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1 Overview

The current thesis comprises four research papers primarily dedicated to developing new

quantitative methodologies that aim to contribute to the field of portfolio optimization,

with particular emphasis on applications in practical portfolio management. Table 1 pro-

vides an overview of each paper, listing its title, authors, and the corresponding subsection

that delves into its contributions in more depth. For detailed examination, the research

papers can be found in the Appendix.

# Authors Title Referring to

(1)

Cakici, N.

Fieberg, C.

Osorio, C.

Poddig, T.

Zaremba, A.

Picking Winners in the Factor Zoo 2.4.4

(2)

Osorio, C.

Poddig, T.

Fieberg, C.

Olschewsky, M.

Falge, M.

Market Timing in Parametric Portfolio

Policies
4.3

(3) Osorio, C.
Characteristic Timing in Parametric Port-

folio Policies
4.4

(4)

Fieberg, C.

Osorio, C.

Poddig, T.

Varmaz, A.

Enhancing Index-Tracking Performance:

Leveraging Characteristic-Based Factor

Models for Reduced Estimation Errors

4.5

Table 1 This table presents an overview of each paper included in this thesis, detailing its title, authors, and the corre-

sponding subsection that provides a deeper exploration of its contributions.

Except for Paper (1), the studies listed in Table 1 introduce new portfolio optimization

methodologies tailored to improve the guiding principles for effective portfolio manage-

ment. To contextualize my dissertation within the relevant discourse on portfolio op-

timization, Section 2 starts by revisiting the seminal work by Markowitz (1952). His

groundbreaking mean-variance analysis established the foundational principles of modern

portfolio theory, which continue to influence contemporary research and practice in the

field. Section 2 additionally explores subsequent developments within the pertinent lit-

erature to provide a comprehensive framework for understanding the historical evolution

of portfolio optimization principles. Within this landscape, factor models have emerged
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as a key area of interest, with numerous factors proposed over time, yet without a clear

consensus on how portfolio managers can select the most effective factors. As detailed in

Subsubsection 2.4.4, Paper (1) attempts to provide an answer to this question by lever-

aging machine learning techniques to analyze the cross-section of factors and identify the

key drivers of factor predictability.

While mean-variance analysis represents a widely accepted normative framework guid-

ing theoretical explorations of optimal portfolio choice, its practical utility is constrained

by two major limitations, underscoring in particular the significance of the research pre-

sented in this thesis. First, the necessity of estimating the distribution of asset returns

poses substantial challenges. Given that estimation models often struggle to capture the

true return distribution accurately, reliance on such models leads to suboptimal portfolio

performance in practice due to the influence of estimation errors. Second, while mean-

variance analysis presupposes that investors consistently seek to maximize returns and

minimize risks, real-world portfolio managers are tasked with constructing portfolios that

exhibit specific attributes relative to benchmarks (e.g., market indices). This has given

rise to a dichotomy between passive and active portfolio management, paving the way

for the emergence of relative portfolio optimization approaches, as elaborated upon in

Section 3. While a passive portfolio manager focuses on replicating the benchmark at

minimal costs, an active portfolio manager strives to outperform it. Papers (2) and (3)

contribute to the active portfolio management domain. Paper (4) adds to the field of

passive portfolio management. The portfolio optimization methodologies developed in

these three research studies circumvent the estimation of the return distribution, thereby

evading estimation errors and improving performance of practical portfolio strategies.

The pioneering work of Brandt et al. (2009) on characteristic-based portfolio opti-

mization, detailed in Section 4, introduces parametric portfolio policies as a robust and

efficient approach for achieving benchmark outperformance. By directly utilizing asset

characteristics to compute optimal portfolio weights in a concise manner, it addresses

several limitations inherent in Markowitz (1952)’s approach, particularly the errors stem-

ming from inaccurately estimating the return distribution. However, its reliance solely on

cross-sectional predictability based on asset characteristics overlooks potential benefits

from time-series predictability, which could significantly enhance real-world investment

strategies. Addressing this gap in the research literature, Papers (2) and (3) extend the

original framework of parametric portfolio policies to incorporate predictable time varia-

tions in both aggregated market returns and the relationship between asset returns and

characteristics, respectively. Given that the primary objective of parametric portfolio

policies is to outperform benchmarks, this framework is not applicable to passive port-

folio management strategies. Nonetheless, the core feature of modeling optimal portfolio

weights as functions of asset characteristics, rather than utilizing characteristics to es-

timate return distributions, can also enhance the performance of tracking portfolios by
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circumventing estimation errors. In alignment with this principle, Paper (4) introduces

a novel mixed-integer, characteristic-based tracking portfolio optimization approach that

minimizes tracking errors while constraining the number of assets in the portfolio.

In summary, Section 2 delves into the foundational principles of mean-variance port-

folio optimization and applications of factor models to mitigate the impact of estimation

errors. Notably, Subsubsection 2.4.4 delineates the contributions made by Paper (1) to the

literature on factor selection. Section 3 describes the assumptions and paradigms under-

lying practical portfolio management, shedding light on why it is necessary to investigate

relative portfolio optimization approaches as done in this thesis. Additionally, Section

4 discusses existing research on characteristic-based portfolio optimization, with partic-

ular focus on Subsections 4.3, 4.4 and 4.5 which delve into the contributions of Papers

(2), (3), and (4), respectively, introducing novel characteristic-based portfolio optimiza-

tion approaches. Concluding reflections on the key facets of this thesis are presented in

Section 5.

2 Modern portfolio theory

To contextualize my dissertation within the contemporary landscape of portfolio opti-

mization, this section revisits some of the most influential related research studies, par-

ticularly the seminal work by Markowitz (1952) who revolutionized the field of portfolio

optimization by introducing the concept of mean-variance analysis, laying the groundwork

for what is now known as modern portfolio theory. Subsection 2.1 provides an overview

of the key principles of mean-variance optimization. Subsection 2.2 addresses the rela-

tionship between mean-variance optimization and models of rational investor behavior, a

crucial backdrop for understanding the maxims underlying the related literature. Since

practical applications of modern portfolio theory are challenged by the task of estimating

the true, yet unknown, distribution of asset returns, Subsection 2.3 discusses the impact

of estimation errors and approaches proposed in previous literature to mitigate them.

One of the most consequential strategies is the utilization of risk factor models derived

from asset characteristics, as detailed in Subsection 2.4. Apart from representing a tool

for robustly estimating the distribution of asset returns, risk factors are gradually sub-

stituting individual assets as the building blocks in portfolio strategies. Subsubsection

2.4.4 discusses the contributions of Paper (1), which investigates the predictability in the

cross-section of factor returns, providing novel insights regarding factor selection.

2.1 Diversification and mean-variance optimization

Mean-variance optimization serves as a quantitative portfolio formation framework for

rational investors, drawing upon the principle of diversification. This principle aligns with
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the well-known adage “don’t put all your eggs in one basket”, emphasizing that investing

in a variety of assets is less risky than concentrating investments in only a few. Preceding

the advent of modern portfolio theory, earlier quantitative approaches in the academic

literature neglected this diversification aspect, focusing only on maximizing the expected

portfolio return. Under such a maxim, optimization theory dictates that investors allocate

their entire capital to the single asset with the maximum expected return, disregarding

the benefits of a diversified portfolio with assets that collectively reduce the risk. In order

to capture the benefits of diversification and the trade-off between return and risk in a

tractable measure of risk, Markowitz (1952) suggests using the variance1 of the portfolio

return. As discussed below, mean-variance principles can be formulated with different

optimization programs.

Denoting the expected value operator and the variance operator with E and V, re-
spectively, as well as letting λ > 0, mean-variance optimization is often expressed in the

literature (see, e.g., Kolm et al., 2014) as

max
w1,...,wN

E

[
N∑
i=1

wiri

]
− λV

[
N∑
i=1

wiri

]
, (1)

where N is the total number of assets, ri is a random variable representing the return

of asset i, and wi denotes the proportion of capital allocated to asset i, or in other words,

the portfolio weight of asset i. Accordingly, the term
∑N

i=1wiri represents the portfolio

return. Typically, short-selling constraints (i.e., wi ≥ 0,∀i) as well as budget constraints
(i.e.,

∑N
i=1 wi = 1) are assumed.

The optimization program outlined in Equation (1) yields the optimal portfolio that

maximizes expected return while simultaneously minimizing portfolio risk, with the in-

vestor’s risk-return trade-off parameter λ guiding the optimization process. Formulating

mean-variance optimization as in Equation (1) facilitates the efficient determination of

the entire spectrum of optimal portfolios across various risk preferences by solving the

optimization program for different values of λ (see, e.g., Markowitz, 1959). However,

translating concrete risk preferences of specific investors into a suitable value for λ is a

challenging task (see, e.g., Holt & Laury, 2002).

In his seminal work, Markowitz (1952) presents a more practical formulation of mean-

variance optimization capturing the fact that, when faced with equivalent risks, rational

investors prioritize portfolios with higher returns.2 Concretely, Markowitz (1952) proposes

constraining the variance of portfolio returns to a predefined value σ2 while maximizing

the expected portfolio return.3 This optimization program can be expressed as

1Since the variance quantifies the probabilistic dispersion of the portfolio returns, it is interpreted as

a risk measure.
2Similarly, when confronted with multiple portfolios offering identical returns, rational investors favor

those with lower risk.
3Alternatively, Markowitz (1952)’s optimization can be expressed as minimizing portfolio return vari-
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max
w1,...,wN

E

[
N∑
i=1

wiri

]
(2)

subject to: V

[
N∑
i=1

wiri

]
= σ2. (3)

Depending on the intended application, mean-variance optimization can be imple-

mented using the optimization program in Equation (1), which involves the additional

task of determining a suitable risk-return trade-off parameter λ, or the optimization pro-

gram given by Equations (2) and (3), which simply requires the portfolio manager to

decide the desired portfolio return variance.4

Regardless of the specific formulation of the optimization program, some properties

are inherent to mean-variance optimization in general. For instance, since the expected

value is a linear operator, the expected portfolio return is simply the sum of the individual

expected asset returns weighted by the wi, i.e.,

E

[
N∑
i=1

wiri

]
=

N∑
i=1

wiE [ri] . (4)

In particular, from Equation (4) it immediately follows that, if investors simply max-

imize the expected portfolio return, the asset with the highest expected return gets a

weight of 1 and all other assets have zero weights, which corresponds to the rather unreal-

istic scenario of investor neglecting all risks in their decision making. This issue is solved

by incorporating the variance of portfolio returns to the optimization program, for which

it holds

V

[
N∑
i=1

wiri

]
=

N∑
i=1

N∑
j=1

wiwjCov [ri, rj] =
N∑
i=1

w2
iV [ri] + 2

N∑
i=1

N∑
j>i

wiwjCov [ri, rj] , (5)

where Cov denotes the covariance operator. The property depicted in Equation (5)

underscores the significance of utilizing the variance of portfolio returns as a risk measure:

The overall portfolio risk is not solely determined by the variances of individual assets

but also by the covariances between all pairs of assets. This aspect notably captures the

diversification effect. If assets in the portfolio exhibit negative covariances, the overall

portfolio variance is diminished.

It is crucial to recognize that formulating the optimal portfolio selection in terms

of expected portfolio return and its variance represents a special case within the broader

ance while constraining portfolio return to a predefined value µ.
4Sufficient conditions for exact equivalency between both optimization programs are discussed by

Bodnar et al. (2013).
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framework where the optimal portfolio choice depends on the distribution of asset returns.

The advantage is that it reflects the acknowledgment that optimal portfolio decisions are

influenced by the inherent uncertainty in the market. However, this implies that the

portfolio construction process comprises two distinct stages. First, the relevant parameters

of the distribution of asset returns must be estimated using historical data. Second, based

on these estimates, an allocation must be determined that is optimal with respect to the

investor’s preferences. As emphasized by Markowitz (1952), his work primarily focuses

on the latter stage by delineating the trade-off between returns and risks inherent in the

decision-making process of rational investors.

2.2 Expected utility maximization

While the mean-variance approach recognizes the importance of modeling the risk-return

trade-off in problems of optimal portfolio choice by rational investors, it assumes that

investors’ preferences can be fully captured by the first two moments of the return distri-

bution and that investors exhibit quadratic utility. However, in practice, investors may

have different risk preferences and exhibit nonlinear utility functions that better reflect

their attitudes toward risk and return.5 To allow for a more nuanced consideration of risk-

return trade-offs for more general investor types, Markowitz (1959) advocates applying

the principles of utility theory, positing that rational investors should seek to maximize

their expected utility. Denoting with u the utility function of the investor, the optimal

portfolio is hence the one that solves the optimization program6

max
w1,...,wN

E

[
u

(
N∑
i=1

wiri

)]
. (6)

Markowitz (1959) states that mean-variance optimization can be seen as a expected

utility maximization in the case of quadratic utility uq(r) = r − λr2 with λ > 0 denoting

the risk aversion parameter. However, the literature often lacks precision on this point,

with many authors providing verbal formulations without delving into the exact formal

equivalencies between mean-variance optimization and expected utility maximization un-

der quadratic utility. In general, these two optimization programs do not share the exact

same solution. To see this, notice that maximizing expected quadratic utility leads to

5Other utility functions are, for example, the family of hyperbolic absolute risk aversion (HARA)

utility functions, including the logarithmic and the power or constant relative risk aversion (CRRA)

utilities.
6Equation (6) is a single-period optimization. A multi-period optimization requires modeling returns

as stochastic processes (ri,t+1)t and weights as sequences (wi,t)t, both with time index t.
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max
w1,...,wN

E

[
uq

(
N∑
i=1

wiri

)]
= max

w1,...,wN

E

[
N∑
i=1

wiri

]
− λE

( N∑
i=1

wiri

)2
 . (7)

Since for any random variable x it holds V[x] = E[x2]−E[x]2, the optimization program

in Equation (7) is equivalent to

max
w1,...,wN

E

[
N∑
i=1

wiri

]
− λV

[
N∑
i=1

wiri

]
− λE

[
N∑
i=1

wiri

]2
. (8)

Equation (8) simultaneously maximizes the expected portfolio return while minimizing

the scaled variance of portfolio returns, alongside minimizing the scaled squared value of

the expected portfolio return. This objective bears a strong resemblance to Equation (1).

Hence, a less experienced reader might fail to recognize that the common assertion in the

literature, suggesting that mean-variance optimization equates to maximizing expected

utility under quadratic utility, is not always formally accurate. However, formal deriva-

tions by Bodnar et al. (2013) demonstrate that mean-variance optimization is indeed

equivalent to the optimization program in Equation (8) under certain special conditions.

The relationship between mean-variance optimization and expected utility maximiza-

tion under quadratic utility poses a fundamental question: is mean-variance optimization

truly adequate for modeling rational investors? This question arises as quadratic utility

function suffers from problematic preference specifications which are not consistent with

the observed behavior of investors. First, quadratic utility is not monotonically increasing,

wrongly suggesting that investors perceive utility loss for returns laying above a certain

maximum.7 Second, as demonstrated by Arrow (1965) and Pratt (1964), the absolute risk

aversion of the quadratic utility function grows for increasing returns, leading to reduced

risk-taking with greater wealth, contrary to common experience.

Despite these inconsistencies, Markowitz (1959) reconciles mean-variance optimization

with models of rational investors by showing that mean-variance optimization is a second-

order approximation of expected utility maximization for any arbitrary utility function

u. This can be seen by computing the Taylor series of u around a value µ:8

u(r) = u(µ) + u′(µ)(r − µ) +
1

2
u′′(µ)(r − µ)2 + . . . . (9)

Accordingly, for the expected utility it holds

7This aspect is also discussed by Markowitz (1952) who emphasizes that constraining the variance

of the portfolio return penalizes both negative deviations from the expected portfolio return as well

as positive deviations which are rather beneficial for investors. However, applying the variance as risk

measure (instead of, e.g., the semi-variance which only accounts for negative deviations from the mean)

allows for analytic and computational tractability.
8Alternatively, one can compute the Taylor series around 0 and proceed similarly.
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E [u(r)] = u(µ) + u′(µ)E [(r − µ)] +
1

2
u′′(µ)E

[
(r − µ)2

]
+ . . . . (10)

Substituting r =
∑N

i=1wiri and µ = E
[∑N

i=1wiri

]
in Equation (10), it immediately

follows

E

[
u

(
N∑
i=1

wiri

)]
= u

(
E

[
N∑
i=1

wiri

])
+

1

2
u′′

(
E

[
N∑
i=1

wiri

])
V

[
N∑
i=1

wiri

]
+ . . . . (11)

Equation (11) can illustratively shed light on why mean-variance optimization ap-

proximates expected utility maximization. Since an appropriate utility function u is

monotonically increasing, maximizing the expected portfolio return maximizes the first

term in the right hand side of Equation (11). And since an appropriate utility function u

is also concave, displaying a negative second derivative, the sign of the variance term is

negative. This particularly implies that minimizing the variance increases the second term

in Equation (11). Thus, maximizing expected portfolio return and minimizing portfolio

return variance contributes to increasing expected utility, serving as an approximation for

the maximization of the expected utility.

As shown by studies such as Levy & Markowitz (1979) and Kroll et al. (1984), mean-

variance approximations of expected utility maximization problems perform very well

in empirical applications. A detailed analysis of selected literature studies on mean-

variance approximation of maximum expected utility can be found in Markowitz (2014).

In summary, the documented evidence supports the suitability of mean-variance analysis

for the second stage in problems of optimal portfolio choice by rational investors.

2.3 Estimation errors

Despite the success of mean-variance optimization as a conceptual framework for optimal

portfolio choice, its real-life efficacy is notably affected by the fundamental limitation that

the true distribution of asset returns, required by the objective function in the second

stage of the portfolio construction process, remains unknown and can only be estimated.

A substantial body of research (see, e.g., Michaud, 1989; Broadie, 1993; Chopra et al.,

1993; Mynbayeva et al., 2022) extensively documents that the step of estimating the

distribution of asset returns is inevitably compromised by errors due to the limitations of

data samples, significantly undermining the performance of any two-step approach that

optimizes based on error-prone estimates.

To compound the challenges, the literature highlights the acute sensitivity of mean-

variance optimization to even minor fluctuations in estimated input variables. For in-

stance, Best & Grauer (1991) shows through simulation studies that optimal portfolio

weights can vary extremely with small changes in the estimated expected asset returns,
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a concern exacerbated by greater difficulties in estimating expected returns compared to

variances and covariances (Merton, 1980). This heightened sensitivity can be attributed to

the fact that errors in input estimates are magnified within the optimization process. This

has earned mean-variance optimization the moniker of an “error-maximizer” (Michaud,

1989).

Addressing the issue of error-maximization, numerous studies explore methodological

enhancements aiming to refine the optimization in the second stage of the mean-variance

framework. One prominent approach is robust optimization, pioneered by Ben-Tal & Ne-

mirovski (1998), Ben-Tal & Nemirovski (1999), El Ghaoui & Lebret (1997) and El Ghaoui

et al. (1998), which models portfolio performance under uncertainty with the goal of opti-

mizing the worst-case scenario. This requires carefully chosen uncertainty sets. However,

the selection of suitable uncertainty sets remains a contentious issue among researchers.

For example, Tütüncü & Koenig (2004) propose box uncertainty sets, while Bertsimas &

Sim (2004) suggest the use of polyhedral uncertainty sets. An alternative, more straight-

forward strategy to alleviate the error-maximization property involves constraining the

portfolio weights to prevent extreme allocations and enhance diversification against es-

timation errors (see, e.g., Frost & Savarino, 1988; Jagannathan & Ma, 2003; DeMiguel,

Garlappi, & Uppal, 2009). However, while such constraints may help stabilize the opti-

mization process, they also inherently limit portfolio performance, potentially resulting

in suboptimal solutions (Zhao et al., 2019).

Approaches in the second stage of the mean-variance framework can only aim to

mitigate the error-maximization property. Nevertheless, irrespective of the improvements

in the treatment of error-prone input variables during optimization, the resulting optimal

decisions will always exhibit errors due to misleading information. Therefore, it might

be preferable to prioritize enhancing the initial stage of estimating input variables for

portfolio optimization.

A prevalent strategy in the literature for refining input estimates within the mean-

variance framework is shrinkage estimation (Klein & Bawa, 1976; Jorion, 1986; Frost &

Savarino, 1986; Black & Litterman, 1990; Chopra & Ziemba, 1993; Ledoit & Wolf, 2003,

2004; Kan & Zhou, 2007; DeMiguel, Garlappi, Nogales, & Uppal, 2009; Frahm &Memmel,

2010; Bodnar et al., 2018).9 Shrinkage essentially involves combining a sample estimate

with another estimator, such as a constant value, to reduce variance. However, this

introduces bias, which may be unacceptable depending on the application. Additionally,

determining the optimal level of shrinkage entails subjective judgment and is prone to

errors (DeMiguel et al., 2013). Moreover, shrinkage estimators typically require complex

optimization algorithms, limiting their practical value for portfolio managers.

A more widely embraced approach among both researchers and practitioners for re-

9While some scholars explore explicit shrinkage techniques employing James-Stein estimation, others

opt for Bayesian estimation, implicitly entailing shrinkage.
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fining estimations in the initial stage of the mean-variance framework is the utilization of

factor models. These models are known for their ease of use and straightforward economic

interpretations. Of particular interest is their ability to capitalize on economic theories

and empirical evidence of the behavior of markets to better estimate the distribution of

asset returns, rather than relying solely on statistical techniques. Thus, the application

of factor models to estimate input parameters for mean-variance analysis has become a

notable area of interest in the field of portfolio management. The subsequent subsection

provides a detailed exploration of factor models in this context.

2.4 Factor models

2.4.1 Efficient and robust estimations for mean-variance optimization

Extending the work of Markowitz (1952), Sharpe (1963) introduces the use of factor

models with the primary goal of efficiently implementing mean-variance optimization.

This approach consists in decomposing returns into a common component correlated to

the returns of all assets in the market and an uncorrelated idiosyncratic component (i.e.,

into systematic and unsystematic returns).

Sharpe (1963) initially develops this framework based on a factor model10 that can be

written as

ri = αi + βiF + εi, (12)

where ri denotes a random variable for the return of asset i and F a random variable

for a factor correlated to the returns of all assets in a systematic fashion. The specific

relationship between F and the return of an individual asset i is given by its corresponding

factor loading βi. The random residual εi captures the unsystematic return component

of asset i which is uncorrelated with F . It is assumed that each residual εi has a mean

of zero and is uncorrelated to the residual εj of every other asset j ̸= i. The coefficient

αi describes a nonrandom idiosyncratic return component of asset i with nonzero mean

(i.e., not captured in the zero-mean residual term).

Note that αi and βi are not observable and must be estimated if a factor model is to be

applied for portfolio optimization. The standard approach to estimate these coefficients

is via ordinary least square estimation of the linear regression model

ri,t+1 = αi + βiFt+1 + εi,t+1 (13)

using a sample of length T , where ri,t+1, Ft+1 and εi,t+1 denote realized values in the

period from t to t+ 1. The main motivation of Sharpe (1963) in applying a factor model

is that it allows to efficiently obtain the inputs required for mean-variance optimization.

10He refers to this model as “diagonal model”.
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For instance, since the residuals εi are assumed to have means of zero, for the expected

value of ri it holds

E [ri] = E [αi + βiF + εi] = αi + βiE [F ] . (14)

Since the residuals εi are also uncorrelated with the factor F , it follows for the variance

of ri that

V [ri] = V [αi + βiF + εi] = β2
i V [F ] + V [εi] . (15)

And since the residuals εi and εj are assumed uncorrelated for all i ̸= j, it also holds

Cov [ri, rj] = Cov [αi + βiF + εi, αj + βjF + εj] = βiβjV [F ] . (16)

Thus, adopting such a factor model reduces the number of parameters that necessi-

tate estimation. Original mean-variance optimization requires estimates for N expected

values, N variances and N(N − 1)/2 covariances. In contrast, the approach pioneered by

Sharpe (1963) necessitates estimating only the expected value and variance of the factor

F , alongside αi, βi, and V[εi], resulting in a considerably smaller count of parameters that

require estimation: 3N + 2 ≪ 2N +N(N − 1)/2.

Although Sharpe (1963) introduces the framework of factor models in the special

case of one-factor models, Equation (12) can be easily extended to a multifactor model

expressed in the form of

ri − rf = αi +
M∑

m=1

βm,iFm + εi, (17)

where Fm denotes the random variable of the m-th risk factor, βm,i the sensitivity of

asset i on factor m, and M the total number of factors. In this case, assuming that the

factors are uncorrelated, Equations (14), (15) and (16) become

E [ri] = αi +
M∑

m=1

βm,iE [Fm] (18)

V [ri] =
M∑

m=1

β2
m,iV [Fm] + V [εi] (19)

Cov [ri, rj] =
M∑

m=1

βm,iβm,jV [Fm] , (20)

showcasing that also in a higher dimensional case the inputs of the mean-variance

analysis can be efficiently obtained from estimated moments of the factors alongside the

estimated factor loadings.

11



Given the limited computational power available at the time of Markowitz (1952),

this increased efficiency represented a key advancement at the moment of its conception.

Despite the substantial increase in computing power since then, thereby mitigating con-

cerns over estimating numerous parameters, factor models retain a profound importance

in modern portfolio theory. With fewer parameters to estimate under factor models, there

is also less susceptibility to estimation errors, enhancing portfolio strategies’ robustness.

It is important to note that this assertion holds true only under the assumption that a

suitable factor model exists capable of capturing the true distribution of asset returns.

As pointed out by Cochrane (2011), this poses a formidable challenge, one that the asset

pricing literature has grappled with over the past six decades, which is to answer the

question: “why do prices move?”.

2.4.2 Capital Asset Pricing Model (CAPM)

The Capital Asset Pricing Model (CAPM), developed independently by Sharpe (1964),

Lintner (1965) and Mossin (1966), is the first model to attempt to provide an answer

to the question of why prices move and remains one of the most prominent models for

asset pricing. Assuming in particular that investors are rational, risk-averse and maximize

their utility,11 the CAPM states that the expected excess return of any asset i is fully

determined by the expected excess market return in the form of

E[ri]− rf = βi (E[rMkt]− rf ) , (21)

where rf denotes the risk-free return rate, rMkt the market return and βi the sensitivity

of the expected return of asset i with respect to changes in the expected excess market

return. The market return is theoretically the return of a portfolio holding all assets in

the market. However, in practical research, scholars must estimate the market risk factor

by focusing on a feasible subset of market assets and selecting a weighting scheme. Most

empirical studies use a relative market capitalization weighting for assets in the market

portfolio, known as a value-weighted portfolio. Alternatively, some studies opt for equal

weighting of assets, referred to as an equal-weighted portfolio.

If further assumptions are added, the CAPM can be interpreted as a one-factor model

positing that the excess market return is the single risk factor required to explain the

asset returns,12 which can be written as

11The CAPM additionally presupposes that investors diversify across a range of investments, cannot

influence prices, trade without transaction or taxation costs, can lend and borrow under a universal

risk-free rate of interest without limits, deal with infinitesimally divisible investments, have homogeneous

expectations regarding future returns and risks and possess the same information at all times.
12The CAPM is a model of equilibrium of expected returns and not directly a risk factor model. In

the CAPM, the only assumption regarding the idiosyncratic returns is that they have a mean of zero. In

risk factor models, the idiosyncratic return of each asset is additionally assumed to be uncorrelated to
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ri,t+1 − rf,t+1 = αi + βi(rMkt,t+1 − rf,t+1) + εi,t+1. (22)

After decades of research, a plethora of empirical tests consistently find that the CAPM

fails to capture the empirical distribution of asset returns (for a comprehensive list of

studies with empirical tests invalidating the CAPM, see Harvey et al., 2016). This dis-

crepancy prompts the pragmatic exploration of multifactor models, as discussed in the

next subsubsection.

2.4.3 Multifactor models

Myriad empirical studies demonstrate that, beyond exposure to systematic market risk,

asset returns appear to be influenced by specific asset characteristics. For instance, Banz

(1981) observes that a strategy involving the purchase of small-cap stocks and the sale of

large-cap stocks yields abnormally high returns compared to CAPM predictions. Simi-

larly, Rosenberg et al. (1985) finds that purchasing stocks with high book-to-market ratios

and selling those with low ratios also leads to abnormal returns. Additionally, Jegadeesh

& Titman (1993) report abnormal returns for strategies that buy assets with high returns

over multiple months while selling assets with low returns over the same period. These

empirical findings suggest that asset characteristics play a crucial role in understanding

the distribution of asset returns.

The traditional literature refers to these cross-sectional patterns related to asset char-

acteristics as anomalies as they should not exist if the CAPM fully explains asset price

movements. Assuming that assets are priced rationally, with investors diversifying unsys-

tematic risks and seeking premiums only for exposure to nondiversifiable systematic risks,

the existence of anomalies indicates that the CAPM may overlook systematic risk factors,

prompting the exploration of multifactor models (see, e.g., Fama & French, 1992).13 The

empirically motivated notion that further risk factors beyond the market return contribute

to the distribution of asset returns can be reconciled with the asset pricing theory based

on the Arbitrage Pricing Theory (APT) of Ross (1976).

One of the most prominent multifactor models in the classical asset pricing literature

is Fama & French (1993)’s 3-factor model. In addition to the CAPM’s market factor,

the 3-factor model incorporates a size factor SML (Small Minus Big) and a value factor

HML (High Minus Low). It will soon become apparent, why these factors are denoted

as SML and HML. But first, note that the 3-factor model can be expressed imilarly to

Equation (22) as

the risk factors and to the idiosyncratic return of all other assets.
13Alternatively, some authors propose that anomalies indicate mispricing due to behavioral biases and

limits to arbitrage.
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ri,t+1 − rf,t+1 = αi + βMkt
i (rMkt,t+1 − rf,t+1)

+ βSMB
i SMBt+1 + βHML

i HMLt+1

+ εi,t+1. (23)

Here, SMBt+1 and HMLt+1 represent the returns of portfolios meant to mimic the

returns related to size and value, respectively.14 These mimicking portfolios are con-

structed using a double-sorting procedure. First, all assets are sorted into two groups

based on the median market capitalization (size characteristic). Second, all assets are

divided into three groups based on the 30% and 70% percentiles of the book-to-market

ratio (value characteristic). Fama & French (1993) create then six value-weighted port-

folios from the intersection of the two size portfolios and the three value portfolios. The

portfolio meant to mimic the size-related returns is obtained by taking a long position in

the three small-stock portfolios, each weighted equally, and a short position in the three

large-stock portfolios, each also equally weighted. Similarly, the portfolio meant to mimic

the value-related returns is obtained by taking equally weighted long positions on the

two high-value stocks, and equally weighted short positions in the two low-value stocks.15

Since the risk factors are constructed as returns of tradeable portfolios, these are also

typically referred to as factor returns.

Following evidence that profitability and investment characteristics of assets are also

related to the cross-section of asset returns and that this relationship is not reflected in

Fama & French (1993)’s 3-factor model (see, e.g. Fama & French, 2006), Fama & French

(2015) extend the 3-factor model to a 5-factor model

ri,t+1 − rf,t+1 = αi + βMkt
i (rMkt,t+1 − rf,t+1)

+ βSMB
i SMBt+1 + βHML

i HMLt+1

+ βRMW
i RMWt+1 + βCMA

i CMAt+1

+ εi,t+1. (24)

where RMWt+1 (Robust Minus Weak) and CMAt+1 (Conservative Minus Aggressive)

represent the returns of portfolios meant to mimic the returns related to profitability

and investment, respectively. These factor returns, constructed similarly to SMBt+1 and

HMLt+1, add to the ability of the 5-factor model to capture systematic price movements.

14The market factor is the excess return of a value-weighted market portfolio.
15Note that the double-sorting procedure is done to separate the influence of the size effect from the

influence of the value effect. Fama & French (1993) point out that their breakpoints are arbitrarily chosen

based on empirical evidence without exploring alternatives. However, they perform plausibility tests to

demonstrate the suitability of their choice.
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However, since the prominent momentum effect is not captured by the 3- nor the 5-factor

model (see, e.g., Carhart, 1997), Fama & French (2018) more recently extend the 5-factor

model to a 6-factor model

ri,t+1 − rf,t+1 = αi + βMkt
i (rMkt,t+1 − rf,t+1)

+ βSMB
i SMBt+1 + βHML

i HMLt+1

+ βRMW
i RMWt+1 + βCMA

i CMAt+1

+ βUMD
i UMDt+1

+ εi,t+1. (25)

where UMDt+1 (Up Minus Down) represents the return of a portfolio meant to mimic

the returns related to momentum. In comparative analyses, Fama & French (2018) find

that the 6-factor model is more suitable to describe systematic price movements than

previous versions. This offers practical guidance for portfolio managers who use factor

models to estimate asset return distributions for mean-variance analysis and portfolio

optimization.

2.4.4 Factor investing

Over the years, empirical investigations into factor models have led to an extensive array

of risk factors in asset pricing models, a phenomenon coined by Cochrane (2011) as the

factor zoo. This proliferation of factors extends beyond enhancing our understanding of

asset return distributions. Recently, it has sparked new portfolio management strategies

where factors serve as building blocks for constructing portfolios instead of relying solely

on individual assets, allowing for investment strategies to be analyzed in terms of risk-

return properties at the factor level rather than the asset level (see, e.g., Calluzzo et al.,

2019). While the primary focus of this thesis is on the development of enhanced asset-level

portfolio optimization approaches, Paper (1) addresses this newer paradigm of factor-level

investing, which presents a significant challenge for practical portfolio managers: how to

effectively navigate the factor zoo?

Recently, scholars have began to uncover predictability in the cross-section of factor

returns with the goal of discerning future winners from losers (factor selection).16 Existing

studies primarily focus on documenting individual cross-sectional predictors. One of the

most prominent known cross-sectional predictors of factor returns is factor momentum,

which is defined as the cumulative factor return over prolonged periods of time (Avramov

et al., 2017; Zaremba & Shemer, 2018; Arnott et al., 2023). Empirical evidence shows

that factors with larger momentum tend to outperform factors with low momentum. The

16Studies exploring systematic patterns in factors over time (factor timing) also exist. Subsubsection

3.3.2 provides some insights into the related literature.
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intuition behind this observation is that factors which performed well in the recent past

have a tendency to continue performing well in the immediate future, whereas factors

that performed poorly tend to continue underperforming, suggesting that investors can

discern winning factors from losers by their momentum. However, scholars continue to

find further cross-sectional predictors for factor returns (Keloharju et al., 2016; Blitz,

2023; Mercik et al., 2023; Anginer et al., 2024), leading to the fundamental question of

what predictors should guide portfolio managers in selecting factors.

In an attempt to answer this question, Paper (1) in Table 1, entitled “Picking Win-

ners in the Factor Zoo”, endeavors to contribute with a novel, comprehensive approach

to forecasting the cross-section of factors. Leveraging the extensive dataset provided by

T. I. Jensen et al. (2023), encompassing five decades and 153 factors, Paper (1) simul-

taneously examines 242 predictors, aiming to extract the pertinent predictors and gain

insights into the key drivers of cross-sectional predictability in factor returns. To achieve

this goal in a data-driven fashion, machine learning techniques are employed. The empiri-

cal findings of Paper (1) robustly demonstrate significant cross-sectional predictability for

factor returns and that investors can harness this predictability in practical applications.

Specifically, it exhibits that investment strategies that are long on factors with the highest

predicted returns and short on factors with the lowest predicted returns yield in average

positive returns.

A notable contribution of Paper (1) is its analysis of cross-sectional factor predictabil-

ity by simultaneously exploiting multiple predictors, as opposed to prior studies that focus

on forecasts derived from individual predictors. This approach allows for a comprehen-

sive examination of the primary drivers behind cross-sectional factor predictability. For

instance, the study conducts analyses of variable importance, which reveal that factor

momentum emerges as the most influential predictor among the 242 forecasting variables

examined.

This finding prompts a critical question: do portfolio managers truly need to incor-

porate a multitude of cross-sectional predictors into their investment strategies, or is it

adequate to rely solely on factor momentum? To address this query, regressions are

conducted comparing the returns of factor selection strategies against factor momentum

strategies. The results notably reveal that factor momentum explains a significant portion

of the returns observed in the factor selection strategies exploiting multiple predictors.

Consequently, Paper (1) argues that factor momentum alone is sufficient to assist practical

portfolio managers in identifying winning factors.

In contrast to Paper (1), which explores factor-level investment strategies, Papers (2),

(3), and (4) delve into portfolio optimization approaches focused on classical asset-level

investment strategies. To provide the necessary context, the next section offers a detailed

description of the classical paradigms in portfolio management.
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3 Portfolio management

As noted by Roll (1992), practitioners often neglect the guidance provided by mean-

variance analysis regarding optimal risk-returns trade-offs because, in reality, they are

confronted with a different task: optimizing the relative performance of their portfolios

compared to a benchmark such as a market index.17 An index serves as a tangible

and accessible reference for portfolio performance and is often facilitated by cost-efficient

Exchange-Traded Funds (ETFs). If a portfolio manager achieves a higher risk-adjusted

performance than the index, the portfolio manager is praised for a good job. Conversely, if

the portfolio yields a lower risk-adjusted performance than the index, questions are raised

regarding the skills of the portfolio manager and whether it would be more appropriate to

substitute the portfolio manager’s strategy with a ETF of the index which is more simple

and less expensive to implement.

While it might be natural to seek to beat a certain benchmark, this evaluation ap-

proach overlooks the possibility that such a benchmark may have suboptimal risk-adjusted

performance and, hence, represent a poor reference (Dybvig & Ross, 1985). Although rel-

ative portfolio optimization can lead to contradictions of models of rational investors

maximizing expected utilities, restricting feasible solutions to suboptimal portfolios, rela-

tive performance measures are the standard used in practice to determine the success or

failure of portfolio management strategies.

Recognizing the need for portfolio construction guidelines that conform to the reality

of investors and the financial industry, scholars have developed portfolio optimization

techniques tailored to two distinct paradigms of portfolio management: passive and active.

The main objective of this thesis is contributing to these two strands of the portfolio

management literature by introducing novel models that outperform standard approaches

proposed in prior research. Specifically, Papers (2) and (3) make contributions to the

active portfolio management literature, while Paper (4) contributes to the body of work

on passive portfolio management.

Before delving into the two paradigms of portfolio management in Subsections 3.2 and

3.3, respectively, Subsection 3.1 provides a brief discussion on the foundational assump-

tions underpinning both paradigms.

17Recognizing that practical portfolio management focuses on relative portfolio performance compared

to a benchmark, Roll (1992) formalizes a relative mean-variance optimization as the minimization of the

variance of active returns with a constraint on the expected active return, where the active return is

defined as the portfolio return minus the benchmark return. Roll (1992) shows that a portfolio with

optimal relative performance is not necessarily optimal in the traditional sense of Markowitz (1952).
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3.1 Efficient market hypothesis

Before delving into the specifics of passive and active portfolio management, it is impor-

tant to note that these two paradigms are founded on contrasting assumptions regarding

the efficiency of capital markets. The efficient market hypothesis (EMH) essentially states

that market prices fully reflect all available information. The EMH plays a profound role

in portfolio management as it implies, in its strongest form, that asset prices react only to

new information and that prices changes, hence, cannot be consistently predicted a priori.

Under this assumption, it is not possible to use current information to discern which as-

sets will exhibit superior performance in the future or when will be the best point in time

to execute specific trades. In particular, this means that no investment strategy derived

from current information can consistently yield a better risk-adjusted performance than

a given benchmark.

Although the efficiency of markets has been a subject of study dating back at least

to Bachelier (1900), it was not until approximately 55 years ago that testable predictions

were formerly introduced by the influential work of Fama (1970) where a more concrete

definition of the phrase “fully reflect all available information” is presented. Specifically,

Fama (1970) introduces three forms of tests for the EMH examining whether different

information subsets are reflected in the market prices: (1) weak form tests in which the

information set consists only of historical prices, (2) semi-strong form tests in which the

information set contains, in addition to the historical prices, all publicly available data

on the assets (e.g., earning reports, etc.), and (3) strong form tests, which are the most

comprehensive and consider not only all historical and publicly available information, but

also private information (e.g., insider information).18

Despite the considerable influence of the EMH on portfolio managers’ decision-making,

the efficiency of capital markets remains a topic of debate. Nevertheless, portfolio man-

agers are required to take a stance on this matter before selecting a specific strategy. In the

scenario where the EMH is believed to be invalid, portfolio managers are assumed to be

potentially able of exploiting relevant information, not factored into asset prices, to gain

an advantage over other market participants unaware of such information. This forms the

foundation of active portfolio management, which aims to outperform a predetermined

benchmark by identifying mispriced assets. In contrast, passive portfolio management

operates on the assumption that the EMH is valid, asserting the absence of mispricing

possibilities. As in this case it is assumed that portfolio managers cannot consistently

outperform the benchmark, this strategy seeks to closely replicate the benchmark returns

18If markets are efficient in the weak form, utilizing historical trading data, as seen in technical anal-

ysis, does not provide individual investors with a reliable means to consistently outperform the market

portfolio. In the semi-strong form of market efficiency, fundamental analysis also proves ineffective for

outperforming the market. Finally, in the strong form, even insider information fails to confer an advan-

tage over the market.
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with minimal costs.

The assessment of the validity of the EMH falls outside the scope of this thesis. In the

context of my cumulative dissertation, I investigate portfolio optimization methodologies

for both the active and passive paradigms of portfolio management and develop novel

approaches that achieve superior performance compared to methods proposed in previous

literature.

3.2 Passive portfolio management

Under the assumption that markets are efficient, there is no possibility for portfolio man-

agers to earn abnormally high returns relative to their benchmarks on a consistent basis

because the asset prices already reflect every possible information that investors might

want to exploit. In such an environment, actively searching for mispriced assets in an

attempt to outperform the benchmark is a futile undertaking. A more logical approach is

to adopt a passive portfolio management strategy aimed at tracking the benchmark with

a focus on minimizing costs. For illustrative purposes, throughout the current subsection,

arguments will be formulated in terms of tracking a target index (e.g., S&P 500), using

index tracking as a special case of general tracking applications.

The direct approach to replicating a target index involves employing a full replication

strategy, where the same assets are held with identical portfolio weights as those in the

index. While this ensures precise tracking of the target index, practical portfolio man-

agement often finds this strategy impractical due to potentially substantial transaction

costs. Moreover, factors such as customer preferences, regulatory requirements, and statu-

tory constraints may render a full replication strategy untenable. Consequently, passive

portfolio managers opt for a more selective approach, choosing a smaller subset of assets

compared to the constituents of the target index (see, e.g., Beasley et al., 2003). This

selective strategy results in what is known as a tracking portfolio, which, by its nature,

deviates from the exact composition of the index. As a consequence, differences arise in

their returns, leading to what is termed as a tracking error. Passive portfolio managers

endeavor to minimize this tracking error while simultaneously adhering to constraints on

the size of the tracking portfolio. This balancing act is crucial as the size of the track-

ing portfolio significantly impacts the costs associated with implementing and monitoring

the portfolio strategy. The optimization of these two concurrent objectives—minimizing

tracking error while constraining the number of assets in the portfolio—determines the

methodologies and techniques applicable in passive portfolio management.

First, note that the quantification of tracking error in the literature is not unique. For

example, Rudd (1980) and Roll (1992), in the spirit of Markowitz (1952), posit that an

optimal tracking portfolio is one that minimizes the variance of active returns subject to

the constraint that the expected active return must be zero. Instead of minimizing the
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variance of active returns, Beasley et al. (2003) minimize the mean squared error of returns

of the tracking portfolio with respect to the target returns.19 The minimization of the

mean absolute error can be similarly applied (see, e.g., Rudolf et al., 1999). To specifically

reduce the one-sided instead of the two-sided risk of the tracking portfolio relative to

the benchmark, Gaivoronski et al. (2005) investigates the minimization of downside risk

measures applied to the active returns, such as value-at-risk and conditional value-at-risk.

In summary, the literature mostly defines tracking error using risk measures on the active

returns, but the choice of the specific risk measure rests on the hands of the portfolio

manager.

Second, notice that passive portfolio managers must address tracking error minimiza-

tion while constraining the number of assets in their tracking portfolios, known as the

cardinality constraint.20 A significant strand of the literature investigates heuristic algo-

rithms for asset selection in tracking portfolios subject to cardinality constraints (see, e.g.,

Rudd, 1980; Haugen & Baker, 1990; Beasley et al., 2003; Derigs & Nickel, 2003; Corielli &

Marcellino, 2006; Krink et al., 2009; Guastaroba & Speranza, 2012). While these heuristics

permit the use of nonlinear objective functions and constraints, they often yield subopti-

mal solutions. In contrast, a more recent and expanding body of research has turned to

mixed-integer optimization as a more precise framework for constructing fixed-size portfo-

lios that minimize tracking errors optimally (see, e.g., Canakgoz & Beasley, 2009; C. Chen

& Kwon, 2012; Kwon & Wu, 2017; Strub & Baumann, 2018). Mixed-integer optimization

offers considerable appeal for constructing tracking portfolios since it ensures satisfaction

of optimality conditions, unlike heuristic approaches producing suboptimal results. Fur-

thermore, commercially available mixed-integer optimizers offer a more accessible solution

for practical portfolio management, compared to specialized heuristics that can be more

complex to implement.

The characteristic-based portfolio index tracking framework developed and demon-

strated in Paper (4) contributes significantly to the ongoing research of optimal tracking

portfolios incorporating cardinality constraints through mixed-integer optimization. The

methodology introduced in Paper (4) and its contributions are detailed in Subsection 4.5.

3.3 Active portfolio management

Contrary to the philosophy of passive portfolio management, active portfolio management

operates under the assumption that markets are not efficient, potentially displaying asset

mispricing reflected in available financial data. Accordingly, an active portfolio manager

aims to construct a portfolio, which differs from the benchmark portfolio, seeking superior

19While Beasley et al. (2003) define tracking error in general with an exponent of α > 0, they restrict

the empirical demonstration of their methodology to the quadratic case with α = 2.
20In his mean-variance analysis of tracking error, Roll (1992) does not incorporate a cardinality con-

straint, much like the original mean-variance framework by Markowitz (1952).
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risk-adjusted performance compared to the benchmark, while ensuring that the costs of

actively managing such a portfolio strategy do not surpass the potential gains.

As elaborated by Grinold & Kahn (2000), investors have two potential avenues for

achieving this goal. The first approach involves selecting assets expected to exhibit strong

future performance (e.g., buying future winners and selling future losers), which relates

to the cross-section of asset returns and is termed selection. The second approach, known

as timing, revolves around anticipating optimal times to trade specific assets (e.g., buying

low and selling high) based on the time-series of asset returns.

Grinold & Kahn (2000)’s fundamental law of active management quantifies that se-

lection strategies are typically profitable because their performance can be enhanced by

adjusting the number of assets, providing ample opportunities for optimization given the

large cross-section of assets. In contrast, successful timing strategies are more challeng-

ing as their performance relies on manipulating trading frequency, which is inherently

more difficult to predict and control. Addressing this challenge, Papers (2) and (3) add

to the active portfolio management literature by leveraging time-series predictability to

enhance the performance of state-of-the-art selection strategies. To set the stage for dis-

cussing the contributions of Papers (2) and (3), the next two subsubsections delve into the

fundamental concepts of selection and timing, along with a review of related literature.

3.3.1 Selection

Effectively selecting assets by exploiting mispricing in inefficient markets requires pre-

dicting the cross-section of asset returns. Modern portfolio theory emphasizes that is not

sufficient to simply determine which assets will yield higher returns. Rather, active port-

folio managers must search for assets offering higher risk-adjusted performance. Existing

literature prominently advocates using factor models to assess asset mispricing.

Assuming that the CAPM truly captures the mechanism of how asset prices are pro-

duced, M. C. Jensen (1968) states that the difference between the realized portfolio returns

and the returns expected due to exposure to the systematic market risk (see Equations

(21) and (22)) reflect the selection skills of portfolio managers in inefficient markets. Mak-

ing use of ordinary least square estimation, M. C. Jensen (1968) proposes to estimate the

linear regression model

rP,t+1 − rf,t+1 = αP + βP (rMkt,t+1 − rf,t+1) + εP,t+1 (26)

of the excess portfolio returns rP,t+1−rf,t+1 on the excess market returns rMkt,t+1−rf,t+1

to statistically evaluate selection performance. The coefficient βP , which represents the

exposure of the portfolio to the systematic market risk and is assumed constant over

time,21 determines the expected return of the portfolio based on the market return. Since

21As argued by M. C. Jensen (1968), a time-invariant portfolio beta is unrealistic as portfolio man-
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the random error-term εP,t+1 is assumed to have a mean of zero, if portfolio returns

differ from the values suggested by the CAPM, it is captured by the intercept αP . If

the portfolio return is consistently higher (lower) than predicted by the CAPM in the

sample, a statistically significant positive (negative) alpha must be observed. Otherwise,

the alpha coefficient will not be statistically distinguishable from zero.

However, in reality, active portfolio managers are evaluated relative to benchmark

portfolios rather than to a theoretical market factor. Since the concept of Jensen’s alpha

is specifically developed to compare a portfolio against the CAPM’s market factor, this

measure of selection performance must be adapted to account for the actual benchmarks

in practical scenarios. Substituting the market return rMkt,t+1 in Equation (26) with the

return rB,t+1 of the benchmark, one similarly obtains

rP,t+1 − rf,t+1 = αP + βP (rB,t+1 − rf,t+1) + εP,t+1. (27)

The coefficient αP in Equation (27) reflects whether the portfolio is equivalent to

simply holding a scaled version of the benchmark (i.e., αP = 0) or if the portfolio truly

exhibits a return component that is uncorrelated to the benchmark (i.e., αP ̸= 0), and

hence, a result achieved by the selection strategy of the portfolio manager.

The approach of Roll (1992), discussed in Section 3.2 in the context of index tracking,

can be also employed in active portfolio management to generate positive alphas with

respect to benchmark portfolios by minimizing the variance of active returns subject

to a positive rather than a zero active return. Nevertheless, this approach possesses

two major shortcomings. First, it is a mean-variance technique with the same pitfalls

as Markowitz (1952)’s optimization, in particular, regarding the challenge of estimating

the distribution of asset returns. Second, it neglects the advanced knowledge from the

literature regarding cross-sectional effects related to the asset characteristics which can

guide investors in selecting the best assets. A formal portfolio optimization approach that

does not require estimations of the return distribution and exploits information provided

by asset characteristics to outperform a predefined benchmark is given by the parametric

portfolio policies introduced by Brandt et al. (2009). A detailed description of Brandt et

al. (2009)’s methodology is provided in Subsection 4.2. Papers (2) and (3) build directly

upon this optimal asset selection framework and extend it by incorporating timing, as

discussed in 4.3 and 4.4, respectively.

agers constantly change the composition of their portfolios. While the approach of M. C. Jensen (1968)

straightforwardly applies to stationary betas, it can also be extended to incorporate nonstationary betas,

which the author proposes as a market timing test.
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3.3.2 Timing

While selection is concerned with the cross-section of asset returns, timing is related to

their time-series. The related literature focuses on predictability in the time-series of

aggregated returns within asset classes (e.g., bonds or stocks), rather than attempting to

forecast the returns of individual assets. Predicting aggregated returns of a certain asset

class exploits the tendency for prices of all assets in that class to move together,22 and is

commonly referred to as market timing.

Treynor & Mazuy (1966) argue that, if portfolio managers are able to correctly pre-

dict at least the direction of the benchmark returns (i.e., whether these will be positive

or negative) and invest accordingly, their portfolios are characterized by elevated returns

relative to the benchmark in times of positive benchmark returns, and lower return mag-

nitudes when negative benchmark returns are realized. The principle of Treynor & Mazuy

(1966) can be captured in an statistical test by adding a quadratic term to Equation (27)

in the form of

rP,t+1 − rf,t+1 = αP + βP (rB,t+1 − rf,t+1) + γP (rB,t+1 − rf,t+1)
2 + εP,t+1, (28)

where a statistically significant positive γP reflects a successful timing, and alpha is

attributed to the portfolio manager’s selection strategy as in Equation (27).23

A considerable amount of research studies advocate for market timing predictability

through the exploitation of time-series predictors including inflation rates (see, e.g., Nel-

son, 1976; Fama & Schwert, 1977; Pesaran & Timmermann, 1994; Campbell & Vuolteenaho,

2004), default spreads (see, e.g., Fama & French, 1989; N.-F. Chen, 1991), term spreads

(see, e.g., Fama & French, 1989; N.-F. Chen, 1991), dividend yields (see, e.g., Ball, 1978;

Rozeff, 1984; Campbell & Shiller, 1988; Fama & French, 1989; Pesaran & Timmermann,

1994; Kothari & Shanken, 1997), book-to-market ratios (see, e.g., Kothari & Shanken,

1997; Pontiff & Schall, 1998; Baker & Wurgler, 2002) and volatility (see, e.g., French et

al., 1987; Guo, 2006), among many others.

In recent decades, researchers have focused on clarifying whether the traditional ev-

idence for the predictability of the aggregated market return, primarily obtained from

in-sample regression models, can be translated into actionable investment strategies for

practical portfolio management. Challenging the inferences from in-sample analyses,

Welch & Goyal (2008) comprehensively revise the prediction models in out-of-sample

tests. Concretely, Welch & Goyal (2008) compare out-of-sample market return forecasts

from ordinary least square estimations of regressing annual excess market returns on dif-

ferent predictors against a naive forecast simply consisting of the historical market return.

22This is a widely accepted premise in capital markets, particularly reflected in the CAPM.
23Alternative statistical market timing tests are proposed, e.g., by M. C. Jensen (1968) and Merton

(1981).
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As they observe that the historical average displays superior forecast performance in their

study, the authors argue that time-series predictors lack the necessary predictive power for

real-world applications. However, Campbell & Thompson (2008) reveal that constraining

the sign of the coefficients and the sign of the expected return in the regression models

of Welch & Goyal (2008) to signs suggested by investment theory enables the predictive

regressions to beat the historical average. Rapach et al. (2010) additionally find that com-

bining the individual forecast models in the methodology of Welch & Goyal (2008), which

reduces the uncertainty associated with the individual models (Bates & Granger, 1969)

much like diversification across assets reduces the variance of portfolio returns, also leads

to statistically and economically significant gains relative to historical average forecasts.

Moreover, addressing the issue that such regression-based approaches are ill-suited for

time-series predictions when the number of predictors nears or even exceeds the number

of observations, which becomes necessary as the number of predictors suggested by the

literature keeps growing,24 Gu et al. (2020) apply machine learning techniques and obtain

superior market timing forecasts than with linear regression methods.

The studies referenced above primarily focus on prediction models and employ simplis-

tic investment strategies to evaluate the economic significance of their forecasts. These ap-

proaches do not directly address the needs of active portfolio managers seeking to optimize

their portfolios by exploiting market timing predictability. Traditional mean-variance op-

timization theory formulates portfolio optimization as a single-period problem, modeling

each asset with the help of a single random variable representing its return. In contrast,

market timing involves a multi-period framework and requires modeling asset returns as

stochastic processes.25 To tackle this challenge formally, the research literature draws

upon the theory of dynamic programming (see, e.g., Bellman, 1954), which is applied to

the optimization of multi-stage decision processes, referred to as policies.26

Early studies in dynamic portfolio optimization, such as those by Merton (1969) and

Samuelson (1975), assume that returns are independent over time, characterizing opti-

mal portfolio policies in the absence of market timing, a tradition still followed in later

research (see, e.g., Li & Ng, 2000; Leippold et al., 2004). Recognizing the empirical

evidence supporting market timing predictability, Campbell & Viceira (1999) develop a

dynamic portfolio optimization approach that incorporates the stochastic return process

as a function of an autoregressive state variable of order one.27 Nevertheless, this approach

24For example, Kelly & Pruitt (2013) finds that the cross-section of book-to-market ratios predicts

aggregated market returns.
25A stochastic process is a series of various random variables.
26In contrast to the more classical approach of finding the optimal policy over the space of all possible

decision sequences, which very often proves impractical, dynamic programming determines the optimal

policy by deriving the necessary optimal conditions for any stage of the process in terms of the current

state of the system in a recursive fashion.
27In a similar spirit but without applying dynamic programming, Ferson & Siegel (2001) analyze
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accounts only for a special case of possible market timing predictors. Other approaches

to dynamic portfolio optimization that account for market timing potential exist (see,

e.g., Çelikyurt & Özekici, 2007; Basak & Chabakauri, 2010), but they involve complex

numerical techniques that are often out of reach for practical portfolio managers.

To address the optimal dynamic portfolio problem while ensuring computational feasi-

bility, Brandt & Santa-Clara (2006) propose an approximation solution with a complexity

comparable to Markowitz (1952)’s mean-variance analysis. Specifically, they expand the

asset universe to include naively managed portfolios following market state variables and

determine the classical static mean-variance optimum within the augmented asset uni-

verse. Each naive portfolio invests in a risky asset for one period and in the riskless asset

for all other periods. Any dynamic portfolio policy can be constructed as a combina-

tion of these mechanically managed portfolios, albeit representing an approximation that

overlooks compounding effects that result, for example, from holding one asset for mul-

tiple periods. The authors argue that compounded returns are significantly smaller than

the returns of the managed portfolios, making this approximation relatively accurate, al-

though they do not examine more in detail the loss associated with this approximation.

Brandt & Santa-Clara (2006) suggest finding first the coefficients that optimize the para-

metric policy and recovering then the weights invested in the individual assets from this

parametric function.28

Despite its advancement towards more tractable techniques for optimal market timing

portfolios, the approach of Brandt & Santa-Clara (2006) exhibits various shortcomings.

First, as discussed in detail by the authors, their approach relies on data-intensive samples

for long horizons. Second, it incorporates a different coefficient for each individual asset, or

in other words, each individual asset has a distinct parametric function, aiming at timing

individual assets rather than timing the market, as opposed to the predominant literature

which focuses on predicting aggregated market returns. Third, Brandt & Santa-Clara

(2006) neglect the effect of compounded returns on market timing decisions based on the

argument that considering only one-period returns approximates the optimal portfolio

policy. However, it is not clear how good this approximation is. Fourth, the authors

develop their approach so that it exploits either cross-sectional or time-series predictors

but not both at the same time. Thus, practical portfolio managers seeking to employ

both selection and timing cannot employ this technique. The market timing approach

developed in Paper (2) overcomes all these shortcomings. A detailed description of Paper

(2) is provided in Subsection 4.3.

the static mean-variance optimization problem with conditioning information by modeling conditional

expected returns, conditional variances and conditional covariances as functions of some variables.
28Unlike Campbell & Viceira (1999), who parameterize the moments of the distribution of asset returns,

Brandt & Santa-Clara (2006) parameterize portfolio weights based on state variables, following Aı̈t-

Sahalia & Brandt (2001)’s recommendation.
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Before concluding this section, it is important to highlight that in addition to market

timing (time-series predictability in aggregated market returns), there is also a dedicated

literature strand focused on factor timing (time-series predictability in factor returns). A

notable example is the phenomenon of momentum crashes (Daniel & Moskowitz, 2016).

While the momentum factor exhibits a strong positive average return over time, it is sus-

ceptible to large negative returns during market declines. However, Barroso & Santa-Clara

(2015b) find that the variance of daily returns of the momentum factor can be predicted,

enabling investors to manage the time-varying risks associated with the momentum factor.

Since factors often represent specific investment strategies that exploit asset charac-

teristics (see Subsubsection 2.4.3), factor timing can be viewed as a specialized form of

time-series predictability within characteristic-based investment strategies. Throughout

this thesis, the broader category of time-series predictability related to the relationship

between asset returns and characteristics is referred to as characteristic timing. Pio-

neering works by Asness et al. (2000) and Cohen et al. (2003) laid the foundation of

characteristic timing by demonstrating the predictable time variation in the returns of

value strategies. Specifically, these studies show that the value spread, defined as the

difference of the value characteristic between a diversified portfolio with value stocks and

a diversified portfolio with growth stocks, acts as a predictor of the returns of a strategy

buying value stocks and selling growth stocks. This strategy is known for its positive

average return and yields disproportionately higher returns when the value spread is no-

tably large, suggesting that gains from a value-based strategy intensify when undervalued

(overvalued) assets are cheaper (more expensive) than usual. Building on this, Baba Yara

et al. (2021) unveil that value spreads not only forecast value returns in stocks but also

across industries, commodities, currencies, global government bonds, and global stock in-

dexes. Furthermore, an expanding body of research continues to uncover predictable time

variation in investment strategies associated with other characteristics as well (see, e.g.,

Lewellen, 2002; Greenwood & Hanson, 2012; Kelly & Pruitt, 2013; Barroso & Santa-Clara,

2015b; Daniel & Moskowitz, 2016; Moreira & Muir, 2017; Zaremba & Shemer, 2018; Gu et

al., 2020; Haddad et al., 2020; Ehsani & Linnainmaa, 2022; Huang, 2022; Anginer et al.,

2024). In Paper (3), I endeavor to address the question of how active portfolio managers,

using the parametric portfolio policies proposed by Brandt et al. (2009), can integrate

characteristic timing into their portfolio strategies. A detailed description of Paper (3) is

provided in Subsection 4.4.

4 Characteristic-based portfolio optimization

Even sophisticated extensions of traditional portfolio optimization approaches face chal-

lenges due to their sensitivity to inaccuracies in estimating asset return distributions. For
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instance, using factor models to estimate inputs for mean-variance analysis, as discussed

in Subsubsection 2.4.1, remains susceptible to estimation errors because the parameters

of factor models must be estimated from asset characteristics.

To address these issues and develop more robust portfolio optimization strategies, some

research studies advocate for one-step portfolio construction approaches. The related lit-

erature is discussed in Subsection 4.1. The main idea of such one-step approaches is to

directly model optimal portfolio choice as a function of asset characteristics, unlike tradi-

tional two-step methods that use characteristics to estimate asset return distributions and

then determine optimal portfolios based on imperfect estimations. A prominent example

is Brandt et al. (2009)’s framework of parametric portfolio policies. This methodology is

described in detail in Subsection 4.2.

Recognizing the significance of one-step portfolio construction strategies, the present

thesis aims to advance the work on characteristic-based portfolio optimization approaches.29

The primary objective is to devise enhanced portfolio strategies compared to existing

methods. Subsections 4.3 and 4.4 describe how Papers (2) and (3) contribute to extend-

ing Brandt et al. (2009)’s framework by incorporating market timing and characteristic

timing, respectively. Subsection 4.5 discusses the contributions of the mixed-integer,

characteristic-based tracking portfolio optimization approach developed in Paper (4) to

the field of passive portfolio management.

4.1 Relationship between optimal portfolios and characteristics

The traditional approach for portfolio optimization in the literature uses asset character-

istics as predictors of the distribution of asset returns. This approach aims to enhance the

accuracy of input estimations for mean-variance optimization or more general expected

utility maximization compared to using sample estimates directly computed from real-

ized returns (see Subsubsection 2.4.1). While this enhances the first stage of the two-step

portfolio construction procedure outlined by Markowitz (1952), challenges arise due to po-

tential misspecification in the underlying models linking the distribution of asset returns

to the asset characteristics and other types of forecasting variables.

To investigate the impact of such misspecification, Brandt (1999) adopts a nonpara-

metric approach, analyzing the relationship between optimal portfolios and macroeco-

nomic predictors associated with time variation in aggregated market returns. In the

context of constant relative risk aversion (CRRA) utility and focusing on four timing pre-

dictors, the author finds a significant relationship between optimal multiperiod portfolio

choice and these forecasting variables. This implies that it is possible to directly model

optimal portfolio weights as a function of predictors linked to the asset returns, bypassing

29The only exception is Paper (1) which studies the problem of factor selection as discussed in Sub-

subsection 2.4.1.
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the inherent challenges of estimating the distribution of asset returns.

Since the study of Brandt (1999) applies nonparametric techniques, a question natu-

rally emerges: how can portfolio managers directly exploit forecasting variables for port-

folio formation? It’s worth noting that different moments of the return distribution are

associated with distinct forecasting variables. For instance, a predictor could anticipate

both increasing expected returns and volatility. In such a case, deriving actionable in-

sights from the forecasting variable might not always be straightforward if it is not clear

whether the objectives of the investor can be met using this information.

A method that endogenously selects only the predictors that are relevant for the

optimization of the investor’s objective function is proposed by Aı̈t-Sahalia & Brandt

(2001). Their study, however, does not delve into how portfolio managers can concretely

compute the portfolio weights.

First parametric models offering concrete guidance on how to derive optimal portfolio

weights from forecasting variables are given by the two companion papers Brandt &

Santa-Clara (2006) and Brandt et al. (2009). As described already in Subsubsection

3.3.2, Brandt & Santa-Clara (2006) models the weight of each distinct asset as a different

parametric function of common timing predictors. In contrast, Brandt et al. (2009) models

the weights of all assets as one single parametric function of asset characteristics.30 Since

Brandt et al. (2009)’s approach offers several significant advantages, it is discussed in

more depth in the next subsection.

4.2 Parametric portfolio policies

In their seminal work, Brandt et al. (2009) delve into the problem of intertemporal ex-

pected utility maximization

max
w1,t,...,wNt,t

Et

[
u

(
Nt∑
i=1

wi,tri,t+1

)]
, (29)

where Et represents the conditional expected value given information available at time

t, Nt the number of investable assets at time t, ri,t+1 the return of asset i from t to t+ 1,

and wi,t the weight of asset i at time t. Equation (29) essentially portrays the investor’s

aim at maximizing the conditional expected utility of the portfolio’s return across different

periods t. The solution to this intertemporal expected utility maximization problem is

termed the optimal portfolio policy.

To determine the optimal portfolio policy based on information derived from charac-

teristics associated with the distribution of asset returns, Brandt et al. (2009) propose

30While these techniques offer explicit formulas for computing portfolio weights based on forecasting

variables, they require that portfolio managers exogenously choose suitable predictors. DeMiguel et al.

(2020) introduces a screen-and-clean method to select only significant characteristics in the framework

of Brandt et al. (2009).
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parameterizing the portfolio weights wi,t as a function fθ of asset characteristics xi,t, featur-

ing time-invariant parameters θ. This parametric formulation can be generally expressed

as31

wi,t = fθ(xi,t). (30)

Given investors’ inclination to exploit multiple characteristics, xi,t may constitute a

K-dimensional vector with K ≥ 1. Employing this parametric approach transforms the

optimization program into32

max
θ

Et

[
u

(
Nt∑
i=1

fθ(xi,t)ri,t+1

)]
, (31)

where the objective is to maximize the conditional expected utility conditioned over

the parameters θ. This solution yields the optimal parametric portfolio policy in the subset

of all portfolio policies subject to the assumed parametric form.

Note that by assuming the parameters θ to be time-invariant, Brandt et al. (2009)

conjecture that the relationship between optimal portfolio weights and characteristics

remains constant over time. The rationale behind this modeling assumption is rather

methodological than economical, since it implies that the parameters θ that maximize the

conditional expected utility correspond to the parameters that maximize the unconditional

expected utility, thereby simplifying Equation (31) to

max
θ

E

[
u

(
Nt∑
i=1

fθ(xi,t)ri,t+1

)]
(32)

which allows the optimal parameters to be estimated by solving

max
θ

1

T

T∑
t=1

u

(
Nt∑
i=1

fθ(xi,t)ri,t+1

)
(33)

over a sample of size T . Brandt et al. (2009) demonstrate their approach primarily

using the special case of a linear parametric function

fθ(xi,t) = wB
i,t +

1

Nt

θT x̂i,t, (34)

which has since become the established parameterization adopted in contemporary

literature.33 Here, wB
i,t denotes the weight of asset i in a benchmark portfolio adhering

31In contrast to Brandt & Santa-Clara (2006), who parameterize each individual asset i using a different

function fi, Brandt et al. (2009) parameterizes all Nt assets using the same function f .
32While Equation (29) is an optimization program over portfolio weights wi,t, Equation (31) is an

optimization program over the parameters θ.
33This parametric function yields long-short portfolios. Long-only portfolios can be obtained via trun-

cation.
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to the budget constraint
∑Nt

i=1w
B
i,t = 1, x̂i,t represents the cross-sectionally standardized

version of xi,t,
34 and θ is a K-dimensional vector comprising scaling factors. This linear

parametric function models portfolio weights which deviate from the benchmark weights

proportionally to the asset characteristics by choosing only the scaling factors θ, i.e., by

choosing only the common deviation intensity among assets, whereas the direction and

relative deviation of each particular asset is given by its characteristics.35 Substituting

Equation (34) in Equation (33) gives

max
θ

1

T

T∑
t=1

u

(
Nt∑
i=1

wB
i,tri,t+1 +

1

Nt

θT
Nt∑
i=1

ri,t+1x̂i,t

)
. (35)

Equation (35) delineates a relative portfolio optimization program for active portfolio

management, aiming to identify scaling factors θ that yield a portfolio with higher es-

timated expected utility relative to the benchmark, under a linear relationship between

portfolio weights and characteristics. In cases where no linear relationship exists for the

chosen characteristics, or if the benchmark portfolio cannot be outperformed by some

parametric portfolio, the scaling factors θ are left at zero, suggesting that the optimal

portfolio policy consists of maintaining the benchmark allocation. Thus, one notable ad-

vantage of this relative portfolio optimization framework is its assurance that the portfolio

manager cannot perform worse than the benchmark, assuming that the sample average

utility effectively estimates the expected utility. Empirical studies consistently corrobo-

rate the effectiveness of this framework in facilitating benchmark outperformance across

various markets and asset classes (Brandt et al., 2009; Plazzi et al., 2011; Hand & Green,

2011; Hjalmarsson & Manchev, 2012; Barroso & Santa-Clara, 2015a; Ammann et al., 2016;

Fieberg et al., 2016; Fletcher, 2017; Dichtl et al., 2019; Z. Chen & Fei, 2021; Caldeira et

al., 2023).

This approach presents several compelling benefits from both theoretical and practi-

cal standpoints. First, it is formulated as a one-step portfolio optimization framework

that directly estimates optimal portfolio weights from asset characteristics, in contrast

to the traditional two-step procedure in modern portfolio theory, which involves using

characteristics to estimate the distribution of asset returns and optimizing the portfolio

based on these error-prone estimations. As a result, parametric portfolio policies escape

the error-maximization property that affects mean-variance optimization. Second, the

parametric framework significantly reduces the number of variables requiring estimation.

While mean-variance optimization necessitates estimating Nt means, Nt variances, and

Nt(Nt − 1)/2 covariances at each time t, parametric portfolio policies entail estimating

only one set of optimal parameters θ, substantially reducing the vulnerability against

34Thus, it holds
∑Nt

i=1 x̂i,t = 0 and 1/Nt

∑Nt

i=1 (x̂i,t)
2
= 1

35Dividing by the number Nt of assets is important to ensure that the overall portfolio investment

depends only on the asset characteristics but not on the number of assets.

30



estimation errors.36 Third, using the linear parametric function reduces the dimension

from Nt weights in Equation (29) to K ≪ Nt in Equation (35), allowing for the effi-

cient consideration of a virtually arbitrary number of assets in the optimization program.

Fourth, with less optimization variables compared to the mean-variance approach there

is also less potential for in-sample overfitting. Fifth, parametric portfolio policies yield

less extreme weightings than the mean-variance approach as the optimal portfolio weights

are constrained to adhere to a predetermined parametric form rather than being chosen

arbitrarily. Sixth, this approach can easily incorporates the effect of transaction costs on

the optimal portfolio policy as suggested by Brandt et al. (2009).

Despite these fundamental advantages, the original approach proposed by Brandt et

al. (2009) presents two notable inconsistencies with the extensive empirical evidence in the

literature regarding the predictability of asset returns. First, the framework of paramet-

ric portfolio policies, as initially conceived, focuses exclusively on exploiting predictability

in the cross-section of asset returns, overlooking predictability in the time-series of ag-

gregated market returns. In essence, parametric portfolio policies encompass selection

but not timing, despite robust evidence of market timing predictability in the literature

(see Subsubsection 3.3.2). Second, the linear portfolio policies established by Brandt

et al. (2009) and subsequently adopted in later studies primarily assume time-invariant

parameters θ.37 Although this simplifies the estimation of the optimal portfolio policy,

it overlooks documented time variations in the relationship between asset returns and

characteristics, potentially resulting in performance loss.

In the context of my cumulative dissertation, I contribute to this strand of the litera-

ture by integrating market timing in Paper (2) and characteristic timing in Paper (3) into

the methodological framework of parametric portfolio policies (see Subsubsection 3.3.2 for

a discussion on the differences between market timing and characteristic timing). These

contributions are elaborated upon in the next two subsections, respectively.

4.3 Market timing in parametric portfolio policies

This subsection outlines the contributions of Paper (2) in Table 1, titled “Market Tim-

ing in Parametric Portfolio Policies”. The paper makes two fundamental contributions.

Firstly, it introduces a novel parametric portfolio optimization approach for market tim-

ing, departing from Brandt & Santa-Clara (2006), who advocate timing individual assets

rather than the aggregated market. Secondly, it extends the mechanism proposed by

Brandt et al. (2009) for selection by incorporating simultaneous market timing.

36Even if factor models are used for estimating the distribution of asset returns, parametric portfolio

policies are still more parsimonious.
37Brandt et al. (2009) additionally demonstrate a simple but unsuitable way for modeling time-varying

parameters.
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At its core, the extension proposed in Paper (2) unfolds in two stages. Initially,

it introduces a risk-free asset with a weight expressed as a linear function of an M -

dimensional vector zt comprising market timing predictors, written as

wf,t = φ ·

(
1

zt

)
= φ0 +

M∑
m=1

φmzt,m (36)

where φ = (φ0, φ1, . . . , φM)T is an (M + 1)-dimensional parameter vector. Positive

products φmzt,m lead to an increase of wf,t while negative products decrease it. Scaling

factors φm ensure comparability among the magnitudes of the different market timing

predictors, while the threshold parameter φ0 facilitates the risk-free position to oscillate

between negative (short) and positive (long) positions depending on the forecasts of the

market state.

Subsequently, the initial variable wf,t is integrated into a portfolio already containing

Nt weights, as defined by Equation (34). As the risk-free position in Equation (36)

is generally nonzero, all weights (both risky assets and the risk-free position) must be

renormalized to adhere to the budget constraint. This results in

wext
f,t =

wf,t

1 + wf,t

(37)

and

wext
i,t =

wi,t

1 + wf,t

, (38)

which represent a straightforward yet potent extension of Brandt et al. (2009)’s selec-

tion approach to incorporate market timing in a nonlinear manner. When the risk-free

asset’s weight is designated as zero (i.e., wf,t = 0), the weights of the risky assets re-

main unchanged relative to Brandt et al. (2009)’s original parametric portfolio policy

(i.e., wext
i,t = wi,t). Opting for wf,t > 0 uniformly diminishes the magnitude of the weights

wi,t for all risky assets, beneficial during a bear market phase to mitigate market risk.

As wf,t → ∞, the risk-free weight wext
f,t approaches 1 while all risky weights wext

i,t con-

verge to 0, indicating the portfolio’s exclusive investment in the risk-free asset. When

−1 < wf,t < 0, the denominator ranges between 0 and 1 and the risk-free weight wext
f,t

becomes negative. Here, the portfolio strategy uses a short position on the risk-free asset

to uniformly leverage all risky assets, indicating anticipation of a bullish market and a

desire to boost exposure to risky assets. Note that wf,t cannot equal −1 due to division

by zero. Values wf,t < −1 are feasible but should be excluded because they lead to the

rather unrealistic scenario where the risk-free position is leveraged by a short position on

the parametric portfolio policy.38

38In such instances, the denominator is negative and the weights wext
i,t of the extended approach oppose
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It is important to note that the approach proposed in Paper (2) encompasses the

special case of pure market timing, where the portfolio manager decides only between

holding the benchmark or the risk-free asset, akin to when the portfolio manager sets the

parameters θ to zero (i.e., wi,t = wB
i,t). Notably, the market timing approach of Paper (2)

diverges from that of Brandt & Santa-Clara (2006), as discussed in Subsubsection 3.3.2.

The market timing approach of Paper (2) boasts multiple advantages over Brandt & Santa-

Clara (2006)’s methodology. First, it simplifies complexity by formulating portfolio choice

as an investment on the benchmark portfolio, requiring a single parametric function for all

assets, unlike Brandt & Santa-Clara (2006), who employ a different parametric function for

each individual asset, capturing timing of individual assets rather than aggregated market

timing. Second, while Brandt & Santa-Clara (2006) approximate the exact solution to the

optimal mean-variance portfolio policy by neglecting components of compounded returns,

the approach of Paper (2) incorporates the effect of compounded returns, offering an exact

solution. Third, being built upon the framework of Brandt et al. (2009), the approach of

Paper (2) leverages its extensions as well, including the optimization of other objective

functions and the incorporation of transaction costs.

Utilizing monthly data on stocks in the S&P 500 index between 1990 and 2019 and

assuming long-only portfolios, Paper (2) illustrates, through simulation studies with ide-

ally constructed market timing predictors, how the proposed approach captures market

timing potential, both with and without characteristic-based asset selection. Empirical

demonstrations using well-known market timing predictors from Welch & Goyal (2008)

indicate that market timing with traditional predictors yields statistically significant gains

after transaction costs only for portfolio managers with higher risk aversion levels. Specif-

ically, the proposed approach effectively reduces portfolio risk by investing in the risk-free

asset, also reducing the mean portfolio return. This outcome underscores that alternating

between the benchmark and the risk-free asset particularly benefits portfolio managers

who prioritize reducing risks. Similar results are observed in Paper (2) when combining

asset selection and market timing. However, comparisons between strategies performing

only selection and those combining selection and timing reveal relatively smaller gains for

the latter, showcasing the difficulties of outperforming a selection strategy exploiting a

well-diversified set of characteristics (see, e.g., Asness et al., 2017).

4.4 Characteristic timing in parametric portfolio policies

This subsection elucidates the contributions of Paper (3) listed in Table 1, entitled “Char-

acteristic Timing in Parametric Portfolio Policies”. The paper presents a pivotal contri-

the weights wi,t of the original parametric portfolio policy. By doing so, the initial parametric portfolio

policy is sold short. This leads to the weight wext
f,t of the risk-free asset, which remains positive, to be

leveraged, converging to 1 for wf,t → −∞.
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bution: it introduces a novel parametric portfolio optimization approach that extends the

framework of Brandt et al. (2009) to accommodate time-varying relationships between

optimal portfolios and asset characteristics.

The approach delineated in Paper (3) revolves around crafting interaction terms be-

tween the characteristics xi,t and characteristic timing predictors zt. Specifically, de-

noting Hadamard products (element-wise multiplication) as ⊙, Paper (3) introduces a

K-dimensional vector yi,t, defined as

yi,t = (zt − φ)⊙ xi,t, (39)

where all variables represent K-dimensional vectors. This operation entails multiply-

ing the k-th raw characteristic in xi,t, which is not cross-sectionally standardized, with

the k-th characteristic timing predictor in zt, shifted by the k-th threshold parameter in

φ. This shifting ensures that these interaction terms can change sign, a crucial aspect

as demonstrated in Paper (3), since the cross-sectionally standardized version ŷi,t of yi,t

exhibits the following property:

ŷi,t = sign(zt − φ)⊙ x̂i,t. (40)

Subsequently, Paper (3) suggests substituting the vector x̂i,t in the original parametric

function (34) with the new vector ŷi,t, leading to the parametric function

fθ,φ(xi,t, zi,t) = wB
i,t +

1

Nt

θT (sign(zt − φ)⊙ x̂i,t) . (41)

A salient aspect of the approach posited in Paper (3) is that, assuming both θ and φ

to be time-invariant, optimization employing the parametric function in Equation (41) is

solved analogously to the original linear parametric function in Equation (34). This im-

plies that the maximization of conditional expected utility is reduced to a maximization

of unconditional expected utility, solved over both the scaling factors θ and the threshold

parameters φ. Despite Paper (3) entailing a nonlinear parametric function that heightens

the complexity of the optimization program, it offers the substantial advantage of deter-

mining suitable thresholds in a data-driven manner aligned with investor objectives, in

contrast to the alternative of the investor independently selecting threshold parameters

in a suboptimal manner.

Utilizing the same dataset as Paper (2), Paper (3) conducts simulation studies with

ideally constructed characteristic timing predictors to showcase the mechanics of the pro-

posed characteristic timing approach. In empirical studies, the application of character-

istic timing predictors known from the literature, including value spreads, momentum

spreads and factor momentum, exhibit observations that are complementary to the mar-

ket timing applications of Paper (2). While market timing in parametric portfolio policies
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adds value to investors by reducing risks, characteristic timing increases the portfolio re-

turn, specially benefiting portfolio managers with low risk aversion.

4.5 Characteristic-based tracking portfolio optimization

It is important to note that the foundational principle behind the framework of parametric

portfolio policies, which involves utilizing asset characteristics directly in the portfolio

optimization stage, thereby circumventing the challenge of errors associated with the

estimation of the distribution of asset returns, extends its applicability to further scenarios,

including index tracking. Beyond the characteristic-based portfolio optimization methods

discussed in Subsections 4.3 and 4.4 for active portfolio management applications, my

cumulative dissertation also introduces a novel characteristic-based approach tailored for

passive portfolio management, presented next.

Paper (4) in Table 1, titled “Enhancing Index-Tracking Performance: Leveraging

Characteristic-Based Factor Models for Reduced Estimation Errors”, contributes to the

literature discussed in Subsection 3.2 on passive portfolio management by introducing

a mixed-integer, characteristic-based tracking portfolio optimization approach. This ap-

proach aims to enhance the out-of-sample performance of tracking portfolios through the

reduction of estimation errors while adhering to the cardinality constraint.

Traditionally, the index tracking literature, akin to the principles laid out by Markowitz

(1952), approaches tracking portfolio optimization as a two-step process (see, e.g., Roll,

1992). Firstly, it involves estimating the tracking error associated with the distribution

of asset returns. Secondly, it minimizes this tracking error based on estimates that may

be prone to errors. Similar to mean-variance analysis, various methodologies have been

proposed to address estimation errors and enhance out-of-sample performance. Notably,

the standard approach of using factor models to estimate the distribution of asset re-

turns, as discussed in Subsection 2.4, has been employed to improve the performance of

index tracking portfolios through effective financial modeling (see, e.g., Spronk & Haller-

bach, 1997; Derigs & Nickel, 2003; Corielli & Marcellino, 2006). However, factor models

rely on variables that require estimation, exposing such tracking approaches to potential

estimation errors.

Paper (4) advocates for a direct utilization of asset characteristics in computing the

optimal tracking portfolio. Essentially, the paper suggests tracking observable character-

istics of the target portfolio instead of relying on the target returns estimated from these

characteristics. By circumventing the estimation errors inherent in the latter approach,

Paper (4) aims to enhance the out-of-sample performance. Utilizing the same dataset

employed in Papers (2) and (3) for tracking the S&P 500, augmented with a short-term

reversal characteristic, empirical demonstrations within Paper (4) strongly support the

superiority of characteristic-based approaches over counterparts based on factor models
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estimated from the same characteristics. These findings exhibit robustness across various

portfolio and model sizes, as well as different specifications of the objective function.

Paper (4) goes beyond assessing the raw performance of characteristic-based index

tracking portfolios by delving into turnover and transaction costs, essential considera-

tions for real-world implementation. Notably, the findings reveal that portfolios directly

utilizing characteristics experience lower turnover compared to those relying on factor

models, maintaining their out-of-sample superiority even after accounting for transaction

costs, which bolsters their practical appeal.

Moreover, the approach outlined in Paper (4) offers a significant reduction in the

complexity of the optimization process. Unlike traditional methods that necessitate the

estimation of asset return distributions, the characteristic-based approach circumvents

this requirement entirely. In summary, the characteristic-based tracking approach presents

an attractive tool for practical portfolio managers, offering enhanced performance coupled

with reduced costs and complexity.

5 Concluding remarks

The foundation of modern portfolio theory, based on the mean-variance framework intro-

duced by Markowitz (1952), typically follows a two-step portfolio construction approach.

Initially, this involves estimating the unknown distribution of asset returns, followed by de-

termining the optimal portfolio allocation based on these estimates. However, estimation

errors in the first stage significantly compromise the performance of strategies derived in

the second stage, limiting their practical utility for portfolio managers in both active and

passive management contexts. Despite extensive research efforts proposing techniques,

including factor models, to mitigate estimation errors, these methods only partially al-

leviate the susceptibility of optimal portfolio choices to inaccuracies in estimation. To

address this challenge, the studies featured in my thesis explore one-step formulations for

optimal portfolio choice, bypassing the error-prone stage of estimating the distribution of

asset returns.

In the context of active portfolio management, this thesis builds upon the seminal work

of Brandt et al. (2009), who introduced parametric portfolio policies as a characteristic-

based optimization framework exploiting cross-sectional return predictability associated

with asset characteristics. However, the original parametric portfolio policies are limited

to using cross-sectional predictors alone, overlooking potential benefits from incorporating

time-series predictability. This thesis overcomes this limitation by integrating time-series

predictability of aggregated market returns and the relationship between asset returns

and characteristics. Through extensive simulation studies and empirical demonstrations,

these enhancements are shown to deliver tangible value to real-world investors.
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For passive portfolio management, this thesis introduces a new mixed-integer, charac-

teristic-based optimization approach tailored for passive management subject to cardinal-

ity constraints. Empirical studies affirm the effectiveness of this approach, highlighting

lower tracking errors and reduced portfolio turnover compared to conventional two-step

tracking methods, offering substantial benefits for passive managers. By formulating

tracking portfolio optimization as a one-step methodology, the complexity of portfolio

construction is drastically reduced, easing adoption in practical applications.

Moreover, recognizing the trend of portfolio managers investing in factors rather than

individual assets, this thesis also addresses factor-level investing strategies. Employing

machine learning methodologies with a comprehensive dataset spanning decades and in-

corporating over a hundred factors, this research explores predictability in the cross-

section of factor returns. The resulting data-driven empirical evidence reveals strong cross-

sectional predictability, predominantly driven by factor momentum. This contributes to

advancing our understanding of how portfolio managers can select factors for their port-

folio strategies effectively and simply.
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