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Abstract

The combination of operando DRIFTS measurement and DFT calculation reveals the counterintuitive HCHO 

sensing mechanism of In4Sn3O12. We identified the partial oxidation of HCHO into formate (or HCOOH), a 

process with medium activation energy (0.43−0.68 eV) and sufficient electron donation effect, as responsible 

for the sensor signal at the optimum temperature of 200 ℃. The Sn (3a)-connected O is the active site and 

plays key roles in both HCHO adsorption and partial oxidation.
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Formaldehyde (HCHO), a harmful indoor air pollutant normally emitted from building materials and some 

household furniture, is a very significant nuisance.1 Distributed HCHO monitoring is very necessary and this 

would require high performance, low cost and low power sensors. Gas sensors based on semiconducting 

metal oxides (SMOX) could be a solution, if sufficiently selective, because of their success in various 

applications where low cost and power was required.2

In4Sn3O12 nanoparticles was previously identified as a promising HCHO sensing material because of 

the ultrahigh sensor signal as well as good selectivity.3 However, the reasons of that behavior were not 

clarified. The commonly accepted sensing mechanism of volatile organic compounds (VOCs) – namely 

complete oxidation into CO2 and H2O by surface oxygen species and in the process electrons that were 

involved in the bonding of the surface oxygen species donated to the semiconductor4 – could be 

oversimplified and has huge difficulty in explaining selectivity of In4Sn3O12 to HCHO against the other VOCs. 

A thorough explanation for the excellent HCHO sensitivity and selectivity of In4Sn3O12 is not only a very 

interesting scientific question but, because its understanding could open new avenues for gas sensing and 

HCHO oxidation removal by SMOX,5, 6, 7 also having a practical relevance.

Herein, HCHO sensing mechanism of In4Sn3O12 is going to be revealed. Encouraged by the success of 

the combination between in operando Diffuse Reflectance Infrared Fourier Transform Spectroscopy 

(DRIFTS) with Density Functional Theory (DFT) calculations,8 we applied the same approach.

The DRIFTS is measured at optimum temperature (200 °C) in dry condition; the exposure is at ppm 

levels. The recorded sensor signals are high (Figure 1a), and the DRIFTS absorbance spectra show the 

formation of various surface species except the combustion products of CO2 or CO, which somehow 

overthrows the generally accepted sensing mechanism. One can clearly identify formate species (Figure 1b), 

whose asymmetric vibration (νasCOO−) frequency sits around 1576 cm−1 and symmetric vibration (νsCOO−) 

frequency splits at 1381 and 1354 cm−1 due to interaction with CH.6, 9 The weak peaks at 2968 and 2887 cm−1 

are attributed to νasCH2 and νsCH2 of the adsorbed HCHO (or νCH of the generated formate) (Figure 1c).6, 9 

At 10 ppm HCHO, a weak peak of νC=O at 1788 cm−1 emerges (Figure 1g) because of the molecularly 

adsorbed HCHO.9 Most of the generated formate is desorbed after two hours re-exposure to air with the 

evident decreases of the peaks of νasCOO− and νsCOO− (Figure 1b, f); there are still some remaining formate 

species at the surface albeit one has to significantly zoom in to observe them (Figure 1b, lower panel).
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Surface oxygen species (lattice oxygen or adsorbed oxygen) are influenced by the HCHO exposure: a 

pronounced decrease of a band centers around 1000 cm−1, corresponding to the vibration of M-O bond (νInO 

and νSnO), (Figure 1b, d, g); during recovery (Figure 1f)8, 9 and under exposure to oxygen in a N2 background 

the opposite is observed (Figure S1). In that spectral region, there is a distinctive feature – a small but sharp 

peak at 1134 cm−1 – that can be attributed to the molecular oxygen ion O2
− (νO2 ads).9, 10 To our knowledge, 

it is the first experimental observation of that specie, and its involvement in gas sensing, obtained in operando 

conditions. There is a previous report of its observation at the surface of CeO2 catalyst with in situ Raman 

spectroscopy, but at temperatures below 120 °C.10

Also the concentration of terminal hydroxyl group (OHt) changes under HCHO exposure; a clear 

decrease and increase of νOHt around 3654 cm−1,6, 8, 9, 11 identified by H2O-D2O exchange DRIFTS (Figure 

S2), are observed when In4Sn3O12 is exposed to HCHO and re-exposed to air (Figure 1b, c ,e). Because the 

H2O-D2O exchange DRIFTS is measured beforehand, some ODt groups are still present at the surface during 

the HCHO exposure measurement. Hence, a decrease at 2690 cm−1 (νODt) is observed in Figure 1b, c. Despite 

of the absence of D2O during the recovery process following the 1.5-ppm-HCHO exposure, interestingly, a 

small peak at 2696 cm−1 (νODt) still emerges (Figure 1e). Probably, some D atoms of ODt are not desorbed 

but merely migrate to another site and return to ODt after re-exposure to air.
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Figure 1 DRIFTS results measured at 200 °C. (a) Resistance curve of the sensor device during HCHO 

DRIFTS measurement, (b) absorbance spectra calculated by Eq. S1 with the last single channel (SC) in 1.5 ppm 

HCHO, second-round air, 10 ppm HCHO and third-round air referred to the last SC spectrum in the first-round air 

exposure (Experimental Details), (c, d) eight absorbance spectra during 2 h exposure to 1.5 ppm HCHO referred 

to the last SC spectrum in the first-round air exposure, (e, f) eight absorbance spectra during second round air 

exposure referred to the last SC spectrum in 1.5 ppm HCHO, and (g) eight absorbance spectra during 2 h exposure 

to 10 ppm HCHO referred to the last spectrum in the second-round air exposure.
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The DRIFTS suggests that HCHO is partially oxidized into formate species (or HCOOH) and that no 

combustion to CO2 or CO takes place:

 The presence of −CH2− (2968 and 2887 cm−1) and the absence (or very little in 10 ppm HCHO) 

of C=O (1788 cm−1) demonstrates the generation of dioxymethylene;6, 9, 12, 13

 The generated dioxymethylene is then oxidized into formate;

 Finally, the formate specie desorbs as HCOOH without being further oxidized (Eq. 1, in which 

the asterisk indicates an adsorbed species);

 Oxygen specie and OHt take part in the processes.

Eq. 1aHCHO + O→ * OCH2O

Eq. 1b* OCH2O→ * HCOO + * H

Eq. 1c* HCOO + * H→HCOOH

The counterintuitive partial oxidation of HCHO arouses several questions: What is the exact role of oxygen 

species and OHt? What are the reaction route and corresponding energy profile? How does it result in huge 

changes in resistance, by Eq. 1a or Eq. 1b? 

To answer the questions, we resort to DFT simulation with the focus on oxygen species and OHt. We 

performed the simulations on clean stoichiometric In4Sn3O12 (001) and on In4Sn3O12 (001) with oxygen 

vacancies and adsorbed oxygen (In4Sn3O12 (001)_O2/VO) and water related species (In4Sn3O12 (001)_OHt).

The examination of various, possible HCHO adsorption sites and the VO formation energy identify the 

Sn (3a)-connected O as the active site (Figure S3−5). The, called in the following, active O plays significant 

roles in both HCHO adsorption and partial oxidation (Figure 2a). The adsorption takes place with the active 

O catching the C and the surface Sn (18f) bonding to the O (HCHO), making the HCHO spontaneously 

transform into dioxymethylene with an adsorption energy (Eads) of −1.87 eV (Figure 2a, Movie S1).6, 9, 12-14 

The surrounding metal atoms (Sn and In) of the active oxygen facilities the adsorption; the additional valence 

electron of Sn, when compared to In, enables Sn-O (HCHO) more energetically favorable (Figure S3−4). For 

oxidation, another active O, the closest to the dioxymethylene, captures the H atom, generating one formate 

and one rooted hydroxyl group (OHrooted), with Ea of 0.68 eV (Figure 2a). The whole reaction energy (Ereact) 

reaches −3.72 eV. Mulliken charge analysis (Table 1) reveals that sufficient charge transfer (0.440) takes 

place only after the generation of the formate and the OHrooted (Eq. 1b), and that the OHrooted (actually its H) 
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makes the main contribution. Additionally, the oxidation process weakens the interaction among the active 

O and surface metal ions (Figure 2a, right panel 1 and 2), explaining the decrease of νInO and νSnO around 

1000 cm−1.

Figure 2 HCHO adsorption and oxidation at: (a) Stoichiometric In4Sn3O12 (001) and (b) In4Sn3O12 (001)_O2/VO 

(  H,  C,  O,  In,  Sn; the bright yellow atom  is the active O; TS means transition state.)

Page 7 of 14

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 1 Mulliken charge analysis of absorbed species at In4Sn3O12 (001)

Surface Process Mulliken charge / e
HCHO

Total H1 H2 C O
1 −0.040 0.101 0.105 0.338 −0.584

In4Sn3O12 
(001)

2 0.440 0.095 0.289 0.469 −0.413
HCHO O2 ads

Total H1 H2 C O Total O1 O2
0 −0.733 −0.337 −0.396
1 −0.053 0.103 0.106 0.325 −0.587 −0.748 −0.343 −0.405

In4Sn3O12 
(001)_O2/VO

2 0.476 0.097 0.289 0.491 −0.401 −0.787 −0.367 −0.420
HCHO OHt

Total H1 H2 C O Total H O
0 −0.341 0.284 −0.625
1 −0.034 0.097 0.117 0.345 −0.593 −0.268 0.357 −0.625
2 −0.020 0.113 0.107 0.333 −0.573 −0.289 0.332 −0.621
3 −0.010 0.120 0.115 0.323 −0.568 −0.233 0.296 −0.529

In4Sn3O12 
(001)_OHt

4 0.366 0.077 0.299 0.438 −0.448 −0.153 0.296 −0.449

Note: The e is the elementary electron charge. Positive value represents electron donation effect of adsorbate. 

The H1, H2 are labeled in Figure 2−3, and the O1, O2 in Figure 2b.

Gaseous O2 has little interaction with the stoichiometric In4Sn3O12 (001) but a high tendency to fill the 

VO which defect is always present due to the high-temperature synthesis of In4Sn3O12 (Figure S5−7).3 Even 

with O2/VO, HCHO still interacts with and then is oxidized by the active O, Sn (3a)-connected, with total 

Ereact of −3.34 eV and a little lower Ea of 0.43 eV (Figure 2b, Figure S8), and donates electrons (0.476) to the 

surface with a few moving to the O2/VO (Table 1). Consequently, the O−O bond is elongated from 1.444 to 

1.471 Å. The O2 molecule can dissociate and fill the two VO, eventually re-generating a stoichiometric surface 

(Figure S9), once the product (HCOOH) is desorbed to leave the second VO. This could explain the 

experimentally observed decrease of the vibration at 1134 cm−1 (νO2 ads) (Figure 1b, d, g) and gives credence 

to the hypothesis that the adsorbed molecular oxygen is a precursor for the regeneration of the active O.15
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Figure 3 HCHO adsorption and oxidation at In4Sn3O12 (001)_OHt

The surface OHt has already been demonstrated to be able to facilitate the HCHO oxidation.6, 16, 17 

Numerous OHt is present at the surface, as demonstrated by the H2O-D2O exchange DRIFTS (Figure S2), 

even in dry air (humidity contamination around 100 ppm) at 200 °C. The HCHO prefers to interact with the 

OHt to form the dioxymethylene with Eads −2.05 eV (Figure 3, Movie S2), while the active O accepts the H 

atom from the OHt to generate an OHrooted. The migration of the H (D) of the OHt (ODt) to the OHrooted 

(ODrooted) provides an opportunity for the re-generation of OHt (ODt) by reaction with O2 molecules in the 

recovery stage (Eq. 2); this explains the emergence of νODt at 2690 cm−1 (Figure 1d).

Eq. 2a2OHrooted + O2→2OHt +2Oo
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Eq. 2b2ODrooted + O2→2ODt +2Oo

After the adsorption, the dioxymethylene can swing at the triangle (Sn-In-In) and be oxidized when it is close 

to another active O with Ea of 0.48 eV (Figure 3). The overall Ereact is −5.61 eV. The OHt actually extracts 

charge (−0.341) from the surface (Table 1), while it gradually gives charge back (−0.153) during HCHO 

adsorption and partial oxidation. The last step makes the most charge contribution (0.366).

The DRIFTS demonstrates the partial oxidation of HCHO, and the DFT simulation details the reaction 

route and energy profile as well as the remarkable charge effect of the generated formate and OHrooted. Why 

in neither the response nor the recovery stage is the formate further oxidized into CO2 or CO? Theoretical 

works have revealed that the energy barrier to break the second C−H bond is much higher than to break the 

first of HCHO.13, 16 Experiments on HCOOH desorption and decomposition of metal oxides have 

demonstrated that the formate can hardly decompose into CO and CO2 at 200 °C.7, 18 Therefore, the generated 

formate must be desorbed as HCOOH by taking the H from the OHrooted, leaving behind one VO which can 

then be filled by the O2.

In conclusion, the partial oxidation of HCHO into formate (or HCOOH) is responsible for the sensor 

signal of In4Sn3O12 under HCHO exposure at 200 °C. The Sn (3a)-connected O is the active site and plays 

key roles in both HCHO adsorption and partial oxidation. The presence of OHt facilitates the HCHO 

adsorption. The partial oxidation can induce sufficient charge transfer. The Ea for the rate-determining-step 

of the partial oxidation, i.e. the rupture of the first C−H bond of the dioxymethylene, is in medium range 

(0.43−0.68 eV), making it feasible at the optimum temperature of 200 °C.
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