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a b s t r a c t 

Aqueous rechargeable lithium-ion batteries have attracted great attention as an alternative to traditional 

battery technologies, being able to overcome the issues caused by flammable and expensive organic elec- 

trolytes. In particular, LiMn 2 O 4 has reached very fast second-level charge capability by the synthesis of 

unconventional morphology and particle sizes, allowing charging rates up to 600 C and 93% retention of 

the capacity after 10,0 0 0 cycles. However, the self-discharge process and aging mechanisms for aqueous 

batteries have been rarely studied, which contrasts with the extensive bibliography of the same phenom- 

ena in LMO cells based on organic electrolytes. In this article, the mechanisms involved in the loss of 

reversible specific charges were studied by diverse techniques like OCV, EIS, and In-situ Raman. The re- 

sults revealed a more favorable self-discharge process compared with using organic electrolytes owing to 

the lower stability of water. The self-discharge process can be divided into three different regions with 

a sequential lower decay rate of voltage and capacity as well as two different evolutions of the electric 

parameters. This study opens new questions about the nature, composition, and mechanisms of the self- 

discharge in aqueous media which will play a critical role in the electrochemical performance of novel 

aqueous Li-ion batteries. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The development of highly variable renewable energy sources 

ike wind or solar powers will require a considerable increment 

n the large-scale energy storage capabilities to enable their in- 

egration into the power grid. Currently, battery technologies do 

ot fill the needed requirements in terms of costs, power, and/or 

urability [1–5] . Recently aqueous rechargeable lithium-ion batter- 

es (ARLB) have attracted great attention as an alternative to tra- 

itional technologies, able to overcome the issues caused by the 

se of organic electrolytes (flammable and expensive) owing to 

heir environmentally friendly chemistry, low-cost, and safety [6] . 

he use of classic (de-)intercalation electrodes is restricted to ma- 

erials with redox potential between the oxidation and reduction 

imits of water. Among different studied cathodes, LiMn 2 O 4 (LMO) 

as stood out as an ideal candidate offering high discharge voltage 

ith low cost and toxicity. Contrary to the initial studies, in the 

arly 20 0 0 th , where ARLB batteries provided limited capacity and 

tability [7–11] , in recent studies, the named “Second-Level Charge 

apability” has been reached by the synthesis of LMO with uncon- 
∗ Corresponding author: Instituto de Ciencias de Materiales de Barcelona (ICMAB- 

SIC), Campus UAB, E-08193, Bellaterra, Catalonia, Spain 
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entional particle sizes and morphologies. Tang ́s group reported 

anorods [12] , nanotubes [13] nanochains [ 14 , 15 ], and nanocom- 

osites MoO 3 -PPY@LMO [16] charged up to 600 C, while Wu et al. 

repared porous LMO with retention of the capacity of 93% after 

0,0 0 0 cycles. [17] Also, owing to its fast lithium (de-)intercalation 

n aqueous electrolyte LMO has been even employed as a superca- 

acitor [18–21] . Recently, our group has prepared several LMO thin 

lm samples with similar electrochemical responses than these 

uper-fast material being cycled up to 348 C for more than 3500 

ycles [22–26] . 

On the other hand, the decrease in the available capacity with 

torage time associated with the self-discharge is inherent in bat- 

eries [27] . The specific charge loss depends mostly on the cell 

omponents’ nature, the state of charge (SOC), and storing con- 

itions. However, other characteristics of the battery like material 

urity or high specific surface area of the components (active and 

nactive) could play a critical role. The self-discharge occurs when 

ne and/or both electrodes are not within the thermodynamic sta- 

ility window of the electrolyte, which is then oxidized or reduced 

t the cathode or anode sides respectively. These reactions imply a 

oss of specific charge that could be or not recovered for the poste- 

ior battery cycling and cause a decrease in the open-circuit volt- 

ge (OCV). Unlike LMO cells based on organic electrolytes, where 

he reversible and irreversible self-discharge processes and aging 

mailto:rafael.trocolijimenez@rub.de


Fig. 1. XRD diffractogram of LMO thin film (a). Top (b) and cross-section (c) SEM images of the film. 

Fig. 2. Cyclic voltammetry (a) and constant current (b) measurements of LMO thin films. A three electrodes cell configuration was employed using Pt mesh and Ag/AgCl (3 

M KCl) as counter and reference electrodes respectively. 
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echanisms have been extensively studied [28–36] , scarce bibliog- 

aphy can be found for LMO aqueous batteries. To the best of our 

nowledge, just Konarov et al. reported the effect of the specific 

urface area of the conducting agent and the acid condition of the 

lectrolyte in the Mn dissolution [37] . Therefore, a deeper under- 

tanding of the self-discharge process is required. In this article, 

e have evaluated the self-discharge of LMO thin films prepared 

y Pulsed Laser Deposition. The mechanisms involved in the loss 

f reversible specific charge were studied by diverse techniques as 

lectrochemical Impedance Spectroscopy and In-situ Raman analy- 

is. 

. Experimental section 

LMO thin films were prepared using a multilayer PLD method 

reviously described in [ 23 , 24 , 26 ]. Briefly, LMO thin films were

eposited using a Large Area PLD50 0 0 by PVD Products, Inc. 

quipped with a KrF excimer laser with 248 nm wavelength by 

ombinatorial deposition using LMO and Li 2 O targets purchased 

rom Neyco, France. Films were deposited onto Si/TiN(10 nm)/Pt 

80 nm) substrates provided by Imec. The substrates were cleaned 

rior to deposition subsequently with acetone, mili-Q water, and 

sopropanol. The laser fluency was fixed at 650 mJ cm 

−2 and an 

xygen background pressure of 20 mTorr was applied. The depo- 

ition temperature, target-substrate distance, and frequency were 

50 °C, 90 mm, and 10 Hz, respectively. LMO and Li 2 O materi- 

ls were deposited alternatively in a pulse ratio of 2:1 until the 

esired 400 nm thicknesses were reached. A Bruker-D8 Advance 

quipment was used for XRD measurements applying an offset 

o avoid the substrate contribution (Si). The SEM images were 

btained with a Zeiss Auriga. The electrochemical measurements 

ere carried out using a tree electrodes configuration cell, specif- 

cally designed for thin film electrodes. [ 38 , 39 ]. Ag/AgCl 3 M KCl
2

nd Pt mesh were used as the reference and the counter electrode 

espectively. All measurements were done under ambient air and 

emperature. 5 mV s −1 was employed as scan rate for the cyclic 

oltammetry (CV) measurements. A current density of 33.3 μA 

m 

−2 was applied for the galvanostatic cycling. The potential win- 

ow used for both, CV and GCPL, was from 0.45 to 1.05 V vs 

g/AgCl (3 M KCl). An Ag/AgCl (3M KCl) reference electrode capaci- 

ively coupled with a 100 nF capacitor was used for the impedance 

easurements (EIS). For the EIS, 10 mV peak to peak was used as 

n excitation signal over the range of 100 kHz–1 Hz. The EIS di- 

grams obtained were fitted with the software Zplot, from Scrib- 

er Associates. A HR800 (Horiba Jobin Yvon) was used for Raman 

easurement (532 nm excitation line) recording the wide spectral 

ange (20 0–140 0 cm 

−1 ) every 5 minutes acquiring 160 scans. Lab- 

pec 6 and Origin software was used to analyze the Raman data. 

. Results and discussion 

The prepared LMO thin films were prepared by Pulsed Laser 

eposition (PLD) following the multilayer synthesis condition in- 

icated in [ 23 , 24 , 26 ]. The LMO thin films (thickness of c.a. d = 400

m) were deposited on Si/TiN/Pt substrates. The deficient layers 

ommonly obtained in the Li-based compounds prepared by PLD is 

ue to the higher scattering of light species. To compensate for this 

eficiency, we have previously optimized a multilayer combinato- 

ial approach based on the intercalated depositions of LMO and 

i 2 O layers which allow obtaining stoichiometric films [ 23 , 24 , 26 ].

ig. 1 a shows the X-ray diffraction spectra of the as-deposited LMO 

lm, bare Si/TiN/Pt substrate was also included for comparison. 

he predominant phase in the film was clearly LMO cubic spinel 

hase (JCPDS 35-0782). A classic displacement caused by the stress 

ypically founded in thin films deposited onto rigid substrates was 

bserved in peaks at 36.132 (311) and 37.798 (222). 



Fig. 3. Evolution of specific charge losses and potential with resting time a) and oxidation potential profile of LMO thin films after resting times. 
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Particles with rhombohedral shape and dimensions in the range 

rom 50 nm to 80 nm were obtained, which coated completely the 

ubstrate ( Fig. 1 b and 1 c), avoiding a possible exposition of the Pt

urrent collector to the electrolyte which could cause undesired 

ide-reactions (mainly water evolution catalyzed by the Pt). 

Fig. 2 shows the classic electrochemical behavior reported for 

queous LMO batteries using fast kinetic LMO electrodes [ 22–

4 , 26 ]. The two cyclic voltammetry peaks and equivalent plateaus 

n constant current measurements were associated with the (de- 

intercalation of Li + from/into the spinel structure: 

iMn 2 O 4 ↔ Li + + 2 λ-MnO 2 (1) 

The specific charge provided by the 400 nm-thick LMO films 

as equivalent to previous values reported in the literature [ 22–
 i

3

4 , 26 ]. Before the self-discharge study, the thin films were cycled 

ntil the coulumbic efficient reached values superior to 99.5%. In 

eneral, a set of 10 CVs and 10 galvanostatic cycles were required. 

To evaluate the losses of reversible specific capacity by self- 

ischarge effect a three-steps protocol was followed: first the po- 

ential evolution of an oxidized LMO thin film was monitored by 

n open circuit potential measurement, the λ-MnO 2 was sponta- 

eously converted into Li x Mn 2 O 4 (the time of this OCVs was se- 

uentially increased); secondly an impedance spectroscopy mea- 

urement was applied, and finally the LMO thin films were charged 

o a cut off potential of 1.05 V vs. Ag/AgCl (3 M KCl). The specific 

harge provided during the oxidation step was considered equiva- 

ent to the specific charge lost owing to the previous self-discharge 

OCV) of the film. The OCVs profiles obtained at different rest- 

ng times are shown in Fig. 2 Sup. Inf. The first de-intercalation 



Fig. 4. Nyquist plot of the impedance measurements of the LMO layer during the 

self-discharge at t = 0.1, 1, 10, and 100 h (open symbols). The insert shows the equiv- 

alent circuit employed for the fitting of the arcs (solid lines). 
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lateau was unmistakably observed at time superior to 15 h, on 

he contrary, the second plateau was not obtained even at times 

s high as 135 h. The evolution of the potential with the rest- 

ng time can be divided into three regions ( Fig. 3 a). Initially, at

imes lower than 2.5 h, the potential drop quickly (22.5 mVh 

−1 ) 

nd the losses of specific charge associated with this potential drop 

eached a value of 11.5% of the total specific charge (4.6%h 

−1 ). A 

maller potential decrease was observed in the range from 2.5 to 

0 h (1.7 mVh 

−1 ), with an additional loss of specific charge of 

4.4% (0.42% per hour). Finally, the third region was characterized 

y a very slow potential decay (0.7 mVh 

−1 ), equivalent to a 5.6% 

ost specific charge (0.075%h 

−1 ). These values of capacity losses 

ere in agreement with the oxidation potential profiles obtained 

 Fig. 3 b), just the highest potential plateau and the transition step 

etween plateaus were observed which correspond to less than 

5% of the total specific charge, therefore less than half of the Mn 

as reduced/oxidized. 

It has been demonstrated that the LMO reversible self-discharge 

n classic Li-ion batteries using organic electrolyte was highly af- 

ected by two parameters: the presence of an anode electrode like 

i or Carbon, when Pt was used as counter electrode the self- 

ischarge process was unobserved; and the temperature of stor- 

ge, at 55 °C the process was exacerbated. In all these cases the 

wo plateaus associated with the intercalation of lithium were ob- 

erved [28–36] . However, as Fig. 3 b and Fig. 2 . S. Inf. show, when
Fig. 5. Li-ion diffusivity (D) and exchange flow of lithium with the electro

4

queous electrolytes were used just the first plateau was obtained 

the counter electrode here was Pt). 

Fig. 3 demonstrates that unlike using organic electrolytes, in 

i-ion aqueous batteries a reversible self-discharge process occurs 

ven at room temperature and using Pt as the anode electrode. 

he lower stability of water as electrolyte, the reduced activation 

nergy for the interfacial Li-ion transfer reaction in aqueous solu- 

ion [30] , and the capacity of LMO species to catalyze water oxida- 

ion [40–42] could favor the self-discharge in Li-ion aqueous bat- 

eries. With the aim to monitor the evolution of critical parameters 

n LMO aqueous cells during the self-discharge process, impedance 

pectra were measured at each resting time. Fig. 4 shows represen- 

ative Nyquist plots obtained during the self-discharge experiment 

t t = 0.1, 1, 10, and 100 h. Higher resting times indicate higher 

elf-discharges and displacements from left to the right of reaction 

. The change in the shape of the arcs can be directly correlated 

ith the progressive insertion of the lithium in the electrode. By 

sing a physically meaningful equivalent circuit [43–51] it is pos- 

ible to quantitatively analyze the evolution of the most relevant 

arameters describing the system, namely, i) the charge transfer 

esistance ( R ct ) and double layer capacitance ( C dl ), which charac- 

erize the electrolyte-electrode interface; ii) the chemical capaci- 

ance ( C chem 

) and the ionic pathway resistance ( R ion ) related to the

hange of Li stoichiometry and Li-ion diffusivity within the elec- 

rode, respectively; and iii) the back contact capacitance ( Q cc ) cor- 

esponding to the accumulation of Li close to the LMO-current col- 

ector interface. The very same equivalent circuit was employed all 

long the whole discharge process to give coherence to the analy- 

is and, despite this, the quality of the fitting (solid line in Fig. 4 )

as above the standards ( χ2 < 10 −5 ) for the whole set of measure-

ent. 

Monitoring these parameters during the self-discharge is used 

o bring some light into the origin of this phenomenon. The evolu- 

ion of the fitted parameters with time and LMO Li content is pre- 

ented in the S. inf. ( Figs. 3 and 4 respectively). In addition, simple

alculations 43 involving the Li content ( x ), the charge transfer re- 

istance ( R ct ), and the ionic resistance ( R ion ) allow estimating the 

ow of incorporation of Li across the interface, k ~1/xR ct, and the Li 

on diffusivity in the LMO layer, D ~1/xR ion (see Fig. 5 ). According 

o this figure, the highest flow of Li incorporation ( k ~10 −3 cm/s) is

ccurring at the beginning of the self-discharge process followed 

y a quick decay of almost two orders of magnitude in ≈12.5 h, 

hen the incorporation flow is stabilized at k ~3 × 10 −5 cm/s for 

he rest of the experiment, after ≈30 h. 

As observed in Fig. 5 , this short initial period is responsible for 

he insertion of ~75% of the total amount of Li incorporated in the 
lyte (k) as a function of time (a) and the Li content (b) in the LMO. 



Fig. 6. Selected Raman spectra from the in-situ Raman analysis of LMO self-discharged OCV measurement. 1st, 2nd, 3rd, 4th, 5th, 6th, 15th, 25th, 30th, 35th, 40th, 45th, 

50th, 60th, 65th, 70th, 75th, 80th, 100th, 110th, 130th, 140th, 150th, and 160th. 
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xperiment, in agreement with Fig. 3 , where 44% of the specific 

harge was lost after just 15 h and 75% after 30 h. 

Together with the two-fold increase of the double layer capac- 

tance in just one hour ( Fig. 4 a S. inf.), this strongly suggests af-

er the formating of a Li-rich layer at the electrolyte-electrolyte 

nterface, the self-discharge process is then drastically reduced. 

he initial parameters evolution revealed a similar trend to those 

btained in classic studies when the composition is approach- 

ng to Li 0.5 Mn 2 O 4 , half of the Li-ion 8a sites are occupied. On

he other hand, several studies have proposed a lithiation mech- 

nism based on Li-rich external and Li-poor bulk phases as well as 

he preferment lithiation and overlithiation of LMO particles sur- 

ace than bulk were responsible for the degradation of the elec- 

rochemical behavior [52–55] . Similar to these publications, the 

rend observed in the parameters could be explained by the for- 

ation of a “Li-rich” surface (closed to Li 0.5 Mn 2 O 4 ). The absence 

f an external driving force could make that initially just the sur- 

ace of the film was reactive and the impedance spectra evolu- 

ion was representative of the approaching to the Li 0.5 Mn 2 O 4 . At 

arger times, the evolution of the parameters was similar to the 

bserved in previous impedance studies of LMO thin film at differ- 

nt states of charge (SOC) and dynamic impedance spectroscopy 

nalysis. [ 56 , 57 ] The Li could diffuse deeper in the particle and

he impedance spectra evolution was similar to obtained from 

he initial charge state to medium charge state (0.5 ≥ x ≥ 0.1). 

his behavior would be in agreement with the initial fast poten- 

ial decay and high capacity losses and the moderating degrada- 
5

ion at higher times ( Fig. 3 ). However, the accumulation of Lithium 

t the surface cannot be simply associated with a slow diffusion 

ithin LMO after incorporation, since the here measured diffu- 

ivity (D~10 −11 cm 

2 /s at t = 0) involves diffusion times ( t D ~d 

2 /4D)

f less than one minute ( t D = 35s at t = 0) for crossing the whole

hickness of the electrode. Indeed, it is presumably occurring an 

nitial lithium accumulation close to the current collector inter- 

ace after crossing the whole electrode. This is supported by the 

trong increase of the associated capacitance ( C cc ) during the first 

tage of the self-discharge experiment (from 10 −4 to 10 −2 F/cm 

2 ). 

s expected, it is observed a decrease in the diffusivity from 

he empty λ-MnO 2 (x~0 at t = 0) to the partially filled LMO fol-

ow by a small rise at the end of the experiment ( t = 130 h, see

ig. 5 ) when the Li content approached to 0.5 associated to the 

tarting of the second reaction process, L i 0 . 5 Mn 

+4 
1 . 5 Mn 

+3 
0 . 5 O 4 + L i + ↔ 

L i 1 Mn 

+4 
1 Mn 

+3 
1 O 4 , in agreement with previous studies that showed 

n increment of Li ion diffusivity at this stage [58] . 

The differences observed between the beginning and medium- 

arge times could be attributed to the decay of potential. The low- 

ring of potential probably caused a decreased oxidation capacity 

f the material to oxidize the water electrolyte and consequently 

o incorporate Li in its structure also hindering a further reduction 

f more Mn 

+ 4 to Mn 

+ 3 , reaching a maximum value of 0.43. 

The self-discharge of an LMO aqueous battery was also mon- 

tored using in-situ Raman spectroscopy. The thin-film electrodes 

ere oxidized to a cut off potential of 1.05 V vs Ag/AgCl (3 M 

Cl), then a Raman spectra composed of 160 scans were ob- 
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ained sequentially, and simultaneously the potential evolution was 

ecorded ( Fig. 6 and Fig. 4 . S. Inf.). The time per scan was 5 min,

hen each spectrum can be associated to a determined potential in 

ig. 4 . S. Inf., (e. g. spectrum 40 th = 200 min and equivalent to 0.87

 vs Ag/AgCl) 

The potential profile observed ( Fig. 5 . S. Inf.) was different from 

he obtained in the above-described self-discharge study ( Fig. 2. S. 

nf.). The increment of temperature sample owing to the green 

ight source exacerbated the self-discharge process. At a consider- 

bly lower resting time, the full λ-MnO 2 was converter into LMO. 

he two plateaus appeared in these circumstances, as shown in 

ig. 5. S. Inf. It is well known that the effect of laser radiation can

ause both a photo-excitation and an increase of the temperature, 

hich both produce an acceleration of the discharge process [59] . 

n the same way, It has been demonstrated that the self-discharge 

f Li-ion batteries based on organic solvent can be abnormally ac- 

elerated even by their exposition to a routine short-term ther- 

al exposure [35] . Fig. 6 shows selected Raman spectra from the 

n situ Raman analysis of LMO self-discharged OCV measurement. 

he complete number of spectrum recorded is included in Figure 

. S. Inf. A nearly complete transformation into the LMO phase was 

btained after just 14 hours of OCV which clearly demonstrated 

he accelerating effect of the use of a green light source in the 

elf-discharge of LMO. This laser could promote the degradation, 

orming compounds like Mn 2 O 3 and Mn 3 O 4 by chemical reactions 

hoto-induced or thermal-induced. However, its influence in the 

OC of Li-ion batteries is in general not considered that could have 

ffected the results obtained owing to the acceleration of the SOD. 

Despite this acceleration of self-discharge phenomena due to 

hotonic or thermal excitation, the Raman spectra taken along the 

hole charge-state range provide information about the phase evo- 

ution of the layer, which has previously been studied by in-situ 

aman and X-ray diffraction experiments. [60–62] A clear peak at 

.a. 590 cm 

−1 is present in the nearly fully discharge states, which 

as been associated with the A 1g mode of λ-MnO 2 . [60] The high 

symmetry produced by a shoulder at higher energy (c.a. 600 nm) 

as been attributed to the second peak of this same phase [63] . 

he remarkably higher intensity in this potential range is due to 

 resonance enhancement of the Raman spectrum for the delithi- 

ted spinel centered at c.a. 620 nm, which is not present in LMO 

 60 , 61 ]. At further discharge a broad peak centered at c.a. 610 cm 

−1 

ppears, which has been ascribed to two A1 and T2 modes of 

i 0.5 Mn 2 O 4 . Further Li + insertion towards LMO does not produce 

vident changes due to the similar peak positions, characterized 

y a peak at 628 cm 

−1 (A1g) with a shoulder around 595 cm 

−1 .

he 628 cm 

−1 phonon is assigned to A1g of LMO [64] . A slight

hift to higher frequencies and an increase of the peak intensity 

s however still observable at increased lithiation states, which is 

ompatible with the progressive appearance of the LMO phase. In- 

erestingly, the Raman peaks associated with λ-MnO 2 disappears 

fter few cycles with a clear correlation with (i) first fast poten- 

ial and charge losses, and (ii) evolution of the resistances and ca- 

acitances of the equivalent circuit in the first stages of discharge 

 Figs. 3 and 4 ). Whilst it is not possible to correlate the Li con-

ent with the amount of λ-MnO 2 , it is plausible that the first fast

ischarge period comes from a higher exchange flow of lithium 

 Fig. 5 ) in agreement with the first region of potential decay ob- 

erved in Fig. 3 a. 

. Conclusions 

In this study, the self-discharge process of the LMO spinel as 

 cathode electrode in Li-ion aqueous batteries was investigated. 

MO thin films were prepared by a novel multi-targets Pulsed 

aser Deposition approach. The films showed excellent electro- 

hemical performances and fast kinetics. The self-discharge process 
6

as deeply studied through sequential Open Circuit Voltages mea- 

urements, increasing the resting times up to 135 h. The evolution 

f capacity losses and potential decay were monitored. A three re- 

ions behavior was observed with an initial very fast degradation 

22.5 mVh 

−1 and 4.6% of total capacity per hour) followed by two 

ones with lower capacity and voltage fading (1.7 mVh 

−1 and 0.7 

Vh 

−1 ). The impedance study revealed two different evolutions 

f the electric parameters. At medium-high times, the classic evo- 

ution of the values of the resistors and capacitors related to the 

onversion from λ-MnO 2 to Li x Mn 2 O 4 was obtained, but at short 

imes the changes were equivalent to the observed at electrode 

omposition close to Li 0.5 Mn 2 O 4 instead of initial λ-MnO 2 . This be- 

avior was ascribed to the formation of a “Li-rich” surface of the 

lm/particles owing to the absence of an external signal to impose 

he SOC similar to observed in overlithiathed and degraded Li-ion 

atteries. Finally, an in-situ Raman analysis of the self-discharge 

rocess confirmed the fast conversion of the oxidized form to the 

artially reduced phase and demonstrate the anomalous and faster 

elf-discharge owing to the heating effect of the laser, equivalent 

o storage at high temperature, which accelerates the process. 

The Li-ion aqueous batteries based on novel LMO materials 

ith nanometric particles dimension and high surface are consid- 

red a “Second-Level Charge materials” with ultrafast and ultrahigh 

lectrochemical performances. Their unique properties could also 

ontribute to a fast self-discharge of the batteries, however, there 

re no studies that analyze this drawback. In this article we have 

emonstrated the easier self-discharge of LMO in aqueous media 

han in organic-based electrolytes, furthermore, we think that this 

egradation effect should be considered in future Li-ion aqueous 

athode studies. This study opened new questions about the na- 

ure, composition, and mechanism of the self-discharge in aqueous 

edia that will require deep and complex structural analysis like 

n-situ XPS or in-situ TEM which will permit analyze in detail the 

urface of the electrodes at initial times of self-discharge. 
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