filters are only considered for

handling a moderate bias from the size of the stimulus configuration (Dakin et al., 2011). In this interpretation,

the contours of the elements are suggested as a crucial factor in the computation, since the aggregated contour

length is directly proportional to the number of objects (Morgan et al., 2014). However, without an additional

compensation mechanism this solution would predict a strong influence of element size since this would also

directly contribute to the aggregated contour length. Deviating from the interpretation of (Dakin et al., 2011;

Morgan et al., 2014) we will hence consider a second interpretation of the model, in which the low-frequency

filters could contribute to size invariance by computing a cumulated area estimate. This is of special interest,

since the invariance properties of the network model are also suggested to be based on a trade-off term which

computes cumulated area (Stoianov & Zorzi, 2012). As shown in appendix A4 it is indeed possible to achieve

size invariance by a trade-off computation between area and contour length. However, if invariance is achieved

by this mechanism then the models will depend in a strong fashion on the shape of the elements. This effect

is a well-known property of a famous invariant that is based on the area-length trade-off. This invariant is

known as the “isoperimetric quotient” and it is a measure of the compactness of a shape (Kesavan, 2006). While

providing perfect size invariance, it thus will show a strong dependency on the shape. The consequence of this

is contour length and area are not sufficient for the computation of the full invariance properties required for the

computation of numerosity.

This becomes also apparent if we use the second approach for the model comparison, the consideration of

the local features which are extracted by the different models. A detailed analysis of this sort can also be found

in appendix A4. It can provide information about where the two other models differ from our approach, and
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this can also help in understanding how the different invariance properties are generated. The simplest case for

such a comparison is the processing of binary images. In this case the interior region is completely flat. The

Gauss-Bonnet theorem tells us that there should not come any contribution from these points, hence the only

contributions should come from the object boundary, cf. appendix A5. In this sense it is a reasonable strategy to

use only the contour region for the computation, as in the contrast energy model, or, in an implicit fashion, also

in the network model (see appendix A4). However, not all contour points should contribute the same amount to

the final spatially integrated numerosity variable. Rather, the contribution should depend on the curvature of the

boundary. In particular, there should be a zero contribution from straight contour parts. That the contribution

from straight contours or low-curvature contours is not appropriately reduced by the contrast energy model and

the network model is, in our view, the essential reason for the systematic deviations from the ideal invariance

properties that have to be expected for these models.

In conclusion, models which are based on some trade-off between area and contour will show a systematic

dependency on shape, or on element size, or on both and the same is true for models which rely on contour

features without providing an appropriate curvature-dependent weighting. It should be noted, however, that

this does not necessarily imply that these models are not suited as models of human numerosity perception.

In particular, if they do not realize the full size invariance but instead use some compromise which combines

a medium size dependency with a medium shape dependency, it remains to be tested whether perceived nu-

merosity does not exhibit the same form of deviation from perfect invariance. It is well known that the human

numerosity system shows a systematic dependency on non-numerical parameters like the size of the elements

(e.g., (Hurewitz, Gelman, & Schnitzer, 2006; Ross, 2003; DeWind, Adams, Platt, & Brannon, 2015)). However,

it has been argued that many studies focus only on finding a statistical significant effect instead of quantifying

the exact quantitative relation between the parameter and the numerosity bias, and that they rather interpret

the influence of the parameter as an estimation error (DeWind et al., 2015). If the quantitative influence of

non-numerical cues is instead explicitly modeled, the results suggest that the quantitative effect of the cues is

relatively small for most individuals (DeWind et al., 2015). Nevertheless, the above considerations suggest that

systematic quantitative measurements of the influence of non-numerical parameters on perceived numerosity

are required in order to draw further conclusions on the different models. We would assume, that the explicit

consideration of invariance mechanisms and invariance properties, as exemplified in the present analysis, could

be one valuable strategy for such a systematic analysis. It is clear, however, that the prediction from our model

on the outcome of such investigations would be that the quantitative deviations from invariance should always

be relatively small.

Empirical tests of the invariance properties are in our view also essential with respect to the debate about

a “true sense of number” as opposed to a texture-density based mechanism (Dakin et al., 2011). It is clear

that we should expect to find strong interrelations between density, numerosity and cumulative area, since

formally density and number are completely equivalent because they can be transformed into each other via

the area. However, it would be justified in our view to regard numerosity perception as just a by-product of

texture processing if it is derived from some texture related processing, like a bandpass filtering, and if the

quantitative deviations from invariance are predicted by the properties of this mechanism. If on the other hand,

the invariance properties should turn out to be more compatible with our sort of approach, then irrespective of

whether the crucial variables in the system would covary directly or inversely with number, we would consider

it adequate to speak of a sense of number.
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In this context it is also of interest to consider a major argument for a “direct visual sense for number”

which is given by the fact that number seems to be a primary visual property like color, orientation, or motion,

to which the visual system can be adapted by prolonged viewing (Ross & Burr, 2010). If we consider the in-

variance mechanism of our model, the only stage where adaptation would selectively influence only the number

property would be the stage of the final summation units. Adaptation at this stage would cause a systematic

influence even if we later test with entirely different elements and spatial configurations as being used during

adaptation. However, there should also arise systematic influences if we adapt the basic curvature features (cf.

e.g. (Blakemore & Over, 1974; Bell, Gheorghiu, & Kingdom, 2009; Hancock & Peirce, 2008)). If we adapt to

patterns with high local curvatures, for example, the contribution of the curvature mechanisms to the integral

should be reduced, such that the resulting numerosity perceived in later tests should also be reduced.

The very nature of our approach leads to further testable predictions. The most prominent prediction, which

applies to the basic model and all its variants, is based on its intimate relation to topology, and in particular to the

topological concept of connectivity: On the one hand, many possible non-numeric changes of a configuration of

objects are predicted to have only a small influence, even if they are quite dramatic with respect to basic signal-

level properties. These are, for example, drastic changes of the sizes of the objects, or substantial alterations of

their shapes (e.g. from a thin elongated to a compact round shape). On the other hand, changes of the topology,

and in particular changes of connectivity, should have a strong influence, even if the corresponding signal-level

changes are very small. An example for this would be the connection of two big blobs by a thin line, where the

line width can be assumed to be represented on a substantially smaller spatial scale than the blob size (Figure 6).

Our model would predict a clear decrease of perceived numerosity in spite of the small signal-level change. In a

model using area as an essential variable, the influence should be relatively weak, whereas a mechanism relying

on aggregated contour length would predict an increase of perceived numerosity. The predictions of our model

are supported by findings which show that visual perception is sensitive to topological quantities (Chen, 2005),

and in particular that a change of topological connectivity affects visual numerosity estimation (He, Zhang, et

al., 2009; Franconeri et al., 2009).

As a last point for empirical tests it should be remembered that the restriction to simply connected objects

has only been caused by plausibility arguments, since for the computation of the invariant zeroth Betti number

no parallel algorithm is known. It would thus be of special interest to perform experiments with human subjects

in which exactly this property is manipulated (e.g. by determining how the perceived numerosity is influenced

by making “holes” into the objects). In this contex we again mention that there exists already evidence that the

human perception in general is sensitive to topological quantities, and this includes a significant influence of

“holes” on perception (Chen, 2005),

As our approach is derived from formal mathematical considerations it seems to generate an undesired

prediction: there seems to be no obvious role for errors, and in particular not for Weber-like behavior. However,

it thus can be regarded as important supporting evidence that only on the basis of quite natural assumptions about

noise sources and without any explicit structural support (e.g., by logarithmic transfer functions or gain control

mechanisms) the model exhibits such a Weber-like behavior. The noisy model combined with a decision making

system was able to closely reproduce the number discrimination abilities of human subjects: In the literature

Weber fractions of 0.174 (Piazza et al., 2004), 0.108 (Halberda & Feigenson, 2008), and 0.15 (Piazza et al.,

2010) were reported for adults. The presented parametrization of the noise levels results in Weber fractions of

0.167 and 0.169 for the rectangular dataset and 0.176 and 0.197 for the circular dataset.
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In conclusion, we have provided a formal analysis of the problem of numerosity. The essential and most

basic result is that numerosity should be regarded as a mathematical invariant. Based on concepts from topology

we have also derived a basic model structure and several specific variants of this model. Its key property is given

by the Gauss-Bonnet formula which provides the desired invariance properties by the parallel integration of local

curvature measures. These in turn are based on neurophysiologically highly plausible operations: directional

derivatives (oriented receptive fields), nonlinear AND-like combinations related to extraclassical receptive field

properties, and divisive operations similar to cortical gain control (normalization) mechanisms. The properties

that turned up in our analysis are so basic from a mathematical point of view that it seems difficult to believe

that there could be any mathematically reasonable model for the “sense of number” which is based on parallel

computations but does do not somehow relate to the invariance principles described here. It may thus be hoped

that the conceptual framework suggested here can serve as a fruitful basis for future research into the basic

cognitive capacity of numerosity perception.

Appendix

A1. Optimal estimator

In order to relate the internal representation of numerosity to behavioral results we need models for decision

making. Theses models must connect the analog quantity n resulting from the proposed noisy model with

a decision regarding the specific task. For the same-different task and the larger task, both requiring a binary

decision, we used the receiver operator characteristic (ROC) (Fawcett, 2006; Chang, 2010) from signal detection

theory to obtain the optimal parameters for the estimator. Each parameter setup defines one point in the ROC

space which is defined as the space spanned by the true positive rate and the false positive rate. The higher

the true positive rate and simultaneously smaller the false positive rate, the better is the parametrization of the

classifier. This is equivalent to the maximization of the area under the curve (AUC) defined by thy classifier in

the ROC space.

In the same-different task, the classifier is defined as

Ddifferent(n|lb, d) :=
{

1 , n ∈ [lb, lb+ d]

0 , else,
(8)

where lb defines the left bound and d the length of the detection interval.

In the smaller-larger task, the classifier is defined as

Dlarger(n|t) :=
{

1 , n ≥ t

0 , else,
(9)

where t defines the threshold to distinguish between smaller or larger.

In both cases the optimal parameters of the estimator were determined in order to maximize the receiver

operator characteristic on the dataset and one fixed reference number Ntuned. The parameters of the detectors

can be found in Table 1. The optimal estimators on dataset TR were then used to obtain the statistics on dataset

R of the behavioral tasks shown as squares, triangles and rhombuses in Figure 10.
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A2. Fitting functions

We fitted the behavior of the estimators to a continuous function which is dependent on the internal weber

fraction w as described in (Piazza et al., 2004). This fitting method was also used by Stoianov and Zorzi

(Stoianov & Zorzi, 2012) to analyze their model such that the results are obviously comparable. However, we

obtained the conditional relative frequencies of the response of the optimal estimators Ddifferent and Dlarger given

the true numerosities Ntrue. For the same-different task we fitted this data points to the function

hdifferent(Ntrue|Ntuned, δ, c, w) = 1− 1
2

[

erf

(
δ+c+ln(

Ntrue
Ntuned

)
√
2w

)

+ erf

(
δ−c−ln(

Ntrue
Ntuned

)
√
2w

)]

, (10)

where erf is the standard error function, c controls the internal representation of the reference numerosity

Ntuned, δ controls the variance of the corresponding probability density function and w is the internal weber

fraction.

For the smaller-larger task we fitted the results of the optimal estimator to another function

hlarger(Ntrue|Ntuned, c, w) =
1

2

(

1 + erf

(

c+ ln( Ntrue

Ntuned
)

√
2w

))

, (11)

with the functions and parameters as described above. In order to obtain representative fits for the number dis-

crimination ability (Piazza et al., 2004), we only used numerosities which are close to the reference numerosity

for the fit, i.e. we used all N with the ratio N
Ntuned

∈ [0.625, 1.5]. In both cases the parameters were estimated

by a standard least squares minimization of the residual. The fitted curves obtained from dataset R are illustrated

as continuous lines in Figure 10. The respective parameters can be found in Table 2.

A3. SNR and PSNR analysis

In order to evaluate the noise behavior of the input unit and the linear filter units with respect to their neural

plausibility the peak-signal-to-noise-ratio (PSNR) is derived from theory as described in the following. The

input signal is a function l : [−1, 1]× [−1, 1]→ [0, 1] with amplitude A(l) = 1 such that the PSNR becomes

PSNR(l) = 10 log10

(
1

σ2in

)

dB. (12)

The implementation of the derivatives strongly depends on the discretization and thus on the step sizes ∆x and

∆y. We thus can derive from the differential quotient

|lx(x, y)| ≈
l(x+∆x, y)− l(x, y)

∆x
≤ 1

∆x
. (13)

The upper bound for ly can be derived analogously. The second derivative in x-direction is bounded by

|lxx(x, y)| ≈
l(x+∆x, y)− l(x, y) + l(x−∆x, y)− l(x, y)

∆x2
≤ 2

∆x2
. (14)
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Table 3: PSNR and SNR. The PSNR and SNR functions and values for the two stages input and linear filters are shown for
the theoretical setup and the three datasets (TR), (R), and (C).

Signal PSNR (in 10 dB) PSNR (in 10 dB) SNR (in 10 dB)

formula ∆x = ∆y = 1/50 TR R C

l / Mean log10

(

1
σ2
in

)

− log10(σ2
in) −0.7948 − log10(σ2

in) −0.7949 − log10(σ2
in) −0.7919 − log10(σ2

in)

lx log10

(

4
∆x2σ2

lin

)

4.0000 − log10(σ2
lin) 0.8431 − log10(σ2

lin) 0.8431 − log10(σ2
lin) 0.8372 − log10(σ2

lin)

ly log10

(

4
∆y2σ2

lin

)

4.0000 − log10(σ2
lin) 0.8429 − log10(σ2

lin) 0.8432 − log10(σ2
lin) 0.8375 − log10(σ2

lin)

lxx log10

(

16
∆x4σ2

lin

)

8.0000 − log10(σ2
lin) 3.7885 − log10(σ2

lin) 3.7896 − log10(σ2
lin) 3.7207 − log10(σ2

lin)

lyy log10

(

16
∆y4σ2

lin

)

8.0000 − log10(σ2
lin) 3.7861 − log10(σ2

lin) 3.7879 − log10(σ2
lin) 3.7233 − log10(σ2

lin)

lxy log10

(

16
∆x2∆y2σ2

lin

)

8.0000 − log10(σ2
lin) 2.8204 − log10(σ2

lin) 2.8207 − log10(σ2
lin) 2.8766 − log10(σ2

lin)

Mean - 6.4000 − log10(σ2
lin) 2.4162 − log10(σ2

lin) 2.4168 − log10(σ2
lin) 2.3991 − log10(σ2

lin)

The upper bound for lyy and lxy can be derived analogously. The linear filter units are computed by a convolu-

tion operation with a Gaussian function g (‖g‖L1 = 1) such that we need an upper bound for the filter output.

By using Young’s inequality we get for lx

‖l ∗ gx‖L∞ = ‖lx ∗ g‖L∞ ≤ ‖lx‖L∞‖g‖L1

︸ ︷︷ ︸

=1

≤ 1

∆x
. (15)

The peak-to-peak signal amplitude is then twice the maximum norm of the respective filter unit, i.e A(lx) =
2
∆x .

The PSNR then becomes

PSNR(lx) = 10 log10

(
A(lx)

2

σ2lin

)

dB = 10 log10

(
4

∆x2σ2lin

)

dB. (16)

The PSNR formulas for all signals are summarized in Table 3.

In contrast to the PSNR which can be derived from theory easily, we also consider the SNR of the

datasets used for the analysis with respect to the Weber fraction. The SNR is determined by the expected

integral of the squared signal over each dataset. The SNR for the function l and all images in the dataset R is

given by

SNR(l) = 10 log10

(
El∈R(

1
4

∫

[−1,1]×[−1,1] l(x)
2 dx)

σ2in

)

dB. (17)

The values for the different signal types and the different datasets can also be found in Table 3.

In order to relate the given SNR values with information encoded by neurons we determine the rate of an

uniform quantizer for the given SNR values. In good approximation we can use the “6-dB-per-bit-rule” (Gray

& Neuhoff, 1998) such that the rate R is given approximately by

R(l) ≈ SNR(l)

6.02
bit (18)

for a signal l.

A4. Model comparison

On the general level, our proposed model differs from the other image-based models ((Dehaene & Changeux,

1993; Dakin et al., 2011; Morgan et al., 2014; Stoianov & Zorzi, 2012; Cappelletti et al., 2014)) by the moti-
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Table 4: Model comparison by operations. The different models (left to right) are split into their basic operations (top to bottom).
The operations are split into layers with a linear operation followed by a nonlinear one (NL).

Model
contrast energy (Dakin et al.,

2011)

network (Stoianov & Zorzi,

2012)
proposed

1st layer
Isotropic derivatives of 2D-

Gaussian filters

2D-Gaussian filter & spa-

tial integration of cumula-

tive area

Orientation-selective deriva-

tives of 2D-Gaussian filters

NL Absolute value
Sigmoid function & log-

norm

Multiplicative feature com-

bination

2nd layer Spatial integration

2D-Gaussian filter minus

constant (nonlinear function

of cumulative area)

Additive combination of dif-

ferent features

NL
Ratio of different filter

bands (density)
-

Ratio of different combina-

tions (curvature quantities)

Top

Multiplication of density

and cumulative area esti-

mate from low frequency

filter

Linear weighting Spatial integration

vation behind its design. The central motivation for our model is the idea to find a sound mathematical basis

for the provision of the invariance properties required by an ideal numerosity mechanism. As a second step,

we then considered how these ideal principles could be implemented and approximated by neurobiologically

plausible mechanisms. The other models have different goals or they are based on a different type of reasoning.

The model of Dehaene and Changeux (Dehaene & Changeux, 1993) was an early model that tried to model the

image processing aspect to a certain degree. However, it is only a one-dimensional model and, as such, cannot

deal with two-dimensional shapes and the associated invariance properties. We therefore will not include it

in the following detailed comparison. The contrast energy model (Dakin et al., 2011; Morgan et al., 2014) is

motivated by empirical observations in psychophysical experiments which suggested the possibility of a close

connection between numerosity and density (Durgin, 2008). The actual model has then be derived from con-

siderations of how a density mechanism can be provided by use of established filter-based texture computations

(Dakin et al., 2011; Morgan et al., 2014). The model of Stoianov and Zorzi (Stoianov & Zorzi, 2012) is based

on a deep learning neural network. It is then abstracted by a computational analysis to a spatial filter model with

point nonlinearities (Stoianov & Zorzi, 2012; Cappelletti et al., 2014). (This model is henceforth designated as

network model.)

In order to compare the other models with our model there exist in principle two different strategies. One

is to find out the invariance properties which underly the other models, and to compare them to the invariance

properties of our model. The other strategy is to map the model to a common framework and to compare the

model components within this framework. We will make use of both strategies in our analysis.

We start by considering in how far the other models make use of alternative invariance mechanisms. Two

basic shape properties seem somehow to be involved in the computations of the two models, one is the boundary

of objects and the other one is their area. For the contrast energy model, the contour length of the elements is

explicitly mentioned as one crucial factor in its computations (Morgan et al., 2014). In the network model, the

cumulated area of all elements is seen to play a crucial role as a covarying factor (Stoianov & Zorzi, 2012).
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How can contour length and area be used to obtain invariant properties? It is a well known fact that the ratio

q =
A

L2
(19)

with A being the area of an object and L its contour length, is an invariant with respect to size changes. We

can thus use this invariance property of the ratio to compute the number of objects based on the aggregated area
∑

Ai and the aggregated contour length
∑

Li as

n = q
(
∑

Li)
2

∑
Ai

= q
n2L2

nA
= qn

1

q
, (20)

where all objects have the same area Ai = A. However, although it is size-invariant, the ratio q depends in

general in a systematic fashion on an important second factor, the shape of the elements. It has long been

known that the normalized variant of q, the so called “isoperimetric quotient” (Q =
4πA

L2
) is a measure of

the compactness of a shape (Kesavan, 2006). This measure attains its maximum of 1 in case of circles but

can easily get much smaller if the object becomes more ”‘ragged”’. For certain patterns, like the well-known

Koch snowflake, Q can even approach zero. But also for commonplace patterns, U-like shapes for example,

Q is around 1/3, and hence much smaller than 1. This would imply that three U-shaped elements should

appear perceptually as numerous as 9 circles. It is not directly evident that the two models are aimed at this

ratio invariance, since only one of its parts is emphasized in each description of the models. However, in the

contrast energy model the low-frequency filtering could be seen to bear a certain resemblance to area-related

computations. And in the network model, a contour-related feature can be seen to be implicitly computed, as

will be explained in detail in the common framework analysis presented below. However, in so far as the models

deviate form the ratio invariant, they will loose the size invariance, and if they manage to come close to the ratio

invariant, they will substantially depend on the shape of the elements. If we want to allow for arbitrary object

shapes, making use of the ratio invariant seems not to be a viable solution.

Now let us pursue the second strategy for the model comparison, the common framework approach. In

Table 4 the three models are split into their operations at different stages/layers. From this representation it

becomes apparent that all three models use similar basic computations. They have a similar first layer consisting

of linear filter operations (derivatives and lowpass filtering), and of the spatial pooling of local luminance signals

into an aggregated cumulative area. The contrast energy model and the network model then use a standard

nonlinear transfer function (a sigmoid function and an absolute value function). In contrast, our proposed

model requires a nonlinear AND-like (multiplicative) interaction. (As described in the main text, this could be

realized in neural hardware by a variety of mechanisms.)

In the second layer, the contrast energy model and the network model perform a spatial integration (the first

a global and the second a local integration). Our model also performs such a spatial integration but only as the

last processing step on its top layer. On the second layer, our model performs a linear combination of different

local features (different terms of the curvature computation). This combination of different local features is

one distinction to the other models which both use only one type of local spatial feature (a Laplacian bandpass

feature or a Gaussian lowpass feature).

The contrast energy model has a ratio operation between the two aggregated contrast energy values as its

last operation. However, this operation is considered only for the incorporation of a moderate bias term for the
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influence of patch size (Dakin et al., 2011), whereas the basic numerosity variable is argued to be provided by

the high-frequency filter output (Dakin et al., 2011; Morgan et al., 2014). The network model ends with a linear

weighting over the corrected Gaussian filter outputs of the second layer by a linear classifier.

In the following, we will try to compare the models with respect to their general behavior. This will require

to make some simplifying approximations but we think that the basic trend will be similar to the behavior of

the complete models. For the contrast energy model, the authors suggest that the core computation is the spatial

pooling of the local energy from a Laplacian high-frequency filter (Dakin et al., 2011; Morgan et al., 2014). The

main argument is to use this to measure the amount of contour, since adding more objects to an image amounts

to adding more contour (Morgan et al., 2014). For a given type of element, e.g. for squares of some fixed

size, the estimate works perfect: Changing the numbers of elements will proportionally change the pooled filter

output. But how does this operation behave with respect to the invariance properties, i.e. if we change the shape

of the elements? For some changes the influence will be relatively small, in particular if we only use concave

elements, as often done in numerosity experiments. For example, if we replace the squares by disks of the same

area the difference in contour length will be only about 10%. If we use also concave elements, differences can

become larger. For the L-shaped element shown in Figure 14a6 the difference will become as large as 113% in

terms of number units (Figure 13). The differences will become even larger if we also consider elements with

different size. For example, if we compare small squares of side length d/4 with large squares of side length d,

a set of N large squares will appear to have the same numerosity as a set of 4N small squares. Thus the contrast

energy model makes clear predictions about systematic deviations from the ideal invariance properties. In how

far these are also present in human bias terms remains to be determined (see discussion).

The analysis of the network model is somewhat more complicated. We make the following simplifying

assumptions, which we think are valid as far as systematic deviations from invariance are considered: First, the

2nd layer operation and the final weighting by the classifier are both linear. The weighting of the 2nd layer units

at the different positions by the classifier can be expected to be similar, since these units have all the basically

same status with respect to the computation of numerosity (any systematic differences between units at different

positions would induce position-dependent biases). We thus assume that these two steps can be combined into

one global spatial integration
∑

(m,n)∈X Omn. Here the Oij are the local Gaussian filter outputs after the

sigmoid point nonlinearity in the first layer and X is the set of indices of the discretized domain of the input

image. We further assume that the aggregated luminance can also be rewritten into such a spatial integration as

c =
∑

(m,n)∈X kImn. For this, we linearize the logarithm (the argument can assume values only between 1 and

2) as c = log(1 +
∑

X I

cmax
) ≈∑(m,n)∈X kImn. The final sum can then be written as

∑

(m,n)∈X(O
mn − kImn),

i.e., it is a sum over a difference image between the original image and a nonlinear low-pass filtered version of

it. This analysis suggests that the constant k should be an absolute constant, which does not depend on further

parameters, and that it should be chosen in a way to avoid contributions from the interior object area. This is

necessary because otherwise there would remain a systematic dependency of the numerosity estimate on the

object area. Formally, k depends on the normalization constant cmax. This is an absolute constant within an

experiment, but it is not quite clear how a subject can have knowledge of it or what this implies for the relation

between different types of experiments. In the following, we consider k as an absolute constant which is chosen

to produce a zero difference throughout all areas of constant luminance of the input image. We can then analyze

the contributions from the remaining non-zero areas of the difference image. For a class of simple examples,

patterns with straight edges and right angled corners only (cf. Figure 14a5-10), we know the correct solution
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from the Gauss-Bonnet theorem and from the Euler formula: The desired invariant can then be computed by

simply summing up the number of (signed) corners as n = 1/4
∑

vi where each corner i contributes +1 or

-1. For this special case the difference image should thus ideally only generate contributions from the corners

and no contributions from the straight borders. This is also evident by considering the case of enlarging such

a figure, since then the number of corners remains constant but the length of the straight contours is increased.

Since the lowpass filtering smooths the corners, the network model will indeed provide the desired contribution

from the corners. However, there seems also to be a non-vanishing contribution from the straight borders, such

that there will be a dependency on the size as well as on the shape of the elements. While the shape dependency

is moderate for convex shapes it becomes larger for concave shapes, since for those the total contour length is

significantly larger (see Figures 14a6 and 13).

In conclusion, both the contrast energy model and the network model can be seen to make use of similar

basic local features which result from some version of nonlinear bandpass filtering. This operation produces

the basic local features (explicitly represented by the rectified bandpass features in case of the contrast energy

model and implicitly represented by the subtraction of the cumulative area from the lowpass filtered features in

the network model). These local features are then spatially pooled (globally in one step in the contrast energy

model and in two steps, first the second Gaussian lowpass and then the linear classifier, in the network model).

Mapped to this type of architecture, the two models can be directly compared to our model, which can also be

seen as consisting of the computation of nonlinear local features and a subsequent spatial pooling. From the

mathematical basis of our model we know which local parts of the input image have to play which role, if we

want to achieve the desired invariance. We know, for example, that all constant image areas should not generate

a systematic contribution. This enforces the mutual cancellation of the lowpass responses and the per-sample

contribution of the cumulative area measurement in the interior object areas in the network model. If this is

violated, a systematic influence of the cumulative area is unavoidable. We also know, that the contributions

from the contour regions (in case of binary images) should systematically vary with the contour curvature. In

particular, straight contours should not generate any contribution, since otherwise there will result a systematic

dependency on the total contour length, and on the size of the elements. This is a problem for both the contrast

energy model and the network model, since both produce nonvanishing contributions from straight contours. It

should further be noted that it is generally not possible to trade off the false contributions from one class (say

area) against the false contributions of the other class (contour), since there exists no shape-independent relation

between the two (see the arguments above regarding the isoperimetric quotient).

A5. Invariance properties of binary objects

Assuming the special case of binary images/objects allows the derivation of problem-specific computa-

tional principles. Here we describe the general rules for the invariant computation of numerosity for this partic-

ular signal class. The binary setup can be interpreted from different point of views. In the following we consider

two possible interpretations.

a) We can see it as an inherently one-dimensional problem. The objects are bounded two-dimensional sub-

sets of the x-y-plane such that they can be represented by their one-dimensional boundary curve, cf. Figure 15.

In this case the one-dimensional counterpart of the Gauss-Bonnet theorem is the following standard corollary

in differential geometry.
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a b

Figure 13: Responses of different models to stimuli illustrated in Figure 14 are shown. (a) shows the relative responses
(difference to reference stimulus no. 1) to the convex and concave stimuli from Figure 14a. Analogously (b) shows the relative
responses (difference to reference stimulus A=2500) to stimuli with different cumulative area A, cf. Figure 14b. The dataset in
Figure 14c was used to determine the mean difference in model response per numerosity. This value was used to determine
∆N . The dotted black lines mark the absolute difference 1 in numerosity with respect to the reference stimulus.

Corollary 2 Let Γ be a closed, regular, plane curve. Then the quantity

∫

Γ

κ ds = 2πn, (21)

where κ is the curvature of the plane curve and n is an integer called the rotation index of the curve.

As the rotation index is always one for simply connected objects and the integral operator is linear, the integral

over the disjunction of multiple boundary curves results in their number. The simple one-dimensional variant

of the Gauss-Bonnet theorem thus tells us that we have to integrate the curvature of the boundary curve(s). In

contrast to the isoperimetric quotient the integral over the curvature is independent of the shape. In Figure 15a

this quotient decreases from left to right whereas the integral over the curvature remains constant. This is due to

the fact that the increase of positive curvature from left to right in Figure 15b is compensated by an additional

contribution of negative curvature.

If we assume a piecewise constant boundary, the integral over the curvature becomes the discrete sum

over the arcs. In particular this setup includes the special case of objects having right-angled corners and

otherwise vertical or horizontal straight boundary segments, see Figure 14a5-10 for examples. The corners can

be divided into two classes. We have external corners where the object area covers one quarter within a circular

neighborhood. These corner have an arc of π/2. The corners where the object area covers three quarter build the

second class, the internal corners with a contribution of −π/2. If we divide both sides of the corollary by 2π,

we obtain a standard solution to determine the number of simply connected binary objects in computer vision

(Umbaugh, 2005). The number of objects then becomes the number of external rectangular corners minus the

number of internal rectangular corners divided by four.

b) We can consider the objects as two-dimensional surfaces such that the approximate invariance requires

(i) no contribution from the interior area of the object, (ii) no contribution from straight edges, and (iii) a

contribution from the remaining regions. The following approach which matches all criteria in the binary image

case is motivated by the detection of the contour line of the region with the aid of the Laplace operator. If the

contribution is zero on constant luminance regions and the computed quantity at the boundary allows a mapping
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Figure 14: Three datasets of various stimuli are illustrated. (a) shows convex and concave objects with constant cumulative
area A and numerosity N. (b) shows one rectangular object with increasing cumulative area A. (c) shows multiple rectangular
objects with constant cumulative area A. All stimuli are binary images of size 100× 100 pixels. Cumulative area A in pixels.
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Figure 15: Three objects are illustrated by their one dimensional boundary curves. The ratio of squared perimeter and area
increases from left to right in (a). The positive curvature (blue) and the negative curvature (red) of the boundary curve are
illustrated in (b). In (c) the area is constant for all objects and the frequency of the sinusoidal grating along the boundary
of a circle increases from left to right. The higher the frequency the larger is the contour length resulting in an decreasing
isoperimetric quotient from left to right.

to the curvature of the boundary curve, the integration over the whole domain should result in an estimate for

numerosity. An easy way to detect the contour is to determine the zero crossing line of the Laplacian filtered

image. In order to guarantee the differentiability for the Laplace operator the binary image must be filtered by

an appropriate filter function. One standard filter function is the Gaussian function. This function is not optimal

for further considerations as its support is infinite. We assume a filter function g with compact circular support

Ω around the origin. Furthermore the Laplace of the function g is positive in an inner diskΩin ⊂ Ω and negative

in Ωout = Ω \Ωin. The integral of ∆g over Ω is assumed to be zero. Thus, the Laplace of the convolution with

the filter function yields zero for constant luminance regions. Furthermore, if we consider a straight edge with

a length greater or equal the diameter of Ω, the line integral in the orthogonal (to the edge) direction of the filter

output becomes zero for all boundary points where the neighborhood Ω contains the straight edge only. Thus,

the integral over the whole domain of the Laplacian filter output has already two of the three desired properties.

It causes no contributions at constant luminance regions (i) and no contributions at straight edges (ii). That the

spatial integration of the filter output does not result in the desired estimate for numerosity can be seen easily

by the following equation

∫

R2

∫

R2

l(y)∆g(x− y) dy dx =

∫

R2

l(y)

∫

R2

∆g(x− y) dx

︸ ︷︷ ︸

=0, ∀y∈R2

dy = 0. (22)

Note that the following solution does not depend on the Laplace operator. We can replace ∆g by an arbitrary

filter function h which has the same characteristic behavior on Ω = Ωin∪Ωout. In order to obtain contributions
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from the curved regions a nonlinear function F : R → R is introduced. This function must be odd-symmetric

such that the zero contribution on constant regions and on straight edges is still preserved. The problem of

the estimation of numerosity n then becomes the problem of finding an appropriate combination of a nonlinear

function F and a filter function h such that

∫

R2

F

(∫

R2

l(y)h(x− y) dy

)

dx ∼ n. (23)

Again, the success of this approach is due to the accuracy in approximating the curvature of the boundary curve.

We assume that the boundary curve is a piecewise constant line with a minimum distance of ǫ between vertices

and that the diameter of the region Ω is chosen smaller than ǫ (i.e. the radius δ < ǫ/2). In this particular case we

know that integrating the linear filter output over the neighborhood with radius δ around a vertex results in zero.

At an edge the integration domains of positive and negative contributions, which sum up to zero, equal in size.

At a vertex the size of these integration domains does not equal anymore but the overall integral remains zero.

Thus a monotonic nonlinear function F fulfilling the previously formulated constraints is sufficient to guarantee

a contribution from the vertices. If this output is proportional to the arc, the integration over the whole domain

results in an estimate for numerosity. Figure 16 illustrates one choice of h and F which is sufficient to extract the

desired information. We also applied the filter function from Figure 16a and the modified sigmoid function to

the stimuli in Figure 14c producing an output of 133.73, 261.58, 399.45, and 533.46 from left to right. Relative

to the output of the first stimulus with one object, the responses become 1.00, 1.95, 2.98, and 3.98. This simple

choice of h and F thus results in the desired proportionality to numerosity.

In conclusion for binary images, approximating the curvature of the boundary curve and integrating this

quantity results in an estimate for numerosity. Furthermore, the fundamental principle which allows the estima-

tion of numerosity from binary images is the invariance property provided by the Gauss-Bonnet theorem.
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4 Action selection for object recognition and the influence of

isotropic i2D-features

Where to look to identify an object? This is the major question of this section. As has

been discussed in Section 1.1, the receptors on the retina are not equally distributed. The

fovea has a high resolution and in the periphery the resolution decreases with an increase in

eccentricity. To gather new important information, the eye has to perform saccades. Then

the new fixated region lies in the high resolution area of the fovea again. How the human

visual system decides where to look next is still ongoing research. Assuming that the human

visual system is optimized by evolution and that this also holds true for the control of eye

movements, the behavioral findings and developed models are good candidates to improve

active computer vision models for object recognition. Although the biological example can

move through the environment and move its eyes, the majority of standard object recognition

approaches in computer vision have a static nature. If a system is able to perform movements

or if it can interact with the environment, not using this ability results in less information

available to the system. An unsystematic approach of performing actions cannot guarantee

an increase in the perceived information within a limited time. In order to circumvent this

fact, a systematic action selection strategy is required. In particular, information theoretical

concepts are applied to an active vision system, i.e. a steerable camera, within this chapter.

The concept of information gain is used to determine the most informative next movement

to perform object recognition tasks. The active vision model is developed in the context of a

sensorimotor system and it is evaluated in Section 4.3. Further analysis and an interpretation

in the context of Gibson’s affordances are presented in Section 4.4. And finally in Section

4.5, various action selection strategies are implemented and compared to each other. This

also includes an i2D-feature approach which is based on the concept of a clipped eigenvalue

operator. The used operator is derived in Section 4.2 and it is also proved that this operator

defines an i2D-system.

4.1 Related Work

In this section a brief overview about related findings in the literature is given. In order to

avoid repetition, this section is restricted to a minimum and the reader is referred to the

introductory parts of the articles in Sections 4.3, 4.4, and 4.5.

The classical view on visual perception is that eye movements only have the function to

fixate objects or parts of them. In this case vision is interpreted as a sequence of snapshots

of the environment [23]. Based on this classical view, vision models were developed which

conceptually separate the perceptual sensory process and the movement process. This is also

the case for common object recognition approaches, e.g. the feed-forward HMAX model [71].

Opposed to the classical view, Gibson proposed his ecological approach to visual perception
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[25] which states that an agent has a relation to its environment. This relation has to be taken

into account to explain the behavior of the agent. Research in the direction of affordances, i.e.

interaction possibilities offered by the environment dependent on the capabilities of a partic-

ular agent, provides evidence that affordances are key ingredients of the perceptual process,

see [27] for a review. Studies regarding object recognition show that visual information of a

manipulable object cause an activation of representations of actions which can typically be

executed on the object [28]. Action and perception thus seem to have an intertwined relation

and also depend on each other to some degree.

A stronger relation between action and perception is proposed by the sensorimotor approach

in [58, 59]. The sensory and the motor part are not treated independently anymore. Rather,

the information is combined in a sensorimotor representation where the classic notion of

separate cognitive processing stages for sensory and motor information does not hold, i.e.

they are integrated into one sensorimotor coding.

Active vision approaches based on the concept of an sensorimotor system allow to control

the movements performed by the system. Equipped with an appropriate cost function the

movements can be determined to obtain new information after performing the chosen move-

ment. Information theoretical approaches to the cost function were used for object recognition

[66, 9] and in particular an information gain strategy was used for scene recognition [67, 96].

The relation between image features extracted by i2D-selective operators and saccadic eye

movements was investigated in [45, 68]. It was shown that saccadic eye movements can be

predicted by image features extracted by i2D-operators. The fixation points of humans were

analyzed in [95] regarding their higher-order statistics. It turned out that the subjects have

a bias for image regions with multiple spatial frequencies, e.g. corners. This result supports

the use of i2D-operators as a detector for informative image regions.

4.2 Mathematical preliminaries

This section briefly reviews the generalized curvature and the clipped eigenvalue which were

introduced by Zetzsche and Barth [87, 6] in the context of intrinsic two-dimensional operators.

The clipped eigenvalue is used as a bottom-up region-of-interest detector for object recognition

in Section 4.5. It is also shown that the operators defined by the generalized curvature and

the clipped eigenvalue are able to satisfy the conditions of an i2D-operator. The generalized

curvature is similar to the curvature operator T1 defined in Theorem 3.24 as can be seen in

its following definition.

Definition 4.1 (Generalized curvature). The operator T : C2(Ω) → C(Ω) with compact

Ω ⊂ R
2 is defined for n ∈ N by

T (u)(x) :=
1

4

(
(∆u)2 − ǫn(u)2

)
(4.1)
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with eccentricity

ǫn(u)
2 := (cn ∗ u)2 + (sn ∗ u)2. (4.2)

The convolution kernels cn and sn are defined by their Fourier transform in polar coordinates

(x1 = r cos(φ), x2 = r sin(φ)) by

F(cn)(r, φ) = (i)nf(r) cos(nφ), (4.3)

F(sn)(r, φ) = (i)nf(r) sin(nφ). (4.4)

f is a continuous function of the radius r. The operator T is then called the generalized

curvature operator.

Within this definition it is not clear what kind of functions f are a good choice and where

the term curvature has its origin. The following lemma clarifies these issues.

Lemma 4.2. Let f(r) = 2πr2 and n = 2. Then the generalized curvature operator T becomes

T (u)(x) =
∂2

∂x21
u
∂2

∂x22
u− (

∂2

∂x1∂x2
u)2. (4.5)

Note that this expression is exactly the nominator of the Gaussian curvature as can be seen in

Theorem 3.24. Thus, the operator with these parameters automatically fulfills the requirements

of an i2D-operator.

Proof. For convenience the index of the function u determines the derivative in the corre-

sponding variable, .i.e. ui :=
∂
∂xi
u. We start from the nominator of the Gaussian curvature

u11u22 − u212
=
1

4
(u11 + u22)

2 − 1

4
((u11 − u22)2 + 4u212)
︸ ︷︷ ︸

=:ǫ2

=
1

4

(
(∆u)2 − ǫ2

)
(4.6)

where ǫ is the eccentricity. The eccentricity can be rewritten by

ǫ = ((u11 − u22)2 + (2u12)
2). (4.7)

If we are now able to rewrite the base of each summand by a convolution with the right filter

kernel, we are done. For this purpose we use the following property of the Fourier transform.
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F(Dαf)(z) = i|α|zαF(z) (4.8)

where α ∈ N
n is a multi-index (Dα = Dα1

1 . . . Dαn
n and zα = zα1

1 · · · · · zαn
n ). Applying this to

u11 − u22 with z1 = r cos(φ) and z2 = r sin(φ) yields

F(u11 − u22)(z) = i2z21F(u)(z)− i2z22F(u)(z)
= (z22 − z21)F(u)(z)
= r2(sin(φ)2 − cos(φ)2)F(u)(z)

= −r2 cos(2φ)F(u)(z) = F(c2)(z)F(u)(z) =
1

2π
F(c2 ∗ u) (4.9)

with f(r) := 2πr2. Applying the derivative relation of the Fourier transform to 2u12 yields

F(2u12)(z) = 2i2z1z2F(u)(z)
= −2r2 cos(φ) sin(φ)F(u)(z)

= −r2 sin(2φ)F(u)(z) = F(s2)(z)F(u)(z) =
1

2π
F(s2 ∗ u) (4.10)

with f(r) = 2πr2. This proves the assumption.

This lemma also states that the generalized curvature is an i2D-operator for n = 2. The

following theorem generalizes this statement.

Theorem 4.3. Let n = 2, 4, 6, . . . and f(r) = 2πr2. Then the generalized curvature operator

defined in Definition 4.1 is an i2D-operator.

Proof. The main goal is to show that (∆u)2 − ǫ2n does not respond to i0D- and i1D-points

in a signal. We rewrite the operator by an equivalent second-order Volterra system and use

Theorem 2.10 to show that this system is an i2D-system. First the Fourier transform of the

Laplace operator is derived. By using Equation (4.8), z1 = r cos(φ), and z2 = r sin(φ) we get

F(u11 + u22)(z) = −(z21 + z22)F(u)(z)

= −r2F(u)(z) =:
1

2π
F(l ∗ u)(z) (4.11)

such that F(l)(r, φ) = −2πr2. We thus get

(∆u)2 − ǫ2n = (l ∗ u)2 − (cn ∗ u)2 − (sn ∗ u)2. (4.12)
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Let h ∈ L1(R2 and u ∈ L2(R2) be arbitrary functions. Then the following holds

((h ∗ u)(x))2 =
∫

R4

h(x1)h(x2)u(x− x1)u(x− x2) dx1 dx2. (4.13)

This expression can be described by a second-order Volterra system with the second-order

Volterra kernel h̃(x1, x2) = h(x1)h(x2). With z = (z1, z2)
T ∈ R

4 and z1, z2 ∈ R
2 the Fourier

transform can be determined by

F(h̃)(z) = F(h)(z1)F(h)(z2). (4.14)

ow we can apply this relation to the resulting operator l̃ − c̃n − s̃n of the right-hand side of

Equation (4.12) such that the Fourier transform in polar coordinates becomes

F(l̃ − c̃n − s̃n)(r1, φ1, r2, φ2)
= (2π)2r21r

2
2 − (i)2n(2π)2r21r

2
2 cos(nφ1) cos(nφ2)− (i)2n(2π)2r21r

2
2 sin(nφ1) sin(nφ2)

= (2π)2r21r
2
2 (1− (−1)n(cos(nφ1) cos(nφ2) + sin(nφ1) sin(nφ2))) . (4.15)

In order to apply Theorem 2.10, we have to guarantee that the function values of the Fourier

transform vanish for all arguments z ∈ R
4 given by

z =









r1 cos(φ)

r1 sin(φ)

r2 cos(φ)

r2 sin(φ)









, ∀r1, r2 ≥ 0, φ ∈ [0, 2π]. (4.16)

This parametrization matches the polar coordinate system in Equation (4.15) with φ1 = φ2 =

φ. Then it follows

F(l̃ − c̃n − s̃n)(r1, φ, r2, φ) = (2π)2r21r
2
2



1− (−1)n(cos(nφ)2 + sin(nφ)2)
︸ ︷︷ ︸

=1



 . (4.17)

Consequently it is equal to zero for even n. With Theorem 2.10 follows the assumption.

Remark 4.4. A Gaussian blurring is sometimes incorporated in f(r) given by

f(r) = 2πr2e
1
2

r2

σ2
r . (4.18)

Note that the resulting operator is not an i2D-operator in a strict sense anymore. An increase

of σr causes an increase in i2D-selectivity.

It was shown that the generalized curvature becomes the nominator of the Gaussian curva-
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ture. One important property of the Gaussian curvature is its sign classifying different kinds

of curvature, i.e. elliptic, hyperbolic, and parabolic curvature. If one wants to distinguish the

two different types of elliptic curvature which can be seen as a valley or a hill for illustrative

purposes, another operator is required. The clipped eigenvalue operator with respect to the

generalized curvature in the following definition solves this problem.

Definition 4.5 (Clipped eigenvalue). The operator N : C2(Ω)→ C(Ω) with compact Ω ⊂ R
2

is defined for n ∈ N by

N(u)(x) = |min(0,
1

2
(∆u+ |ǫn(u)|))| − |max(0,

1

2
(∆u− |ǫn(u)|))| (4.19)

where ǫn is as defined in Definition 4.1. The operator N is called the clipped eigenvalue

operator. λ1(u) =
1
2(∆u+|ǫn(u)|) and λ2(u) = 1

2(∆u−|ǫn(u)|) are the generalized eigenvalues.
Remark 4.6. Note that the product of the generalized eigenvalues is exactly the generalized

curvature. The term eigenvalues is motivated by the case n = 2 and f(r) = 2πr2 where

the generalized curvature becomes the denominator of the Gaussian curvature. Then the

generalized eigenvalues become the eigenvalues of the Hessian matrix of u.

The following theorem concludes this section with a statement which gives the warranty to

use the clipped eigenvalue operator as an i2D-operator in the subsequent application.

Theorem 4.7. Let n = 2, 4, 6, . . . and f(r) = 2πr2. Then the clipped eigenvalue operator

defined in Definition 4.5 is an i2D-operator.

Proof. Let u ∈ C(Ω) be an arbitrary signal and let x ∈ I0(u) ∪ I1(u) be an arbitrary point.

The relation between the generalized eigenvalues and the generalized curvature is

T (u) = λ1(u)λ2(u). (4.20)

Note that λ1(u) ≥ λ2(u) by definition. We thus can distinguish three cases such that the

clipped eigenvalue operator becomes

N(u)(x) =







−λ2(u)(x) , 0 ≤ λ2(u)(x) ≤ λ1(u)(x),

−λ1(u)(x) , λ2(u)(x) ≤ λ1(u)(x) ≤ 0,

0 , λ2(u)(x) ≤ 0 ≤ λ1(u)(x).

(4.21)

With x ∈ I0(u) ∪ I1(u) follows T (u)(x) = 0. Consequently, the product of the generalized

eigenvalues is also zero. As a result at least one generalized eigenvalue has to be zero. In

the first case, where both generalized eigenvalues are positive, λ2(u)(x) = 0 or both are zero.

Thus N(u)(x) = 0. In the second case where both generalized eigenvalues are negative,

λ1(u)(x) = 0 or both are zero. Thus N(u)(x) = 0. The third case is always zero. This holds

for arbitrary x ∈ I0(u) ∪ I1(u) such that the operator N is an i2D-operator.
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4.3 Article: Active sensorimotor object recognition in three-dimensional

space

Reference

D.N., T.K., T.R. and C.Z. designed research; D.N., T.K., and T.R. performed research; D.N

and T.K. developed and implemented the system; D.N. analyzed the data; D.N., T.K., T.R.,

C.Z. and K.S. wrote the paper.

The paper was published in Spatial Cognition IX under the following reference [54]:

D. Nakath, T. Kluth, T. Reineking, C. Zetzsche, and K. Schill. Active sensorimotor ob-

ject recognition in three-dimensional space. In C. Freksa, B. Nebel, M. Hegarty, and T.

Barkowsky, editors, Spatial Cognition IX, volume 8684 of Lecture Notes in Computer Science,

pages 312–324. Springer International Publishing, 2014.
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"	��	 ������� ������� ��������� ��� >��A �	� ��!� ����� ������ ��� 
� �	���� ��#
������� �� �	� ��!���� ����������� ���� ���������
 �	�� ����� ��� �	� �������
"��	 �� ��������� ����� �� �	� ��!� ����������� ����$

�	� 
���� ���	�������� �� �	� � ���� "� ������� �� �������� �� ����$ +$ 6�
����$ /
 "� ������
� �	� �������������� �� �	� � ����$ ��
��=����� 
 ����$ 0
�	�"� �	� ������� �� �	� ���������� �� �"� ��B����� ���������; <�������� �������
�� /� ��������� �� � ������ ������� �� � ��
���� ��� ��� ��������� ������
��������� �� ������ ���� �	� ������	 +12 �������$ �	� ����� �� ���������
"��	 � ���������� �� �	� ������� ���������� �B���� 
 �	� �������� ������������
���	��������$
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 "	��	 �� ���� �������� ��" ��"
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���� 2$-��� 3���������� �� '�����4�
�������# �"��� �5�

"����$ 6� @��$ )
 �	� �"� ����"� �������� ���� �	� ������ ����� �� �	� ������ 
���������� ������ ���������� �� �	� ������� � ; � �� � �
 "	��� � �� �	�
����� �� ��� ����� ������� "	��	 ��� �������� �����
��
 � �� �	� ����� ����� ��
�	� ������ ������
 ��� � �� �	� ��" ������ ���� �����$

�	� � ���� 	�� �� ���"����� �
��� �	� ������ ����� �� �	� :�
 ������� �� ��
��� �������� �
��� �	� �������� �����
�� ����� ������� � $ �	��� ��� �� ������
��������� �� �	� ����� �� �	� ����� �� � ; � � �>�� A
 "	��� �� �� �	� ��� �� ���
�����
�� ����� �������� ��� � ������� �	� ��"�� ���$ :������� �	�� �	� ������
�� �	� �������� � �� �����
 "� "���� � ������� �� �>�A� � � � 
 ��� �����������$
����������� �	� �����#�������� 
�	�����
 �	� ������ �������������� �� �	� :� ���

� �������� �� �� ; � � � "	��� �	� ����! � ������� �	� ��������� �� �	�
�����

��>�A ;C �>�� �A C 	� � � �� � � �>�A� 	 � �
 >)A

�	� ��� ����#��������� �����
��� ��� �	� ������ ����� � ��� �	� �������� �����
������� �$ 6� ��������
 �	� "���� �� ������� �� 
� ������ "	��	 ������� �� � �����
�	����� �� �	� ��" ������ ���� 	 � �$

�	�� ���� �� ��� ���� �	� ������� 	��
������ >�9A "	��	 ����� �!������ �	�
�������� �������� 
�������� �� � ������� ����� � 
 �$�$
 �
 ; � � � $ ��
��=����� 

�	� =����������� ��������� �� ; � � � ���� �	� �������� �� � ������� �������
����� �� �	� ����� ��� ������
�� ����� �$ �	� �����
�� ����� ������� ��� ������
"��	 �� ; �� � � �� �	� ����� ������
�� ��� �� ������� � ��  ���� � ���#
����
�� ������� ����� �� ������ ��� ����� �����������$ �	� ������� �� �	���
=������������ �	�� 
����� ���� �� � ������������ ������� >��� A$ �	� ������
=������������ ��� ����������� �� @��$ ) 
 �	� ����"� ���� �	� ������ �������#
��� ��� �	� ����� ������� �� �	� ����#����� ������������ ������� "	��	 ��
������ �� �	� ������

���� ;C ����������� ���� >+A

"	��� ���� ;C �� >����A �� �	� ������������ ����� ������ 
��"��� �	� ������
����������� ���� ��� �� �� ���� ���� ���� ��� �� >��� @��$ +A$ �	� "	��� �	��� ��
���������� �� �
���� �	� ������ ����������� �� � ���� ���� �� ��� 
� ������
��

 

�� ;C >�� � �
 ���A>����A
 >/A

�	� ��������� ��	������
���� �� ��������� �� �	� �������� ������
�� �����
������� � ��� �	� ������� ������������ �������������� >���A
 "	��	 �� � ����
8���� ���
�
���� ������
����� �� ���� ��� �	� ������� ����������� 
 �	� ���#
����� ������ �����
�� � $ &��� �����
�� ��� �� ��������� �� � ��� �� ���"�
�
8���� �� � �������� �	���$ �	�� ����� �	��
 ���� ���� �����
�� ����� �
 ���� 
�����
�� ����� ������ � �� ���������
 ��������� ��

��� ;C 
 >���� � A C 
 >���������� ��� � A
 >0A

�	� 	���
�������
 ��
������ ������ �������� �� � ,� ����� ��������� �������	
����������� 
 �� ����������� ���� ������� $ �	� ��� �� 
�����#�� ������ 
���� ��� ���#��"� ����������� ���� �	� ���"����� ��������������$ �	�� ������
���
��� �	� ,� ����� ��������� � ���� �� ���� ���� ������� ����� �������
 �	��
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��������� �	� ��������� ������
����� ���� �	� �
8��� ������� � $ @���	������
 �	�
����������� ���� ������� ��� �	���� �� ������� ��!� ����� ������ ��� �	� ������
������
 �	�� ��������� �	� ����� �� �	� �����"��� ,� ����� ��������� ����$

�  
��� ������������
�

,���� �� �	� ��	������ ������� ��������� �
���
 "� ������� ��� � ���� �� �	�
���� �� ������ �
8��� �����������$ %� �������� 
��	 �	� ���� �� �� ������ ������
������ �� /� ����� ��� � ��������� ������ ������ ������ �� +� ����� >���
@��$ +A$

��� �����	 
	��
� ����	�	�����
�

@�� �	� /� ����
 "� ���� � �������� ��� � �� ��������� �� � ������ �������
�� � ��
���� ��� >��� @��$ +�A
 "	��	 �����
��� �� �
������ ������� ������
������ �� �
8���$ @�� �	� +� ����
 "� ���� ��������� ������ ������ ���������
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�� ������ �� � ������� ������� �� �	� ������	 +12 (+1* �������$� D���
 � ��������
�� ��� �����
�� �������� ��������� 
��"��� �	� ���������� ����� �� � 1 � 1 ����
>��� @��$ +
A$ �	� ������ ����� ������ � � ��������� �� � ��������� �
������$
D����
 �� 
��	 ����� 	���� �� C � ��� �	� =����������� �� �� �� ������� 
���������$

:��	���	 �	� ����������� ������� ��� �� � ������������ ��B����� ������

�	� �����"��� 
���� �������� ��� ����������� ���������� ��� 
� ������� �� 
��	 ��
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������ ���� ���� ����	�
�� ����� �� �	� ������ ������A
 "	��	 ����������� ��
�	� ������� �
 ���������� �
���$ :� �	� ��
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�� 
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����� �� �	�� ����	$ �	� =����������� �� �� �	�� ������� 
 ���������� � �#
����� ���������� �� �	� �!������� �������� >� C )1A$� 6� ����� �� 
���� �	�
���������� ����
 �������� ��� �!������� >��� �
 A ��� �	� ������� ��� ��������
�� �������� "��	 �	� ��� �� �	� ��������� ������ ������� �� $ �	��� ��
��� ���
���
���� "��	 �	� ������������� ������������ �������� ��������� �� � ��� ��
����$ @����� 
 ��� ��������� ���� ��� ������ �� � F������#�����	�� ���$

��� ��
���������� �	��
����

�	� ���
�
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����A
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�
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Abstract. The interaction of biological agents within the real world is
based on their abilities and the a ordances of the environment. By con-
trast, the classical view of perception considers only sensory features,
as do most object recognition models. Only a few models make use of
the information provided by the integration of sensory information as
well as possible or executed actions. Neither the relations shaping such
an integration nor the methods for using this integrated information in
appropriate representations are yet entirely clear. We propose a proba-
bilistic model integrating the two information sources in one system. The
recognition process is equipped with an utility maximization principle to
obtain optimal interactions with the environment

Keywords: A ordance · Sensorimotor object recognition · Information
gain

1 Introduction

The ability of humans to reliably recognize objects in the environment is still
a largely unsolved problem for arti cial systems. Usually, object recognition
is understood as a classi cation problem where a xed mapping from feature
vectors to object classes is learned. This is in line with the classical view of
perception as the input from world to mind and of action as the output from mind
to world [6], which implies a dissociation between the capacities for perception
and action. However, there is strong evidence that object recognition cannot be
understood independently of the interaction of an agent with its environment
[8]. “Active perception” approaches [1,2] take this partially into account, but
actions are not merely means for acquiring new information, they also provide
evidence themselves for the recognition [5]. What an agent perceives is thus also
determined by what it does or what it is able to do [8].

Research in the direction of a ordances by Gibson [3] also provides evidence
that a ordances are key ingredients of the perceptual process. A variety of studies
regarding object recognition show that the visual information of a manipulable

c Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 406–412, 2015.
DOI: 10.1007/978-3-319-16181-5 29
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object causes an activation of representations of actions which can typically be
executed on the object [4]. The advantageous interplay between sensory and
action information, which was also recognized by Neisser [7], should be consid-
ered in the recognition process.

The strong interrelation between motor actions and sensory perceptions is
basis for the concept of a sensorimotor representation [8,10]. Similarly to the
a ordance point of view the processing stages for sensory and motor informa-
tion are not separated. The approach including the actions in the representation
gives the opportunity to choose the next action such that a speci c objective
is pursued. Generally, the problem of action selection can be solved in numer-
ous ways, but as information gathering should be one major purpose of motor
actions it is appropriate to consider an information-theoretic utility function.
Prior research in this area often found that the principle of information gain is
well suited to select an appropriate next action.

In this paper, we propose a system for object recognition which incorpo-
rates both the information gain principle from sensorimotor systems and the
theoretical concept of a ordances. Building upon the investigations in [11], we
developed a sensomotoric probabilistic reasoning system for a ordance-based
object recognition. The design of our architecture is motivated by two main
goals: i) to provide a clear relation to Bayesian inference approaches, and ii) to
enable a comparison between the classic sensory approach and the sensorimotor,
a ordance-oriented approach within one common probabilistic framework.

2 Object Recognition System

The system described in the following is a generic architecture (see Fig. 1). The
recognition loop starts out with a particular pose of an object which is perceived
by a sensor. The sensor passes its raw data to the sensory processing module.
After processing, the sensory data becomes part of a new sensorimotor feature,
which is then fed into the probabilistic reasoning module. The processed sensory
data are also used to obtain a set of possible interactions, i.e., the a ordances
o ered by the sensory data related to the abilities of the agent. The Bayesian
inference module calculates the new posterior distribution based on a previously-
learned sensorimotor representation. This representation contains the learned
perceptual consequences of an interaction in a given state for every object class.
The posterior distribution constitutes the current belief of the system. This belief
is used by the information gain strategy to choose an optimal next action from
the set of possible interactions. The selected interaction then also becomes part
of the sensorimotor feature and is subsequently executed by the agent. The whole
process results in a new state, which in turn delivers new raw sensory data to
enter the next cycle of the recognition loop.

More formally speaking, the system depends on an agent, which can be con-
trolled such that it perceives information about a speci c aspect of the world.
In Fig. 1, the two arrows pointing from the states to the sensory processing
module correspond to the mapping A : U ×X R, where U is the space of all
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Fig. 1. Architecture of the object recognition system

interactions which are currently possible, X is the state space, and R is the raw
sensor data space.

The system has no explicit knowledge about the actual state, and the cur-
rently possible interactions U . The possible interactions are of course dependent
on the state but nevertheless both information must be obtained from the sen-
sor data. The sensoric dependency on the state is formalized by the mapping
U : X P( U ), where U is the set of all possible interactions and P denotes
the power set. Note that U comprises the link from the state to the sensory
processing module and the following link to the set of possible interactions in
Fig. 1, i.e., the perceived a ordances. Assuming that the output of the function
U is given, we write U instead of U(x), x X, for convenience. Considering the
state-agnostic behavior, the in uence of the agent can be formally rede ned to
Ax : U R with Ax(u) := A(x, u) = r, x X, u U(x), r R. The only
time-dependent variables are the state x and the interaction u.

The raw sensor data r R is fed into the sensory processing (SP) which
mainly extracts the relevant features belonging to a feature space F , i.e., SP :
R F . Subsequently, the quantization operation QS : F S maps the features
to a speci c feature class in the nite space S. The possible interactions are
mapped with QM : U M to the nite set of interactions M to yield a
manageable product space of sensory information and actions. The results of
these quantizations then become part of a sensorimotor feature (SMF ). The
single quantizations are represented in Fig. 1 by the arrows from the sensory
processing module and the interaction command to the sensorimotor feature
which is de ned as the triple
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SMFi := (si 1,mi 1, si), (1)

where mi 1 := QM (ui 1) is the interaction between the sensor information si 1

and si at time step ti 1 and ti. The whole chain of operations to obtain the sensor
information at a time step ti can be described by si := (QS SP Ax)(ui 1).

The knowledge representation is comprised of the learned sensorimotor rep-
resentation (SMR), which is a full joint probability distribution of SMF s and
the classes represented by the discrete random variable Y . Every possible SMF

is generated on a set of known objects in a training phase. This means that,
from every possible state x, the sensory consequence of every possible action u

is perceived, resulting in

SMR := P (SMFi, Y ) = P (Si 1,Mi 1, Si, Y ). (2)

The probabilistic reasoning module consists of a Bayesian inference approach
accompanied by an information gain strategy. They rely on bottom-up sensory
data and top-down information from the knowledge representation. The infor-
mation gain strategy can choose an optimal next interaction for the agent, thus
improving the input of the following Bayesian inference step.

3 Model Implementation and Outlook

Based on the schematic outline presented above, we applied our system to object
recognition using a robotic arm interacting with objects in 3D space. We used a
discrete set of interactionsM of a robotic arm with an object which comprise the
relative position/pose of the visual sensor to the object ( U = M , QM = Id).

In the learning phase, features are extracted from the training data (images
from every reachable state). GIST-features [9] are used to describe the sensory
input, i.e., de ning SP . The quantization QS is then learned by performing a
k-means clustering on the extracted features. In order to build the individual
SMF s, features are extracted and the results are assigned to clusters with the
aid of the previously de ned mapping QS . These labels are combined with the
corresponding interactions in a set of SMF s. Finally, all generated SMF s are
stored in a Laplace-smoothed SMR.

The probabilistic reasoning is comprised of a Bayesian inference module in
the form of a dynamic Bayesian network (BN) and a corresponding information
gain strategy. Two of these probabilistic reasoning modules were implemented to
examine the di erence between sensor networks, which only take into account
sensory information (which also implies that no information gain strategy is
used), and a ordance-based networks, which integrate sensory perceptions and
interactions. The object recognition in the sense of computer vision then takes
place by classi cation which is performed by choosing the class with the maxi-
mum posterior probability.

The representative of the sensor networks is Bayesian network 1 (BN1) (see
Fig. 2a), which resembles an extended naive Bayes model that additionally allows
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...

(a) BN1

...

information

gain

(b) BN2

Fig. 2. In Bayesian network BN1 (a) sensory information Sn is processed only to obtain
the object class Y . Bayesian network BN2 (b) is equipped with the information gain
startegy which takes also the action Mn into account.

for statistical dependencies between the preceding and the current sensor infor-
mation, si 1 and si, resulting in

P (y|s1:n) P (y)P (s1|y)

n

i=2

P (si|si 1, y), (3)

where s1:n is a short notation for the n-tuple (s1, . . . , sn).
Bayesian network 2 (BN2) (see Fig. 2b) uses the full information of the SMF

and therefore belongs to the a ordance-based networks. The assumption that the
current sensory input si depends on the action mi 1 integrates sensory percep-
tions and actions in the recognition process and permits the application of the
information gain strategy to choose the next optimal interaction. Additionally,
it is assumed that the action mi 1 statistically depends on the preceding sensory
input si 1. The inference can then be conducted by

P (y|s1:n,m1:n 1) P (y)P (s1|y)
n

i=2

P (si|si 1,mi 1, y)P (mi 1|si 1). (4)

The strategy for action selection should satisfy two main properties: (i) The
strategy should adapt itself to the current belief state of the system and (ii) the
strategy should not make decisions in an heuristic fashion but tightly integrated
into the axiomatic framework used for reasoning. The information gain strategy
presented in this paper complies with both of these properties.

The information gain IG of a possible next action mn is de ned as the
di erence between the current entropy and the conditional entropy,

IG(mn) := H(Y |s1:n,m1:n 1) H(Y |Sn+1,mn, s1:n,m1:n 1). (5)

This is equivalent to the mutual information of Y and (Sn+1,mn) for an arbitrary
mn. As the current entropy H(Y |s1:n,m1:n 1) is independent of the next action
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Fig. 3. Results of the robotic arm evaluation (8 object classes, 10 objects per class,
30 discrete viewpoints). BN 1 and 2 -IG executed random movements while BN2 +IG
executed information-gain-guided movements.

mn the most promising action m can be calculated by minimizing the expected
entropy with respect to Sn+1,

mn = argmin
mn

( E
Sn+1

[H(Y |s1:n, Sn+1,m1:n)]). (6)

Because the sensory input sn+1 is not known prior to executingmn, the expected
value over all possible sensory inputs sn+1 is taken into account. The selected
action m M is integrated into the next sensorimotor feature. The inverse
mapping of QM can then be used to obtain a top-down interaction command
u U , which is then executed by the agent.

Preliminary results are shown in Fig. 3. In the future, we plan to conduct a
more extensive evaluation of our approach (using di erent sensory features) by
comparing it to established object recognition approaches on a larger data set.
Furthermore we want to extend our approach by a saliency feature detector.

Acknowledgments. This work was supported by DFG, SFB/TR8 Spatial Cognition,
project A5-[ActionSpace], and DLR projects “EnEx” and “KaNaRiA”.
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8. Noë, A.: Action in Perception. MIT Press (2004)
9. Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image
features in recognition. Progress in Brain Research 155, 23–36 (2006)
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Abstract. We propose different methods for adaptively selecting infor-
mation in images during object recognition. In contrast to standard fea-
ture selection, we consider this problem in a Bayesian framework where
features are sequentially selected based on the current belief distribution
over object classes. We define three different selection criteria and pro-
vide efficient Monte Carlo algorithms for the selection. In particular, we
extend the successful Naive Bayes Nearest Neighbor (NBNN) classifica-
tion approach, which is very costly to compute in its original form. We
show that the proposed information selection methods result in a signif-
icant speed-up because only a small number of features needs to be ex-
tracted for accurate classification. In addition to adaptive methods based
on the current belief distribution, we also consider image-based selection
methods and we evaluate the performance of the different methods on a
standard object recognition data set.

Keywords: object recognition, classification, information selection, Bayesian
inference, information gain

1 Introduction

Selecting relevant information from a high-dimensional input is a fundamen-
tal problem pertaining many different areas ranging from computer vision to
robotics. An effective selection strategy uses only a small subset of the available
information without negatively impacting the task performance. An example of
a successful selection strategy is the processing of visual information in humans
where eye movements are performed in order to extract the relevant information
from a scene in a very efficient manner [11]. A key feature of this selection is
its adaptivity because the selection is strongly influenced by the current belief
about the scene [17].

In this paper, we follow the idea of an adaptive belief-based information se-
lection and we investigate it in the context of object recognition. While object
recognition is usually viewed as a static pattern recognition problem, we model
the recognition as an information gathering process unfolding in time, which is
more akin to visual processing in humans. In this case, recognition becomes a
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problem of Bayesian information fusion where the selection of relevant informa-
tion is done adaptively with regard to the current belief distribution (in contrast
to classical feature selection methods, e.g. [4,7]). We propose different crite-
ria for optimal information selection and provide efficient algorithms for their
application. In addition to belief-based selection methods, we also consider an
image-based method that uses a saliency operator to identify relevant locations
in an image.

We combine the information selection methods with the successful NBNN
object recognition approach presented in [1]. We use NBNN because it is a proba-
bilistic approach where local image features are sequentially processed in order to
update a belief distribution over possible object classes.1 For each extracted fea-
ture, multiple expensive nearest neighbor searches have to be performed, which
is why selecting a small subset of relevant features greatly reduces the computa-
tional costs of NBNN classification (for making the nearest neighbor search itself
more efficient, see [9]). Note that while we focus on object recognition in this pa-
per, the proposed belief-based information selection methods are very versatile
and could therefore also be applied in other contexts.

The paper is structured as follows. In the next section, the basics of the
NBNN approach are introduced. In Sect. 3, the information selection methods are
described in detail. In Sect. 4, the different selection methods are combined with
the NBNN approach and compared empirically on a standard object recognition
data set. The paper concludes with a short discussion of the proposed methods
and possible extensions.

2 Naive Bayes Nearest Neighbor

For NBNN, a set of local image descriptors is extracted from the query image
(e.g. SIFT descriptors [8]) which is then used to compute the posterior prob-
ability distribution over object classes. Let C denote the set of object classes,
and let d1:N denote all descriptors extracted from the query image2 where N is
the total number of descriptors found in the image. By applying Bayes’ rule and
by making a naive Bayes assumption regarding the conditional independence of
descriptors, the posterior is given by

P (c|d1:N ) ∝ P (c)

N
∏

i=1

p(di|c) with c ∈ C. (1)

The likelihood p(di|c) for the i-th descriptor is approximated using kernel
density estimation (KDE). This avoids the severe errors caused by quantizing
descriptors like in bag-of-words models [2]. To reduce computational complexity
and in contrast to typical KDE, only the nearest neighbor (NN) of di in the
training set is considered because the density contributions of descriptors that

1 Other state-of-the-art classification approaches like deep networks [6] are not suited
here because they do not allow for an incremental processing of features.

2 We use the shorthand notation d1:N = d1, . . . , dN .
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are farther away tend to be negligible. Using a Gaussian kernel, the likelihood
is approximated by

p(di|c) =
1

|Dc|
∑

d(j)∈Dc

1√
2πσ

exp(−||di − d(j)||2
2σ2

) (2)

≈ 1√
2πσ|Dc|

exp(−||di −NNc(di)||2
2σ2

) (3)

with

NNc(di) = argmin
d(j)∈Dc

||di − d(j)|| (4)

where σ denotes the (class-independent) KDE bandwidth, Dc denotes the set of
descriptors in the training set belonging to class c, and NNc(di) denotes the NN
of di in Dc. The posterior is thus given by

P (c|d1:N ) ∝ P (c)
N
∏

i=1

p(di|c) ∝ P (c) exp

(

− 1

2σ2

N
∑

i=1

||di −NNc(di)||2
)

. (5)

Note that we ignore the descriptor count |Dc| for the posterior because its influ-
ence is very limited and it simplifies the derivations below. Assuming a uniform
class prior, the most probable class c∗ can be found using the simple decision
rule

c∗ = argmax
c∈C

logP (c|d1:N ) = argmin
c∈C

N
∑

i=1

||di −NNc(di)||2. (6)

Though the decision rule in Eq. (6) is independent of σ (it is therefore ignored
in the original NBNN approach), the bandwidth turns out to be relevant for the
selection of optimal descriptors in the next section. We determine the optimal
bandwidth σ∗ by maximizing the log-likelihood of all training set descriptors
D = ∪c∈CDc according to

σ∗ = argmax
σ

log p(D|σ) =

√

∑

c∈C

∑

d(i)∈Dc
||d(i) −NNc(d(i))||2
|D| . (7)

3 Information Selection

For selecting the most relevant descriptors, we distinguish between belief-based
selection methods and image-based ones. For belief-based selection, the prob-
abilistic model introduced in the previous section is used to predict the effect
of extracting a descriptor at a particular location in the image on the current
belief distribution. In contrast, for image-based selection, the image information
itself is used to determine which regions in the image are most relevant without
considering the training data.
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We model the information selection problem as one of finding the most
promising absolute location in an image where the object is assumed to be de-
picted at the center of the image. This simplification allows us to ignore the
problem of object detection, which would be necessary in case of more complex
scenes with variable object locations. Let lt denote the location of a descriptor
dlt in an image at the t-th extraction step after already having extracted the
first t− 1 descriptors dl1:lt−1

. To select the next optimal location, we compute a
score S(lt) for each location and choose the maximum

l∗t = argmax
lt∈Lt

S(lt). (8)

To limit the number of locations, we put a grid over each image where a location
represents a grid cell. Because of the naive Bayes assumption, the likelihoods
of the descriptors within a cell can simply be combined by multiplying them,
i.e., each likelihood p(dlt |c) represents a product of the likelihoods of individual
descriptors located within the same grid cell.

In the remainder of this section, we first present two belief-based information
selection methods and then an image-based one.

3.1 Maximum Expected Probability

For classification it is useful to select the descriptor that maximizes the expected
posterior probability (MEP) of the true class. Because the value of the next
descriptor is unknown prior to extracting it, it has to be modeled as a random
variable Dlt . The same applies to the value of the true object class of the query
image, which is modeled as a random variable Ctrue ∈ C. The score SMEP is the
conditional expectation of the true class posterior probability

SMEP(lt) = E[P (Ctrue|dl1:lt−1
, Dlt)|dl1:lt−1

] (9)

=

∫

∑

ctrue∈C

p(ctrue, dlt |dl1:lt−1
)P (ctrue|dl1:lt) ddlt (10)

=

∫

∑

ctrue∈C

p(ctrue, dlt)
P (ctrue|dl1:lt−1

)

P (ctrue)
P (ctrue|dl1:lt) ddlt (11)

≈ 1

M

M
∑

i=1

P (c(i)|dl1:lt−1
)

P (c(i))
P (c(i)|dl1:lt−1

, d
(i)
lt
) (12)

with respect to Ctrue and Dlt given the previous descriptors dl1:lt−1
. Because the

training samples are assumed to represent i.i.d. samples from the joint distri-
bution p(ctrue, dlt), the score can be approximated by a Monte Carlo estimate
computed over the training set in Eq. (12) where c(i) denotes the class of the i-th

image in the training set, d
(i)
lt

denotes the descriptor in the i-th training image
at location lt, and M denotes the total number of images in the training set. All
the posterior probabilities can be obtained using Eq. (5).

4 Action selection for object recognition and the influence of isotropic i2D-features 157



Computing the Monte Carlo estimate can be time-consuming because all
descriptors in the training set have to be considered. However, the NN distances
required for the likelihoods can be computed in advance so that the overall score
computation is still significantly faster than having to process all descriptors
from the query image. In addition, it would be possible to only use a subset of
the training samples where each sample would be drawn with a probability given
by the current belief distribution.

For the special case where no descriptors have been extracted (t = 1) or where
one chooses to ignore previously extracted descriptors, we can compute a score
that ignores the current belief distribution and only maximizes the normalized
expected likelihood (MEL). Plugging in P (c(i)) for the current belief distribution
in Eq. (12) results in

SMEL(lt) = E[P (Ctrue|Dlt)] (13)

≈ 1

M

M
∑

i=1

P (c(i))

P (c(i))
P (c(i)|d(i)lt

) (14)

=
1

M

M
∑

i=1

P (c(i)) p(d
(i)
lt
|c(i))

∑

c∈C
P (c) p(d

(i)
lt
|c)

. (15)

Because this score is independent of previous descriptors, it can be computed
offline and is thus extremely fast.

3.2 Maximum Expected Information Gain

A popular method for feature selection is the maximum expected information
gain (MIG) [18]. Here we consider a “dynamic” information gain version that
takes previous descriptors into account during the recognition process [12,15]. It
is given by the expected uncertainty/entropy reduction resulting from observ-
ing a new descriptor dlt . The information gain score SMIG is the conditional
expectation of this reduction with respect to Dlt given the previous descriptors
dl1:lt−1 :

SMIG(lt) = H(C|dl1:lt−1)− E[H(C|dl1:lt−1 , Dlt)|dl1:lt−1 ] (16)

= H(C|dl1:lt−1)−
∫

∑

ctrue∈C

p(ctrue, dlt |dl1:lt−1)H(C|dl1:lt) ddlt (17)

≈ H(C|dl1:lt−1)−
1

M

M
∑

i=1

P (c(i)|dl1:lt−1)

P (c(i))
H(C|dl1:lt−1 , d

(i)
lt
) (18)

with entropy

H(X) = −
∑

x∈X

P (x) logP (x). (19)

Like for SMEP, the expected value is approximated by a Monte Carlo estimate
using samples from the training set in Eq. (18). Note that the information gain is
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independent of the true class, meaning that a high MIG score only requires the
resulting posterior distribution to be “non-uniform”, thus completely ignoring
how probable the true class is.

3.3 Intrinsically Two-Dimensional Signals

(a) Original (b) I2D-saliency

Fig. 1: Extracted I2D-saliency (b) of the image shown in (a). The extracted I2D-
score is the clipped eigenvalue computed with the following parameters: n = 6,
σr = 0.2. Positive elliptically curved regions are light and negative elliptically
curved regions are dark.

The following image-based selection method uses a saliency operator which
detects intrinsically two-dimensional (I2D) signals [19]. The intrinsic dimension-
ality of a signal u(x, y) is defined as I0D for all signals that are constant and
as I1D for all signals that can be written as a function of one variable in an
appropriately rotated coordinate system (e.g. an image of an oriented straight
edge). In contrast, I2D-signals make full use of the two degrees of freedom (e.g.
an image of a corner or crossing lines). The I2D-saliency also appears to play an
important role in the control of saccadic eye movements [5,16] which motivates
its use as a score function within the context of this work. In order to identify
the interesting I2D-points, we make use of the generalized curvature operator
introduced in [19]: The generalized curvature operator Tn : C2(Ω)→ C(Ω) with
compact Ω ⊂ R

2 is defined for n ∈ N by

Tn(u)(x) =
1

4

(
(∆u)2 − ǫn(u)

2
)
=

1

4
(∆u+ |ǫn(u)|)
︸ ︷︷ ︸

=λ1(u)

(∆u− |ǫn(u)|)
︸ ︷︷ ︸

=λ2(u)

(20)

with eccentricity ǫn(u)
2 = (cn ∗ u)2 + (sn ∗ u)2. The convolution kernels cn and

sn are defined by their Fourier transform in polar coordinates (x1 = r cos(φ),
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x2 = r sin(φ)) by

F(cn)(r, φ) = (i)nf(r) cos(nφ)

and F(sn)(r, φ) = (i)nf(r) sin(nφ).

f is a continuous function of the radius r given by f(r) = 2πr2e
1
2

r2

σ2
r . λ1 and λ2

are the eigenvalues of the Hessian matrix of u in the case of n = 2 where the
generalized curvature becomes the Gaussian curvature. The Gaussian curvature
allows a distinction between elliptic, hyperbolic, and parabolic regions on the
curved surface {(x, y, u(x, y))T |(x, y)T ∈ R

2}. Using the eigenvalues, the clipped
eigenvalue is defined by

CE(u) = |min(0, λ1(u))| − |max(0, λ2(u))|. (21)

In contrast to directly using generalized curvature as a score function, the advan-
tage of the clipped eigenvalue is that it can distinguish between positive elliptic
and negative elliptic points, i.e., both eigenvalues are positive or negative. Fur-
thermore, the clipped eigenvalue does not respond to hyperbolic regions. The
latter is useful because hyperbolic regions are often found right next to ellip-
tic ones, in which case the hyperbolic regions would only provide redundant
information. The score function is then defined with respect to the luminance
function u of the grid cell Ω(lt) at location lt by

SI2D(lt) =
1

|Ω(lt)|

∫

Ω(lt)

|CE(u)(x)| dx. (22)

In contrast to belief-based score functions, the I2D-saliency is a purely image-
based method. Consequently, it does not require any training data. The I2D-
score function of an example image is illustrated in Fig. 1.

4 Evaluation

We evaluate the proposed information selection methods on the Caltech 101
data set [3]. We use 15 randomly selected images from each of the 101 object
classes for training and 10 for testing. All images are scaled such that they have
a maximum width or height of 300 pixels. Afterwards, densely-sampled SIFT
descriptors are extracted (several thousands for each image depending on the
size) and the NN distances are computed.3

Fig. 2 shows the mean accuracy over time for the different selection methods
using a 5× 5 grid and 10-fold cross validation. The MEP and MEL methods re-
sult in the quickest increase in accuracy and only require extracting descriptors
from less than 6 grid cells on average for reliable classification (even though the
MEL method ignores the current belief distribution). The MIG and I2D meth-
ods perform only slightly worse and all of the considered methods significantly

3 We use the code provided at https://github.com/sanchom/sjm for SIFT descriptor
extraction and the FLANN library [10] for fast NN matches.
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Fig. 2: (a) Mean accuracy on the entire Caltech data set plotted for different time
steps/location counts using different selection methods. (b) Mean number of time
steps/location counts required for reaching at least 90% of the final accuracy
where all descriptors have been extracted. The indicated standard deviation is
computed with respect to the different folds.

outperform the baseline methods where descriptors are either selected randomly
(“RAN”) or line by line starting at the top of the image (“LIN”). The final accu-
racy after having extracted all descriptors is identical for each method because
the extraction order is irrelevant for the classification model. Interestingly, the
accuracy is highest after having extracted about half of all descriptors (except
for the baseline methods), showing that the remaining descriptors tend to only
decrease the recognition performance.

To illustrate the process of sequentially selecting descriptors, Fig. 3 shows
score distributions over time using a 20× 20 grid for three example images. For
the belief-based MEP and MIG selection methods shown in (a) and (b), the
score distributions change significantly over time and adapt themselves to the
query image based on the current belief distribution. The I2D score distribution
remains constant over time aside from setting the score of previously selected
locations to 0 (the apparent change in other locations is due to scaling in the
visualization). At t = 1, both the MEP and the MIG scores are independent
of the query image and only the I2D method uses the image information. Over
time, the MEP and MIG scores adapt themselves to the current belief distribu-
tion over object classes, whereas the I2D score remains unchanged. The visible
“grid pattern” (especially for t ≤ 10) is an artifact resulting from some grid
cells containing more descriptors than others (this could be avoided if all cells
contained roughly the same number of descriptors).

Perhaps surprisingly, the MEP score is highest at the center while the MIG
score is initially highest in the periphery. One possible explanation for this effect
is that the MEP method can be interpreted as a “confirmation strategy” whereas
the MIG method can be interpreted as a “discriminative strategy”. For MEP,
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Fig. 3: Examples of score distributions over time using a 20×20 grid for different
selection methods and query images. The small blue square indicates the cell with
the highest score from which the next descriptor(s) are extracted. Cells that have
already been selected have a score value of 0 (black).
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extracting descriptors from the center of an object usually increases the prob-
ability of the true class without necessarily resulting in a unique classification
(i.e. the overall belief distribution can still be very uniform). In contrast, the
MIG method is agnostic with respect to the true class and only seeks to reduce
uncertainty (e.g. by ruling out large numbers of classes). This could be accom-
plished by analyzing the “context” of objects, which is why the MIG method
might first focus on the background.

5 Conclusion

We have proposed different methods for adaptive information selection from
images where the current belief distribution directly determines which image
locations should be considered next. In addition, we have also considered an
image-based selection method that does not require any training data. Using
these methods, we have extended the NBNN approach and we have shown that
the selection methods make it possible to only consider a small subset of the
available information while maintaining the original recognition performance. In
particular for NBNN, where computing the NN distances for each descriptor is
very time-consuming, the result is a significantly reduced computation time.

One of the problems not addressed in this paper is the fact that features
in close proximity to each other are highly correlated. While the naive Bayes
assumption can be justified for inference by the greatly reduced computational
complexity, for the information selection it would be possible to use a more
sophisticated model where correlations are explicitly considered. As a result,
there would be a penalty for extracting features located very closely to each
other, thus avoiding processing of redundant information.

In this paper, we have considered belief-based selection strategies (MEP,
MIG) and image-based strategies (I2D) separately. A more promising approach
could be a combination of both strategies [16] because the belief-based strat-
egy completely ignores what is readily available in the image while a purely
image-based strategy has difficulties selecting the relevant information because
it ignores the training data. Due to the complementary nature of these strategies,
a hybrid strategy could further improve the selection process.

We believe that the proposed selection methods can also be useful for prob-
lems beyond recognizing single objects. Especially for complex scenes containing
many objects, an adaptive information selection strategy could predict the likely
locations of objects and thereby facilitate understanding of the entire scene.

Finally, the general nature of the proposed information selection approaches
allows for the application to systems which must perform actions to obtain new
information from their environments (e.g. an autonomous spacecraft [14] or a
melting probe [13]). These actions can cause high costs in terms of, for example,
energy consumption or execution time. In these situations, it is thus highly
desirable to avoid non-informative actions by using adaptive selection strategies.
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5 Summary and outlook

In this thesis the concept of intrinsic dimensionality was investigated in the context of second-

order Volterra systems in application to low level functionalities reported in the early visual

cortex. Furthermore, this concept was applied to numerical cognition and to action selection

for active object recognition. The thesis aimed to answer the following research questions:

• How can neurons of the visual cortex be modeled so that they show a significantly
nonlinear behavior in line with the concept of intrinsic dimensionality?

• How can numerical cognition be modeled from operations determined by the concept of
intrinsic dimensionality so that human behavior can be explained?

• How can the action selection for active object recognition be influenced by information
theoretical quantities and operations determined by the concept of intrinsic dimension-

ality?

The first question was addressed in Section 2. The insight that the reported behavior of

neurons in early visual cortex cannot be explained solely by linear systems anymore makes the

problem more complex. The number of possible models increases dramatically. To overcome

this issue, the second-order Taylor series of nonlinear systems, i.e. second-order Volterra

systems, is used to design nonlinear systems which are able to explain the reported behavior.

Based on this formalism a nonlinear generalized Gabor filter was developed and parametrized

to obtain the selectivity to oriented i2D-signals. In particular, systems being selective to

crossing lines, end-stopped lines, and corners were developed. It was shown that the proposed

parametrization can qualitatively describe phenomena reported in the literature. The results

give first insights in the four-dimensional domain of the filter functions and the abilities to

extract relevant features from images. In comparison to the linear approach, the nonlinear

approach is far away from being well understood. This and the investigation of higher-

order Volterra systems thus remain future research. The qualitative results regarding neural

behavior directly lead to the question whether the developed systems are able to explain the

empirical data quantitatively. In order to do the evaluation a data fitting algorithm for the

generalized Gabor approach has to be developed in the future. Another open question is its

relation to the proposed non-classical receptive field models in the literature.

The second question regarding the development of a computational model for numerical

cognition was addressed in Section 3. In this section, a computational model for numeros-

ity estimation was developed from scratch. The immense abstraction ability of the human

system was investigated from a mathematical point of view. Under certain assumptions the

topological invariant Euler characteristic can be used to develop a model for the number of ob-

jects. The relation between topology and differential geometry provided by the Gauss-Bonnet
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theorem was then used to derive a computational model to obtain the number from a spe-

cific class of visual stimuli. This model is based on the geodesic curvature and the Gaussian

curvature. It was also shown that both operators fulfill the requirements of an i2D-system.

Finally, by the introduction of noise to the system, behavioral results of humans in standard

numerosity estimation tasks were reproduced. These results raise some questions for future

research. The proposed model suggests that a first attempt to numerosity can be computed

by operations already provided in early stages of the visual system. Whether numerosity is

represented in higher cortical areas or whether there exists a representation in early stages, is

still an open question in numerosity research. As the proposed model is sensitive to the kind

of connectedness of the objects by definition of the Euler characteristic, this sensitivity should

be tested in behavioral experiments. This is directly related to the assumption that objects

are simply connected. The generalization to arbitrarily connected objects requires the study

of other invariants like the Betti numbers. The investigation of these invariants regarding

their usability to derive a computational model remains future research.

The third research question which was addressed in Section 4 is split into two parts. In the

first part a sensorimotor system based on a visual sensor device was developed which provides

the ability to choose the next appropriate action for the information gathering process. The

reasoning system was designed on top of Bayesian networks which were used to infer an object

class from the features extracted from the visual input. The probabilistic knowledge base was

used to formulate an information theoretical score function to obtain the next action to be

performed by the sensorimotor system. The information gain strategy was able to decrease

the number of performed actions which were necessary to reach a certain level of performance.

The second part considers a similar sensorimotor system with small improvements: The quan-

tization of feature vectors into a finite number of classes in the previously considered reasoning

system annihilates important information for object recognition. It thus was replaced by a

continuous approximation of the probability distribution which provides the knowledge base.

In this framework various probabilistic and information theoretical score functions were in-

vestigated. In contrast to the score functions, relying on previously gained experience, an

i2D-operator, the clipped eigenvalue operator, was used to provide a score function which

does not rely on knowledge. The comparison of numbers of performed actions required to

reach a certain level of performance showed that the knowledge-based score functions perform

best followed by the i2D-operator based score function. This raises the question whether an

improvement of the extracted i2D-features or hybrid approaches which combine knowledge-

with image-based approaches can yield better score functions for object recognition. Whether

humans use one of these strategies is an open question and should be investigated in future

behavioral experiments.

In summary, it is an impressive result that the concept of intrinsic dimensionality seems to

play an important role in low level vision and in an increasing number of higher cognitive abil-
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ities. Further exciting applications of intrinsic dimensionality in human brain functionalities

remain future research.
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