Zweitveröffentlichung/ **Secondary Publication**

https://media.suub.uni-bremen.de

Schmidt, Fabian ; Swiderek, Petra ; Bredehöft, Jan Hendrik

as:

Electron-Induced Processing of Methanol Ice

Journal Article

peer-reviewed accepted version (Postprint)

DOI of this document*(secondary publication): https://doi.org/10.26092/elib/3709 Publication date of this document:

19/02/2025

* for better findability or for reliable citation

Recommended Citation (primary publication/Version of Record) incl. DOI:

Electron-Induced Processing of Methanol Ice Fabian Schmidt, Petra Swiderek, and Jan H. Bredehöft ACS Earth and Space Chemistry 2021 5 (2), 391-408 DOI: 10.1021/acsearthspacechem.0c00250

Please note that the version of this document may differ from the final published version (Version of Record/primary publication) in terms of copy-editing, pagination, publication date and DOI. Please cite the version that you actually used. Before citing, you are also advised to check the publisher's website for any subsequent corrections or retractions (see also https://retractionwatch.com/).

This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Earth and Space Chemistry, copyright © 2021 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsearthspacechem.0c00250

This document is made available with all rights reserved.

Take down policy

If you believe that this document or any material on this site infringes copyright, please contact publizieren@suub.uni-bremen.de with full details and we will remove access to the material.

1							
2 3 4 5	1	Electron-Induced Processing of Methanol Ice					
6 7 8	2	Fabian Schmidt, Petra Swiderek, and Jan H. Bredehöft*					
9 10 11 12	3	Universität Bremen, Institut für Angewandte und Physikalische Chemie,					
13 14 15	4	Fachbereich 2 (Chemie/Biologie), Leobener Straße / NW 2,					
16 17 18 19 20	5	Postfach 330440, D-28334 Bremen, Germany					
21 22 23	6	*Correspondence:					
24 25	7	Corresponding Author					
26 27 28 29	8	jhbredehoeft@uni-bremen.de					
30 31 32	9	Keywords: Astrochemistry, Mechanisms, UHV, Physical Chemistry, Methanol, Low					
33 34 35	10	Energy Electrons					
36 37 38	11	Abstract					
39 40 41	12	The formation of methane (CH ₄), formaldehyde (H ₂ CO), ethylene glycol (HOCH ₂ CH ₂ OH),					
42 43	13	methoxymethanol (CH ₃ OCH ₂ OH), dimethyl ether (CH ₃ OCH ₃), and ethanol (CH ₃ CH ₂ OH)					
44 45 46	14	upon electron irradiation of condensed multilayer adsorbates of CH_3OH as model of					
47 48 49	15	cosmic CH_3OH ice has been monitored by the combined use of electron-stimulated and					
50 51	16	thermal desorption experiments. The energy-dependent relative yields of all products					
52 53 54	17	were measured between 2.5 eV and 20 eV and reaction mechanisms of product formation					
55 56 57 58 59	18	deduced. The energy dependences of the yields of HOCH $_2$ CH $_2$ OH, CH $_3$ OCH $_2$ OH,					

CH₃OCH₃, and CH₃CH₂OH agree closely with their threshold at the lowest electronic excitation energy of CH_3OH . Formation of these products is consequently ascribed to reactions of radicals formed by dissociation of neutral electronically excited states and, at higher energy, also by ionization and subsequent proton transfer to an adjacent CH₃OH. These electron-molecule interactions also can contribute to the non-resonant formation of H₂CO and CH₄, these latter products are also produced through resonances around 4 eV reported previously from anion ESD experiments and around 13 eV seen earlier in the energy-dependent yield of CO. The present results constitute the most complete data set on the energy dependence of product formation during low-energy electron exposure of condensed CH₃OH so far. They provide a comprehensive picture of the reactions triggered by electron impact with energies in the range between 2.5 eV and 20 eV as representative of low-energy secondary electrons that are released from condensed material, for instance, under the effect of cosmic radiation.

32 Introduction

Following carbon monoxide (CO) and water (H₂O), methanol (CH₃OH) is among the most common molecules found in interstellar ices.¹ There are numerous studies on chemical reactions in pure CH₃OH ices induced by energetic processing. Specifically, energetic processing has been investigated by low-energy electrons ($\leq 20 \text{ eV}$),^{2–6} higher energy electrons (5 keV),^{6–14} X-Ray radiation,¹⁵ UV radiation,^{16–19} and ion irradiation.^{20–24} The span of products that were identified encompasses, among others, methane (CH₄),

formaldehyde $(H_2CO),$ ethylene glycol $(HOCH_2CH_2OH),$ methoxymethanol (CH_3OCH_2OH) , dimethyl ether (CH_3OCH_3) , and ethanol (CH_3CH_2OH) which are depicted in Chart 1. These molecules are typically considered to be produced either by unimolecular decomposition of CH₃OH or by radical recombination among the first generation of dissociation products.^{7,11,16} Further electron exposure leads to depletion of these initially formed products yielding CO, carbon dioxide (CO₂), acetaldehyde $(HC(O)CH_3)$, methyl formate $(HC(O)OCH_3)$, glycolaldehyde $(HC(O)CH_2OH)$ (see also Chart 1), and a number of minor products (not shown in Chart 1).^{2,11} Considering the high number of irradiation products, CH₃OH is discussed as an important feedstock for the production of organic compounds in space.¹³

Chart 1. Structural formulae of some typically observed first- and second-generation products. First-generation products are thought to be produced directly by decay of CH₃OH or by radical recombination among the first generation of dissociation products. In contrast, the second generation of products is thought to be produced by further

54 depletion of the initially formed products. All of these compounds have been reported to 55 form upon electron irradiation of CH_3OH ice.^{2–11} Note that other products might also be 56 regarded as first- and second-generation products but are not included in this chart.

In a typical experiment, multilayer ices of CH₃OH are exposed to a radiation source and changes in composition are monitored by suitable analytical tools. In many of the above studies, infrared (IR) spectroscopy has been used as the only tool to identify stable products and intermediates as well as to monitor reaction progress.^{9,17,20-24} This has enabled the identification of the formyl (HCO[•]) and hydroxymethyl ([•]CH₂OH) radicals as intermediates.¹⁶ The downside of IR spectroscopy is that definite band assignment as well as quantification is difficult to impossible for organics with similar functional groups because the corresponding bands often lie within a narrow range of wavenumbers and bands tend to become broad in the condensed phase due to interactions of nearby molecules. Further complicating is the fact that for some less stable compounds and intermediates reference IR spectra do not exist. Some of the more recent studies thus tried to circumvent these limitations in part by using mass spectrometry in combination with desorption techniques. This approach allowed Harris et al. to identify the previously unknown radiolysis product CH₃OCH₂OH and to observe the desorption of CH₃• upon irradiation.¹³ Much effort has been made to identify less abundant products and to improve quantification by using more sophisticated techniques including thermal desorption spectrometry (TDS) combined with single photon ionization reflectron time of flight mass spectrometry (SPI ReTOF-MS),^{11,25} gas chromatography coupled to mass spectrometry (GC-MS),^{12,19} and laser ablation coupled to time of flight mass spectrometry.²⁶ However,

Page 5 of 91

while the formation of the molecules depicted in Chart 1 is commonly accepted, the mechanisms that drive their formation just start to emerge.^{3,7,10–12,14,16} There are already a number of publications covering the temporal evolution of product yields and that of some intermediates during irradiation7-9,15,16,26 as well as upon annealing of the ice.16,26 However, little is still known about the initial dissociation events that underly product formation. This is because typical experiments with broadband UV lamps or higher energy radiation like keV electrons do not allow to distinguish between different dissociation channels of CH₃OH, although some attempts have been made to extract information from the temporal evolution of product yields⁷ and from isotopic labeling.^{11,12,14}

Bover et al.³ and Lepage et al.⁴ addressed this issue by investigating the dependence of product yields on electron energy. This enabled them to identify the primary electron-molecule interactions which is essential to obtain a comprehensive picture of the underlying reactions responsible for product formation. In particular, they used low-energy electrons with $E_0 = 0-20$ eV. This energy range is typical of secondary electrons released in vast numbers when ionizing radiation interacts with solid ices.²⁷ The results of these experiments are thus also of relevance for experiments with other kinds of radiation sources. In addition, experiments with low-energy electrons enable one to promote or supress the formation of specific reactive species by tuning the electron energy. By this, the number of products can be reduced, which, in turn, facilitates their identification. More specifically, electrons can induce the formation of reactive species by either of three mechanisms: Formation of radical cations by electron-impact ionization (EI), of transient

97 negative ions (TNI) by electron attachment (EA) or of electronically excited molecules by
98 electron excitation (EE).^{27,28}

Above but near the ionization threshold, EI typically produces intact molecular cations. At electron energies that exceed the ionization threshold by at least the energy required to dissociate a chemical bond, dissociative ionization (DI) can produce radical and cationic fragments of the molecular ion.²⁸ Molecular rearrangement combined with the formation of new bonds, however, can lower this additional energy.²⁹ The yield of ions produced by El and DI typically increases with electron energy once the ionization threshold or a characteristic appearance energy is reached.²⁷ In contrast, EA processes often occur below the ionization threshold and are particularly dominant at near-thermal electron energies. EA only occurs in well-defined, narrow energy ranges called resonances and is often, but not necessarily, followed by dissociation of the TNI into an anion and one or more neutral species. This process is called dissociative electron attachment (DEA).²⁸ Following EE, a molecule can dissociate into neutral radicals which is called neutral dissociation (ND). Similar to EI and DI, ND shows a threshold-type increase of fragment yields with increasing electron energy.²⁷ The role of ND, however, often remains unclear because it is difficult to monitor this electron-molecule interaction experimentally, as no charged species are formed.³⁰

115 Reactive species produced by these electron-molecule interactions can react with other 116 molecules and thus lead to formation of stable products. The initial electron-molecule Page 7 of 91

interactions can then be distinguished by investigating the dependence of product yield on electron energy. Although Lepage et al.⁴ and Boyer et al.³ performed such experiments, only the energy dependences of CO, HOCH₂CH₂OH and CH₃OCH₂OH have been investigated so far. Therefore, we investigate here the formation of CH₄, H₂CO, CH₃OCH₃, and CH₃CH₂OH and its dependence on the electron energy and revisit also the formation of HOCH₂CH₂OH and CH₃OCH₂OH already reported by Boyer et al.³ In particular, we focus on low-energy electrons (≤20 eV) which encompasses the characteristic regimes of all fundamental electron-molecule interactions, namely EA and DEA, ND, as well as EI and DI. These initiating processes are distinguished by observing the energy dependence of product formation.

Experimental Section

The electron-induced chemistry in cryogenic films of CH₃OH (VWR, Normapur) was studied by electron-stimulated desorption (ESD) and post-irradiation TDS. Experiments were performed in an ultrahigh-vacuum (UHV) chamber evacuated by turbomolecular pumps. The base pressure inside the UHV chamber was below the detection limit of the ion gauge (AML) which is about 3×10⁻¹¹ mbar as stated by the manufacturer. CH₃OH was degassed by several freeze-pump-thaw cycles before leaking it into the chamber. Condensed films of CH₃OH were prepared by introducing defined amounts of gas into the vacuum chamber from a gas handling manifold allowing them to condense on a polycrystalline Ta substrate held at a temperature of ~35 K by a closed-cycle helium

crvostat. The amounts of CH₃OH introduced into the chamber were controlled by monitoring the pressure drop in the gas handling manifold with an MKS Baratron type 622B capacitance manometer. Monolayer calibration for CH₃OH was performed using a set of TDS experiments for various initial surface coverages as controlled by the pressure drop.

In the range of low amounts of deposited material, a broad monolayer desorption peak of CH₃OH is seen with maximum shifting from 143 K to 137 K. With further deposition of CH₃OH, a second peak at 132 K assigned to formation of a bilayer appears and saturates for pressure drops in the gas handling manifold around 5 mTorr. At this pressure drop, a signal assigned to multilayer desorption emerges at 129 K (Figure S1Error! Reference source not found.). Eventually, multilayer desorption dominates over bi- and monolayer desorption and the leading edges of the multilayer desorption signals coincide (Figure S2) which is characteristic of multilayer desorption. For thicker films, a fourth desorption peak at 132 K emerges which can be assigned to a phase transition from amorphous to crystalline CH₃OH ice which occurs just before desorption. This phase transition was observed for multilayer ices of CH₃OH beforehand by Bolina and et al.³¹ and is a well-known effect in the case of amorphous solid water.^{32,33} Note that this phase transition requires heating of the film³¹ and that the as-deposited CH₃OH in this study is in an amorphous rather than crystalline state. Because there is no distinct monolayer peak, accurate calibration of film thickness would require fitting of the monolayer, bilayer and multilayer peaks to the overall signal. The concomitant phase transition, however, makes

Page 9 of 91

this task difficult. Comparing the amounts of CH₃OH with film thicknesses obtained by depositing H₂O and C₂H₄ under similar conditions,^{34,35} however, suggest an approximate film thickness of 12 ± 4 monolayers for a pressure drop of 30 mTorr in the gas handling manifold. Taking the density of crystalline CH₃OH ice into account $(1.01 \pm 0.03 \text{ g/cm}^3)$,³⁶ 12 monolayers should correspond to a thickness of about 4.5 nm (see Supporting Information for calculation). This film thickness was used for all samples throughout the present study. Note that the uncertainty of the absolute film thickness is not to be confused with the reproducibility of the film thickness. Analysis of the as-deposited CH₃OH films by TDS revealed that film thickness varies by only about 2 % throughout the experiments based on the standard deviation of the integrated desorption signals. Electron exposures were carried out with a commercial STAIB NEK-150-1 electron source with an energy resolution of 0.5 eV. The instrument allows for beam shaping which ensures that the whole sample is evenly irradiated at all energies. Neutral species that

171 desorbed during irradiation were monitored using a quadrupole mass spectrometer (QMS)

residual gas analyser (Stanford Research System RGA 200). The QMS has an ion source operating with electrons of energy $E_0 = 70$ eV. During TDS, the sample is annealed from 35 K to 450 K by resistive heating with a constant heating rate of 1 K/s. In a typical TDS, no more than four mass-to-charge ratios were monitored simultaneously in order to maintain a sufficiently high signal-to-noise ratio. Subsequently, the sample temperature

177 was held at 450 K for another 2 min in order to desorb any remaining adsorbates. Analysis

178 of the data was performed with Python³⁷ using the NumPy³⁸ and SciPy³⁹ packages. The

uncertainties of the integral intensities were determined by repeating some of the experiments and calculating the standard deviation where three or more repititions were made. Because the experiments are relatively time consuming, three or more repititions were only performed for a few representative data points.

Products were identified based on characteristic fragments in their mass spectra.⁴⁰ The identities of HOCH₂CH₂OH and CH₃CH₂OH were further verified by comparing the desorption temperatures of the signals in the irradiated sample with those of the actual compounds. Because desorption temperatures can be very sensitive to the molecular environment,⁴¹ we typically admix the pure substances to CH₃OH and perform TDS of the resulting film.^{34,35} CH₃CH₂OH and HOCH₂CH₂OH, however, desorb at higher temperatures than CH₃OH. The molecular environment is thus not well represented by a pure CH₃OH matrix because other irradiation products might also influence the desorption temperature. Therefore, we deviated from this standard procedure and condensed distinct amounts of HOCH₂CH₂OH (Sigma Aldrich, 99.8%) and CH₃CH₂OH (Merck, ≥99.8%) on top of a CH₃OH film after irradiation with 1000 μ C/cm² at an electron energy of 20 eV. This electron dose equates to roughly one electron per molecule in the film.

The relative molecular abundance of a specific product was determined by comparing the areas under its ESD and TDS signals with that of CH_3OH in a non-irradiated sample. This comparison is based on the different cross sections for formation of the observed fragments inside the ionizer of the mass spectrometer, which are also known as partial Page 11 of 91

ACS Earth and Space Chemistry

199	ionization cross sections. Fragments monitored during ESD and TDS have been chosen
200	on the basis of characteristic mass-to-charge ratios as deduced from the mass spectra of
201	the products (Figure S3). The fragment $m/z = 16$ was selected for CH ₄ , $m/z = 30$ for H ₂ CO,
202	m/z = 31 for CH ₃ OH, m/z = 33 for HOCH ₂ CH ₂ OH, m/z = 61 for CH ₃ OCH ₂ OH, m/z = 46 for
203	CH ₃ OCH ₃ , and m/z = 46 for CH ₃ CH ₂ OH. Note that the m/z = 31 signal of CH ₃ OH was only
204	used for quantification of the non-irradiated film and thus does not interfere with the
205	m/z = 31 fragments of other products. For a number of compounds, experimental values
206	for ionization cross sections have not been reported. Therefore, total ionization cross
207	sections were calculated by the Binary Encounter-Bethe (BEB) model.42,43 The necessary
208	orbital properties were obtained by calculation with the GAMESS software package,44,45
209	while the ionization energies of the target molecules were taken from the NIST Chemical
210	Webbook. ⁴⁶ This resulted in 4.35 \pm 0.05 Å ² for CH ₄ , 3.98 \pm 0.05 Å ² for H ₂ CO,
211	5.26 ± 0.05 Å ² for CH ₃ OH, 10.11 ± 0.05 Å ² for HOCH ₂ CH ₂ OH, 9.6 ± 0.3 Å ² for
212	CH ₃ OCH ₂ OH, 8.14 ± 0.05 Å ² for CH ₃ OCH ₃ , and 8.30 ± 0.05 Å ² for CH ₃ CH ₂ OH.
213	Uncertainties are largely determined by the errors of experimental ionization energies.
214	The BEB cross section for CH_3OCH_2OH has a considerably larger uncertainty than for the
215	other compounds because the experimental ionization energy has not been reported
216	which would be required to obtain a more accurate result. This latter cross section was
217	thus estimated from similar-sized compounds. Partial ionization cross sections were then
218	obtained by multiplying the absolute ionization cross section with the relative intensity of
219	the respective ion, as deduced from the mass spectrum, divided by the sum of intensities

220	over all ions. In order to account for possible differences in detection efficiencies and
221	quadrupole transmission factors, mass spectra of pure CH ₄ (Messer, \geq 99.995%), H ₂ CO
222	(obtained by heating paraformaldehyde; Riedel-de Haën, \geq 95.0%), CH ₃ OH,
223	HOCH ₂ CH ₂ OH, and CH ₃ CH ₂ OH have been recorded with the same mass spectrometer
224	used for TDS experiments, showing no significant deviations from published mass
225	spectra. ⁴⁰ In the case of $CH_3OCH_3^{40}$ and CH_3OCH_2OH ⁴⁷ , we deduced the relative ion
226	intensities from published mass spectra because CH_3OCH_3 and CH_3OCH_2OH have not
227	been commercially available, and CH_3OCH_2OH is a labile compound which makes it
228	difficult to handle. ⁴⁷ For the relative intensities of CH_4 , H_2CO , CH_3OH , $HOCH_2CH_2OH$, and
229	CH_3CH_2OH we estimate an uncertainty of 15 % due to pressure fluctuations upon
230	recording the mass spectra. Within these error margins, the intensity ratios for different
231	fragment signals in the TDS agree with those from the mass spectra. For CH_3OCH_3 , we
232	assume the uncertainty to be the same. We note, however, that the intensities of higher
233	mass-to-charge ratios are typically slightly lower than in the NIST spectra. We thus tend
234	to underestimate the abundance of dimethyl ether. In the case of CH_3OCH_2OH , it is more
235	difficult to estimate the uncertainty of the intensities because contributions of thermal
236	decomposition of CH_3OCH_2OH into CH_3OH and H_2CO could not be ruled out in the mass
237	spectrum reported previously. ⁴⁷ Comparison of the TDS intensitites of the m/z = 61 and
238	m/z = 33 fragments of CH ₃ OCH ₂ OH, however, suggests that the intensities in the mass
239	spectrum of CH_3OCH_2OH have uncertainties of no more than 30 %.

Page 13 of 91

240	The uncertainties of the partial ionization cross sections were calculated from the
241	individual uncertainties of the relative intensities in the mass spectrum and that of the
242	ionization cross section by using standard error propagation. Following this procedure,
243	the partial ionization cross sections at 70 eV were calculated to be 2.0 \pm 0.3 Å ² for the
244	m/z = 16 parent ion of CH ₄ , 1.3 ± 0.2 Å ² for the $m/z = 30$ parent ion of H ₂ CO,
245	1.57 ± 0.25 Å ² for the <i>m/z</i> = 31 fragment of CH ₃ OH, 1.3 ± 0.2 Å ² for the <i>m/z</i> = 33 fragment
246	of HOCH ₂ CH ₂ OH, 1.9 ± 0.6 Å ² for the m/z = 61 fragment of CH ₃ OCH ₂ OH, 2.1 ± 0.3 Å ² for
247	the m/z = 46 parent ion of CH ₃ OCH ₃ , and 0.47 ± 0.07 Å ² for the m/z = 46 parent ion of
248	CH_3CH_2OH . Uncertainties of the relative molecular abundances were then calculated from
249	the uncertainties of the partial ionization cross sections and those of the integral intensities
250	using standard error propagation.

The Gibbs free Energy of the formation of H₂CO from CH₃OH by elimination of H₂ was calculated using a method modified from the G3MP2B3 calculations presented by Janoschek and Rossi.⁴⁸ Differing from their method, the geometry was optimized using the B3LYP functional with an augmented correlation-consistent polarized Valence-only Triple-Zeta (aug-cc-pVTZ) basis set.⁴⁹ The energy of the system was evaluated using size-consistent quadratic interactions with unlinked triples $(QCISD(T))^{50}$ with the same basis set. The extrapolation to the basis set limit was achieved by two MP2⁵¹ calculations, the first with the same basis set, and the second using aug-cc-pV Quadruple-Zeta.⁴⁹ The final energy was calculated as the QCISD(T) energy corrected for the difference between the MP2 calculations, the zero-point energy and a term for higher level correlation as described in full detail by Janoschek and Rossi⁴⁸. The Gibbs Free Energy was calculated as G = H - TS, with the enthalpy H = energy + kT and the entropy S derived from frequency analysis of the B3LYP geometry optimization at 35 K. All calculations were performed using the ORCA 4.2.1^{52,53}quantum chemistry program package.

Results and Discussion

266 Identification of Products

To identify products formed by electron-induced reactions, we irradiated multilayer films of CH₃OH with electrons of E_0 = 20 eV and electron exposures of 1000 µC/cm². During irradiation, mass spectra were recorded in the range from m/z = 10 to m/z = 50 which allows identification of desorbing species. A sudden increase of the mass spectrometric signals of several mass-to-charge ratios is observed with beginning electron irradiation due to ESD (Figure 1). The ESD signals at m/z = 31 and 32 revealed the desorption of CH₃OH. Some of the observed signals at lower mass-to-charge ratios (m/z = 15, 16, 28,30), however, are significantly more intense than is expected from the mass spectrum of CH₃OH (Figure S3) which suggests the formation of new products. This is further corroborated by careful inspection of the ESD signals which reveals that the increase of the m/z = 16 and 28 signals is delayed compared to the ESD signals of CH₃OH and must thus stem from an irradiation product.

Figure 1. Evolution of ESD mass spectrometric signals with increasing number of scans during a 1000 μ C/cm² electron irradiation of a multilayer CH₃OH film at E_0 = 20 eV. The two vertical lines mark the beginning (scannumber 10) and end of irradiation (scannumber 23) as was controlled by a negative bias on the sample. The colour code indicates the baseline corrected mass spectrometric signal increasing from low intensity (grey) over mid intensity (blue) to high intensity (red/yellow). The first and last seven scans are not displayed in order to focus on the actual irradiation.

The intensity ratios obtained from the mass spectra in Figure 1 might not reflect the true ratio of desorbing compounds because it takes about 20 s to record a single mass spectrum and because ESD signal intensities evolve with time. Thus, we repeated the irradiation but monitored only those mass-to-charge ratios (m/z = 14, 15, 16, 28, 29, 30,31, and 32) that showed a significant signal in the ESD in order to achieve a reasonable time resolution. The so obtained ESD signals (see Figure S4Error! Reference source not found.) can be integrated over time which yields an averaged ESD mass spectrum (Figure 2, hollow bars). We think that this averaged mass spectrum reflects the signal

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
ו∡ רכ	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
30 27	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
79 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

295	ratios more accurately than the single mass spectra from Figure 1. The uncertainty of the
296	so-obtained mass spectrum is mainly determined by the signal-to-noise ratio of the ESD
297	signals. We estimate this uncertainty to be 10 % with respect to the integrated ESD signal.
298	For deconvolution of the so-obtained spectrum, we used a protocol that was already used
299	in the Cometary Sampling and Composition (COSAC) experiment. ⁵⁴ We reduced the short
300	list of candidate molecules to CH_3OH , H_2CO , CO , and CH_4 because these products were
301	already reported in literature and we did not observe any signals higher than $m/z = 32$ in
302	ESD. The fit was performed in order of decreasing mass, starting from m/z = 32. With this
303	protocol, a good fit to the integrated ESD signals was obtained with exception of the
304	m/z = 14 and 15 signals (Figure 2). We propose, that intact CH ₃ [•] radicals desorb from the
305	sample and thus contribute to these signals. The results of Harris et al., ¹³ and Warneke
306	and Swiderek, ⁵⁵ who already observed desorption of intact CH ₃ • radicals during electron
307	irradiation of CH_3OH and acetone, respectively, can be regarded as proofs of principle
308	that underline our interpretation.

CH₃OH

 $E_0 = 20 \, eV$

 $1000\,\mu C/cm^2$

20

15

25

m/z

ntegral ESD intensity (arb. units)

10

CH₃OH

H₂CO

CO

 CH_4

35

40

30

58 59

60

319 Post-irradiation TDS was performed to monitor substances that were retained in the 320 irradiated film. After an electron exposure of 1000 µC/cm² at 20 eV, depletion of CH₃OH 321 can be observed in the TDS along with the formation of a series of products. In line with 322 the ESD data, the formation of CO (Figure S5Error! Reference source not found.), H₂CO 323 (Figure 3), and CH₄ (Figure 4) indicates electron-induced degradation of CH₃OH upon irradiation. In addition, TDS revealed the formation of more complex molecules not seen 324 55 in ESD, namely, HOCH₂CH₂OH and CH₃OCH₂OH (Figure 5 and Figure 6), as well as 56 325 57

CH₃OCH₃ and CH₃CH₂OH (Figure 7 and Figure 8). The identification of these products is supported by the arguments summarized in the following paragraph. Further signals can be assigned to methyl formate, and possibly glycolaldehyde (Figure S6). All of these complex molecules are indicative of electron-induced synthesis because multiple molecules and/or reactive species must be involved in their formation. In the present study, we focus on the formation of H₂CO, CH₄, HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH because these molecules are considered to be produced either by unimolecular decomposition of CH₃OH or by reactions of the first generation of dissociation products.

335 H₂CO was identified by its characteristic mass-to-charge ratios m/z = 29, and 30 336 (Figure S3). It shows a desorption signal at 88 K (Figure 3) which is in line with earlier 337 experiments.³⁴

 CH_4 was identified by its characteristic mass-to-charge ratios m/z = 15 and 16 (Figure S3) and shows two desorption features at 50 K and 104 K (Figure 4). The first of these signals coincides closely with the multilayer desorption temperature of CH₄ and is thus characteristic of physisorbed CH₄.⁴¹ The second desorption signal overlaps in part with that of H₂CO. The mass spectrum of H₂CO, however, does not show any fragment with m/z = 15 and only a very weak signal at m/z = 16 (about 2.4% of the m/z = 30 signal intensity, Figure S3Error! Reference source not found.). The integral intensity of the m/z = 16 signal at 104 K in the irradiated sample, in contrast, is about three times higher

346	than that of the m/z = 30 signal and can thus not stem from fragmentation of H ₂ CO
347	(Figure 4). We thus assign this second signal to trapping of CH_4 in the CH_3OH matrix
348	which either co-desorbs with H_2CO or gets released when the CH_3OH molecules become
349	more mobile. This is in line with other studies where significant trapping of CH_4 in CH_3OH
350	ice was reported. ^{6,16,26}
351	HOCH ₂ CH ₂ OH was identified by its characteristic mass-to-charge ratios at m/z = 31, 33,
352	and 62 (Figure S3) and desorbs between 186 K and 220 K depending on its amount
353	(Figure 5). The observed desorption temperature agrees well with those reported by
354	Boyer et al. ³ and Harris et al. ¹³ which is 205 K and that of Boamah et al. ² which is 215 K.

Its identity was further verified by condensing different amounts of pure HOCH₂CH₂OH on top of a CH₃OH film preirradiated at 20 eV with 1000 μ C/cm² and performing TDS on the resulting film (Figure 6, left panel). In addition to the desorption signal present after irradiation, the signal intensity increases linearly with the amount of HOCH₂CH₂OH condensed on top of the irradiated sample which corroborates our assignment (Figure 6, right panel).

 G_{3}^{2} 361 CH₃OCH₂OH was identified by its characteristic mass-to-charge ratios *m/z* = 33 and 61 (Figure S3**Error! Reference source not found.**) and desorbs between 156 K and 175 K (Figure 5) depending on its amount. The observed desorption temperature is also in good agreement with that found by Schneider et al.,¹⁸ Boyer et al.,³ and Boamah et al.² who reported values between 155 K and 170 K.

1
2
3
4
5
6
7
, 8
0
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
37
32
27
24 25
22
30
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
50

366	CH ₃ OCH ₃ and CH ₃ CH ₂ OH were both identified by their characteristic mass-to-charge
367	ratios at m/z = 45 and 46 (Figure S3Error! Reference source not found.). The desorption
368	signal of CH_3OCH_3 peaks between 95 K and 110 K (Figure 7) and agrees well with the
369	desorption temperatures found by Boamah et al. ² and Harris et al. ¹³ who reported values
370	between 95 K and 115 K. The desorption signal of CH_3CH_2OH peaks between 148 K and
371	162 K, which is in line with the desorption temperature of 165 K found by Boamah et al. ² .
372	Note that the m/z = 45 fragments of CH ₃ OCH ₂ OH (Figure S3) and HOCH ₂ CH ₂ OH overlap
373	in part with that of CH ₃ CH ₂ OH as can be seen from the position of the m/z = 61 fragment
374	of CH ₃ OCH ₂ OH and m/z = 62 fragment of HOCH ₂ CH ₂ OH in Figure 7. We thus used the
375	m/z = 46 fragment for quantification of CH ₃ CH ₂ OH. The identity of CH ₃ CH ₂ OH was further
376	verified by condensing different amounts of CH_3CH_2OH on top of a CH_3OH film
377	preirradiated at 20 eV with 1000 $\mu\text{C/cm}^2$ and performing TDS of the resulting film. In
378	addition to the desorption signal at 152 K present after irradiation, the signal intensity
379	increases linearly with the amount of CH_3CH_2OH condensed on top of the preirradiated
380	film which corroborates our assignment (Figure 8).

Figure 3. Thermal desorption spectra of a multilayer film of CH₃OH without electron exposure (denoted $0 \ \mu C/cm^2$) and after electron irradiation with $1000 \ \mu C/cm^2$ at $E_0 = 20 \ eV$. The peaks at 88 K in the m/z = 29 and 30 curves (red) are assigned to H₂CO. The signals at 130 K in the m/z = 29 and 30 curves are assigned to fragments of CH₃OH, and the signal at 156 K in the m/z = 30 curve of the irradiated sample has been assigned to a fragment of CH₃OCH₂OH. Tick marks on the left and right axis indicate the vertical offset of the individual curves. The magnification is the same for all curves.

> Figure 4. Thermal desorption spectra of a multilayer film of CH₃OH without electron exposure (denoted 0 µC/cm²) and after electron irradiation with 1000 µC/cm² at E_0 = 20 eV. The peaks at 50 and 104 K in the m/z = 15 and 16 curves (red) are assigned to CH₄. The signals at 130 K in the m/z = 15 and 16 curves are assigned to fragments of CH₃OH. The peak area of the m/z = 16 signal at 104 K is about three times higher than that of the m/z = 30 signal at 90 K (blue line, see also Figure 3). Comparing the ratio of these peak areas with the relative intensities of the m/z = 16 and 30 fragments in the mass spectrum of H₂CO (Figure S3) suggest that the signal at 104 K in the m/z = 16 curve does not stem from H₂CO but solely from CH₄. Tick marks on the left and right axis indicate the vertical offset of the individual curves. The magnification is the same for all curves.

m/z = 30

Temperature (K)

1000 µC/cm²

Figure 5. Thermal desorption spectra of a multilayer film of CH₃OH without electron exposure (denoted 0 µC/cm²) and after electron irradiation with 1000 µC/cm² at E_0 = 20 eV. The peaks at 130 K in the m/z = 31 and 33 curves of the irradiated and pristine sample are assigned to the CH₃O⁺ fragment and the ¹³CH₃OH⁺⁺ isotopologue of CH₃OH, respectively. The peak at 156 K in the m/z = 33 and 61 curves (red) is assigned to CH₃OCH₂OH, and the peak at 192 K in the m/z = 31, 33, and 62 curves (grey) to HOCH₂CH₂OH (see also the mass spectra in Figure S3). Noticeably, these peaks are only present in the irradiated sample which is indicative of electron-induced synthesis. Tick marks on the left and right axis indicate the vertical offset of the individual curves. The individual curves are magnified by the denoted factors.

Figure 6. Thermal desorption spectra of a multilayer film of CH₃OH after electron irradiation with 1000 μ C/cm² at E_{ρ} = 20 eV (bottom spectrum in left panel). The peak at 130 K was assigned to the ¹³CH₃OH^{•+} isotopologue of CH₃OH, the peak at 156 K to CH₃OCH₂OH (MeMe, red), and the peak at 192 K to HOCH₂CH₂OH (EG, grey). The assignment of the peak at 192 K in the m/z = 33 curve to HOCH₂CH₂OH was further verified by admixing increasing amounts of HOCH₂CH₂OH to the irradiated sample (left panel). This leads to a linear increase of peak area for the second signal at 192 K while the peak area of the first signal at 156 K remains constant (right panel). Tick marks on the left and right axis of the left panel indicate the vertical offset of the individual curves. The magnification is the same for all curves. The horizontal line in the right panel indicates an integral intensity of zero.

M.S. Intensity (arb. units)

0

E

100

200

Temperature (K)

m/z = 61

m/z = 62

 $1000\,\mu C/cm^2$

CH₃OH

m/z = 45

 $0 \mu C/cm^2$

m/z = 46

 $0 \mu C/cm^2$

1000 µC/cm²

400

1000 μC/cm²

 $1000 \,\mu\text{C/cm}^2 \,\text{E}_0 = 20 \,\text{eV}$

300

424	
425	Figure 7. Thermal desorption spectra of a multilayer film of CH ₃ OH without electron
426	exposure (denoted $0\mu\text{C/cm}^2$) and after electron irradiation with 1000 $\mu\text{C/cm}^2$ at
427	E_0 = 20 eV. The peaks at 100 and 152 K in the m/z = 45 and 46 curves are assigned to
428	CH_3OCH_3 (red) and CH_3CH_2OH (grey), respectively. Note, however, that desorption of
429	CH ₃ OCH ₂ OH (blue line) and HOCH ₂ CH ₂ OH (green line) contribute to the overall m/z = 45
430	signal as can be seen by the peak positions of the $m/z = 61$ and $m/z = 62$ signals of
431	CH_3OCH_2OH and $HOCH_2CH_2OH$, respectively (see also Figure 5). Tick marks on the
432	vertical axis indicate the baseline level. Tick marks on the left and right axis indicate the
433	vertical offset of the individual curves. The magnification is the same for all curves.

59 60

Figure 8. Thermal desorption spectra of a multilayer film of CH₃OH after electron irradiation with 1000 μ C/cm² at E_0 = 20 eV (bottom spectrum in left panel). The peaks at 100 K and 152 K in the m/z = 46 curves have been assigned to CH₃OCH₃ (DME) and CH₃CH₂OH, (EtOH) respectively. The assignment of the peak at 152 K to CH₃CH₂OH was further verified by condensing increasing amounts of CH₃CH₂OH on top of the irradiated sample (Left panel). This leads to an increase of the peak area for the signal at 152 K (black) while the peak area of the first signal at 100 K (red) remains constant (right panel). Tick marks on the left and right axis of the left panel indicate the vertical offset of the individual curves. The magnification is the same for all curves. The horizontal line in the right panel indicates an integral intensity of zero.

Dependence of Product Yield on Electron Exposure

The depletion of CH₃OH as well as degradation of the products must be negligible in order to compare product yields obtained for different electron energies. Within this regime of initial rates, the product yield increases linearly with electron exposure and formation rates are reflective of formation cross sections. To identify electron exposures that are within the regime of initial rates, we performed irradiation experiments at electron energies of

20 eV with increasing exposures for every product. As an illustrative example, the dependence of the H₂CO yield on electron exposure is shown in Figure 9. The exposure dependence of the other products is shown in Figure S7–S9. Formation of H₂CO was monitored by adding the amounts of H₂CO that desorbed during ESD and TDS. Studies on the electron-induced decomposition of acetone into CH₄ and CO have shown that integrated ESD and TDS signals for specific mass-to-charge ratios can be directly compared.⁵⁵ Note that CH₃OH contributes only as a minority species to the m/z = 30 ESD signal (Figure 2) suggesting that the integrated m/z = 30 signal is roughly reflective of the H₂CO yield that desorbs during electron exposure. On the basis of this analysis, the product yield of H₂CO increases linearly with electron exposure up to 500 µC/cm². At higher electron exposures, the yield of product retained in the film approaches saturation as is deduced from the TDS because degradation of H₂CO and/or depletion of CH₃OH are no longer negligible while the yield of H₂CO that desorbs during ESD still increases.

Figure 9. Areas under the m/z = 30 desorption signals of H₂CO obtained by ESD (stars) and TDS (squares) after increasing electron irradiation of multilayer films of CH₃OH at E_0 = 20 eV. The sum of ESD and TDS signal areas (filled circles) reflects the overall amount of H₂CO that has been formed. Tick marks on the vertical axis denote an integral intensity of zero. Error bars represent the estimated error for the intergal intensity.

470 An earlier study on CH₃OH/C₂H₄ mixtures has shown that DEA to CH₃OH at 5.5 eV leads to the formation of ethyl methyl ether.³⁴ In addition, formation of HOCH₂CH₂OH and 471 CH₃OCH₂OH has been reported to occur by ND at electron energies as low as 6 eV.³ We 472 thus additionally studied the dependence of H₂CO yield on electron exposures at an 473 474 electron energy of 5.5 eV in order to account for the possible formation of H₂CO by DEA, 475 and at 8 eV in order to account for the possible formation of H₂CO by ND. Furthermore, 476 the dependences of product yields on electron exposure for CH₄, CH₃CH₂OH, CH₃OCH₃, 477 and CH₃OCH₂OH at 8 eV are shown in Figure S12–S15. No dataset is shown for 478 HOCH₂CH₂OH because of the poor signal-to-noise ratio at lower electron exposures. We 479 assume, however, that HOCH₂CH₂OH shows a similar behaviour as CH₃OCH₂OH,

CH₃CH₂OH, and CH₃OCH₃. At these lower energies, considerably higher exposures are required to obtain any observable signal in the TDS (Figure 10). In contrast to higher energies, no ESD signals have been observed for electron energies below 9 eV. The areas under the TDS signals are thus directly reflective of the overall amounts of products. Both at 5.5 and 8 eV, the H₂CO yield increases linearly up to 9000 µC/cm² before it approaches saturation. This is not surprising since cross sections for DEA, ND, and EI can vary by several orders of magnitudes.³⁰ In consequence, two sets of irradiation experiments with different electron exposures are necessary to study the energy dependence above and below the ionization threshold of CH₃OH.

Figure 10. Areas under the m/z = 30 desorption signal of H₂CO obtained by TDS after increasing electron irradiation of multilayer films of CH₃OH at E_0 = 5.5 eV (filled circles) and 8 eV (hollow squares). Error bars denote the estimated error for the integral intensity. Product yields obtained at different electron exposures at 20 eV (hollow circles, see Figure 9) are plotted for comparison. Tick marks on the vertical axis mark an integral intensity of zero.

 In order to make sure that the approximation of initial rates is valid, we studied the dependence of H_2CO formation on electron energy with electron exposures of 500 µC/cm² in the energy range from 2.5 to 20 eV and with 9000 µC/cm² in the energy range from 2.5 to 9.0 eV. The electron exposures to be used to study the energy dependences of product formation for other products as derived from the electron exposure dependences are compiled in Table 1.

Table 1. Electron exposures, *m/z* values, and integration region used to study the energy
dependences of product formation in the range of 2.5–9 eV and 2.5–20 eV.

	Electron exposure used in energy dependence (µC/cm ²)		Parameters us	ed for analysis
Compound	Electron energies	Electron energies	m/z	Integration region (K)
	2.5–9 eV	2.5–20 eV		
H₂CO	9000	500	30	73–105
CH ₄	9000	125	16	35–106
CH ₃ OCH ₃	32000	500	46	80–125
CH ₃ CH ₂ OH	32000	500	46	135–200
CH ₃ OCH ₂ OH	32000	400	61	130–250
HOCH ₂ CH ₂ OH	32000	400	33	175–250

Page 31 of 91

505 Dependence of Product Yield on Electron Energy

The yields of CH₄, H₂CO, HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH were monitored at electron energies in the range from 2.5 to 20 eV to reveal the initial electronmolecule interactions that are relevant for the formation of these products. The electron exposure was chosen within the regime of initial rates as deduced from the dependences of product yields on electron exposure (Table 1). At lower electron exposures, product formation is observable with an onset at 9 eV in TDS and, in the cases of H₂CO and CH₄, also in ESD (Figure 11). This energy roughly coincides with the ionization threshold of CH₃OH in the condensed phase which is located at 9.8 eV.⁵⁶ ESD has not been observed for HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, or CH₃CH₂OH (Figure 11). This, however, is not surprising as the efficiency of ESD decreases with molecular mass.⁵⁷ Starting from an onset at 9 eV, ESD of CH_4 and H_2CO increases steadily with electron energy which reflects the increasing desorption probability. The majority of CH₄ and H₂CO, however, is retained in the film as can be deduced from the ratio between the areas under the ESD and TDS signals. The overall energy dependences derived by adding the TDS and ESD signal areas (not shown) thus do not deviate qualitatively from those obtained by TDS alone.

522

523 **Figure 11.** Areas under the m/z = 16 signal of CH₄, m/z = 30 signal of H₂CO, m/z = 33 524 signal of HOCH₂CH₂OH (EG), m/z = 46 signal of CH₃CH₂OH (EtOH), m/z = 46 signal of 525 CH₃OCH₃ (DME), and m/z = 61 signal of CH₃OCH₂OH (MeMe) obtained by TDS (circles) 526 and ESD (stars) produced during the stated electron exposures of condensed CH₃OH. 527 Error bars were omitted for clarity. The solid lines serve as guide to the eye. Note that no 528 ESD was observed for HOCH₂CH₂OH, CH₃CH₂OH, CH₃OCH₃, and CH₃OCH₂OH. Tick 529 marks on the left and right axis indicate the vertical offset of the individual curves. The 530 curves are magnified by the denoted factors.

The energy dependences of H_2CO , CH_4 , CH_3CH_2OH , and CH_3OCH_3 show resonances at 13 eV pointing to an initiating DEA process. In contrast, resonant behaviour is less obvious for HOCH₂CH₂OH and CH₃OCH₂OH although minor contributions of this resonance to the overall product yield could explain the plateau-like behavior for energies higher than 535 13 eV. For electron energies higher than 13 eV, product yields do not decline to baseline 536 level indicating that ND or EI also lead to product formation. The highest energy resonance 537 for the production of anions from CH_3OH has been observed at 10.5 eV in the gas 538 phase^{58–60} and at 11.0 eV in the condensed phase.³ This, however, is considerably lower 539 than the resonance observed in the present study and can thus not be responsible for the 540 formation of products. A similar resonance at 14 eV, however, was observed by Lepage 541 et al.⁴ for the production of CO from condensed CH₃OH.

Figure 12. Areas under the m/z = 16 signal of CH₄, m/z = 30 signal of H₂CO, m/z = 33signal of HOCH₂CH₂OH (EG), m/z = 46 signal of CH₃CH₂OH (EtOH), m/z = 46 signal of CH₃OCH₃ (DME), and m/z = 61 signal of CH₃OCH₂OH (MeMe) obtained from CH₃OH during the stated electron exposures and monitored by TDS. Error bars were omitted for

547 clarity. The solid lines serve as guide to the eye. Tick marks on the left and right axis 548 indicate the vertical offset of the individual curves. The curves are magnified by the 549 denoted factors.

An additional set of experiments with higher electron exposures was performed to study the formation of products below the ionization threshold (Figure 12). At these lower electron energies, no ESD is observed for any product. Thus, the amounts of products derived from TDS after irradiation directly reflect the overall amounts of these products. Formation of HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH starts from an onset at ~6 eV which is well below the ionization threshold of CH₃OH. The onset, however, roughly coincides with the excitation threshold of CH_3OH which is 6.7 eV in the condensed phase.⁶¹ Starting from this threshold, product yields of HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH increase steadily with increasing electron energies suggesting that ND is responsible for the formation of these products. Noticeably, no resonances are observed for the formation of these products here. This suggests that below the ionization threshold, DEA does not play a role for the formation of these products. Our results thus agree with those of Boyer et al. who did neither observe any resonances for the production of HOCH₂CH₂OH and CH₃OCH₂OH in this energy regime.³

In contrast, formation of H_2CO and CH_4 is observable at energies as low as 2.5 eV which is considerably below the excitation threshold of CH_3OH and can thus not be triggerd by ND. The product yield of H_2CO increases steadily with electron energy which is typically more characteristic of a non-resonant process. It is possible, however, that DEA is masked Page 35 of 91

by the concomitant onset of ND at ~6 eV. In the case of CH₄, a pronounced shoulder at ~5 eV is observed suggesting that DEA is involved in the formation of CH_4 . The observed shoulder does not agree well with known DEA resonances of CH₃OH at 6.5 eV in the gas phase and 6 eV in the condensed phase.^{3,34,60} Alternatively, the formation of CH₄ at these lower electron energies might be attributed to a resonance yielding O^{•-} between 3 eV and 4 eV which has been observed in condensed phase ESD experiments by Kundu et al.⁶² but has not been reported by Boyer et al.³ For electron energies higher than 7.5 eV, the product yield of CH₄ increases again suggesting that either another resonance, or ND contributes to the production of CH₄. We note that the electron energy dependence of the yields of HOCH₂CH₂OH and CH₃OCH₂OH has been reported before from TDS experiments applying exposures of 1900 µC/cm^{2.3} Similar to the larger exposure experiments of the present study, this work observed an onset between 6 eV and 7 eV and a continuous increase towards higher energies. Product formation has thus been ascribed to EE processes.

Product yields

583 Relative molecular abundances of the irradiation products have been obtained from the 584 ESD and TDS data. These can be estimated by comparing the integrated desorption 585 signals and correcting these for the different partial ionization cross sections of the 586 observed fragments. Hereinafter, we state all relative molecular abundances with respect 587 to the initial CH₃OH ice abundance.
In order to test the accuracy of our procedure for deriving product yields, we used the data shown in Figure 6 and Figure 8 where defined amounts of either HOCH₂CH₂OH or CH₃CH₂OH, determined from the pressure drop in the gas handling manifold, were condensed on top of a preirradiated CH₃OH film. This leads to a linear increase of the respective desorption signal with the amount of material deposited on top of the irradiated sample. The amount that was initially present after irradiation is then represented by the intercept of the regression line with the horizontal line that indicates an integral intensity of zero in the left panels of Figure 6 and Figure 8. The uncertainty of the amounts has been calculated from the uncertainty of the intercept which, in turn, has been deduced from the covariance matrix of the linear regression. From those experiments, relative molecular abundances of 1.4 ± 0.3 % for HOCH₂CH₂OH, and 0.68 ± 0.08 % for CH₃CH₂OH were obtained. These values agree well with those obtained by comparing the desorption peaks of HOCH₂CH₂OH and CH₃CH₂OH with that of CH₃OH taking into account the partial ionization cross sections of the observed fragments. The latter analysis results in relative abundances of 1.0 ± 0.3 % for HOCH₂CH₂OH, and 0.57 ± 0.10 % for CH₃CH₂OH. We thus consider our results as accurate within the error margins.

Integrated desorption signals for electron energies below the ionization threshold were derived from irradiations with electron exposures of 9000 μ C/cm² for CH₄ and H₂CO, and with electron exposures of 32000 μ C/cm² for HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH. Note that product yields obtained with electron exposures of 32000 μ C/cm² are still within the linear regime of initial rates (see Figure S12–S15). In

ige	37 of 91	ACS Earth and Space Chemistry
	609	order to compare product yields obtained after electron exposures of 32000 $\mu\text{C/cm}^2$ and
	610	9000 μ C/cm ² , we scaled the product yields of HOCH ₂ CH ₂ OH, CH ₃ OCH ₂ OH, CH ₃ OCH ₃ ,
1	611	and CH ₃ CH ₂ OH by a factor of 9/32. Our results reveal that below 6 eV, H ₂ CO and CH ₄
2	612	are the only products (Figure 12). At $E_0 = 8$ eV, relative molecular abundances of products
; ; ;	613	are 1.1 ± 0.2 % for CH ₄ , 0.6 ± 0.1 % for H ₂ CO, 0.030 ± 0.007 % for HOCH ₂ CH ₂ OH,
, ,	614	0.04 \pm 0.01 % for CH_3OCH_2OH, 0.043 \pm 0.008 % for CH_3OCH_3, and 0.07 \pm 0.02 % for
5))	615	CH_3CH_2OH (Figure 13, panel A). The value given for CH_3OCH_3 represents a lower limit,
<u>)</u> -	616	as it is based on NIST spectra, rather than mass spectra recorded in our experimental
, 	617	chamber, where we observe slightly lower intensities for higher mass fragments than in
) 7 }	618	NIST reference data. At E_0 = 20 eV, the amounts of products are compared for electron
)	619	exposures of 250 $\mu\text{C/cm}^2$ because this allows us to compare product yields directly
2	620	without scaling. Our results reveal that the amounts of products as a fraction of initial
- ;	621	CH_3OH ice abundance are 1.35 \pm 0.20 $\%$ for $CH_4,0.55$ \pm 0.15 $\%$ for $H_2CO,0.40$ \pm 0.13 $\%$
, , ,	622	for HOCH ₂ CH ₂ OH, 0.16 \pm 0.05 % for CH ₃ OCH ₂ OH, 0.06 \pm 0.02 % for CH ₃ OCH ₃ , and
)	623	0.24 \pm 0.06 % for CH ₃ CH ₂ OH (Figure 13, panel B). Note that the value given for CH ₃ OCH ₃
<u>}</u> ;	624	represent a lower limit due to the reasons mentioned above. From the reported data by
- - -	625	Lepage et al.4, it can be deduced that the relative molecular abundance of CO after
, ;)	626	irradiation with 250 $\mu C/cm^2$ at 20 eV is about 0.65 % (see Supporting information for
)	627	calculation). The amount of CO should thus be similar to that of H_2CO in the present study.
- 	628	We note that the loss of CH ₃ OH during irradiation with 250 μ C/cm ² at 20 eV amount to
j j	629	roughly 3–5% according to our TDS data (not shown). Considering that the formation of
5		ACS Daragon Dlus Environment
)		

each of the observed products apart from CH_4 , H_2CO , and CO requires two molecules of CH₃OH, the product yields account reasonably for the loss of CH_3OH suggesting that at least the majority of the products have in fact been identified.

Figure 13. Amounts of CH₄, H₂CO, HOCH₂CH₂OH (EG), CH₃OCH₂OH (MeMe), CH_3CH_2OH (EtOH), and CH_3OCH_3 (Me₂O) in % of the initial CH_3OH ice abundance. (A) Data obtained from TDS after irradiation with 9000 µC/cm² (CH₄ and H₂CO) and μ C/cm² (others) at E_0 = 8 eV, respectively. Abundances of HOCH₂CH₂OH, CH₃OCH₂OH, CH₃CH₂OH, and CH₃OCH₃ were scaled by a factor of 9/32 to correct for the higher electron exposures. (B) Data obtained from ESD and TDS after irradiation with μ C/cm² at 20 eV, respectively. Note that the values given for CH₃OCH₃ represent lower limits. Error bars denote the estimated uncertainty of amounts.

Discussion of the Reaction Mechanism

Overview of Electron-Methanol Interactions

In order to unravel the reaction mechanisms leading to the observed products, it is necessary to identify the reactive species produced by electron-molecule interactions and to understand their subsequent chemistry. In the investigated CH₃OH ices, the initial interaction of an electron with CH₃OH can yield CH₃OH^{•+}, CH₃OH^{*}, and CH₃OH^{•-} after EI, EE, and EA, respectively. The ionization threshold in the gas phase is 10.84 eV and is lowered to ~9.8 eV in the condensed phase because of polarization effects.^{46,56} In the gas phase, fragmentation of CH₃OH by DI already sets in at electron energies of 10.6 ± 0.5 eV and thus almost coincides with the ionization threshold.⁶³ Experiments with CH₃OH clusters, however, suggest that the CH₃OH^{•+} radical cation is in fact stabilized in the condensed neighbouring molecules phase bv which largely suppresses fragmentation.64,65 We thus propose that DI does not play a significant role in the condensed molecular films studied herein. The thresholds for EE of CH₃OH are ~6.4 eV in the gas phase and 6.7 eV in the condensed phase.^{61,66} Following EE of CH₃OH, ND might produce a variety of fragments by single-bond and/or multi-bond cleavages. Unfortunately, experimental data on the fragmentation dynamics of CH₃OH by ND following electron impact, i.e., the kind of formed fragments, their formation thresholds, and formation cross sections are very sparse. Dech et al. reported a threshold of 13 eV for the production of O(1S) in crossed beam experiments.⁶⁷ From thermodynamic considerations, the authors concluded that O(1S) is likely formed by decomposition of

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
22 22	
∠_) 24	
24 25	
20 26	
20 27	
∠/ ว∘	
28	
29	
3U	
31	
32	
33	
34 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

664	CH ₃ OH into CH ₃ $^{\bullet}$, H ^{\bullet} , and O(¹ S). Furthermore, Donohue et al. reported the thresholds for
665	several excited fragments of CH_3OH of which only the thresholds for the production of
666	$HO(A^2)$ at 10.1 eV and that of CH(A ²) at 13.2 eV might be relevant in the present study as
667	other excited fragments are not formed below 20 eV.68 To our knowledge, thresholds have
668	not been reported for the production of ground state fragments which are especially
669	relevant for chemical reactions below the ionization threshold of CH_3OH . However, as
670	optically allowed channels are typically dominant in electron-molecule interactions,
671	important informations on these unknown properties might also be inferred from studies
672	on photochemistry. Its is known that UV irradiation of condensed CH_3OH at 157 nm
673	(7.9 eV) leads to single bond cleavages yielding ${}^{\circ}CH_{2}OH$, $CH_{3}O^{\circ}$, H° , HO° , and CH_{3}°
674	radicals as well as to elimination of H_2 yielding HCOH and $H_2CO.^{69-71}$ Unimolecular
675	photodissociation of CH ₃ OH into CH ₄ and O($^{1}D/^{3}P$), on the other hand, has not been
676	observed. ⁶⁹ As EE equally proceeds via electronically excited neutral states, we propose
677	that ND of CH_3OH produces the same fragments as photodissociation. Finally, DEA to
678	CH ₃ OH is known to produce CH ₃ O ⁻ , H ⁻ , and O ^{•-} (Table 3), as well as the corresponding
679	neutral species. ³

680 **Table 2.** Anions and resonance energies observed for DEA to CH_3OH in the gas and 681 condensed phase.

	resonance energies (eV)	
fragment	gas Phase	condensed phase
CH ₃ O ⁻	2.9ª	

1	
2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
1/	
18	
19	
20	
21	
∠ I 22	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34	
25	
55	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
Λ <u>Γ</u>	
ر ب م	
46	
47	
48	
49	
50	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	

	6.5 ^{a, b}	
	8.0 ^{a, b}	8.8 ^c
	10.5 ^{a, b}	11.5 ^c
H-	6.5 ^{a, d}	6 ^c (shoulder)
	8.0 ^{a, d}	7.8 ^c
	10.5 ^{a, d}	
0•-		3–4°
	7 (weak) ^b	8.0 ^c
	10.5 ^{a, b}	11.0°

682 References: ^aIbǎnescu et al.⁶⁰, ^bKühn et al.⁵⁸, ^cBoyer et al.³, ^dCurtis and Walker⁵⁹, ^eKundu et al.⁶².

In addition, a resonance at 14 eV was observed in the yields for the electron-induced formation of CO from condensed CH_3OH^4 Lepage et al. attributed this resonance to EA yielding $CH_3OH^{\bullet-}$, which quickly decays into electronically excited CH_3OH^* (reaction 1) leading to subsequent dissociation into smaller fragments of which only CO has been monitored.⁴

-3 -4 688

59

60

$$CH_3OH + e^{-}(E_0) \rightarrow CH_3OH^{\bullet-} \rightarrow CH_3OH^* + e^{-}(E')$$
(1)

689 Thus, no ionic fragments are produced which is the reason why this resonance has not
690 been observed in ESD³ and in crossed-beam experiments.^{58,72}

691 Reactive species produced by the initial electron-molecule interactions described so far
 602 can then react with neighbouring CH₃OH molecules or migrate through the ice film until

they encounter other reactive species. For instance, HO⁻, CH⁻, CH₂⁻ and CH₃⁻ were

observed, in addition to the products seen in gas phase DEA, in ESD from condensed CH₃OH.³ It was shown that these species are not produced directly by decay of the TNI but by ion-molecule interactions of O^{•-} and H⁻ with CH₃OH.³ This underlines that a comprehensive understanding of the possible ion-molecule, radical-molecule, and radical-radical reactions is essential to unravel reaction mechanisms that underly the formation of the stable products formed upon electron irradiation of condensed CH₃OH. From EI of CH₃OH clusters, it is known that the CH₃OH^{•+} radical cation is a strong acid that can transfer one of its protons to a neighbouring CH_3OH molecule yielding $CH_3OH_2^+$, and a CH₃O[•] or [•]CH₂OH radical (reactions 2 and 3).^{64,65} $CH_3OH^{\bullet+} + CH_3OH \rightarrow CH_3OH_2^+ + CH_3O^{\bullet}$ (2) $CH_3OH^{\bullet+} + CH_3OH \rightarrow CH_3OH_2^+ + {}^{\bullet}CH_2OH$ (3) In those cluster experiments, the CH₃OH₂⁺ cation has been reported to undergo a nucleophilic displacement reaction with a nearby CH₃OH molecule yielding CH₃OCH₃ and H₂O (see also "Reactions Leading to Molecular Synthesis").^{64,65} Considering next ion-molecule reactions induced by DEA, the ions H⁻, O^{\bullet -}, and CH₃O⁻ can be involved. The reactivity of O^{•-} has been reviewed comprehensively by Lee and Grabowski.⁷³ The O^{•-} radical anion is a fairly strong base but can also act as radical. Reaction of O^{•-} with CH₃OH yields HO⁻ and CH₃O[•] as well as smaller amounts of HO⁻ and •CH₂OH, and HO[•] and CH₃O⁻ according to reactions 4–6.⁷³ **ACS Paragon Plus Environment**

2		
3 4 5	713	$O^{\bullet-} + CH_3OH \rightarrow HO^- + CH_3O^{\bullet} $ (4)
5 6 7	714	$O^{\bullet-} + CH_3OH \rightarrow HO^- + {}^{\bullet}CH_2OH $ (5)
8 9 10	715	$O^{\bullet-} + CH_3OH \rightarrow HO^{\bullet} + CH_3O^{-} $ (6)
11 12 13	716	The ion-molecule reactions of H^- with CH_3OH , in contrast, mainly leads to a proton transfer
14 15 16 17	717	yielding H_2 and CH_3O^{74}
18 19 20	718	$\mathrm{H}^{-} + \mathrm{CH}_{3}\mathrm{OH} \rightarrow \mathrm{H}_{2} + \mathrm{CH}_{3}\mathrm{O}^{-} $ (7)
21 22 23	719	$\rm H_2$ is not kept in the film and will thus not participate in subsequent reactions. The $\rm HO^{\text{-}}$
24 25	720	anion is a strong base and can thus undergo proton transfer with CH_3OH yielding CH_3O^-
26 27 28	721	and H ₂ O, respectively.
29 30 31 32	722	$H0^{-} + CH_{3}OH \rightarrow H_{2}O + CH_{3}O^{-}$ (8)
33 34 35	723	This reveals that ion-molecule reactions following EI and DEA mainly lead to the formation
36 37	724	of smaller products and radicals. In particular, they fail to explain the observed formation
38 39 40	725	of more complex molecule with the exception of CH_3OCH_3 . This suggests that radical-
41 42 43	726	molecule and radical-radical reactions must be responsible for the formation of the more
44 45	727	complex molecules. Noticeably, the required radicals for those reactions are not only
46 47 48	728	produced by ND but also by EA, DEA and EI either directly or as a consequence of the
49 50	729	ion-molecule reactions discussed above. Addition reactions of radicals that would form
52 53	730	larger products are limited to compounds that have multiple bonds such as C_2H_4 or
54 55 56 57 58 59	731	CO. ^{34,75} Reactions between a radical and a saturated compound, on the contrary, typically

2	
3	
4	
5	
6	
7	
/ 0	
ð	
9	
10	
11	•
12	
13	
14	
15	
16	
17	
10	
10	
19	-
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	•
32	
33	
34	•
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
10	
47 10	
40	
49	
50	
51	
52	
53	
54	
55	•
56	
57	
57	
58	
59	

1

732 lead to hydrogen abstraction.⁷⁶ Therefore, it can be expected that radical-molecule 733 reactions between CH₃OH and CH₃[•], HO[•], CH₃O[•] or [•]CH₂OH radicals yield CH₄, H₂O, 734 and CH₃OH, respectively, as well as a new CH₃O[•] or [•]CH₂OH radical. Unsaturated co-735 products of electron irradiation like H₂CO and CO, however, might also participate in 736 subsequent radical-molecule reactions if their concentration is sufficiently high. Finally, 737 reactions between two radicals can lead to either disproportionation (reaction 9) or 738 recombination (reaction 10). In both cases, closed-shell molecules are produced which 739 are typically stable. 740 $HR^{\bullet} + HR'^{\bullet} \rightarrow R + H_2R'$ (9) 741 $R^{\bullet} + R'^{\bullet} \rightarrow R - R'$ (10)As the number of possible radical-radical reactions increases drastically with the number 742 743 of radical species, the reaction network can become quite complex. However, the energy 744 dependences of HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH are highly 745 correlated suggesting that the same electron-molecule interactions are responsible for 746 their formation. We therefore start by discussing those reactions that lead to molecular 747 synthesis in the sense that larger products are formed from smaller parent compounds 748 (see "Reactions Leading to Molecular Synthesis"). In contrast, H₂CO and CH₄ show rather 749 unique energy dependences. The formation of these two products is thus discussed 750 separately in the sections entitled "Reactions Leading to Formaldehyde" and "Reactions 751 Leading to Methane".

Page 45 of 91

Reactions Leading to Molecular Synthesis

HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH must be formed from two CH₃OH moieties since their molecular mass is higher than that of CH₃OH. In CH₃OH clusters, $CH_3OH_2^+$ cations are formed as a consequence of proton transfer from $CH_3OH^{\bullet+}$, produced by EI of CH₃OH, to a neighbouring CH₃OH molecule. Subsequent reaction between CH₃OH₂⁺ and an intact CH₃OH molecule can yield protonated CH₃OCH₃ and H₂O.^{64,65} Finally, another proton transfer from protonated CH₃OCH₃ to a neighbouring molecule yields neutral CH₃OCH₃ and CH₃OH₂⁺ (Scheme 1) which results in a chain reaction as the latter can again enter the reaction sequence. Noticably, cluster experiments have not revealed any other products than CH₃OCH₃ and H₂O.^{64,65}

762 Our data show that CH_3OCH_3 is formed in rather low quantities compared to 763 HOCH₂CH₂OH, CH_3OCH_2OH , and CH_3CH_2OH (Figure 13). We thus suppose that the 764 chain-reaction in Scheme 1 does not contribute significantly to the product yield of 765 CH_3OCH_3 in the present stuy.

ACS Earth and Space Chemistry

Scheme 1. Mechanism for electron-induced formation of CH₃OCH₃ in CH₃OH clusters. Above the ionization threshold of CH₃OH, a CH₃OH⁺ radical cation is formed by EI, which can transfer a proton to a nearby CH₃OH molecule yielding CH₃OH₂⁺ and either CH₃O[•] or •CH₂OH (blue). The CH₃OH₂⁺ cation is subsequently attacked by the oxygen lone pair of another CH₃OH molecule leading to the formation of protonated CH₃OCH₃ and H₂O. Finally, another proton transfer to a nearby CH₃OH molecule yields neutral CH₃OCH₃ (red) and CH₃OH₂⁺.^{64,65} The latter can again enter the reaction sequence which results in a chain reaction.

In contrast to the relatively small CH₃OH clusters, however, reactions of radicals or ions in the condensed phase are not limited to molecules in the vicinity as they can diffuse through the solid ice and encounter product molecules or other reactive species at a different site. Maity et al. observed that methyl formate and glycolaldehyde are formed much more efficiently in CO/CH₃OH (1:1) ice mixtures than in pure CH₃OH ice.¹⁰ This suggests that co-products like CO might undergo radical-molecule reactions and thus contribute to the overall product yields. Similarly, H₂CO might be involved in the formation of HOCH₂CH₂OH, CH₃OCH₂OH, CH₃CH₂OH, and CH₃OCH₃. We did, however, not observe higher product yields upon electron-irradiation of H₂CO/CH₃OH (1:100–3:100)

784 mixtures compared to films of pure CH_3OH (not shown) indicating that reactions between 785 radicals and the co-product H_2CO are negligible in the present study.

The most cited mechanism for the production of $HOCH_2CH_2OH$, CH_3OCH_2OH , CH₃CH₂OH, and CH₃OCH₃ is ND of CH₃OH into CH₃O[•], [•]CH₂OH, and CH₃[•] radicals followed by recombination among these species.^{2,3,7,16,18} HOCH₂CH₂OH is formed by recombination of two [•]CH₂OH radicals, CH₃OCH₂OH is formed by recombination of ⁶CH₂OH and CH₃O[•], CH₃OCH₃ is formed by recombination of CH₃O[•] and CH₃[•] radicals, and CH₃CH₂OH is formed by recombination of [•]CH₂OH and CH₃[•] radicals (Scheme 2).

Scheme 2. Electron-molecule interactions lead to the formation of CH₃[•], [•]CH₂OH, and CH₃O[•] radicals which can recombine to yield HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH_3CH_2OH . The potential recombination products ethane (C_2H_6) and dimethyl peroxide (CH₃OOCH₃) (red) have not been observed in the present study.

Statistical recombination among those radicals should also yield dimethyl peroxide (CH_3OOCH_3) by recombination of two CH_3O^{\bullet} moieties and ethane (C_2H_6) by recombination of two CH₃[•] moieties. To our knowledge, formation of CH₃OOCH₃ has been reported in only one publication¹⁴ where experiments have been performed with a more sensitive mass spectrometer as well as with much higher film thicknesses. In the present study, we do not observe CH₃OOCH₃ as has been inferred by the absence of a second

signal in the m/z = 62 curve of the TDS beside that of HOCH₂CH₂OH. We thus suppose that the amount of CH₃OOCH₃ formed in the present study is below the detection limit of the QMS.

To our knowledge, C₂H₆ has not been found in any study.^{2,6,7,9,11,16,17} Studies by Öberg et al. revealed that at lower temperatures, CH₃[•] is more mobile than CH₃O[•] and [•]CH₂OH radicals. Therefore, they ascribed the absence of C_2H_6 to a higher abundance of ${}^{\bullet}CH_2OH$ and CH₃O[•] radicals compared to CH₃[•] which makes reactions between CH₃[•] and CH₃O[•], and CH₃[•] and [•]CH₂OH more likely than recombination of two CH₃[•] moieties.¹⁶ In agreement with earlier publications, we did not find any evidence for the formation of C_2H_6 in the present study either. Our data, however, indicate that CH₃[•] radicals are present in sufficient abundance so that CH₃CH₂OH is produced in higher yields than, for instance, CH₃OCH₂OH, which is formed by recombination of CH₃O[•] and [•]CH₂OH. This implies that rapid trapping of CH₃• causes the higher abundance of CH₃O• and •CH₂OH. Noticeably, this effect includes not only recombination with other radicals but is most likely enhanced by the reaction of CH₃[•] with a nearby CH₃OH molecule, which yields CH₄ and either CH₃O[•] or [•]CH₂OH. The latter type of reaction lowers the effective concentration of CH₃[•] radicals in the ice but increases that of CH₃O[•] and [•]CH₂OH (see also "Reactions Leading" to Methane"), in line with the interpretation by Öberg.¹⁶

821 We conclude that radical recombination is the dominant mechanism responsible for the 822 formation of HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH in the present

study and that ion-molecule and radical-molecule reactions are negligible. Our data suggest, however, that the required radicals are not only formed by ND but also by El or EA with subsequent autodetachment. The energy dependences of product yields suggest that below the ionization threshold of CH_3OH , ND is the only electron-molecule interaction that produces the radicals necessary for product formation. In analogy to photofragmentation at a wavelength of 157 nm, we propose that ND following electron impact yields CH_3^{\bullet} , CH_3O^{\bullet} , and ${}^{\bullet}CH_2OH$ radicals.⁶⁹⁻⁷¹

The presence of a second onset at ~9 eV, which coincides roughly with the ionization threshold of CH₃OH, suggests that EI also plays a role at energies above the ionization energy of CH₃OH. We propose that this is due to the proton transfer from CH₃OH^{•+} to a neighbouring CH₃OH molecule which produces CH₃O[•] and •CH₂OH radicals (reactions 2 and 3).

Furthermore, the energy dependences of CH_3CH_2OH and CH_3OCH_3 show a resonant behaviour at 13–15 eV although not as pronounced as for the formation of H_2CO . In contrast, resonant behaviour is not as obvious in the energy dependences of HOCH₂CH₂OH and CH₃OCH₂OH, but the plateau-like behaviour of product yields for electron energies above 13 eV suggest that there might be minor contributions of EA to the yields of these products as well. We thus propose that EA to CH₃OH followed by autodetachment, as proposed as explanation for CO formation,⁴ contributes to some

extent the formation of CH_3OCH_3 and CH_3CH_2OH , and possibly also the formation of HOCH₂CH₂OH and CH_3OCH_2OH .

Reactions Leading to Formaldehyde

At electron exposures of 500 µC/cm², H₂CO formation shows an onset at 9 eV and a resonance at 13 eV (Figure 11). At $E_0 = 13$ eV, we further observed desorption of H₂ during electron irradiation (Figure S16Error! Reference source not found.). Noticeably, the on-resonance formation of H₂CO occurs in the same range of energies as observed by Lepage et al. for the production of CO in condensed CH₃OH that is thought to proceed via reaction 1.4 We thus propose that the on-resonance formation of H₂CO proceeds by EA to CH₃OH followed by autodetachment and subsequent dissociation of CH₃OH into H₂CO and H₂.

Noticeably, product yields do not decline to baseline level for $E_0 > 13$ eV indicating that EI and/or ND also lead to formation of H₂CO at these higher energies. Both EI (reactions 2 and 3) as well as ND are known to produce •CH₂OH and CH₃O• radicals. It is conceivable that these radicals split off a H[•] atom in a unimolecular process to produce H₂CO. However, a previous study has shown that H₂CO formation from CH₃O[•] produced by an electron-induced reaction of CH₃OH is considerably enhanced in the presence of C₂H₄ which can act as hydrogen acceptor.³⁴ This suggests that, if at all, only a minor fraction of CH₃O[•] radicals is able to undergo spontaneous C–H cleavage to form H₂CO. In addition, H_2CO might be produced by hydrogen transfer between either ${}^{\bullet}CH_2OH$ or CH_3O^{\bullet} and any

ACS Earth and Space Chemistry

Page 52 of 91

862 other radical R[•]. We thus conclude that this disproportionation reaction is the more 863 plausible scenario for the formation of H_2CO as observed here.

Disproportionation among radicals that would yield H₂CO competes with recombination that would yield the larger products as discussed in "Reactions Leading to Molecular Synthesis". However, the relative yield of H₂CO as compared to the larger products is considerably higher at 13 eV where the resonant channel is open than at 20 eV (Figure 11). This suggests that the resonant pathway proposed by Lepage⁴ in fact predominantly leads to elimination of H₂ and not to radical formation. In reverse, it also supports the conclusion drawn in "Reactions Leading to Molecular Synthesis" that ND and to some extent EI channels dominate the formation of the the larger products.

At higher electron exposures of 9000 μ C/cm², H₂CO formation is observable down to electron energies as low as 2.5 eV (Figure 12) which is considerably below the ionization and excitation thresholds of the parent CH₃OH molecule.^{56,66} This suggests that DEA initiates the product formation at these low energies. CH₃OH has known resonances at 2.9 eV, 6.5 eV, 8.0 eV and 10.5 eV in the gas phase, while in condensed phase ESD experiments, resonances have been observed at 3-4 eV, 6 eV, 8-9 eV, and 11 eV (Table 2). The lowest two resonances can contribute to the formation of H_2CO in the low-energy regime.

880 It is remarkable that larger products are not formed below 6 eV. This finding can be 881 rationalized by a more selective formation of CH_3O^{\bullet} as the radical species that act as Page 53 of 91

precursors to H_2CO . In this scenario, only two radical reactions are possible, namely recombination among CH_3O^{\bullet} radicals yielding CH_3OOCH_3 and disproportionation to CH_3OH and H_2CO as products.

The DEA resonance at 6.5 eV in the gas phase and at 6 eV in the condensed phase has been reported to yield mainly H⁻. From gas phase experiments with isotopically labelled CH₃OH, it is further known that H⁻ stems exclusively from the –OH group which yields CH₃O[•].⁵⁹ In the condensed phase, negative ion ESD experiments have suggested that H⁻ stems from both the –OH and –CH₃ moiety which would lead to both CH₃O[•] and $^{\circ}$ CH₂OH radicals.⁷⁷ This interpretation, however, must be treated with caution as the reaction between H⁻ or D⁻ with neighbouring CH₃OH molecules can lead to isotopic exchange. This might have occurred in the ESD experiment⁷⁷ because CH₃OH molecules tend to form hydrogen bonds to each other leading to clustering even at low coverage.

Similarly, the DEA resonance at 3–4 eV, yielding the O^{•-} radical anion, could in principle produce CH_3O^{\bullet} and ${}^{\bullet}CH_2OH$ radicals by reaction of O^{•-} with a neighbouring CH_3OH molecule (reaction 4 and 5). Experimental studies suggest, however, that the production of CH_3O^{\bullet} is favoured over that of ${}^{\bullet}CH_2OH^{73}$ which again explains the lack of larger recombination products in this energy range as observed in the present study.

899 In principal, it is also conceivable that H_2CO is formed by elimination of H_2 from CH_3OH 900 which would equally explain the absence of any recombination products below the 901 excitation threshold. From an energetic point of view, this reaction might in fact occur as,

2	
2	
2	
4	
5	
С	
6	
-	
/	
8	
~	
9	
10	
10	
11	
12	
12	•
13	
1 /	
14	
15	
10	
10)
17	
10	
١ð	•
19)
20	
21	
22	
23	
ر <u>م</u>	
24	
25	
25	
26)
27	,
~/	
28	
20	
23	
30	
21	
51	
32	
22	
22	•
34	
2	
30	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
-0	
47	
۸b	
-10	'
49)
50	
50	'
51	
57	
52	
53	
54	•
55	
56)
57	,
58	
59)
60	

902 according to our calculations, the difference in Gibbs Free Energy of this process at 35 K 903 is $\Delta G = +0.20 \text{ eV}$ and thus below the onset we observed in the energy dependence of 904 H₂CO. It is, however, not obvious how such a reaction can be initiated below the energetic 905 threshold for ND and EI. In the field of photochemistry, dissociation of CH₃OH with photon 906 energies below the excitation threshold is known to occur upon multiphoton absorption.⁷⁸ 907 Multiphoton absorption, however, yields mainly radical species and unimolecular elimination of H₂ does not occur or is at least inefficient.⁷⁸ We thus do not believe that 908 909 multiple vibrational excitation of a CH₃OH molecule by interaction with the impinging 910 electrons is a straightforward explanation for the observed formation of H₂CO below the 911 excitation threshold.

912 The observed linear increase of H_2CO yield is thus ascribed to overlapping contributions 913 of the DEA resonances at 3–4 eV and at 6 eV as well as of ND starting from an onset at 914 ~6 eV.

9 915 **Reactions Leading to Methane**

The energy dependence of CH_4 formation at electron exposures of 125 μ C/cm² reveals an onset at 9 eV which is similar to that of HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH but also shows contributions of a resonant process around 13 eV (Figure 11). As mentioned above, DI of CH₃OH is largely surpressed in the condensed phase. It is thus not obvious, how EI can yield CH₄, because the C–O bond must be cleaved. Therefore, we propose that EE, EA with subsequent autodetachment, or both are Page 55 of 91

responsible for the production of CH₄ seen in the low-exposure regime as both produce electronically excited CH₃OH molecules. On the basis of kinetic fits, it has been proposed that CH₃OH decays in a unimolecular reaction into CH₄ and O(¹D).⁷ To our knowledge, however, this fragmentation channel has not been reported upon electron irradiation in any study. Furthermore, this dissociation channel has been reported to not occur upon photofragmentation of CH₃OH.⁶⁹ Since kinetic fits do not allow to infer unambiguous information on a reaction mechanism, we conclude that there is lack of clear evidence for this mechanism in the present study. In contrast, we have clear evidence for the formation of CH₃[•] radicals upon electron irradiation at 20 eV as has been shown by the deconvolution of the ESD integral intensities (see Figure 2). In addition, we have shown that CH₃CH₂OH and CH₃OCH₃ are formed as co-products (Figure 7) which are associated with the production of CH₃[•] radicals (Scheme 2). We thus propose that CH_4 is formed by a number of two-step reaction pathways where the first step in each case is the dissociation of the electronically excited CH₃OH into CH₃• and HO[•] radicals (reaction 11) where the initial excitation can be either resonant at energies around 13 eV or direct. $CH_3OH + e^-(E_0) \rightarrow CH_3OH^* + e^-(E') \rightarrow CH_3^\bullet + HO^\bullet + e^-(E')$ (11) $CH_3^{\bullet} + CH_3OH \rightarrow CH_4 + CH_3O^{\bullet}$ (12) $CH_3^{\bullet} + CH_3OH \rightarrow CH_4 + {}^{\bullet}CH_2OH$ (13)

1 2		
3 4	941	$CH_3^{\bullet} + H^{\bullet} \rightarrow CH_4 $ (14)
5 6 7	942	$CH_3^{\bullet} + RH^{\bullet} \rightarrow CH_4 + R \tag{15}$
8 9 10 11	943	The initially released CH_3^{\bullet} radical can abstract a H^{\bullet} atom from a nearby CH_3OH molecule
12 13	944	(reactions 12 and 13), recombine with a H^{\bullet} atom (reaction 14), or undergo
14 15 16	945	disproportionation with any other radical RH^{\bullet} which leads to the formation of CH_4 (reaction
17 18	946	15). Reactions 12–15 can contribute to the effective lowering of the concentration of these
19 20 21	947	CH_3^{\bullet} radicals proposed in "Reactions Leading to Molecular Synthesis" as reason for the
22 23 24	948	absence of C_2H_6 formation. On the basis of our experimental data, we cannot clearly
24 25 26	949	deduce branching ratios between the different reaction channels. However, based on the
27 28 29	950	excess of CH_3OH present in the reaction mixture, we propose that, above the ionization
30 31	951	threshold, CH_4 is predominantly formed by reaction of CH_3^{\bullet} with a nearby CH_3OH
32 33 34	952	(reactions 12 and 13).
35 36 37	953	The dependence of CH4 yield on electron energy after electron exposures of 9000 $\mu C/cm^2$
38 39 40	954	shows an onset for product formation at 2.5 eV and a pronounced shoulder between 4
41 42 43	955	and 7 eV suggesting an underlying resonant process. We propose that the on-resonance
44 45	956	formation of CH_4 around 4 eV proceeds via reaction 16 and is due to the DEA channel
46 47 48	957	yielding O ^{•-} reported previously to proceed around 3–4 eV. ⁶²
49 50 51 52	958	$CH_3OH^{\bullet-} \rightarrow CH_4 + 0^{\bullet-} $ (16)
53 54 55	959	In fact, the fragmentation described by reaction 16 is the only DEA channel leading to O ^{•-}
56 57 58	960	that is thermodynamically accessible in this energy range ^{3,58,59} with the predicted
59 60		ACS Paragon Plus Environment

Page 57 of 91

thermodynamic threshold of 2.4 eV coinciding well with the onset of CH₄ formation in the present work. The additional onset for CH₄ formation at $E_0 \sim 7.5$ eV roughly coincides with the excitation threshold of CH₃OH. We thus propose that ND of CH₃OH yields CH₃• and HO• radicals, the first of which subsequently react with a nearby CH₃OH molecule to yield CH₄ and either CH₃O• or •CH₂OH (reactions 12 and 13). In addition, the onsets of the higher energy O• resonances (Table 2) might also contribute to the further increase of CH₄ yield as they produce either intact CH₄ or CH₃• radicals.

Conclusion

The formation of CH₄, H₂CO, HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH in condensed multilayer adsorbates of CH₃OH upon electron irradiation has been monitored by the combined use of electron-stimulated and thermal desorption experiments. The energy dependences of the yields were simultaneously measured for all products between 2.5 eV and 20 eV. From this, reaction mechanisms leading to each product have been deduced. In particular, the close agreement between the energy dependences of the yields of HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH together with the characteristic thresholds behaviour indicates that these products predominantly result from recombination of CH₃[•], CH₃O[•] and [•]CH₂OH radicals that are formed by ND or, above the ionization threshold, by EI and subsequent proton transfer to an adjacent CH₃OH. Radical chemistry also contributes to the non-resonant formation of CH_4 by reaction of a CH_3^{\bullet} radical with a nearby CH_3OH molecule.

In contrast, the formation of H₂CO and, to a smaller extent, also of CH₄ is resonantly enhanced around 13 eV. This process conincides with the previously reported resonant production of CO which was ascribed to EA and subsequent rapid autodetachment that leaves CH₃OH in a highly excited electronic state.⁴ This neutral reactive intermediate state most likely decays directly to H₂CO by loss of H₂. Most interestingly, another resonant channel is clearly visible around 4 eV in the energy dependent yield of CH₄. This reaction must be initiated by DEA to CH₃OH which yields O^{•-} as observed previously around 3– 4 eV by ESD.⁶² From thermodynamic arguments, O^{•-} formation at such low energies can only be realized together with CH₄. The same resonance also accounts for the onset of H₂CO formation near 2.5 eV. The lack of larger products in this energy range is explained by the formation of CH_3O^{\bullet} as the only radical species upon reaction of $O^{\bullet-}$ with CH_3OH . Upon encounter, two CH₃O[•] radicals can then disproportiate to yield H₂CO and recover one molecule of CH_3OH .

Our results constitute the most comprehensive study of the energy dependence of product formation during electron exposure of condensed CH₃OH reported so far. Together with previous studies on the electron-induced formation of CO⁴ as well as HOCH₂CH₂OH and CH₃OCH₂OH³ from condensed CH₃OH, our study provides a comprehensive picture of the reactions triggered by electron impact with energies in the range between 2.5 eV and 20 eV as representative of low-energy secondary electrons released from condensed material, for instance, under the effect of cosmic radiation. Our results reveal that not only ND, but also DEA as well as EI contribute to the overall product yield which might help to Page 59 of 91

refine current astrochemical models. We note, however, that DEA to CH₃OH might be underestimated in the present as well as in previous studies as most of the larger recombination products depend on the production rates of two different radical species. Thus, selective dissociation channels yielding specific radicals might not be reflected in the energy dependences of these recombination products. This hypothesis needs to be investigated more comprehensively in future studies. This could be achieved, for example, by mixing CH₃OH with additives like CO that are capable of reacting with specific radicals produced by DEA to CH₃OH. In contrast to IR spectroscopy, ESD and TDS do not allow to track the temporal evolution of products during irradiation or upon annealing. This drawback, however, is counterbalanced by the high sensitivity of mass spectrometry and the possibility to identify products by specific fragments which are often more characteristic than absorption bands. Thus, both methods provide complementary information that can be used to obtain a more comprehensive picture. **Associated Content** Supporting Information Figure S1–S2, Thermal desorption spectra for various amount of deposited CH₃OH which were used for monolayer calibration; Figure S3, Mass spectra used to identify characteristic mass-to-charge ratios for the discussed products; Figure S4, ESD spectra

used for the integrated signals in Figure 2; Figure S5, Identification of CO; Figure S6,

1 2					
3 4	1022	Ident	ification of methyl formate and glycolaldehyde; Figure S7–S11, dependence of the		
5 6 7	1023	forma	ation of CH ₄ , CH ₃ CH ₂ OH, CH ₃ OCH ₃ , HOCH ₂ CH ₂ OH, and CH ₃ OCH ₂ OH on electron		
8 9 10	1024	expo	sure at 20 eV; Figure S12–S15, dependence of the formation of CH_4 , CH_3CH_2OH ,		
11 12	1025	CH₃C	DCH ₃ , and CH ₃ OCH ₂ OH on electron exposure at 8 eV; Figure S16, ESD of H ₂ upon		
13 14 15	1026	elect	ron exposure of CH_3OH at 13 eV.		
16 17	1007				
18 19 20	1027	Aut	hor Information		
21 22 23	1029	Corre	esponding Author		
24 25 26	1030	*E-m	ail: jhbredehoeft@uni-bremen.de		
27 28	1031				
29 30	1022	Noto			
31	1032	NOTES			
32 33 34	1033	The a	authors declare no competing financial interest.		
35 36 37	1034	Ack	nowledgments		
38 39 40	1035	The	work presented here was funded by the Deutsche Forschungsgemeinschaft DFG		
41 42 43	1036	unde	r project number SW26/15-2.		
44 45 46	1037 References				
47					
48 49 50	1038	(1)	Öberg, K. I. Photochemistry and Astrochemistry: Photochemical Pathways to		
50 51 52	1039		Interstellar Complex Organic Molecules. Chem. Rev. 2016, 116 (17), 9631–9663.		
53 54 55	1040		https://doi.org/10.1021/acs.chemrev.5b00694.		
56 57 58	1041	(2)	Boamah, M. D.; Sullivan, K. K.; Shulenberger, K. E.; Soe, C. M.; Jacob, L. M.; Yhee,		
59 60			ACS Paragon Plus Environment		

3 4	1042		F. C.; Atkinson, K. E.; Boyer, M. C.; Haines, D. R.; Arumainayagam, C. R. Low-
5 6 7	1043		Energy Electron-Induced Chemistry of Condensed Methanol: Implications for the
8 9 10	1044		Interstellar Synthesis of Prebiotic Molecules. Faraday Discuss. 2014, 168, 249–266.
10 11 12 13	1045		https://doi.org/10.1039/c3fd00158j.
14 15 16	1046	(3)	Boyer, M. C.; Boamah, M. D.; Sullivan, K. K.; Arumainayagam, C. R.; Bazin, M.;
17 17 18	1047		Bass, A. D.; Sanche, L. Dynamics of Dissociative Electron-Molecule Interactions in
19 20 21	1048		Condensed Methanol. J. Phys. Chem. C 2014, 118 (39), 22592-22600.
22 23 24	1049		https://doi.org/10.1021/jp506365d.
25 26 27	1050	(4)	Lepage, M.; Michaud, M.; Sanche, L. Low Energy Electron Total Scattering Cross
28 29 20	1051		Section for the Production of CO Within Condensed Methanol. J. Chem. Phys. 1997,
31 32 33	1052		<i>107</i> (9), 3478–3484. https://doi.org/10.1063/1.474485.
34 35 36	1053	(5)	Jay-Gerin, JP.; Fraser, MJ.; Swiderek, P.; Michaud, M.; Ferradini, C.; Sanche, L.
37 38	1054		Evidence for CO Formation in Irradiated Methanol and Acetone: Contribution of
39 40 41	1055		Low-Energy Electron-Energy-Loss Spectroscopy to y-Radiolysis. Radiat. Phys.
42 43 44	1056		<i>Chem.</i> 1997 , <i>50</i> (3), 263–265.
45 46 47	1057	(6)	Sullivan, K. K.; Boamah, M. D.; Shulenberger, K. E.; Chapman, S.; Atkinson, K. E.;
48 49	1058		Boyer, M. C.; Arumainayagam, C. R. Low-Energy (<20 eV) and High-Energy (1000
50 51 52	1059		eV) Electron-Induced Methanol Radiolysis of Astrochemical Interest. Mon. Not. R.
53 54 55 56	1060		<i>Astron. Soc.</i> 2016 , <i>460</i> (1), 664–672. https://doi.org/10.1093/mnras/stw593.
57 58 59			
60			ACS Paragon Plus Environment

1 2			
3 4 5	1061	(7)	Bennett, C. J.; Chen, S.; Sun, B.; Chang, A. H. H.; Kaiser, R. I. Mechanistical
5 6 7	1062		Studies on the Irradiation of Methanol in Extraterrestrial Ices. Astrophys. J. 2007,
8 9 10 11	1063		<i>660</i> (2), 1588–1608. https://doi.org/10.1086/511296.
12 13	1064	(8)	Bennett, C. J.; Kaiser, R. I. On the Formation of Glycolaldehyde (HCOCH ₂ OH) and
14 15 16	1065		Methyl Formate (HCOOCH ₃) in Interstellar Ice Analogs. Astrophys. J. 2007, 661,
17 18 19	1066		899–909.
20 21 22 23 24 25 26 27	1067	(9)	Jheeta, S.; Domaracka, A.; Ptasinska, S.; Sivaraman, B.; Mason, N. J. The
	1068		Irradiation of Pure CH ₃ OH and 1:1 Mixture of NH ₃ :CH ₃ OH Ices at 30 K Using Low
	1069		Energy Electrons. <i>Chem. Phys. Lett.</i> 2013 , <i>556</i> , 359–364.
28 29 30	1070		https://doi.org/10.1016/j.cplett.2012.11.074.
31 32 33	1071	(10)	Maity, S.; Kaiser, R. I.; Jones, B. M. Infrared and Reflectron Time-of-Flight Mass
34 35 36 37 38 39 40 41 42	1072		Spectroscopic Study on the Synthesis of Glycolaldehyde in Methanol (CH $_3$ OH) and
	1073		Methanol-Carbon Monoxide (CH ₃ OH-CO) Ices Exposed to Ionization Radiation.
	1074		<i>Faraday Discuss.</i> 2014, <i>168</i> , 485–516. https://doi.org/10.1039/c3fd00121k.
43 44	1075	(11)	Maity, S.; Kaiser, R. I.; Jones, B. M. Formation of Complex Organic Molecules in
45 46 47	1076		Methanol and Methanol-Carbon Monoxide Ices Exposed to Ionizing Radiation – A
47 48 49	1077		Combined FTIR and Reflectron Time-of-Flight Mass Spectrometry Study. Phys.
50 51 52 53	1078		<i>Chem. Chem. Phys.</i> 2015 , <i>17</i> (5), 3081–3114. https://doi.org/10.1039/c4cp04149f.
54 55 56 57 58	1079	(12)	Zhu, C.; Turner, A. M.; Meinert, C.; Kaiser, R. I. On the Production of Polyols and
59 60			ACS Paragon Plus Environment

1 2			
3 4	1080		Hydroxycarboxylic Acids in Interstellar Analogous Ices of Methanol. Astrophys. J.
5 6 7 8	1081		2020 , <i>889</i> (2), 134. https://doi.org/10.3847/1538-4357/ab6326.
9 10 11	1082	(13)	Harris, T. D.; Lee, D. H.; Blumberg, M. Q.; Arumainayagam, C. R. Electron-Induced
12 13	1083		Reactions in Methanol Ultrathin Films Studied by Temperature-Programmed
14 15 16	1084		Desorption: A Useful Method to Study Radiation Chemistry. J. Phys. Chem. 1995,
17 18 19	1085		<i>99</i> (23), 9530–9535.
20 21 22	1086	(14)	Zhu, C.; Frigge, R.; Bergantini, A.; Fortenberry, R. C.; Kaiser, R. I. Untangling the
23 24	1087		Formation of Methoxymethanol (CH ₃ OCH ₂ OH) and Dimethyl Peroxide
25 26 27	1088		(CH ₃ OOCH ₃) in Star-Forming Regions. <i>Astrophys. J.</i> 2019 , <i>881</i> (2), 156.
28 29 30	1089		https://doi.org/10.3847/1538-4357/ab2989.
31 32 33	1090	(15)	Chen, YJ.; Ciaravella, A.; Muñoz Caro, G. M.; Cecchi-Pestellini, C.; Jiménez-
33 34 35	1091		Escobar, A.; Juang, KJ.; Yih, TS. Soft X-Ray Irradiation of Methanol Ice:
30 37 38	1092		Formation of Products as a Function of Photon Energy. Astrophys. J. 2013, 778
39 40 41	1093		(162), 1–11. https://doi.org/10.1088/0004-637X/778/2/162.
42 43 44	1094	(16)	Öberg, K. I.; Garrod, R. T.; van Dishoeck, E. F.; Linnartz, H. Formation Rates of
45 46 47	1095		Complex Organics in UV Irradiated CH ₃ OH-Rich Ices. Astron. Astrophys. 2009, 504
48 49 50	1096		(3), 891–913. https://doi.org/10.1051/0004-6361/200912559.
51 52 53	1097	(17)	Gerakines, P. A.; Schutte, W. A.; Ehrenfreund, P. Ultraviolet Processing of
54 55 56 57	1098		Interstellar Ice Analogs. Astron. Astrophys. 1996, 312, 289–305.
58 59 60			ACS Paragon Plus Environment

1 2			
3 4 5	1099	(18)	Schneider, H.; Caldwell-Overdier, A.; Coppieters 't Wallant, S.; Dau, L.; Huang, J.;
6 7	1100		Nwolah, I.; Kasule, M.; Buffo, C.; Mullikin, E.; Widdup, L.; et al. Detection of
8 9 10	1101		Methoxymethanol as a Photochemistry Product of Condensed Methanol. Mon. Not.
10 11 12 13 14	1102		<i>R. Astron. Soc. Lett.</i> 2019 , <i>485</i> (1), L19–L23. https://doi.org/10.1093/mnrasl/slz019.
14 15 16	1103	(19)	Abou Mrad, N.; Duvernay, F.; Chiavassa, T.; Danger, G. Methanol Ice VUV
17 18	1104		Photoprocessing: GC-MS Analysis of Volatile Organic Compounds. Mon. Not. R.
19 20 21 22	1105		Astron. Soc. 2016, 458 (2), 1234–1241. https://doi.org/10.1093/mnras/stw346.
23 24 25	1106	(20)	Baratta, G. A.; Castorina, A. C.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla,
25 26 27	1107		G. Ion Irradiation Experiments Relevant to the Physics of Comets. Planet. Space
28 29 30 31	1108		<i>Sci.</i> 1994 , <i>42</i> (9), 759–766. https://doi.org/10.1016/0032-0633(94)90118-X.
32 33	1109	(21)	Hudson, R. L.; Moore, M. H. IR Spectra of Irradiated Cometary Ice Analogues
34 35 36	1110		Containing Methanol: A New Assignment, a Reassignment, and a Nonassignment.
37 38 39	1111		<i>Icarus</i> 2000 , <i>145</i> (2), 661–663. https://doi.org/10.1006/icar.2000.6377.
40 41 42	1112	(22)	Moore, M. H.; Ferrante, R. F.; Nuth, J. A. Infrared Spectra of Proton Irradiated Ices
43 44	1113		Containing Methanol. <i>Planet. Space Sci.</i> 1996 , <i>44</i> (9), 927–935.
45 46 47 48	1114		https://doi.org/10.1016/0032-0633(95)00120-4.
49 50	1115	(23)	De Barros, A. L. F.; Domaracka, A.; Andrade, D. P. P.; Boduch, P.; Rothard, H.; da
51 52 53	1116		Silveira, E. F. Radiolysis of Frozen Methanol by Heavy Cosmic Ray and Energetic
54 55 56 57 58	1117		Solar Particle Analogues. Mon. Not. R. Astron. Soc. 2011, 418 (2), 1363-1374.
59 60			ACS Paragon Plus Environment

1 2			
3 4 5	1118		https://doi.org/10.1111/j.1365-2966.2011.19587.x.
6 7 8	1119	(24)	Modica, P.; Palumbo, M. E. Formation of Methyl Formate After Cosmic Ion
9 10 11	1120		Irradiation of Icy Grain Mantles. Astron. Astrophys. 2010, 519, A22.
12 13 14	1121		https://doi.org/10.1051/0004-6361/201014101.
15 16 17	1122	(25)	Abplanalp, M. J.; Förstel, M.; Kaiser, R. I. Exploiting Single Photon Vacuum
18 19 20	1123		Ultraviolet Photoionization to Unravel the Synthesis of Complex Organic Molecules
20 21 22	1124		in Interstellar Ices. <i>Chem. Phys. Lett.</i> 2016, <i>644</i> , 79–98.
23 24 25	1125		https://doi.org/10.1016/j.cplett.2015.11.029.
26 27 28 29 30 31 32 33 34	1126	(26)	Paardekooper, D. M.; Bossa, J. B.; Linnartz, H. Laser Desorption Time-of-Flight
	1127		Mass Spectrometry of Vacuum UV Photo-Processed Methanol Ice. Astron.
	1128		Astrophys. 2016, 592, A67. https://doi.org/10.1051/0004-6361/201527937.
35 36 37	1129	(27)	Arumainayagam, C. R.; Lee, H. L.; Nelson, R. B.; Haines, D. R.; Gunawardane, R.
38 39	1130		P. Low-Energy Electron-Induced Reactions in Condensed Matter. Surf. Sci. Rep.
39 40 41 42 43	1131		2010 , <i>65</i> (1), 1–44. https://doi.org/10.1016/j.surfrep.2009.09.001.
44 45 46	1132	(28)	Böhler, E.; Warneke, J.; Swiderek, P. Control of Chemical Reactions and Synthesis
40 47 48	1133		by Low-Energy Electrons. Chem. Soc. Rev. 2013, 42 (24), 9219–9231.
49 50 51	1134		https://doi.org/10.1039/c3cs60180c.
52 53 54	1135	(29)	Cooks, R. G. Bond Formation upon Electron-Impact. Org. Mass Spectrom. 1969, 2
55 56 57 58	1136		(5), 481–519. https://doi.org/10.1002/oms.1210020505.
59 60			ACS Paragon Plus Environment

1 2			
3 4 5	1137	(30)	Moore, J. H.; Swiderek, P.; Matejcik, S.; Allan, M. Principles and Applications. In
6 7	1138		Nanofabrication Using Focused Ion and Electron Beams; Russel, P., Moshkalev,
8 9 10 11	1139		S., Utke, I., Eds.; Oxford University Press: New York, 2012; pp 184–225.
12 13	1140	(31)	Bolina, A. S.; Wolff, A. J.; Brown, W. A. Reflection Absorption Infrared Spectroscopy
14 15 16	1141		and Temperature Programmed Desorption Investigations of the Interaction of
17 18	1142		Methanol with a Graphite Surface. J. Chem. Phys. 2005, 122 (4), 044713.
20 21 22	1143		https://doi.org/10.1063/1.1839554.
23 24 25	1144	(32)	Bolina, A. S.; Wolff, A. J.; Brown, W. A. Reflection Absorption Infrared Spectroscopy
26 27	1145		and Temperature-Programmed Desorption Studies of the Adsorption and
28 29 30	1146		Desorption of Amorphous and Crystalline Water on a Graphite Surface. J. Phys.
31 32 33	1147		<i>Chem. B</i> 2005 , <i>109</i> (35), 16836–16845. https://doi.org/10.1021/jp0528111.
34 35 36	1148	(33)	Smith, R. S.; Huang, C.; Wong, E. K. L.; Kay, B. D. The Molecular Volcano: Abrupt
37 38 39 40 41 42	1149		CCl ₄ Desorption Driven by the Crystallization of Amorphous Solid Water. <i>Phys. Rev.</i>
	1150		<i>Lett.</i> 1997 , <i>79</i> (5), 909–912. https://doi.org/10.1103/PhysRevLett.79.909.
43 44 45	1151	(34)	Schmidt, F.; Swiderek, P.; Bredehöft, J. H. Electron-Induced Formation of Ethyl
46 47	1152		Methyl Ether in Condensed Mixtures of Methanol and Ethylene. J. Phys. Chem. A
48 49 50 51	1153		2019 , <i>123</i> (1), 37–47. https://doi.org/10.1021/acs.jpca.8b10209.
52 53	1154	(35)	Schmidt, F.; Swiderek, P.; Bredehöft, J. H. Formation of Formic Acid,
54 55 56 57 58	1155		Formaldehyde, and Carbon Dioxide by Electron-Induced Chemistry in Ices of Water
59 60			ACS Paragon Plus Environment

Page 67 of 91

2 3 4	1156		and Carbon Monoxide. ACS Earth Space Chem. 2019, 3 (9), 1974–1986.
5 6 7 8	1157		https://doi.org/10.1021/acsearthspacechem.9b00168.
9 10	1158	(36)	Bouilloud, M.; Fray, N.; Bénilan, Y.; Cottin, H.; Gazeau, M. C.; Jolly, A. Bibliographic
12 13	1159		Review and New Measurements of the Infrared Band Strengths of Pure Molecules
14 15 16	1160		at 25 K: H ₂ O, CO ₂ , CO, CH ₄ , NH ₃ , CH ₃ OH, HCOOH and H ₂ CO. <i>Mon. Not. R. Astron.</i>
17 18 19	1161		<i>Soc.</i> 2015 , <i>451</i> (2), 2145–2160. https://doi.org/10.1093/mnras/stv1021.
20 21 22 22	1162	(37)	<i>Python</i> , version 3.8.1; Python Software Foundation, 2019 .
23 24 25	1163	(38)	van der Walt, S.; Colbert, S. C.; Varoquaux, G. The NumPy Array: A Structure for
26 27 28 29	1164		Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22-30.
30 31	1165	(39)	Jones, E.; Oliphant, T.; Peterson, P.; et al. SciPy: Open Source Scientific Tools for
32 33 34 35	1166		Python, 2001, www.scipy.org, (accesed August, 28th, 2020).
36 37	1167	(40)	Stein, S. E. Mass Spectra, In NIST Chemistry WebBook, Linstrom, P. J., Mallard,
38 39 40	1168		W.G., Eds.; NIST Standard Reference Database Number 69; National Institute of
41 42	1169		Standards and Technology: Gaithersburg, MD, http://webbook.nist.gov (accesed
43 44 45 46	1170		Juli 17th, 2020).
47 48	1171	(41)	Burean, E.; Ipolyi, I.; Hamann, T.; Swiderek, P. Thermal Desorption Spectrometry
49 50 51	1172		for Identification of Products Formed by Electron-Induced Reactions. Int. J. Mass
52 53 54	1173		<i>Spectrom.</i> 2008 , <i>277</i> (1–3), 215–219. https://doi.org/10.1016/j.ijms.2008.04.026.
55 56 57 58	1174	(42)	Kim, YK.; Rudd, M. E. Binary-Encounter-Dipole Model for Electron-Impact
59 60			ACS Paragon Plus Environment

2			
3 4 5	1175		Ionization. Phys. Rev. A. At., Mol., Opt. Phys. 1994, 50 (50), 3954–3967.
6 7 8	1176	(43)	Hwang, W.; Kim, YK.; Rudd, M. E. New Model for Electron-Impact Ionization Cross
9 10 11	1177		Sections of Molecules. J. Chem. Phys. 1996, 104 (8), 2956–2966.
12 13 14	1178	(44)	Schmidt, M. W.; Baldrige, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen,
15 16 17	1179		J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. General Atomic and
18 19 20	1180		Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363.
21 22 23	1181	(45)	Gordon, M. S.; Schmidt, M. W. Theory and Applications of Computational
24 25	1182		Chemistry: The First Forty Years. In Theory and Applications of Computational
20 27 28	1183		Chemistry: The First Forty Years; Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria,
29 30 31	1184		G. E., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp 1167–1185.
32 33 34	1185	(46)	Sharon, G. L.; Rhoda, D. L.; Sherif, A. K. Ion Energetics Data.
35 36 37	1186		In NIST Chemistry WebBook, NIST Standard Reference Database No.
38 39	1187		69; Linstrom, P. J., Mallard, W. G., Eds.; National Institute of
40 41 42	1188		Standards and Technology: Gaithersburg, MD. http://webbook.nist.
43 44 45	1189		gov, (accessed Juli 17th, 2020).
46 47 48	1190	(47)	Johnson, R. A.; Stanley, A. E. GC/MS and FT-IR Spectra of Methoxymethanol. Appl.
49 50 51	1191		<i>Spectrosc.</i> 1991 , <i>45</i> (2), 218–222. https://doi.org/10.1366/0003702914337551.
52 53 54	1192	(48)	Janoschek, R.; Rossi, M. J. Thermochemical Properties of Free Radicals From
55 56 57 58	1193		G3MP2B3 Calculations. Int. J. Chem. Kin. 2002, 34 (9), 550–560.
59 60			ACS Paragon Plus Environment

1 2 3	11
4 5 6	
7 8	119
9 10 11	119
12 13	119
14 15 16	119
17 18 19	119
20 21 22	120
23 24 25	120
26 27	12
28 29 30 31	120
32 33 34	120
35 36 37	120
38 39 40	120
41 42 43	120
44 45 46	120
47 48	120
49 50 51	12 ⁻
52 53 54	12 ⁻
55 56 57 58	12 ⁻
50	

94 https://doi.org/10.1002/kin.10082.

(49) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron Affinities of the First-Row 1196 Atoms Revisited. Systematic Basis Sets and Wave Functions. *J. Chem. Phys.* 1992,

- $\frac{2}{3}$ 1197 96(9), 6796–6806. https://doi.org/10.1063/1.462569.
- ⁶/₆ 1198 (50) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. Quadratic Configuration
 ⁷/₇
 ⁸/₉ 1199 Interaction. A General Technique For Determining Electron Correlation Energies. *J. Chem. Phys.* **1987**, *87* (10), 5968–5975. https://doi.org/10.1063/1.453520.
- ²⁴ 1201 (51) Head-Gordon, M.; Pople, J. A.; Frisch, M. J. MP2 Energy Evaluation by Direct
 ²⁶ 1202 Methods. *Chem. Phys. Lett.* **1988**, *153* (6), 503–506. https://doi.org/10.1016/0009 ²⁹ 1203 2614(88)85250-3.
- 1204 (52) Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry
 1205 Program. *J. Chem. Phys.* 2020, *224108*, 1–18. https://doi.org/10.1063/5.0004608.

³⁹ 1206 (53) Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2(1), 73– ⁴¹ ⁴² 1207 78. https://doi.org/10.1002/wcms.81.

- ⁴⁵ 1208 (54) Goesmann, F.; Rosenbauer, H.; Bredehöft, J. H.; Cabane, M.; Ehrenfreund, P.;
 ⁴⁷ 1209 Gautier, T.; Giri, C.; Krüger, H.; Le Roy, L.; MacDermott, A. J.; et al. Organic
 ⁴⁹ 1210 Compounds on Comet 67P/Churyumov-Gerasimenko Revealed by COSAC Mass
 ⁵⁰ 1211 Spectrometry. *Science* 2015, *349* (6247), aab0689.
- ⁵⁶ 1212 (55) Warneke, J.; Swiderek, P. Electron-Induced Decomposition of Condensed Acetone

1 2			
3 4 5	1213		Studied by Quantifying Desorption and Retention of Volatile Products. J. Phys.
6 7 8	1214		<i>Chem. C</i> 2015 , <i>119</i> (16), 8725–8735. https://doi.org/10.1021/acs.jpcc.5b01167.
9 10 11	1215	(56)	Yu, K. Y.; McMenamin, J. C.; Spicer, W. E. UPS Measurements of Molecular Energy
12 13	1216		Level of Condensed Gases. <i>Surf. Sci.</i> 1975 , <i>50</i> (1), 149–156.
14 15 16 17	1217		https://doi.org/10.1016/0039-6028(75)90179-X.
18 19	1218	(57)	Woodruff, D. P. Characterising Molecules and Molecular Interactions on Surfaces.
20 21 22	1219		Modern Techniques of Surface Science, 3rd ed.; Cambridge University Press:
23 24 25	1220		Cambridge, 2016 ; pp. 383–467.
26 27 28	1221	(58)	Kühn, A.; Fenzlaff, H. P.; Illenberger, E. Formation and Dissociation of Negative Ion
29 30 31	1222		Resonances in Methanol and Allylalcohol. J. Chem. Phys. 1988, 88 (12), 7453-
32 33 34	1223		7458. https://doi.org/10.1063/1.454309.
35 36 37	1224	(59)	Curtis, M. G.; Walker, I. C. Dissociative Electron Attachment in Water and Methanol
38 39	1225		(5-14 EV). <i>J. Chem. Soc., Faraday Trans.</i> 1992 , <i>88</i> (19), 2805–2810.
40 41 42 43	1226		https://doi.org/10.1039/FT9928802805.
44 45	1227	(60)	Ibǎnescu, B. C.; May, O.; Monney, A.; Allan, M. Electron-Induced Chemistry of
46 47 48	1228		Alcohols. <i>Phys. Chem. Chem. Phys.</i> 2007 , <i>9</i> (24), 3163–3173.
49 50 51	1229		https://doi.org/10.1039/b704656a.
52 53 54	1230	(61)	Michaud, M.; Fraser, MJ.; Sanche, L. Low-Energy Electron-Energy-Loss
55 56 57 58	1231		Spectroscopy of Solid Methanol: Vibrational and Electronic Excitations. J. Chim.
59 60			ACS Paragon Plus Environment

2 3 4 5	1232		<i>Phys.</i> 1994 , <i>91</i> , 1223–1227. https://doi.org/10.1051/jcp/1994911223.
6 7 8 9 10 11	1233	(62)	Kundu, S.; Davis, D.; Prabhudesai, V. S.; Krishnakumar, E. Low Energy Electron
	1234		Induced Reactions in Condensed Methanol. J. Phys. Conf. Ser. 2015, 635, 062002.
11 12 13 14	1235		https://doi.org/10.1088/1742-6596/635/6/062002.
15 16 17	1236	(63)	Nixon, K. L.; Pires, W. A. D.; Neves, R. F. C.; Duque, H. V.; Jones, D. B.; Brunger,
17 18 19 20	1237		M. J.; Lopes, M. C. A. Electron Impact Ionisation and Fragmentation of Methanol
20 21 22	1238		and Ethanol. Int. J. Mass Spectrom. 2016, 404, 48–59.
23 24 25	1239		https://doi.org/10.1016/j.ijms.2016.05.006.
26 27 28 29 30 31	1240	(64)	Shukla, A. K.; Stace, A. J. Intermolecular Ion-Molecule Reactions in Clusters. The
	1241		Reactions of Aliphatic Alcohols. J. Phys. Chem. 1988, 92 (9), 2579-2583.
31 32 33 34	1242		https://doi.org/10.1021/j100320a036.
35 36	1243	(65)	Samy El-Shall, M.; Marks, C.; Wayne Sieck, L.; Meot-Ner, M. Reactions and
37 38 39 40 41	1244		Thermochemistry of Protonated Methanol Clusters Produced by Electron Impact
	1245		Ionization. J. Phys. Chem. 1992 , 96 (5), 2045–2051.
43 44 45	1246		https://doi.org/10.1021/j100184a007.
46 47 48	1247	(66)	Varela, K.; Hargreaves, L. R.; Ralphs, K.; Khakoo, M. A.; Winstead, C.; McKoy, V.;
49 50	1248		Rescigno, T. N.; Orel, A. E. Excitation of the 4 Lowest Electronic Transitions in
51 52 53	1249		Methanol by Low-Energy Electrons. J. Phys. B At. Mol. Opt. Phys. 2015, 48 (11),
54 55 56 57	1250		115208. https://doi.org/10.1088/0953-4075/48/11/115208.
58 59 60			ACS Paragon Plus Environment
2			
--	------	------	--
3 4 5	1251	(67)	Dech, J. M.; Kedzierski, W.; McConkey, J. W. Metastable Fragment Production in
6 7	1252		Electron-Methanol Collisions. J. Phys. B At. Mol. Opt. Phys. 2020, 53 (15).
8 9 10 11	1253		https://doi.org/10.1088/1361-6455/ab94c7.
12 13	1254	(68)	Donohue, D. E.; Schiavone, J. A.; Freund, R. S. Molecular Dissociation by Electron
14 15 16	1255		Impact: High Rydberg Fragments from Methane, Ethylene, and Ethane. J. Chem.
17 18 19	1256		<i>Phys.</i> 1977 , <i>67</i> (2), 759–768. https://doi.org/10.1063/1.434838.
20 21 22	1257	(69)	Hama, T.; Yokoyama, M.; Yabushita, A.; Kawasaki, M.; Wickramasinghe, P.; Guo,
23 24 25	1258		W.; Loock, HP.; Ashfold, M. N. R.; Western, C. M. Translational and Internal
25 26 27	1259		Energy Distributions of Methyl and Hydroxyl Radicals Produced by 157 nm
28 29 30	1260		Photodissociation of Amorphous Solid Methanol. J. Chem. Phys. 2009, 131,
31 32 33	1261		224512. https://doi.org/10.1063/1.3259877.
34 35 36	1262	(70)	Hama, T.; Yokoyama, M.; Yabushita, A.; Kawasaki, M. Translational and Internal
37 38 30	1263		States of Hydrogen Molecules Produced From the Ultraviolet Photodissociation of
39 40 41	1264		Amorphous Solid Methanol. J. Chem. Phys. 2009, 130, 164505.
42 43 44	1265		https://doi.org/10.1063/1.3100961.
43 46 47	1266	(71)	Chen, Z.; Eppink, A. T. J. B.; Jiang, B.; Groenenboom, G. C.; Yang, X.; Parker, D.
48 49 50	1267		H. Product Pair Correlation in CH_3OH Photodissociation at 157 nm: The OH + CH_3
51 52	1268		Channel. <i>Phys. Chem. Chem. Phys.</i> 2011 , <i>13</i> (6), 2350–2355.
53 54 55 56 57 58 59	1269		https://doi.org/10.1039/c0cp01794a.
60			ACS Paragon Plus Environment

1 2			
3 4 5	1270	(72)	Prabhudesai, V. S.; Nandi, D.; Kelkar, A. H.; Krishnakumar, E. Functional Group
5 6 7	1271		Dependent Dissociative Electron Attachment to Simple Organic Molecules. J.
8 9 10 11	1272		<i>Chem. Phys.</i> 2008 , <i>128</i> (15), 154309. https://doi.org/10.1063/1.2899330.
12 13	1273	(73)	Lee, J.; Grabowski, J. J. Reactions of the Atomic Oxygen Radical Anion and the
14 15 16 17 18 19	1274		Synthesis of Organic Reactive Intermediates. Chem. Rev. 1992, 92(7), 1611–1647.
	1275		https://doi.org/10.1021/cr00015a007.
20 21 22	1276	(74)	Martinez, O.; Yang, Z.; Demarais, N. J.; Snow, T. P.; Bierbaum, V. M. Gas-Phase
23 24	1277		Reactions of Hydride Anion, H ⁻ . Astrophys. J. 2010, 720 (1), 173–177.
25 26 27 28	1278		https://doi.org/10.1088/0004-637X/720/1/173.
29 30	1279	(75)	Bredehöft, J. H.; Böhler, E.; Schmidt, F.; Borrmann, T.; Swiderek, P. Electron-
32 33	1280		Induced Synthesis of Formamide in Condensed Mixtures of Carbon Monoxide and
34 35 36 37 38 39 40 41	1281		Ammonia. ACS Earth Space Chem. 2017, 1 (1), 50–59.
	1282		https://doi.org/10.1021/acsearthspacechem.6b00011.
	1283	(76)	Tedder, J. M. The Interaction of Free Radicals With Saturated Aliphatic
42 43 44 45	1284		Compounds. <i>Q. Rev. Chem. Soc.</i> 1960, 14, 336–356.
46 47 48	1285	(77)	Parenteau, L.; Jay-Gerin, J. P.; Sanche, L. Electron-Stimulated Desorption of H ⁻
49 50	1286		lons via Dissociative Electron Attachment in Condensed Methanol. J. Phys. Chem.
51 52 53	1287		1994 , <i>98</i> (40), 10277–10281. https://doi.org/10.1021/j100091a050.
54 55 56 57	1288	(78)	Bomse, D. S.; Dougal, S.; Woodin, R. L. Multiphoton Ionization Studies of IR
58 59 60			ACS Paragon Plus Environment

1 2		
- 3 4	1289	Multiphoton Dissociation: Direct C-H Bond Cleavage in Methanol. J. Phys. Chem.
5 6 7	1290	1986 , <i>90</i> (12), 2640–2646. https://doi.org/10.1021/j100403a016.
8 9	1291	
10 11 12	-	
13 14		
15 16 17		
18 19		
20 21 22		
23 24 25		
25 26 27		
28 29		
30 31 32		
33 34 35		
35 36 37		
38 39		
40 41 42		
43 44 45		
46 47		
48 49 50		
51 52		
53 54 55		
56 57		
58 59 60		ACS Paragon Plus Environment

81x83mm (600 x 600 DPI)

78x78mm (300 x 300 DPI)

ACS Paragon Plus Environment

78x78mm (300 x 300 DPI)

157x78mm (300 x 300 DPI)

157x78mm (300 x 300 DPI)

78x78mm (1200 x 1200 DPI)

76x114mm (1200 x 1200 DPI)

157x78mm (300 x 300 DPI)

83x54mm (600 x 600 DPI)

Scheme 2. Electron-molecule interactions lead to the formation of CH_3^{\bullet} , ${}^{\bullet}CH_2OH$, and CH_3O^{\bullet} radicals which can recombine to yield HOCH₂CH₂OH, CH₃OCH₂OH, CH₃OCH₃, and CH₃CH₂OH. The potential recombination products ethane (C₂H₆) and dimethyl peroxide (CH₃OOCH₃) (red) have not been observed in the present study.

168x128mm (300 x 300 DPI)