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Review Article
Recent advances in reactor design and control for
lithium recovery by means of electrochemical ion
pumping
Cleis Santos1 and Fabio La Mantia1,2
Abstract
The necessity to tap new natural lithium sources worldwide
has pushed in recent years the research in alternative methods
for lithium recovery. Among them, electrochemical ion pumping
is showing interesting performances, especially when
addressing diluted sources. In this review, we summarize the
recent advances in materials’ and reactors’ design for lithium
recovery by means of electrochemical ion pumping. We
discuss simulations and modeling studies as a tool to study
limitations and to provide improved engineering designs. In
addition, we provide parameters based on lithium removal and
energy consumption for a fair comparison among different ion
pumping strategies. Accordingly, we stress the importance to
report not only on lithium removal metrics, but also purity and
energy-related parameters to provide an optimal assessment
of this technology. Finally, remaining challenges and per-
spectives guidelines are included for future ion-pumping
developments.
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Introduction
Lithium-ion batteries have a major role in the world
market of batteries, and they are nowadays entering in
the automotive and renewable energy market. However,
lithium is identified as a critical metal in regard to
1

supply (uneven distribution of the worldwide lithium
deposits), demand and import as well as market factors
such as production and use [1]. As an example, for
battery-grade lithium carbonate (Li2CO3) the annual
average price of lithium doubled from 2020 to 2021 [2].

To cope with the need of lithium, its extraction from
natural aqueous sources would be an eco-friendly and
feasible alternative to current ore mining or evaporation
processes. For instance, lithium is present in seawater
brines at low concentrations (0.19e0.30 mg L�1) in a
mixture with other ions such as sodium (Na), magne-
sium (Mg), or calcium (Ca) [3]. Therefore, there are
two main challenges to extract Liþ from aqueous re-
sources: the low concentration of Liþ and the selective
separation from other dominant ions (e.g., Mg:Li ratio in
brines or geothermal waters ranges from 1 to 500).

Additionally, purity is a critical requirement to produce
Li2CO3 suitable for battery application. In this context,
selective electrochemical ion pumping (EIP) [4e9] has
attracted significant attention as green solution to meet
the overwhelming demand for lithium. The main ad-
vantages with respect to other methods is the low
energy consumption and the high lithium recovery rate,
as well as the high Liþ selectivity obtained without the
use of membranes nor the production of chemical
waste [10e13].

EIP is based on the transfer of ions from the feed to the
recovery (product) solution (see Figure 1) by a selective
reaction with the targeted species. The working prin-
ciple behind a complete cycle is based on four steps (see
Figure 1(a),(b)) [14,15]. After dipping the battery-like
electrodes in the feed solution, a current, driving the
reversible capture of both cations and anions, is applied
to the cell. To recover Liþ ions, the electrolyte is
exchanged to a recovery solution and an opposite cur-
rent is applied to the cell, such that the captured ions
are released. It is worth mentioning that ion pumping

methods for the recovery of lithium have also been
tested coupled to membrane-based architectures
(Figure 1(c),(d)), metallic zinc electrode (Figure 1 e), or
redox mediated reactions (Figure 1 f) [16e20]. The one
evaluated the most is the membrane-based architecture,
which uses an anion exchange membrane (AIM) and two
Liþ intercalation electrodes of the same kind but with
different states of charge [21e28].
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Figure 1

Schematic representation of EIP working principle. (a) Original ion pumping technique. Part (1): salt capturing electrodes. Part (2): ion exchange elec-
trodes. Reproduced with permission [29]. Copyright 2017, IOP Publishing; (b) Cell voltage (DE) vs. charge (q) profile in the original EIP device, showing
the required energy. Adapted with permission [15]. Copyright 2012, RSC; (c) Membrane-based EIP: Rocking chair mechanism working in a double LFP
experiment with AIM. Reproduced under the terms of the CC-BY license [21]. Copyright 2018, The Authors, published by Wiley; (d) Evolution of both
electrode potential and cell voltage vs. charge of a rocking chair-based EIP. Adapted with permission [4] Copyright 2021, The Author, published by
American Chemical Society; (e) Electrochemical lithium recovery process with the MO-Zn system. Reproduced with permission [18]. Copyright 2018,
Wiley; (f) Redox mediated Li+ removal. Reproduced with permission [20]. Copyright 2021, Elsevier.
Themost studied lithium-selectivematerials areLiMn2O4

(LMO) and LiFePO4 (LFP) and their delithiated forms
[24e26,30e38]. As counter electrodes, several alterna-

tives, such as conversion electrodes [31,37,39e42], Liþ
exclusion electrodes [29,34,43e46] and electroactive
polymers [35,38,47e50], have been proposed. Further
detailed information on counter electrodes for electro-
chemicalLiþ removal havebeen reportedbyTrócoli [9]. In
2

this review we will discuss the cell reactor design and the
metrics for the evaluation of its performances.

Reactors and their operational modes
Several authors reported that the mass transfer over-

potential is one of the main limitations occurring during
lithium recovery with EIP [46,49,51]. Furthermore,
brine’s concentration changes during the operation time.



These phenomena are strongly affected by the cell design,
which has a noticeable impact on the production rate and
net energy consumption, as consequence. Operating EIP
devices under flow conditions promotes convective mass
Figure 2

Schematic representation of different electrochemical cell designs. a) Batch.
Reproduced with permission [23]. Copyright 2020, IOP Publishing; c) Flow-thro
by. Reproduced under the terms of the CC-BY license [24]. Copyright 2021,

3

transport and minimizes the diffusion overpotential.
However, wehave estimated thatmore than 40%of recent
publications studied EIP reactors in static conditions
(batch) (Figure 2 (a)) [18,22,27,37,40,41,52]. On the
Reproduced with permission [40]. Copyright 2020, RSC; b) Packed-bed.
ugh. Reproduced with permission [25]. Copyright 2021, Elsevier; d) Flow-
The authors, published by Elsevier.



opposite, there are three main flow reactor configurations
discussed in literature: packed-bed, flow through and
flow-by reactors (see Figure 2 (b-d)).

The EIP packed-bed reactor is based on static porous
electrodes composed by particles of active materials and
conductive agent, through which the electrolyte flows
(Figure 2 (b)). This design aims to overcome mass

transport limitations thanks to increasing the interface
between electroactive particles and electrolyte. Since
2018, Romero et al. have been developing and studying
3D EIP packed-bed reactors [23,48,49]. Using simula-
tions for identifying the main limitations of the packed-
bad design, they have optimized the operational pa-
rameters for this reactor, such as: working/counter
electrode mass ratio, flow rate and current density. Their
studies, together with the one of Joo et al. [53],
emphasize the importance of simulations and modeling
for optimizing cell design.

In the flow-through reactors the brine flows through the
3D porous electrodes in the same direction of the cur-
rent lines (See Figure 2 (c)). As shown by Palagonia et al.
[29,45], the electrodes should be designed in order to
guarantee a proper trade-off between macropores, to
enable reasonable electrolyte flow conditions (flow
pressure, hydraulic pressure drop) and mesopores with
high-electroactive area to ensure optimal Liþ insertion.
Despite their compact design, one of the disadvantages
of these reactors is the restricted choice in suitable

current collectors. Only carbon cloth and graphite felt
current collectors have been studied in this type of re-
actors [25,29,45,46].

Flow-by configurations (Figure 2(d)), where the elec-
trolyte circulates between the electrodes, were also
proposed EIP [24,26,28,31,34]. Flow-by cells show good
performance due to their simple structure and the hy-
draulic losses are small in comparison to flow-through
cells [24,26,31]. Flow-by reactors use a separator that
prevents short circuits and acts as flow distributor and
turbulence promoter. Complementarily, its thickness

must provide mechanical stability versus deformation.
Comparing setups, the flow-by configuration is not as
compact as the flow-through one due to the need of an
electrolyte flow channel. In contrast, ageing of the elec-
trodes in the flow-by setup would not be as fast as in flow-
through cells, where it could be important to remove
dissolved oxygen. The principal drawback of flow-by EIP
cells is the low mass loading of the electrodes, the less
compact design, and the worse accessibility of the elec-
trolyte to the electroactive surface, which cause lower
recovery rates. Recently, Pérez-Antolin et al. have shown

the proof-of-concept of injectable semi-solid electrodes
as an alternative solution to regenerate the flow-by cell
after reaching its end-of-life [28].
Current Opinion in Electrochemistry 2022, 35:101089
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In addition to cell architectures, the lithium recovery
performances are determined by the operational pa-
rameters. The most relevant are discussed below while
in Table 1 we summarized experimental conditions and
main results of publications since 2018.

Working under constant current (CC) conditions
seems to be the preferred operation mode accounting

for ca. 65% of publications. Operating in this mode
typically increases the cyclability of the electrodes and
decreases the energy consumption, with respect to
voltage steps. A novel pulsed electrochemical method,
based on the application of CC for short periods of
times that is, 1e10 s, showed lower overpotentials and
favoured intercalation without damaging the
morphology of electrode particles [30]. Current den-
sities in the range of 10e1000 mA cm�2 were studied.
During the capturing step, a reduction of the current
density resulted in better lithium removal perfor-

mance and higher purity, due to a decrease in the
diffusion overpotential [45]. In the case of constant
voltage (CV) modes, high extraction capacities
(avg. > 15 mg g�1) at cost of a higher energy con-
sumption were shown [17,20,25,52].

The feed composition has a clear impact on the cell
performance [21,26,30,34,40,46,48], however also the
recovery solution is an important factor, which is often
ignored. It is important to define the composition of the
electrolyte in which Liþ is released, because this can

influence the energy consumption, the purity of the
recovered lithium, and the regeneration of the elec-
trodes as well as their stability. As a result of the mod-
erate capacity of electroactive materials (30e40
mgLiþ$g

�1), cycling is a common strategy to increase the
final concentration.

Another aspect to consider is the relative direction of
the mass flow with respect to the one of the current. In a
flow-through configuration, the mass flow and the cur-
rent flow are in the same direction, thus allowing the
extraction of a significant amount of lithium even in

diluted sources, for example, 1 mMLiCl [46]. When the
two flows are not in the same direction, mass transport
limitation is already significant at circa 10 mM LiCl. In
this case, flow rates of 0.1e100 mL min�1 were re-
ported, showing an increase in lithium removal capacity
with the increase in flow rate. This effect is based on the
shrinking of the Nernst layer at the surface of the
electrode [29,46,49].
The importance of an accurate evaluation:
Metrics
Having highlighted the strong influence of cell archi-
tectures on the overall EIP performance [44], it is
www.sciencedirect.com

www.sciencedirect.com/science/journal/24519103


Table 1

Summary of the electrochemical EIP methods reported in literature since 2018.

Feed
solution
(mgLi$L

−1)

Electrodes Recovery
solution
(mM)

Reactor type
operational mode

Uptake
(mgLi$g

−1)
[Li+]final
(mM)

Energy
(Wh$molLi)

References

1260 LMO/PPy 50 mM LiCl 3D packed bed
CC

10 70 N.R. [48]

1322 MnO2/LMO 100 mM KCl 3D packed bed + AIM
CC

28 30 2,8 [23]

1260 LMO/PPy 50 mM LiCl 3D packed bed
CC

36 2000 N.R. [49]

1360 MnO2/LMO 100 mM KCl Flow-by + AIM
CC

23 9 2,2 [24]

35 LMO 10 mM KCl Flow-by + CEM AIM
CV REDOX Mediated

3 27 38,9 [20]

35 FePO4/LFP N.R. Flow-by + AIM
CC

21 N.R. 3,0 [26]

207 LMO/NiHCF 30 mM KCl Flow-by + TO-TREC
CC

3 23 4,8 [34]

7 LMO/NiHCF N.R. Flow through CC 16 N.R. N.R. [45]
7 LMO/NiHCF 120 mM KCl Flow through CC 78 100 6,1 [46]
150 MnO2/LMO 14 mM LiCl Flow through CV 13 145 23,4 [25]
670 LMO/Ag 10 mM LiCl Batch

CC
N.A. 25 4,1 [41]

435 LMO/Ag 30 mM KCl Batch
CC

7 190 21,2 [39]

98 LFP/LFP 500 mM NaCl Flow-through
CV 0,2V

8 552 N.R [21]

1620 NCM/Ag 30 mM LiCl Batch
CC

11 12 2,8 [37]

1449 LMO/Zn 0,1 M CaCl2 Batch
CC

N.A. 42 6,3 [18]

26 FePO4/LFP 200 mgNa+/L Batch
CV

17 7 N.R. [22]

26 LFP/KNHCF 200 mgNa+/L Batch
CV

15 N.R. 60,8 [52]

162 LSNMC/Bi 10 mM LiCl Flow-by
CC

13 11 4,6 [31]

694 LMO/BiOCl-PPy 10 mM HNO3 Batch short-circuit + CV 2 N.R. 1,0 [42]
694 MnO2/NiHCF N.R. Flow-by

CC
16.2⁑ N.R. 15.6 [28]

N.R. Not Reported. * Some parameters were estimated from the info provided in the reference. ⁑ Amount of lithium removed per mass of NiHCF.
important to provide an adequate evaluation of the
lithium recovery performance.

Cell Characteristics: Different solutions (i.e., feed and
recovery) are flowing through the reactor during the
lithium recovery, therefore special attention must be
given to the cell design in order to minimize both dead
volume of the cell and possible back-mixing effects [29].
Furthermore, at a given current density, the cell voltage
loss is determined by the contact resistance between
particles, the ohmic drop of the electrolyte, and the
concentration overpotential for lithium capturing.
Accordingly, detailed cell characterization must be pro-
vided (i.e., resistance, mass loadings, electrodes’ mass

ratio, electrodes distances). Moreover, current density,
as well as current rate, have a strong influence on the
performances [29,45].
5

Liþ removal metrics: In literature, there is the tendency to
maximize one metric at the expense of the others.
Whereas the maximization of the lithium removal ca-

pacity (mgLi$g
�1) is an objective in almost every new

study, energy consumption and purity of the recovered
lithium are often ignored. The risk of establishing the
lithium removal capacity as the major selection criterion
is that such parameter is a metric that depends not only
on the electrodes but also on the feed salinity and
composition. Nevertheless, this metric would be
insightful if comparing novel materials or different
electrodes configuration at given standard composition
of the feed solution.

Lithium removal is also strongly affected by side re-
actions, such as co-ions intercalation and oxygen
reduction. Side reactions imply that not all the current



Figure 3

Figures of merit of different configurations. a) Lithium uptake vs. con-
centration of the feed solution; Energy consumption b) vs. concentration
of the feed solution and c) vs. final Li concentration of the recovery so-
lution. Available purity values are reported as percentage (%) close to the
reference.
flowing through the cell is invested in Liþ removal,
resulting in a Coulombic efficiency lower than unity.
Recently, Wang et al. proposed strategies for dealing

with the loss of performance in LFP-based electrodes
due to the presence of co-ions competition effects and
dissolved oxygen in the electrolyte [26].
6

Energy-related metrics: Pump energy consumption is not
considered in the energy-related calculations; however,
it is a key parameter in flow reactors. It has been
discussed that the energy consumption of the pumping
is not negligible [29,45,46] representing the largest
energy required by the process in feed solutions with
low lithium concentration (ca. 2 kWh$mol�1 in diluted
brines 1 mM LiCl) [46]. Therefore, it is advised to

always include an estimation of the pumping and/or
stirring energy when working on a new reactor design.
Furthermore, energy is frequently reported for a single
cycle and thus its variation upon cycling is often not
considered. Results reporting the average gravimetric
energy consumption (Wh$molLi þ�1 or Wh$gsalt

�1) are
more practical.

Recovery solution metrics: The final product of EIP for Li
removal is most often a recovery solution, which means
that lithium concentration of the recovery and purity-

based performance measures are more directly rele-
vant to practical applications. Figure 3 shows the figures
of merits gathering main results of the latest publica-
tions. Purity was only reported in four publications.

Finally, in literature often the experimental conditions
are not specified with a level of details, which permits a
proper evaluation of the metrics and reproducibility of
the experiments. Unfortunately, this leads to a lack of
reliable data and to a misinterpretation of the results.
Here, we propose a nominal standard separation of

removing �10 mM from the feed (e.g., natural, or
simulated brines, geothermal or seawater, avoiding the
use of equimolar multi-ions solutions), D[Liþ]final, re-

covery �15e20 mM and a purity �85% referred to the
recovery (product) solution. We highly encourage to
state the recovery solution used. We refer the reader to
the review of Battistel et al. for further details on how to
evaluate accurately lithium recovery parameters [8].
Conclusions and perspectives
EIP reactors for lithium recovery are in their initial
developing stage, which gives them high flexibility for
future advancements. Different strategies require
different cell designs. On one hand, cell architectures
using membranes imply higher investment and
maintenance costs, due to scaling/fouling effects. On
the other hand, in packed-bed and flow-through de-

signs, particles clogging, and large pressure losses
could be cause increasing maintenance and opera-
tional costs. A trade-off between Liþ uptake perfor-
mance and practical feasibility of a large industrial-
scale production is needed. Simulation would pro-
vide a proper evaluation of the EIP reactors’ viability
in short-medium term scenarios.

The importance of the Li release stepdregeneration of
the electrodes is often overlooked. Studies to identify



key-aspects of the release step, to produce Liþ rich
solution with high purity minimizing the energy con-
sumption, are required. Side reactions and their effect
on the Liþ removal performance remain also unknown.
Flowing conditions might have a relevant impact during
prolonged operation. We conclude that lithium removal
performances need to be clearly defined and rationally
discussed. Also, studies on the cycle life of the EIP re-

actors are scarce and in future they will be necessary to
evaluate their industrial feasibility.

In this short-review, our proposal for an objective eval-
uation of EIP reactors is based on four metrics: average
gravimetric energy consumption, Li removal capacity,
final concentration, and purity of the recovery solution.
Each of them should be obtained starting from a well-
defined source solution (natural brines, geothermal,
sea water) and current density. This protocol will help
the comparisons between different reactors and their

further development.
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