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Abstract 

Key enabling technologies (KETs) have gained attention in science and policy due to 

their multidisciplinary nature and their ability to link distant knowledge fields, endowing 

them with a central role in recombinant innovation processes. However, it remains under-

researched whether KETs generally have a higher influence on innovation processes 

than non-KETs. This study addresses the question by using propensity score matching 

and regression analysis. First, a balanced dataset is created through matching KET 

patents to non-KET patents that stem from a comparable context. Subsequently, it is 

analyzed whether KET patents are associated with higher forward citation frequencies 

than non-KETs. The results show that KETs receive more citations on average, but it 

appears that this effect is driven by a few very impactful patents. The results further show 

that not all KETs exert a measurable impact on forward citations and highlight the 

heterogeneities between the individual KETs. These findings call for a more critical 

assessment of the KET concept and for nuanced approaches in research and policy. 
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1. Introduction 

More than a decade ago, the European Commission (EC) grouped six broad 

technology fields under the label of Key Enabling Technologies (KETs), with the aim of 

strengthening the European Union’s (EU) policy focus on strategic technologies. The 
main reasoning was to promote the EU’s industrial competitiveness and re-

industrialization, and to tackle the grand societal challenges (GSCs) (European 

Commission 2009b, 2009a, 2012). While KETs lack a clear conceptualization, their 

popularity is rooted in the features accompanying their general breadth and multi-

disciplinarity: KETs are enabling technologies and play an important role in recombinant 

innovation processes. This is because they can enable innovation both vertically, in 

downstream sectors/technology fields, and horizontally, across sectors/technology fields 

(Corradini and de Propris 2017; Teece 2018).  

As previous studies in the young branch of literature on KETs have shown, the 

presence of KETs can positively affect innovation processes by extending knowledge 

recombination opportunities through their enabling nature (Antonietti and Montresor 

2021; Wessendorf and Grashof 2023). Despite their strong potential to impact various 

processes related to the generation of technological innovation, such as regional 

diversification or the generation of radical innovation (e.g., Montresor and Quatraro 2017; 

Antonietti and Montresor 2021; Wessendorf and Grashof 2023), the question whether 

KETs are generally more impactful than non-KETs is under-researched. The current 

study is a first endeavor to approach this gap, as insights on the impact of KETs on 

innovation processes will help to address KETs more precisely in future studies. 

Considering KETs’ origin at the policy level, better understanding KETs’ will also have 
important policy implications.  

It is hypothesized that the special properties of KETs render them more impactful 

than other technologies. The term ‘impact’ here refers to the contribution and relevance 
of KETs to subsequent technological innovation. Particularly the wide applicability, the 

capability to combine distant knowledge elements with another (bridging function), and 

their potential for complementary innovation, should enable them to easily influence 

innovation activities and to become central building blocks of innovations. Furthermore, 

KETs are differentiated into science- and engineering-based fields, as suggested by 

Wanzenböck, Neuländtner and Scherngell (2020), and it is hypothesized that the impact 

on innovation differs between these two groups. 

The present study proxies knowledge by patents and measures their technological 

impact by citations in subsequent patents (forward citations), as common in the literature 

(e.g., Jaffe, Trajtenberg and Henderson 1993; Trajtenberg, Henderson and Jaffe 1997; 

Castaldi, Frenken and Los 2015). Germany serves as the focal country because it is 

strong in KETs (Butter et al. 2014). The study draws on a rich dataset combined from six 

different data sources. To ameliorate the comparison between the groups of KETs and 

non-KETs, a propensity score matching (PSM) is conducted, matching patents from both 
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groups that originated in comparable contexts (e.g., firm size, industry class, regional 

economic strength). Finally, regression models are calculated to test the hypotheses.  

The findings indicate that a smaller proportion of KET patents receives citations 

within seven years of publication in comparison to non-KETs. However, the cited KETs 

have the potential to receive more forward citations than the cited non-KETs, indicating 

a higher possible impact. At the disaggregate KET level (i.e., the level of the individual 

KETs) this result is only observed for photonics and industrial biotechnology, while the 

results are heterogeneous across the individual KETs. By delivering initial insights on the 

question whether KETs have a greater impact on technological innovation than non-

KETs, this study particularly contributes to the discussion on the relevance of KETs and 

provides important implications for further research on KETs’ effects and for innovation 

policy involving KETs. In particular, the results call for granular, KET-specific 

approaches. 

The remainder of this paper is structured as follows. Section 2 provides the 

theoretical background and the hypotheses, before Section 3 presents the 

methodological approach and introduces the variables of interest. In Section 4 the results 

are reported, before they are discussed in Section 5. Section 6 concludes. 

2. Theoretical Background 

It is commonly acknowledged that (technological) innovation is a main driver of 

economic growth (e.g., Rosenberg 2004). During the cumulative innovation process, 

different bits of knowledge are recombined in new ways, reconfiguring already existing 

knowledge relationships, eventually resulting in new ideas that possibly may become 

innovations (Schumpeter 1947; Weitzmann 1998; Fleming 2001; Arthur 2007). Certain 

technologies, namely General Purpose Technologies1 (GPTs), possess the potential to 

boost economic growth through their special innovation-spawning role: they are 

dynamic, broadly applicable and pervasive across the economy, offer scope for their own 

improvement over time, and promote the emergence of innovational complementarities2 

(Bresnahan and Trajtenberg 1995). These features can facilitate the combination of 

different knowledge elements and, in particular, the improvement loops between GPTs 

and complementary technologies can drive recombinant innovation (Bresnahan and 

 
 
1 Famous examples of GPTs are the steam engine, and electricity (Bresnahan and Trajtenberg 1995; Lipsey, 
Bekar and Carlaw 1998). More recently, also semi-conductors (e.g., Bresnahan and Trajtenberg 1995), 
biotechnology (e.g., Lipsey, Bekar and Carlaw 1998), and artificial intelligence (e.g., Cockburn, Henderson 
and Stern 2019) have been considered as (young) GPTs in the literature. 
2 Innovational complementarities can be seen as a form of technological complementarities. As Teece (2018) 
highlights: Technological complementarity is given when the full potential of a technology can only be 
exploited with the help of a complementary counterpart. Complementarities can further be distinguished to 
be linked to a) technologies around a GPT, directly defining and supporting the GPT, and b) technologies 
enabled along the downstream path that are, however, not part of the GPT they are enabled by (Bekar, 
Carlaw and Lipsey 2018). Example for a): Computers are used to produce chips, these chips enable a variety 
of products - among those are computers themselves. Example for b): Electricity enables computers, 
computers enable for instance the internet (Bekar, Carlaw and Lipsey 2018). 
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Trajtenberg 1995). As a result, GPTs spread widely across the whole economy, unfolding 

their effects in various industries (Bresnahan and Trajtenberg 1995; Helpman and 

Trajtenberg 1996; Helpman 1998). 

Over the past decade, a potential subset of GPTs has gained prominence in the 

academic literature and at the policy-level, summarized under the umbrella term of ’Key 
Enabling Technologies’ (KETs). The following Sub-section 2.1 addresses the concept of 

KETs and the subsequent sub-section outlines the research gap and derives the 

hypotheses. 

2.1. Conceptualizing KETs 

The KET concept was first introduced in the policy sphere by the European 

Commission (EC) in 2009, from where it spread to academia. It encompasses the broad 

technology fields of advanced materials, advanced manufacturing technologies (AMTs), 

industrial biotechnology, micro- and nanoelectronics (including semi-conductors), 

nanotechnology, and photonics (European Commission 2009a, 2009b). In particular, the 

EC intended to increase the policy focus on KETs, to emphasize the foreseen role of 

KETs in tackling societal challenges (e.g., climate change, ageing, and other grand 

societal challenges), and to promote their development and application for the re-

industrialization of Europe to secure its global competitiveness (European Commission 

2009a, 2009b, 2012).  

In parallel with the growing policy attention towards KETs, scholars began to 

study KETs at the academic level, and literature has been evolving since (e.g., Montresor 

and Quatraro 2017, 2019; Wanzenböck et al. 2020; Antonietti, Cattani, Gambarotto and 

Pedrini 2023). Unfortunately, no clear theoretical conceptualization3 was provided in the 

initial documents by the EC (European Commission 2009a, 2009b), which created – still 

existing – conceptual challenges in the academic literature. However, KETs can be better 

understood through concepts as General Purpose Technologies (GPTs) and enabling 

technologies (e.g., Montresor and Quatraro 2017; Teece 2018). Enabling technologies 

are not clearly defined in the literature either, but they are widely applicable and 

characterized by potential innovational complementarities – thus meeting two of the three 

GPT core features (Teece 2018). Unlike GPTs, of which usually only a handful exists at 

the same time, many enabling technologies can exist simultaneously4 (Teece 2018). 

Some of them might eventually become a GPT in the course of time (Teece 2018; 

 
 
3 Also previous studies emphasized the lack of a profound framework (e.g. Wanzenböck, Neuländtner and 

Scherngell 2020). 
4 No uniform definition of GPTs exists in the literature, but they are usually associated with the core 

features described above (Cantner and Vannuccini 2012). As highlighted by Cantner and Vannuccini 

(2012), there are two generations of GPT models: The first generation considers only one GPT at a time 

(e.g., Aghion 2008) while the second one allows for the co-existence of several GPTs (e.g., Carlaw and 

Lipsey 2006). In the present study I follow the broader approach of co-exiting GPTs. Nevertheless, it is 

important to be aware that GPTs are rare technologies, in contrast to enabling technologies (see Teece 

2018). 
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Martinelli, Mina and Moggi 2021). The literature remains generally ambiguous whether 

KETs are GPTs or just share most core characteristics. Therefore, there are reasons to 

believe that they can be conceptualized as something between enabling technologies 

and GPTs. 

In the present study, I follow the suggestion of Teece (2018) to view KETs at least 

as ‘junior GPTs’ and I further acknowledge that (at least some) KETs can partially be 
considered GPTs. Considering that semi-conductors are treated as a GPT (Bresnahan 

and Trajtenberg 1995), for example, at least parts of micro- and nanoelectronics (MNE) 

fall into the GPT category. Biotechnology, the parent field of industrial biotechnology 

(Aschhoff et al. 2010), is another recognized potential GPT (Lipsey, Bekar and Carlaw 

1998). Also lasers, a subfield of photonics, are treated as a potential GPT in the literature 

(Lipsey et al. 1998). Furthermore, Lipsey et al. (1998) and Shea, Grinde and Elmslie 

(2011) propose that nanotechnology is also a GPT5. Given these heterogeneities 

concerning their GPT status, this article argues that it is important to analyze the six 

KETs individually. Thereby their conceptualization can be advanced through 

differentiating their impact and potential, while such an approach also facilitates the 

development of a precise theoretical framework of the KET concept. 

Furthermore, both GPTs and KETs are not final products but function as core 

building blocks of innovations (Bresnahan and Trajtenberg 1995; Montresor and 

Quatraro 2017). KETs are very generic and horizontal in nature, as they “are 

multidisciplinary, cutting across many technology areas with a trend towards 

convergence and integration” (European Commission 2009b, p. 1). Therefore, they are 

mainly defined by i) their very wide applicability across various fields, which again raises 

ii) their potential to induce complementary innovation (horizontally across sectors and 

technology fields, or vertically in downstream sectors and technology fields) (Teece 

2018). Thus, besides the horizontal dimension (and like GPTs; see Bresnahan and 

Trajtenberg 1995), innovational complementarities in particular give KETs an additional 

vertical dimension (Corradini and de Propris 2017).  

2.2. KETs’ impact on innovation 

Overall, their special properties endow KETs with a powerful role in driving 

potential recombinant innovation, as previous studies also have also shown 

(Wessendorf, Kopka and Fornahl 2021; Montresor, Orsatti and Quatraro 2022; 

Wessendorf and Grashof 2023; Wessendorf, Kopka and Fornahl 2024). From the 

technological perspective, KETs act as bridging platforms (Corradini and de Propris 

2017): due to their wide applicability, KET knowledge can be combined with knowledge 

from various technology domains. In this sense, KETs can be considered as ‘platforms’ 
 

 
5 Since the diffusion and adoption of GPTs across the economy takes time, it can be difficult to identify 
young GPTs. (e.g., Jovanovic & Rousseau 2008; Teece 2018). From this an ambiguous view on KETs 
results: As indicated with the examples above, some scholars consider single KETs as GPTs. Further 
scholars see KETs as young GPTs (e.g., Antonietti et al. 2022; Montresor & Quatraro 2017; Aschhoff et al. 
2010). Others take a more reserved view by treating KETs as potential GPTs (e.g., Martinelli et al. 2021; 
Antonietti & Montresor 2021).   



6/61 
 

#2403 Bremen Papers on Economics & Innovation 

 
The influence of key enabling technologies on technological innovation 

that provide knowledge interfaces to which different knowledge can easily connect 

(Corradini and de Propris 2017).  

Thus, KETs can function as a broker between knowledge fields that are otherwise 

very distant from each other. This opens up more opportunities for the recombination of 

knowledge elements, generally facilitating the recombinant process and ultimately 

enabling innovation (Antonietti and Montresor 2021; Montresor et al. 2022; Wessendorf 

and Grashof 2023; Wessendorf et al. 2024). While there are still many white spots in the 

literature, some (regional) economic effects of KETs have recently been investigated. 

Studies on the innovation-spawning role of KETs refer to their local impact, for instance 

by pointing out that their embeddedness in the regional knowledge base affects the 

regional innovation output (Wessendorf et al. 2024). However, to the best of my 

knowledge, one fundamental aspect of KETs has not explicitly been addressed yet, 

namely whether knowledge in KETs generally has a greater impact on subsequent 

innovation processes than knowledge in technologies that are not classified as KETs. 

The existing literature indicates that KET knowledge should indeed have a 

positive impact on innovation because it facilitates recombinant innovation processes 

(Montresor and Quatraro 2017; Wessendorf and Grashof 2023). Thus, KET knowledge 

influences innovation processes, which is a prerequisite for the effects measured at the 

regional or organizational level in previous studies. It is likely that KETs diffuse and unfold 

their impact also via self-reinforcing loops. The diffusion of KETs should enlarge the 

scope of their impact and, as Bresnahan (2010) and Martinelli et al. (2021) highlight, 

technological diffusion can be driven by complementary innovations6. KETs might trigger 

complementary innovation that leads to their own diffusion, which again triggers 

complementary innovation and thereby also strengthens the impact of KETs. This 

potential relation gives reason to assume a strong impact of KETs. However, while 

previous studies investigated the impact of KETs in different (regional) context, the 

effects of KETs have not yet been contrasted to the effects of non-KETs. This step is 

important, as it fosters a better understanding which role the particular technological 

nature of KETs plays, in addition to the already identified geographical and organizational 

aspects which facilitate the influence of KETs on innovation-related processes. 

To gain fundamental insights on the group of KETs and in order to address them 

more accurately in future analyses and concepts, this study raises the exploratory 

question whether the designated KETs’ impact on innovation differs from technologies 
not classified as KETs. The question is mainly rooted in two aspects: first, innovational 

complementarities are at the core of KETs (Montresor and Quatraro 2017; Teece 2018; 

John, Wesseling, Worrell and Hekkert 2022) and potentially contribute to KETs’ impact 
via involving them in innovation processes. Second, as described in Section 2.1, KETs 

are at least potential GPTs and the latter diffuse widely across the economy, bearing 

great potential for innovation, economic development, and an economy-wide impact. 

KETs are not necessarily as widespread as GPTs (Teece 2018), but should have the 

 
 
6 Especially by “changing the potential application of known techniques” (Martinelli, Mina and Moggi 2021, 

p. 184) 
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potential for a wide scope of their influence on innovation processes. Thus, I assume 

that KETs, compared to other technologies, are more prone to exert an impact on 

knowledge generation processes than non-KETs. A common way to measure the impact 

of technologies are patent citations (e.g., Jaffe et al. 1993; Trajtenberg et al. 1997; 

Castaldi et al. 2015), and as a proxy for the relevance of patents forward citations7 are a 

suitable measure. Accordingly, I propose the following hypothesis. 

 

H1: KET patents are associated with a higher citation frequency than

    non-KET patents. 

In general, KETs are technologies at the intersection of science and industry: they 

are – to varying degrees – science-based and industry-oriented, highly R&D driven, and 

provide important application interfaces (European Commission 2009b; Aschhoff et al. 

2010; Wanzenböck et al. 2020; Antonietti and Montresor 2021). While there exists no 

clear categorization of KETs in the literature yet, industrial biotechnology and 

nanotechnology can roughly be grouped as more science-driven technologies, while 

AMTs, advanced materials, and photonics are more application- and engineering-based 

KETs (e.g., Aschhoff et al. 2010; Wanzenböck et al. 2020). Regarding the sixth KET, 

micro- and nanoelectronics (MNE), also including semi-conductors, the literature is 

rather equivocal. Whereas some studies highlight the science-based nature of semi-

conductors (Pavitt 1984; Ponds, van Oort and Frenken 2010), Wanzenböck et al. (2020) 

view MNE to be rather engineering-based. Previous studies that consider the six single 

KETs find differences between their individual effects (e.g., Montresor and Quatraro 

2017; Wanzenböck et al. 2020; Wessendorf and Grashof 2023). Particularly the 

engineering-based KETs advanced materials and AMTs are described to exhibit the 

most pronounced KET properties (e.g., Aschhoff et al. 2010; Montresor and Quatraro 

2017). Consequently, they may diffuse and unfold an impact more rapidly. Additionally, 

science-based KETs build more on codified knowledge, while engineering-based KETs 

build more on tacit knowledge (European Commission 2015; Wanzenböck et al. 2020). 

While codified knowledge is easier to transmit across geographic distances, tacit 

knowledge is more geographically ‘sticky’ (von Hippel 1994) and its transfer works mainly 

through personal interaction and face-to-face encounters (Polanyi 1966; Nelson and 

Winter 1982; Maskell and Malmberg 1999; Gertler 2003). Thus, relevant tacit knowledge 

can be harder to access and replicate through other actors or organizations external to 

those applying the knowledge. At the same time, the application-driven nature of 

engineering-based KETs may mean more practical problem-solving approaches and a 

more direct industrial applicability of new solutions, leading to a faster adoption. This may 

not only support their diffusion but also accelerate innovation cycles. Furthermore, tacit 

knowledge is an important prerequisite for the emergence of radical innovation (Mascitelli 

2000). Even though radical innovation occurs seldomly (Verhoeven, Bakker and 

Veugelers 2016; Grashof, Hesse and Fornahl 2019), it is highly impactful (Knuepling, 

Wessendorf and Basilico 2022), in the sense of being destructive but also creating new 
 

 
7 Forward citations represent a patent’s frequency of being cited by subsequent patents. 
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markets and business models. Moreover, it has been shown that engineering-based 

KETs can drive the emergence of radical innovation, due to their ability to combine 

distant knowledge (Wessendorf and Grashof 2023). All in all, given the aspects explained 

above, engineering-based KETs might show a greater measurable impact, compared to 

science-based KETs. Accordingly, I suggest the following hypothesis: 

H2: The difference in forward citations between patents in engineering-

based KETs and non-KETs is greater than the difference in forward 

citations between science-based KETs and non-KETs. 

In the following section, the methodological strategy to analyze the hypotheses is 

introduced. 

3. Data and Methods 

3.1. Data 

To assess the assumptions on the diffusion of KETs, the present study uses 

patent data, matched with organization-level and regional-level data. I consider patent 

applications to the European Patent Office (EPO) from applicants located in Germany 

(German applicant address). The dataset is constructed with data from six major data 

sources and contains information on the patent applications including information on the 

applicant and the region where the applicant is located. First, I retrieve regionalized 

patent data from the OECD Regpat database as well as patent data from the OECD 

Patent Quality Indicators database (both August 2023 version). Then I enrich the dataset 

with data on the applicant organizations retrieved from two databases of Bureau van Dijk 

(BvD), namely Orbis IP and Orbis8. As it is common to consider the patent family level 

instead of single patent applications (e.g., Kopka and Fornahl 2024), I additionally join 

the patent family IDs (docdb_family_id) on the dataset. The family IDs were obtained 

from PATSTAT (2020 version), the patent database by the EPO, using the patents’ 
application ID. Finally, I query regional data from the German Regionaldatenbank9 for 

the regions where patent applicants are located and merge them on the dataset (via the 

applicant’s region ID). After omitting all observations with missing values, the final 
dataset comprises 4,244 applicants from Germany and 36,886 patent families, among 

these 3,331 (9%) assigned to KETs. Table 1 presents information about the patent 

families considered, whereas the variables of interest are introduced in the following 

section. 

 
 
8 I use the application ID to retrieve the applicants‘ BvD ID, with which I then query data on the 

organizational level in Orbis and Orbis IP. 
9 The regional database by the German federal and state statistical offices (www.regionalstatistik.de) 



9/61 
 

#2403 Bremen Papers on Economics & Innovation 

 
The influence of key enabling technologies on technological innovation 

 

Table 1: KET-specific counts and shares of patent families in the dataset. 

Technologies 
Patent 
families 

Share in all 
patent fam. 

Non-KETs 33,535 91% 
All KETs (aggreg. level) 3,331 9% 
AMTs 1,476 4% 
Photonics 985 3% 
Industrial Biotechnology 667 2% 
Adv. Materials 349 1% 
Nanotechnology 100 0.3% 
MNE 73 0.2% 
All 36,886 100% 

3.2. Variables 

To analyze the research question, I first perform a propensity score matching (as 

described in the following Section 3.3 and Appendix 2) in which KET patents are paired 

with non-KET patents that originated in comparable contexts. This procedure ensures 

the comparability between KET patents and non-KET patents in the analysis of forward 

citations. In the next step, I compare the influence of patents of these two groups on 

subsequent innovation and calculate negative binomial regression models with clustered 

standard errors. In the following subsection the variables for the matching and for the 

analysis of the diffusion of KETs are retrieved from the dataset described above, or 

created based on it. 

3.2.1 Patent level variables 

As patent citations are commonly used in the literature to proxy technological 

impact (e.g., Jaffe et al. 1993; Trajtenberg et al. 1997; Castaldi et al. 2015), I use forward 

citations to capture the impact of KETs and non-KETs. I investigate whether KET patents 

receive more citations than non-KET patents within seven years of publication10. The 

citation count of each patent application (based applications to the EPO) is the focal 

variable and is directly retrieved from the OECD Patent Quality Indicators database11. 

For the analysis the patent citations are aggregated at the patent family level (agg_cits7) 

and the variable is log-transformed (log_agg_cits7). Prior to the transformation, a 

constant of 1 is added to the citation count, in order to handle patents with 0 citations. 

As the PATSTAT 2020 version is used to query the patent family IDs and because the 

data quality tends to drop towards the end of the period covered by the PATSTAT 

database, I select patents with priority application years 2009 and 2010. Due to the 

 
 
10 The publication usually takes place 18 months after the application (Squicciarini, Dernis and Criscuolo 
2013). 
11 Including self-citations, because they can be even more valuable than citations by others (Hall, Jaffe and 
Trajtenberg 2005; Squicciarini, Dernis and Criscuolo 2013). 
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seven-year time lag between publication and forward citation count, this approach 

ensures a more reliable citation count compared to counting citations of patents filed 

later. 

3.2.2. Technology level variables and identifying KET patents 

Following previous studies (e.g., Wessendorf et al. 2024), KET patents are 

identified via codes12 of the international patent classification (IPC) assigned to the 

patents, as provided by van de Velde et al. (2012). Due to their broad and horizontal 

nature, the individual KETs share some ‘natural overlaps’ (Larsen et al. 2011; van de 

Velde et al. 2012; Butter et al. 2014). To account for this, KET patents are identified at a 

very fine-grained level by using full-digit IPC codes (e.g., Wessendorf and Grashof 2023). 

If a patent lists one IPC code assigned to a KET, this patent is considered a KET patent 

(one patent can be assigned to multiple KETs). Binary variables are constructed that 

indicate whether a patent is a KET-patent (1) or not (0): once at the aggregate level 

(isKET) and also for every individual KET (is[abbrev. KET name])13. Non-KET patents 

are patents that cannot be assigned to any of the six KETs. Furthermore, each patent is 

assigned to one broader technology field classified by Schmoch (2008).  

3.2.3. Organizational level variables 

To proxy collaborations and knowledge exchange, I consider the average 

applicant share of the patents in each patent family14 (av_app_share). Since an 

organization’s age can affect its innovation behavior (Huergo and Jaumandreu 2004), I 

calculate the age of each applicant organization’s at the time of priority application 
(org_age), based on the organization-level data from Orbis. Also an organization’s size 
can affect R&D investments, R&D success, and thus an organization’s innovation and 
patenting behavior (e.g., Acs and Audretsch 1990; Arant et al. 2019). To include the 

applicant organizations’ sizes in the analysis, I consider the size class of the organization 
as provided by Orbis, based on the number of employees, operating revenue and assets 

(size_class). This variable is ordinal scaled with four ranks (‘small’, ‘medium’, ‘large’, 
‘very large’)15. Furthermore, I use the number of publications of the applicant 

organization16 as a proxy for the organizations’ innovativeness and their experience in 

 
 
12 The full list of codes is provided in Appendix 8. 
13 isKET = KET (aggregate level), isAMT = Advanced Manufacturing Technologies (AMT), isAM = 
(Advanced Materials), isIB = (Industrial Biotechnology), isMNE = (Micro- and Nanoelectronics, including 
semi-conductors), isNT = (Nanotechnology), isPT = (Photonics) 
14 av_app_share is computed as the sum of the applicant shares of all applications within one patent 
family, divided by the number of applications in the patent family. 
15 Size classification in Orbis, according to the user guide (organizations need to meet at least one of the 
following criteria):  
Very large: Operating revenue >= 100 mil. EUR, employees >= 1000, total assets: 200 mil. EUR / Large: 
Operating revenue >= 10 mil. EUR, employees >= 150, total assets: 20 mil. EUR, not very large / Medium: 
Operating revenue >= 1 mil. EUR, employees >= 15, total assets: 2 mil. EUR, not (very) large / Small 
companies: not included in any of the above categories 
16 As Orbis only provides the count of an organization’s publications from 2015 on, I create a proxy by 
using the organizations’ mean publication number of the five-year period 2015-2019. 
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applying for patents (pubs_org). In addition, I include 4-digit NACE17 codes18 to assign 

the patents’ applicant organizations to economics sectors (NACE). 

Additionally, since external knowledge can play an important role in recombinant 

innovation processes (e.g., Miguelez and Moreno 2018; Hesse and Fornahl 2020), I 

consider whether an organization’s ownership structure displays direct international ties 
in the patent application year. A binary variable19 (struct_mn) indicates whether this is 

the case (1) or whether it is unclear (0). Even though the variable does not contain 

comprehensive information on multinational enterprises, it is a is good proxy to include 

at least a parts of them as such. 

3.2.4. Regional variables 

Based on the applicants’ addresses, all patents are regionalized at the level of 
141 German labor market regions (LMR), as defined by Kosfeld and Werner (2012). 

LMRs are functionally defined and larger than NUTS3- but smaller than NUTS2-regions. 

They consider commuter traffic and thus account for the fact that human capital, in which 

knowledge is embedded, often is attracted to the location of work from a wider 

geographic area that exceeds the administrative boundaries of the municipality where 

the occupation is located (Kosfeld and Werner 2012). At the LMR level I compute the 

average annual population density (popdens) for the time period 2008-201120 to proxy 

agglomeration economies and knowledge spillovers. To consider the regional absorptive 

capacity (Cohen and Levinthal 1990) and regional human capital in general that may 

have affected the generation of the patents in the dataset, I use the number of employees 

with an academic degree and calculate the logged average for each LMR in the time 

period 2008-2011 (log_acad_empl).  

3.2.5. Variables’ summary statistics 

Prior to the next step, all observations with missing values in any of the variables 

are removed. The descriptive statistics of the relevant variables, including a brief 

description, are reported in Appendix 1. In summary, the dataset is very heterogeneous. 

 
 
17 NACE = Nomenclature générale des activités économiques dans les Communautés 
Européennes“ (Statistical Classification of Economic Activities in the European Community) 
18 NACE rev. 2 
19 It would have been desirable to instead include a dummy variable in the analysis that indicates whether 
an organization is a multinational enterprise or not. Unfortunately, the Orbis database contains only the 
most up-to-date ownership information (from 2024) and regarding ownership information, only shareholder 
data is available for 2009 and 2010. Thus, I simply assess direct shareholders and subsidiaries (as far as 
possible) and complement the available information by data on the global ultimate owners (GUOs) of the 
patent applicants. In the first step, I analyze which applicant organizations had shareholders that were 
located in foreign countries in 2009 or 2010. In the second step, I retrieve a list of subsidiaries (as of 2024) 
for the applicants and identify all foreign subsidiaries, of which an applicant of my dataset was a 
shareholder in 2009 or 2010. This way, at least a part of companies with multinational activities can be 
identified. Finally, I retrieve a list of the applicants’ GUOs from Orbis (as of 2024). With the help of data on 
mergers and acquisitions (M&A) I filter for those applicants that have a foreign GUO that has not been 
subject to any M&A transaction since the focal time period of 2009/2010. 
20 By choosing the time period 2008-2011, I consider one year before and one year after the focal period to 

reduce the risk of data distortion by outlier values in the focal period.  
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The patents in the dataset tend to be from regions with academics, while for example 

the population density and the organization’s age vary on a broad range. 

3.3. Methodological strategy 

Before assessing whether there is a difference in the citation frequency between 

KET patents and non-KET patents, I conduct a propensity score matching (PSM), which 

is a common method to estimate treatment effects by enabling causal inference without 

requiring too many underlying assumptions (Ho, Imai, King and Stuart 2007; Abadie and 

Imbens 2016; Leusin 2022; Cantner, Grashof, Grebel and Zhang 2023). I consider KET 

patents to be ‘treated’ patents and non-KET patents as the control group, thus matching 

KET patents to non-KET patents that emerged in a comparable context. While this 

procedure leads – disadvantageously – to information losses21, it – very advantageously 

– creates a balanced dataset for the further analysis (Rosenbaum and Rubin 1983; 

Leusin 2022; Cantner et al. 2023). In the PSM, I consider the binary KET variables for 

the assignment to the treatment and control groups and the following covariates, 

introduced in Section 3.2: av_app_share, org_age, size_class, pubs_org, NACE, 

struct_mn, pop_dens, log_acad_empl and schmoch. Depending on the individual 

variable, I either choose a direct match or a match via the nearest neighbor algorithm. 

Further details and background information on the PSM is provided in Appendix 2. 

As the control group is much larger than the treatment group, I set the matching 

ratio to 1:2 for KETs at the aggregate level, meaning that one KET patent is matched to 

up to two control patents22. In the second step of the analysis, I split the treatment group 

of KETs into six subgroups of the individual KETs. Only subgroups that account for at 

least 1% of the number of control patents are included in the analysis (arbitrary 

threshold). As the number of patents in nanotechnology and in MNE is below this 

threshold23, both are excluded from the analysis. Since the four remaining KET 

subgroups are much smaller than the aggregate KET treatment group, the matching 

ratio24 here is set to 1:5. Appendix 3 shows the sample sizes and Appendix 4 reports the 

statistics of the treatment groups and the control group before and after the matching for 

both parts of the analysis (aggregate and individual KET level), indicating a strong 

balance improvement. 

To further assess the quality of the matching and to control whether statistically 

significant differences exist between the samples after the matching, I compare the 

variances through running an F-test on the pre-matching and post-matching samples, 

 
 
21 Information (patents, in the present case) too distant from their counterfactuals are not considered (e.g., 
Leusin 2022). 
22 A robustness check is performed with matching ratios 1:1 and 1:5, the results show consistency in the 
balance after the matching. 
23 Micro- and Nanoelectronics (MNE):73 observations, Nanotechnology: 100 observations  
24 A robustness check is performed with matching ratios 1:1 and 1:10 for individual KETs and 1:1 and 1:5 
for aggregate KETs. The results show consistency in the balance after the matching. 
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for each variable that is matched via nearest neighbor matching. The F-tests indicate a 

strong balance improvement and are reported in detail in Appendix 5. 

To gain a more detailed view of citation patterns of the KET group and the non-

KET group, for each group the patents are allocated in deciles that are created based on 

the group-specific citation counts. For this, the datasets resulting from the PSM are used. 

Since KETs can be matched to multiple non-KETs, the mean of the logged citation 

counts is computed for the non-KET patents in each matched group. The non-KET 

deciles then are created based on the mean values of non-KETs, which also serve as 

the basis for a further comparison between KETs and non-KETs. Two indicators are 

employed for the analysis: For each decile, a) the average logged citation count per 

group is computed and b) the maximum logged citation counts per group is considered. 

Finally, a series of negative binomial regression models with clustered standard 

errors is calculated. The negative binomial approach is chosen because the dependent 

variable exhibits overdispersion. The standard errors are clustered at the patent family 

level (docdb_family_id), since a single patent can occur multiple times in the dataset, for 

instance when it has more than one applicant and the applicants are located in different 

regions or belong to a different size class. As it is common that many patents do not 

receive citations (Squicciarini, Dernis and Criscuolo 2013), only patents that are cited 

are considered in the regression analysis. The number of citations (agg_cits7) serves as 

the dependent variable while in each model one of the KET dummies is employed as 

explanatory variable (isKET_dum, isAMT_dum, etc.). Additionally, the models control for 

the following variables introduced above (mostly logged): log_popdens, log_acad_empl, 

log_org_age25, size_class, log_pubs_org, log_av_app_share, and struct_mn. The 

results are presented and discussed in the following section. For each model the 

variance inflation factor (VIF) is computed and the results raise no concern for 

multicollinearity issues. The descriptive statistics for each regression dataset are 

provided in Appendix 7. 

4. Results 

4.1. Descriptive statistics 

Propensity score matching facilitated the comparison of citation counts between 

KET and non-KET patents by matching on the basis of criteria relevant to the generation 

of (KET) patents and by balancing the dataset (see Appendix 4). The descriptive 

statistics on the number of patent citations26 provide an overview on the citation 

frequencies of KETs and non-KETs (see Table 2). Both groups display highly right-

skewed distributions, as many patents receive few or no citations (the median of the 

 
 
25 To manage outliers, organizations older than 150 years (arbitrary threshold) are assigned an age of 151 

years. 
26 Note that the logged number of forward citations is considered. 



14/61 
 

#2403 Bremen Papers on Economics & Innovation 

 
The influence of key enabling technologies on technological innovation 

logged citation count is 0 for KET patents and non-KETs). The skewness is higher for 

KET patents (1.61) than for non-KETs (1.47), as also indicated by the higher mean 

(KETs: 0.54 non-KETs: 0.47) and the higher maximum (KETs: 4.94, non-KETs: 4.09). 

The variation is larger for KETs. The identical third quartile for KETs and non-KETs (0.69) 

indicates that the higher average citation count of KETs is due to fewer patents with 

higher counts. Furthermore, the mean values show that KETs receive more citations on 

average than non-KETs. 
 

Table 2: Summary statistics of logged forward citation count per KET. 

 

Also at the individual KET level, the summary statistics reveal very right-skewed 

distributions and a high variability that even exceeds the mean in most cases. No 

citations occur in the first half of observations, with the exception of advanced materials, 

where the control group counts a few citations at the first quartile and both groups have 

a median greater than 0 (higher for advanced materials). While the descriptives differ 

between the four analyzed KETs, they all have higher mean values than their control 

groups, likely due to their higher maximum forward citation counts. Surprisingly, AMTs 

differ from the remaining KETs as their control group has a higher citation maximum 

(although the mean citation count is slightly higher for AMTs than for the control group). 

4.2. Decile-based analysis 

In order to obtain more detailed observations than is possible at the quartile level, 

the analysis is further carried out at the level of citation-based deciles (to which the 

patents are assigned as described in Section 3.327). Figures 1a-1c show the comparison 

of the mean citation count and the maximum citation count within each decile. Extending 

the insights from the previous sub-section (4.1), no citations are observed in the lowest 

deciles for any group and only non-KET patents are cited in the lower deciles (non-KETs 

receive citations 2-3 deciles earlier than KETs). In the upper deciles, KETs show higher 

citation counts than non-KETs, in most cases. 
 

 
27 Appendix 6 provides an additional way of decile creation, based on the citations of KETs in matched 

groups.   

KET Group Min. 1st 
Qu. 

Med. Mean 3rd 

Qu. 
Max. SD Skew- 

ness 

KETs  
(agg. Level) 

treatment 0 0 0 0.54 0.69 4.94 0.71 1.61 

control 0 0 0 0.47 0.69 4.09 0.65 1.47 

AMTs 
treatment 0 0 0 0.48 0.69 3.13 0.64 1.32 

control 0 0 0 0.46 0.69 4.45 0.65 1.59 

Advanced 
Materials 

treatment 0 0 0.69 0.61 1.1 3.43 0.66 1.06 

control 0 0.23 0.5 0.59 0.86 2.56 0.67 0.97 

Industrial 
Biotech 

treatment 0 0 0 0.55 0.69 4.94 0.85 2.15 

control 0 0 0 0.52 0.80 4.03 0.71 1.44 

Photonics 
treatment 0 0 0 0.59 1.1 4.09 0.75 1.52 

control 0 0 0 0.42 0.69 2.89 0.58 1.24 
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At the individual KET-level, the clearest difference between KETs and the non-

KETs control group exists in the case of photonics. While patents in this KET receive no 

forward citations in the lower five deciles, the upper five deciles suggest that photonics 

patents are cited more frequently than non-KETs. Advanced materials display 

differences to non-KETs and the pattern is related to the pattern in photonics but the 

differences between advanced materials and the control group is less pronounced. 

Industrial biotechnology is characterized by rather small differences to non-KETs in the 

upper deciles, both regarding the maximum citation count and the mean citation count. 

As already indicated in the previous sub-section, AMTs are a special case: while their 

mean citation count is higher than for non-KETs in the top four deciles, the non-KET 

group accounts for the highest citation number in the tenth decile. Regarding other 

deciles in the upper half, AMTs are only (slightly) more impactful in deciles 6, 8, and 9. 

The findings generally reveal that fewer KET patents receive citations than non-

KET patents, while those that are cited tend to be cited more frequently. Thus, the next 

step of the analysis in the following subsection focuses on the question whether among 

the cited patents a KET-status influences the citation frequency.  
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Figure 1a: Mean logged citation count and maximum logged citation count across deciles for KETs at the aggregate level, compared to non-KETs. 
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Figure 1b: Mean logged citation count across deciles per technology group. 
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Figure 1c: Maximum logged citation count per decile and technology group 
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4.3. Regression analysis 

In the next step, a series of negative binomial regression models with clustered 
standard errors is computed. The results show that, at the aggregate level, being a KET 
is associated with a statistically significant positive influence on the forward citation 
count. This aligns with the findings from the earlier descriptive analysis. Moreover, this 
effect seems to be particularly driven by photonics, where the KET status has a highly 
significant positive influence on forward citations. Additionally, also industrial 
biotechnology exhibits a statistically significant positive effect. In contrast, the KET status 
of advanced materials patents shows no influence on the citation frequency. While the 
descriptive overview (Section 4.1), surprisingly, suggested that AMTs are a special case 
(given their control group’s maximum citation frequency is higher), the analysis now 
provides additional evidence regarding the particularity of this group. Here, AMTs are 
found to be associated with a statistically significant negative impact on forward citations, 
meaning that AMTs lead to fewer forward citations than their control group of non-KETs. 

The control variables included in the regression do not have a consistent 
statistically significant impact across the different KETs. In many cases, their observed 
effects are outside the significance thresholds, but including them in the models 
increases the model fit (McFadden’s-R²). The variation in the effects of the control 
variables may stem from differences in sample sizes variations in the characteristics of 
the individual KETs. 
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Table 5: Results of negative binomial regression models (clustered standard errors in parentheses). 

 Dependent variable: 
 agg_cits7 
 (1) (2) (3) (4) (5) 

isKET_dum 0.163*     

 (0.093)     

isAM_dum  -0.034    

  (0.149)    

isAMT_dum   -0.165*   

   (0.087)   

isIB_dum    0.471**  

    (0.238)  

isPT_dum     0.484*** 
     (0.120) 

log_popdens 0.039 -0.048 0.062 -0.040 0.176** 

 (0.052) (0.089) (0.072) (0.093) (0.075) 

log_acad_lmr_avg 0.040 0.074 0.013 0.192 -0.064 

 (0.051) (0.111) (0.057) (0.127) (0.070) 

log_av_app_share -0.088 0.491 -0.644** 0.191 0.507** 

 (0.226) (0.435) (0.265) (0.376) (0.234) 

log_org_age -0.012 0.074 -0.067 0.073 0.074* 

 (0.044) (0.046) (0.044) (0.120) (0.044) 

log_mean_pub_nr 0.072*** 0.006 0.027 0.030 0.063** 

 (0.026) (0.026) (0.024) (0.079) (0.027) 

struct_MN -0.011 -0.077 0.034 -0.038 0.148 

 (0.077) (0.137) (0.085) (0.255) (0.100) 

size_class: medium 0.299 0.608 -0.034 -0.236 0.386 

 (0.337) (0.524) (0.167) (0.493) (0.343) 

size_class: small -0.098 -0.115 -0.099 -0.268 0.347* 

 (0.238) (0.243) (0.208) (0.530) (0.196) 

size_class: very_large -0.240 0.287 0.024 -0.891* -0.077 

 (0.224) (0.220) (0.137) (0.507) (0.143) 

Constant 0.229 0.072 0.475 -0.247 -0.410 

 (0.530) (0.918) (0.503) (1.443) (0.515) 

McFadden's R² 0.34 0.319 0.364 0.333 0.385 

Observations 2,167 462 1,379 433 994 

Log Likelihood -4,783.140 -966.500 -2,914.551 -1,053.563 -1,997.857 

theta 
1.506*** 
(0.060) 

2.214*** 
(0.230) 

1.852*** 
(0.102) 

1.168*** 
(0.092) 

2.341*** 
(0.168) 

Akaike Inf. Crit. 9,588.280 1,955.000 5,851.102 2,129.126 4,017.714 

Note: *p**p***p<0.01 
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5. Discussion 

In the following, the results presented in Section 4 are discussed. While the 

expectations towards KETs are high, the results draw a mixed picture of their influence 

on subsequent innovation. In summary, the influence rather concentrates on fewer but 

more impactful patents. Moreover, the actual impact substantially varies across the 

individual KETs. 

5.1. Aggregate KET level 

At the aggregate level, KETs exhibit a higher mean citation count than the non-

KETs control group, suggesting they play a more influential role in innovation processes 

than non-KETs. This finding is complementary to previous studies that focus on the 

innovation-spawning role of KETs (e.g., Montresor and Quatraro 2017; Wessendorf and 

Grashof 2023; Wessendorf et al. 2024), supporting H1 to a certain extent. However, a 

closer look reveals that in both groups of KETs and non-KETs normally not all patents 

generate a measurable impact, as proven by the number of patents with zero citations. 

While it is common for many patents to remain uncited (Squicciarini et al. 2013), 

interestingly even fewer KET patents are cited than non-KETs – indicating that fewer 

KET-based innovations are highly relevant in subsequent innovation processes. On the 

other hand, if KET-based innovations make an impact, it can be greater than the 

influence of non-KET innovations. When excluding patents with zero citations from the 

analysis, i.e. when only considering patents that influence innovation processes, the 

empirical results from the regression analysis suggest that KETs, at the aggregate level, 

are more influential than non-KETs. Given the results from the different steps of the 

analysis, in summary partial support for H1 is found and the findings highlight that KETs 

can play a special role in innovation processes. 

KETs’ multi-disciplinarity and cross-cutting nature (European Commission 2009a; 

Aschhoff et al. 2010) enable them to establish links between different technological 

fields, making KETs central elements in recombinant innovation processes. This bridging 

function (Corradini and de Propris 2017), combined with the broad applicability of KETs 

(European Commission 2009b, 2009a; Larsen et al. 2011), may explain the stronger 

influence of KET knowledge in the observed cases: as a ‘bridge’ or knowledge interface, 
and in line with its GPT-like nature, KET knowledge becomes a central element in 

innovation processes as a ‘knowledge connector’. As such, it has the potential to appear 
in innovations more often than other (and less broadly defined) technologies, which is 

measured by the forward citations evaluated in the present analysis. Furthermore, KETs’ 
innovational complementarities trigger downstream innovation (Bresnahan and 

Trajtenberg 1995; Teece 2018) that potentially cite the upstream KET patent. However, 

the results raise the questions why not the majority of KET patents has a higher impact 

than non-KET patents and whether the bridging function of KETs might not be so 
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pronounced for all KETs and their subfields1. While the special properties of KETs can 

explain their positive effects on recombinant innovation (e.g., Montresor and Quatraro 

2017; Montresor et al. 2022; Wessendorf and Grashof 2023), and likely are foundational 

elements of KETs’ impact, they might also pose challenges. As outlined in Section 2, the 

innovation-spawning effect of KETs is partially rooted in their innovational 

complementarities. Consequently, the impact that KETs can unfold also depends on 

advancements in complementary technologies and the emergence of complementary 

innovation (Aschhoff et al. 2010). Thus, the fact that many KET patents remain uncited 

might not always be related to KETs themselves, but can be due to developments in 

other technology fields and application sectors instead. Advancements in KETs may not 

be able to be fully utilized and exploited when complementary technologies lack the 

necessary progress.  Regarding KETs’ bridging function, it is generally comparatively 

rare that very distant knowledge is getting linked during innovation processes 

(Verhoeven et al. 2016; Grashof et al. 2019). While KETs can support linking distant 

knowledge elements (Wessendorf and Grashof 2023), at the same time the opportunity 

to act as bridging technology may not be given that frequently. Another important 

obstacle is the so-called ‘valley of death’: as outlined by the EC, Europe is strong in KET 

knowledge but has difficulties with its commercialization (e.g. Aschhoff et al. 2010; Butter 

et al. 2015), which limits their impact as they cannot fully unfold their market potential 

(potentially hampering KETs diffusion and application, negatively impacting citations). 

Moreover, KETs are rather complex technologies and also products and value chains 

based on KETs are more complex (e.g., European Commission 2009a; van de Velde et 

al. 2012; Butter et al. 2014). In contradiction to KETs’ wide applicability, this might make 
it more difficult for KET knowledge to become incorporated in innovation processes in 

some cases, thus weakening the advantage of a wide applicability and leading to fewer 

citations. It also needs to be noted that not receiving a citation does not exclude the 

presence of an impact. When KETs are the basis for downstream innovation but are not 

part of the innovation themselves (see complementarities described in Section 2), or 

when certain knowledge elements in KETs are widely spread and become ‘common 
knowledge’ (as in the case of some GPTs), they exert an impact but may not be referred 
to in patents. Moreover, as Bresnahan (2010) outlines, particularly for young GPTs the 

diffusion may be slow in the beginning. This might also apply to (some) KETs, given that 

they are young technologies at different life cycle stages, and could impede their impact. 

Whereas, undoubtfully, further research is necessary to test these assumptions, the 

aspects above may explain the findings of fewer KET patents receiving forward citations. 

 
 
1 Examples for subfields of KETs: Laser technologies are subfields of photonics, synthetic biotechnology is 

a subfield of biotechnology (within this subfield, for instance CRISPR-Cas9 is a component/tool), 

lightweight alloys are a subfield of advanced materials. 
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5.2. KETs at the individual level 

At the level of the individual KETs2, it applies to all analyzed KETs that fewer 

patents exert an impact than non-KET patents. The greater impact of KETs, observed in 

the regression analysis at the aggregate level, only holds for photonics and industrial 

biotechnology (at higher significance levels), which are both more impactful than their 

non-KET control groups. This makes them the main drivers of the overall KET effect and 

science- and more application-oriented KETs cannot be distinguished based on the 

results, contrary to the initial presumption. Moreover, the results do not even permit to 

clearly group photonics with the other application-driven KETs (advanced materials or 

AMTs). Since AMTs even are negatively associated with citation frequency and no 

statistically significant effect of advanced materials is found, the underlying assumption 

of H2 that KETs consistently outperform other technologies does not hold. Given these 

recognitions, H2 clearly must be rejected.  

In comparison to AMTs and advanced materials, industrial biotechnology and 

photonics are more specialized, which could enhance their visibility when they have been 

adopted in industries and regions, resulting in higher citation frequencies. Additionally, 

given that both industrial biotechnology and photonics are related to fields identified as 

GPTs in the literature (Lipsey et al. 1998; Aschhoff et al. 2010), as described in Section 

2.1, they could be at higher maturity level than AMTs and advanced materials, 

influencing innovation processes as more established technologies. Furthermore, 

industrial biotechnology, which is science-based and builds more on codified knowledge 

(Wanzenböck et al. 2020) may ‘naturally’ be more outstanding in terms of forward 

citations, since codified knowledge is easier to refer to and patent activities may be more 

common in the field. Considerung AMTs, their special role contradicts the initial overall 

assumptions of a strong innovation-driving effect. However, their highly heterogeneous 

nature (e.g., Aschhoff et al. 2010; van de Velde et al. 2012) may cause the mixed results. 

On the one hand, their mean citation count in the four upper deciles exceeds the mean 

of the non-KET control groups, while on the other hand, the maximum citation count in 

the 10th decile is observed for non-KETs and the regression analysis reveals a negative 

effect. While, undoubtfully, further investigations on the role of AMTs and potential 

barriers are necessary here, several aspects may be relevant. First, knowledge in 

application-oriented technologies often is exchanged more informally (Wanzenböck et 

al. 2020). Hence, depending on the subfield, patent activities may be less common. 

Second, firms may choose to not patent innovations, for instance in order to not disclose 

strategically relevant knowledge to competitors, or because the available resources 

make filing a patent application seem inefficient. Third, while the decile analysis shows 

that some AMTs patents are more impactful than non-KET patents, other patents might 

rather represent incremental innovation, relating to improvements in specific 

manufacturing contexts, thus attracting less general attention. The absence of a 
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statistically significant effect in advanced materials could be due to similar aspects that 

are just not as pronounced as in the case of AMTs.  

5.3. KETs as heterogeneous technology fields 

Although the findings of the present study do not fully align with the proposed 

hypotheses, they are consistent with other studies in observing heterogeneous effects 

across the individual KETs (e.g., Montresor and Quatraro 2019; Wessendorf and 

Grashof 2023). Similar to previous research, the expected effects are found at the 

aggregate level but do not hold for all KETs when considering them separately. Antonietti 

et al. (2023) find, for instance, that KETs at the aggregate level increase the regional 

complexity of skills, tasks and occupations. At the disaggregate level, they only find 

effects of advanced materials and industrial biotechnology on the complexity of 

occupations though, and of AMTs and advanced materials on task and skill complexity. 

Wessendorf and Grashof (2023) observe, amongst others, a positive effect of KETs on 

radical innovation generation in firms, but at the disaggregate level this only holds for 

advanced materials, photonics, and (to a lesser extent) AMTs. Antonietti and Montresor 

(2021) show that, from the aggregate perspective, KETs can drive regional 

diversification. Regarding the individual KETs, only AMTs and advanced materials 

exhibit this effect. While the specific context and focus of these studies needs to be 

considered, it is important to note that they all derive their core assumptions from the 

horizontal and vertical enabling nature of KETs. Additionally, taking the results from 

previous studies into account, it is very context-specific for which of the KETs the 

expected enabling function under investigation is observed. Considering AMTs for 

example, the observed positive effect on regional diversification by Antonietti and 

Montresor (2021) may stem from cross-industry spillovers of this very broad KET. 

However, not all spillovers may lead to patent citations. Furthermore, process innovation 

in AMTs presumably is more difficult to patent/cite due to its tacit nature. While these 

findings and potential explanations highlight the importance for future research to 

consider the context in which KET patents are cited, it particularly reinforces the need 

for a granular approach to KETs. As emphasized in previous literature (Montresor and 

Quatraro 2017), KETs are at different stages of their life cycle, and the different subfields 

of individual KETs are probably at different technology readiness levels (TRLs), which 

potentially is another piece that contributes to the puzzle of observed differences in 

forward citations. Some KET-subfields might rather be in the emerging phase, being 

adopted slowly and not receiving many citations, while others are in the growth phase, 

rapidly diffusing and drawing attention towards them. While the results could also be 

owed to the broad and diverse nature of KETs, they raise the question whether it could 

be more effective to address sub-KETs instead of the complete individual KET-fields (for 

instance ‘enzymes’ or ‘biochemicals’ in the case of industrial biotechnology). In 

summary, the results of this study provide limited support for the idea of a high impact of 

KETs in general (European Commission 2009b, 2009a, 2012) and strongly call for a 

more granular investigation of KETs’ impact. 
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5.4. Future research directions 

While the heterogeneities in the results may be based on multifaceted underlying 

reasons, they highlight the need for further research with a more nuanced approach on 

the specific KETs, as previously advocated by other studies that also found differing 

effects of the individual KETs (e.g., Antonietti et al. 2023; Wessendorf et al. 2024). Why 

KETs are not always more impactful than non-KETs is beyond the scope of this study 

and raises several questions with opportunities for future research. While the link 

between the impact of KETs and their innovation-spawning role still needs to be explored 

in detail, it should particularly be investigated whether the special impact of KETs can 

emerge across the board of KETs or whether only certain subfields of the individual KETs 

drive the effects that are commonly associated with KETs. The latter may be one 

explanation for the heterogeneity in KETs’ effects – not only in the context of this study, 

but also for heterogeneities outlined by other studies (e.g., Antonietti and Montresor 

2021; Wessendorf and Grashof 2023; Wessendorf et al. 2024). Another interesting 

question for future research is whether a greater impact of certain KET patents rather is 

exerted horizontally, unfolding their bridging function (Corradini and de Propris 2017), or 

vertically, via innovational complementarities (Teece 2018). It also is essential to explore 

the influence of regional and firm-level characteristics on the relationship between KET 

status and forward citations, to find out whether factors at these level contribute to the 

diverse effects observed in this study. 

As a comparison of the life cycle stages of different KETs still is a blind spot in 

the literature and an own study for itself, further research on the impact and diffusion of 

KETs would benefit from including life cycle aspects. While the differences between the 

individual aspects may partially be explained by life-cycle-related aspects, the question 

is whether this also applies to the subgroup of KETs, or whether the intra-KET differences 

(few impactful patents, many patents without citations) are rather explained by other 

factors. Additionally, to provide general insights on the influence of KETs, this study’s 
approach is rather broad. Future research, however, should not only consider the origin 

of KET patents, but for in-depth insights the context in which KET patents are cited 

should be considered at the levels of organizations, industries, and regions.  
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6. Summary and Concluding Remarks 

6.1. Summary 

Despite the strong potential of KETs to influence a variety of innovation-related 

processes, it is under-researched whether KETs generally have a greater influence on 

innovation processes than non-KETs. In a first step towards closing this gap, the present 

study analyses whether KET patents have a greater influence on innovation processes 

than non-KET patents. Based on the special properties of the former, I assume that KETs 

are more impactful, while KET-specific differences are expected. Forward citations of 

patents are chosen as a proxy of the impact of patents and at the aggregate level, the 

results reveal indeed that KETs, on average, are more impactful than non-KETs. A closer 

look, however, shows that the impact is limited as actually fewer KET patents receive 

forward citations than non-KETs. Thus, the regression models employed in the analysis 

focus on the patents that receive citations, and show that patents comprising KET 

knowledge are associated with a higher forward citation frequency than non-KET 

patents. In other words, the impact of KETs is concentrated on a few but impactful 

patents: KETs do not always have a measurable or a strong impact compared to non-

KETs, but if they exert any impact, they have the potential to be more influential than 

non-KETs. However, even though potentially greater, the influence of KETs on 

innovation appears to be more limited and specific than it is the case for non-KETs. While 

I follow Wanzenböck et al. (2020) to roughly categorize KETs in science-driven and 

engineering-based technologies, the results of the present study do not permit any 

indications for this categorization based on KETs’ influence on innovation, contrary to 

my second hypothesis. 

Overall, the difference in citation frequency between KETs and non-KETs, when 

examined at the aggregate level, suggests that KETs can indeed be more important in 

recombinant innovation processes than non-KETs, even though this does not apply to 

the majority of KET patents. Furthermore, the findings indicate the complexity of the 

group of KETs, as the results are heterogeneous and partly deviate from the literature-

based assumptions. It appears that the innovation-driving function of KETs might not 

only depend on their GPT-features, but on context-specific aspects in combination with 

their special nature. Life-cycle related aspects, the availability of complementarities to 

utilize advances in KETs, knowledge characteristics and commercialization barriers 

could play a role and should be addressed in future studies.  

6.2. Limitations and further opportunities for future research 

Besides the aspects already indicated previously, further limitations of this study 

must be acknowledged that also offer opportunities for further research. First of all, the 

current approach does not allow to conclude on causal relationships. Second, the 

analysis is based on forward citations of patents. The use of patent data has its well-

known limitations, as for instance not all innovations are patented, and not all patents 
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are commercially utilized (Griliches 1990). Consequently, the effects of KETs might be 

underestimated, especially in fields where patenting is not common. Future research 

could be enriched by including alternative innovation indicators, and also alternative 

indicators to measure the impact of KET knowledge (e.g., by constructing knowledge 

spaces and employing indicators of social network analysis). Third, the matching 

approach limited the analysis of KETs to those KET patents that are, in selected aspects, 

comparable to non-KET patents. Many KET patents did not receive any match from the 

group of non-KET patents, which limits the generalizabilty of the findings. Thus, future 

research should also consider the origin of KET patents more closely and take into 

account that the special nature of KETs could potentially mean that KET patents originate 

in contexts that are not always comparable to non-KETs (making matching harder). 

Fourth, the generalizability is also limited by this study’s focus on the single country of 

Germany. While Germany is strong in KETs (Butter et al. 2014), each country might have 

different priorities and knowledge in KETs. At least an EU-wide focus should be 

implemented in future studies. Fifth, due to data limitations, only patents that were 

applied within a two-year period were considered. Subsequent research should consider 

longer time periods, if possible. Sixth, further studies could benefit from identifying other 

enabling technologies as well as GPTs among the group of non-KETs, to reduce the risk 

of comparing KETs to KET-like technologies. 

6.3. Contributions, implications and final remarks 

Despite these limitations, this study extends the literature on KETs’ effects by 
addressing their direct influence on innovation. First, while KETs are broad technology 

fields sharing similar core characteristics, the results particularly highlight their 

heterogeneity by showing that KETs’ impacts are not uniform and concentrate on a few 

highly impactful innovations within the individual KET fields. Second, further questions 

are raised that are central to gain a preciser understanding of KETs and the mechanisms 

underlying their effects. Third, the results particularly highlight the need for a critical 

assessment in which contexts KETs unfold an impact. To address them precisely in 

future research and policy-making, it must be analyzed in which settings KETs are 

generally impactful or whether only a handful of innovations and specific subfields of the 

individual KETs drive the effects commonly attributed to them. 

The findings also offer important policy implications. Policies and policy measures 

targeting KETs in the context of innovation, for instance in the form of investments in 

R&D, skills and infrastructure, must adopt a granular approach. While the results need 

further investigation to identify potential barriers for KETs’ influence in different settings, 

it is advisable to address KETs at least at the specific KET-level, if not even at the level 

of KET-subfields, and in the specific context in which KETs are supposed to unfold an 

impact. Once the KET subfields that extert a particularly strong impact on innovation 

activities are identified, innovation policies should promote their further development. 

Also for firms, the results suggest the need to prioritize subfields of the individual KETs 

that demonstrate a stronger impact on innovation. To enhance their innovation potential, 
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firms should assess which of these subfields align with their capabilities and markets to 

make targeted investments. 

Given the diverse results on KETs from other studies and the present insights, one 

should not only focus on the core commonalities between KETs but equally consider 

their breadth and distinguishing aspects. Nevertheless, this study also highlights the 

potential impact KETs can have - even though their influence is not as striking as 

expected.   
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Appendix 

Appendix 1: Descriptive statistics of the relevant variables 

Tables A1a through A1d report the descriptive statistics of the relevant variables. As is 

shown in the tables, the average population density (popdens) varies across a very wide 

range while the statistics suggest a few extreme outliers. Regarding the number of 

academic employees in the LMR where the patents in the dataset originated, the 

distribution has a slightly longer left tail, meaning there are some patents from regions 

with a comparatively low regional number of employees holding an academic degree, 

while the statistics show that the variation is generally moderate and most patents are 

rather from regions with more academics. As for the applicant share, it can be derived 

that some patent families on average have multiple applicants per patent. However, in 

at least 75% of the patent families in the dataset there is on average one applicant per 

patent (there can be different applicants within the family though). The mean number of 

publications pubs_org varies on a very wide range and is very right-skewed, with many 

organizations having few publications and few organizations achieving extreme values. 

The organization’s age at the time of patent application also varies on a wide range (from 
0 to 622 years), while one quarter of the organizations is at maximum 20 years old and 

half of the organizations 61 years or younger. The high maximum and the average that 

is slightly higher than the median suggest that a few outliers exist, which also increases 

the standard deviation. As the statistics for struct_mn, a binary variable, reveal, 30% of 

the organizations could be identified to have multinational ties in the application years 

2009 and 2010. The citation counts agg_cits7 and log_agg_cits7 are very right-skewed 

with excess zeros, meaning many patents receive no citations at all, while some patents 

receive many citations. This is in line with the general pattern that usually many patents 

are not cited (Squicciarini et al. 2013). The log-transformation of agg_cits7 leads to an 

improvement of the data quality for the analysis. The frequencies for the categorial 

variable schmoch are shown in Table A1b. All 35 technology fields by Schmoch (2008) 

are represented to varying extents. The observation frequency of the different 

expressions of size_class can be seen in Table A1c. Almost three quarters (74%) of the 

patents are applied for by very large organizations, followed by large organizations 

(13%). Medium sized-companies are only represented in 5% of the cases and small ones 

in 8%. Also the majority of NACE codes is represented. In summary, the dataset is very 

heterogeneous. 
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Table A1a: Summary statistics of numeric variables. 

 

Table A1b: Frequencies of occurences of the 35 individual technology fields (as defined by Schmoch 
2008) 

Schmoch Count % Schmoch Count % 

1 3,605 9.3 19 1,201 3.1 

2 455 1.2 20 707 1.8 

3 389 1.0 21 726 1.9 

4 583 1.5 22 28 0.1 

5 171 0.4 23 1,239 3.2 

6 991 2.5 24 539 1.4 

7 130 0.3 25 1,425 3.7 

8 793 2.0 26 1,688 4.3 

9 468 1.2 27 2,305 5.9 

10 2,004 5.1 28 655 1.7 

11 224 0.6 29 1,618 4.2 

12 729 1.9 30 1,100 2.8 

13 2,124 5.5 31 2,246 5.8 

14 1,307 3.4 32 3,456 8.9 

15 585 1.5 33 800 2.1 

16 762 2.0 34 1,038 2.7 

17 1,123 2.9 35 1,594 4.1 

18 172 0.4       

 

Table A1c: Observations of variable size_class. 

size_class Count % 

small 2,948 7.6 

medium 2,017 5.2 

large 5,067 13.0 

very_large 28,948 74.3 

 

 

  

 
Min. 1st Qu. Med. Mean 3rd Qu. Max. sd Skew- 

ness 
Popdens 39.0 1,764.5 4,912.7 4,435.6 6,690.4 11,075.4 2905.0 0.2 

log_acad_empl 7.2 10.3 11.3 11.1 12.0 12.4 1.1 -0.4 

org_age 0 20.0 61.0 73.1 124.0 622 55.1 0.6 

pubs_org 1.0 5.3 17.7 127.4 175.6 875.8 203.1 1.8 

av_app_share 0.1 1.0 1.0 0.96 1.0 1.0 0.1 -3.1 

struct_mn 0 0 0 0.3 1.0 1.0 0.5 0.8 

agg_cits7 0 0 0 1.2 1.0 194.0 3.5 18.2 

log_agg_cits7 0 0 0 0.5 0.7 5.3 0.6 1.5 
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Table A1d: Frequencies of 4-digit NACE codes in the main dataset. 
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Appendix 2: Brief summary on the propensity score matching (PSM)

In the first step of a PSM, a treatment group (comprising units that received a 

certain treatment) and a control group (units that did not receive the treatment) are 

defined. Then a propensity score is computed for all observations. It indicates the 

probability of receiving the treatment, based on certain covariates that are considered in 

the analysis3 (Rosenbaum and Rubin 1983). Even though the values between covariates 

may differ, they might have similar propensity scores, which facilitates their comparison 

(Abadie and Imbens 2016). Subsequently, treated units are matched to untreated units, 

while the aim is to match statistical twins (i.e., those units with a similar propensity score). 

As described in Section 3.3, I consider KET patents to be ‘treated’ patents and non-KET 

patents as the control group, thus matching KET patents to non-KET patents that 

emerged in a comparable context. On the one hand, this procedure leads to information 

losses. On the other hand, it balances the dataset for the subsequent steps (Rosenbaum 

and Rubin 1983; Leusin 2022; Cantner et al. 2023). Hence, a PSM comprises a trade-

off between the amount of excluded observations and a sufficiently small distance 

between the treated and untreated units, in order to reduce bias in the subsequent 

analyses (Caliendo and Kopeinig 2008; Leusin 2022). 

To perform the matching, I use the software R’s MatchIt library (Ho, Imai, King 

and Stuart 2011). The binary KET variables are used for the assignment to the treatment 

group and the following variables, introduced in Section 3.2, are considered: 

av_app_share, org_age, size_class, pubs_org, NACE, struct_mn, pop_dens, 

log_acad_empl and schmoch. The propensity score is estimated with a glm model. While 

direct matches are assigned for schmoch, nace, class_size, av_app_share, and 

struct_mn, the nearest neighbor matching algorithm is applied for the remaining four 

covariates (e.g., Rosenbaum and Rubin 1983; Caliendo and Kopeinig 2008; Ho et al. 

2011; Abadie and Imbens 2016), meaning that for these variables the matching is 

conducted based on the smallest distance on the propensity scores between treated and 

untreated units (Ho et al. 2011). The distance basically represents the difference 

between the matched units (e.g.,Leusin 2022). To ensure a certain degree of similarity 

and to obtain a good matching quality, I prevent the matching of too distant pairs by 

defining a caliper of 0.1. The caliper limits the number of standard deviations of the 

distance between the units in the matched pairs (Caliendo and Kopeinig 2008). Appendix 

3 reports the sample sizes after the PSM and Appendix 4 provides the balance 

comparison before and after the matching for the four individual KETs under investigation 

and for KETs at the aggregate level. 

  

 
 
3 “The propensity score is the conditional probability of assignment to a particular treatment given a vector 
of observed covariates” (Rosenbaum and Rubin 1983, p. 41) 
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Appendix 3: Sample sizes after propensity score matching (PSM) 

 
Table A3: Sample sizes after propensity score matching. 

Variable Sample All Matched Unmatched 
Percent 
matched 

isKET 
treated 3,623 1,872 1,751 52 

control 35,357 2,978 32,379 8 

isAM 
treated 385 197 188 51 

control 35,357 677 34,680 2 

isAMT 
treated 1,597 848 749 53 

control 35,357 2,379 32,978 7 

isIB 
treated 726 291 435 40 

control 35,357 696 34,661 2 

isPT 
treated 1,073 651 422 60 

control 35,357 1,674 33,683 5 

isMNE 
treated 78 

excluded from matching 
(due to small sample size of treatment 

groups) 

control 35,357 

isNT 
treated 112 

control 35,357 
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Appendix 4: Balance overview before and after propensity score matching (PSM)

Tab. A4a: Matching results for KETs at the aggregate level, including balance improvements. 

Variable Sample 
Means 
treated 

Means 
control 

Std. Mean 
Diff. 

Std. Mean Diff. 
Balance 

improvement (%) 
Var. Ratio 

Var. Ratio 
Balance 

improvement (%) 

Std. Pair 
Dist. 

distance 
unmatched  0.0963  0.0926 0.1992 

99.8 
1.0916 

98.6 
- 

matched  0.0958 0.0958 0.0005 0.9988 0.0023 

popdens 
unmatched 4848.5843 4393.2721 0.1532 

96 
1.0541 

39.6 
- 

matched 5312.9224 5357.5541 -0.0150 1.0323 0.0281 

log_acad_empl 
unmatched 11.1229 11.0712 0.0501 

93.2 
0.8704 

97.0 
- 

matched 11.2793 11.2955 -0.0157 1.0042 0.0489 

org_age  
unmatched 69.9429 73.4002 -0.058 

64 
1.1920 

89.8 
- 

matched 82.5139 83.9100 -0.0234 1.0180 0.0339 

pubs_org  
unmatched 125.6776 127.5918 -0.0096 

73.3 
0.9502 

69.0 
- 

matched 145.4607 140.5333 0.0248 1.0160 0.0406 

av_app_share 
unmatched 0.9159 0.9612 -0.2370 

64.5 
1.9570 

100 
- 

matched 0.9386 0.9386 0 1.0002 0 

schmoch 
unmatched 13.9244 20.5932 -0.7767 

100 
0.6269 

100 
- 

matched 13.5668 13.5668 0 1.0002 0 

size_class: large  unmatched 0.1341 0.1296 0.0134 
100 

- 
- 

- 

matched 0.0796 0.0796 0 - 0 

size_class: medium   
unmatched 0.0729 0.0496 0.0896 

100 
- 

- 
- 

matched 0.0224 0.0224 0 - 0 

size_class: small   
unmatched 0.0916 0.0740 0.0612 

100 
- 

- 
- 

matched 0.0913 0.0913 0 - 0 

size_class: very large   
unmatched 0.7014 0.7469 -0.0995 

100 
- 

- 
- 

matched 0.8066 0.8066 0 - 0 

NACE   
unmatched 4249.3765 3927.8852 0.1416 

100 
1.351 

99.9 
- 

matched 4058.8541 4058.8541 0 1.0002 0 

struct_mn  
unmatched 0.2744 0.3198 -0.1019 

100 
- 

- 
- 

matched 0.3184 0.3184 0 - 0 
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Tab. A4b: Matching results for photonics, including balance improvements. 

Variable Sample 
Means 
treated 

Means 
control 

Std. Mean 
Diff. 

Std. Mean 
Diff. Balance 
improvement 

(%) 

Var. Ratio 

Var. Ratio 
Balance 

improvement 
(%) 

Std. Pair 
Dist. 

distance 
unmatched 0.0333 0.0293 0.3925 

99.8 
0.8581 

99.8 
- 

matched 0.0329 0.0329 0.0007 0.9996 0.0032 

popdens 
unmatched 3944.4611 4393.2721 -0.1763 

93.5 
0.7730 

85.2 
- 

matched 4313.1376 4284.1197 0.0114 0.9625 0.0268 

log_acad_empl 
unmatched 11.2109 11.0712 0.1232 

99.6 
1.0499 

70.4 
- 

matched 11.3702 11.3697 0.0004 0.9857 0.0207 

org_age  
unmatched 66.1761 73.4002 -0.1412 

74.2 
0.8770 

67.3 
- 

matched 75.9098 77.4915 -0.0364 1.0438 0.0316 

pubs_org  
unmatched 121.0422 127.5918 -0.0303 

-24.6 
1.1248 

84.6 
- 

matched 113.5257 121.6891 -0.0378 0.9820 0.0313 

av_app_share 
unmatched 0.9055 1.0453 -0.2786 

100 
1.4718 

99.9 
- 

matched 0.2947 0.2947 0 1.0006 0 

schmoch 
unmatched 6.9879 20.5932 -1.7676 

100 
0.5038 

99.9 
- 

matched 7.6390 7.6390 0 1.0006 0 

size_class: large  
unmatched 0.1761 0.1296 0.1223 

100 
- 

- 
- 

matched 0.1290 0.1290 0 - 0 

size_class: medium  
unmatched 0.0643 0.0496 0.0600 

100 
- 

- 
- 

matched 0.0200 0.0200 0 - 0 

size_class: small   
unmatched 0.1249 0.0740 0.1540 

100 
- 

- 
- 

matched 0.1167 0.1167 0 - 0 

size_class: very large   
unmatched 0.6347 0.7469 -0.2330 

100 
- 

- 
- 

matched 0.7343 0.7343 0 - 0 

NACE   
unmatched 4114.4809 3927.8852 0.0863 

100 
1.2253 

99.7 
- 

matched 4103.3886 4103.3886 0 1.0006 0 

struct_mn  
unmatched 0.1594 0.3198 -0.4389 

100 
- 

- 
- 

matched 0.1736 0.1736 0 - 0 
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Tab. A4c: Matching results for advanced materials, including balance improvements. 

Variable Sample 
Means 
treated 

Means 
control 

Std. Mean 
Diff. 

Std. Mean Diff. 
Balance 

improvement 
(%) 

Var. Ratio 

Var. Ratio 
Balance 

improvement 
(%) 

Std. Pair 
Dist. 

distance 
unmatched 0.0126 0.0108 0.3352 

100 
1.5816 

99.3 
- 

matched 0.0142 0.0142 -0.0001 1.0032 0.0006 

popdens 
unmatched 4951.2915 4393.2721 0.1739 

97.1 
1.2290 

95.9 
- 

matched 5992.6375 6009.0366 -0.0051 1.0085 0.0055 

log_acad_empl 
unmatched 10.9324 11.0712 -0.1448 

95.4 
0.7494 

92.2 
- 

matched 11.0709 11.0771 -0.0065 0.9796 0.0068 

org_age  
unmatched 76.0156 73.4002 0.0410 

92.1 
1.3616 

94.7 
- 

matched 93.5787 93.7841 -0.0032 1.0166 0.0168 

pubs_org  
unmatched 136.8291 127.5918 0.0431 

97.5 
1.1102 

96.3 
- 

matched 168.8868 169.1179 -0.0011 1.0038 0.0021 

av_app_share 
unmatched 0.9574 0.9612 -0.0259 

100 
1.1733 

98.2 
- 

matched 0.9822 0.9822 0 1.0028 0 

schmoch 
unmatched 20.3792 20.5932 -0.0303 

100 
0.4253 

99.7 
- 

matched 20.0964 20.0964 0 1.0028 0 

size_class: large  
unmatched 0.1584 0.1296 0.0791 

100 
- 

- 
- 

matched 0.0964 0.0964 0 - 0 

size_class: medium   
unmatched 0.0545 0.0496 0.0219 

100 
- 

- 
- 

matched 0.0203 0.0203 0 - 0 

size_class: small   
unmatched 0.0831 0.0740 0.0331 

100 
- 

- 
- 

matched 0.1015 0.1015 0 - 0 

size_class: very large  
unmatched 0.7039 0.7469 -0.0941 

100 
- 

- 
- 

matched 0.7817 0.7817 0 - 0 

NACE  
unmatched 3757.5039 3927.8852 -0.0753 

100 
1.3418 

99.0 
- 

matched 3772.8325 3722.8325 0 1.0028 0 

struct_mn   
unmatched 0.4130 0.3198 0.1892 

100 
- 

- 
- 

matched 0.4264 0.4264 0 - 0 

 



61 
 

#2403 Bremen Papers on Economics & Innovation 

 
The influence of key enabling technologies on technological innovation 

Tab. A4d: Matching results for AMTs, including balance improvements. 

Variable Sample 
Means 
treated 

Means 
control 

Std. Mean 
Diff. 

Std. Mean Diff. 
Balance 

improvement 
(%) 

Var. Ratio 

Var. Ratio 
Balance 

improvement 
(%) 

Std. Pair 
Dist. 

distance 
unmatched 0.0468 0.0431 0.2563 

99.8 
1.3971 

99.8 
- 

matched 0.0470 0.0470 -0.0004 1.007 0.0020 

popdens 
unmatched 4936.6604 4393.2721 0.1775 

97.5 
1.1178 

93.2 
- 

matched 5663.7126 5650.3475 0.0044 1.0076 0.0317 

log_acad_empl 
unmatched 11.0540 11.0712 -0.0164 

33.6 
0.8947 

98.7 
- 

matched 11.2758 11.2644 0.0109 1.0015 0.0533 

org_age  
unmatched 69.5210 73.4002 -0.0652 

94.6 
1.1871 

95.5 
- 

matched 84.0094 84.2208 -0.0036 0.9923 0.0224 

pubs_org  
unmatched 127.5253 127.5918 -0.0003 

-1795.3 
0.9230 

70.1 
- 

matched 147.2110 148.4720 -0.0064 0.9763 0.0241 

av_app_share 
unmatched 0.9309 0.9612 -0.1720 

100 
1.6613 

99.9 
- 

matched 0.9552 0.9552 -0 1.0005 0 

schmoch 
unmatched 16.8936 20.5932 -0.4690 

100 
0.5292 

99.9 
- 

matched 16.4410 16.4410 -0 1.0005 0 

size_class: large  
unmatched 0.1177 0.1305 -0.0367 

100 
- 

- 
- 

matched 0.0660 0.0660 0 - 0 

size_class: medium   
unmatched 0.0720 0.0509 0.0868 

100 
- 

- 
- 

matched 0.0130 0.0130 0 - 0 

size_class: small   
unmatched 0.0720 0.0758 -0.0077 

100 
- 

- 
- 

matched 0.0625 0.0625 0 - 0 

size_class: very large  
unmatched 0.7383 0.7428 -0.0196 

100 
- 

- 
- 

matched 0.8585 0.8585 0 - 0 

NACE  
unmatched 4133.0795 3950.2769 0.0939 

100 
1.2525 

99.8 
- 

matched 4012.7936 4127.7936 -0 1.0005 0 

struct_mn   
unmatched 0.3269 0.3198 0.0150 

100 
- 

- 
- 

matched 0.3974 0.3974 0 - 0 
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Tab. A4e: Matching results for industrial biotechnology, including balance improvements. 

Variable Sample 
Means 
treated 

Means 
control 

Std. Mean 
Diff. 

Std. Mean 
Diff. Balance 
improvement 

(%) 

Var. Ratio 

Var. Ratio 
Balance 

improvement 
(%) 

Std. Pair 
Dist. 

distance 
unmatched 0.0271 0.0280 0.4920 

99.8 
1.3358 

99.5 
- 

matched 0.0280 0.0305 0.0008 1.0014 0.0020 

popdens 
unmatched 5743.1279 4410.7761 0.4568 

99.9 
1.0419 

64.9 
- 

matched 6083.7823 6085.7619 -0.0007 0.9857 0.0170 

log_acad_empl 
unmatched 11.1718 11.0742 0.1156 

93.3 
0.6184 

83.7 
- 

matched 11.0889 11.0822 0.0077 0.9247 0.0333 

org_age 
unmatched 68.9394 73.1574 -0.0620 

90.3 
1.7333 

98.0 
- 

matched 82.9141 83.3488 -0.0158 1.0109 0.0199 

pubs_org 
unmatched 116.7598 127.6161 -0.0673 

81.2 
0.6245 

99.2 
- 

matched 134.6938 136.7311 -0.0127 1.0037 0.0190 

av_app_share 
unmatched 0.8716 1.0468 -0.3856 

100 
2.6137 

99.9 
- 

matched 0.8849 0.8849 0 1.0011 0 

schmoch 
unmatched 14.9573 20.0685 -1.9086 

100 
0.0742 

100 
- 

matched 14.9931 14.9931 -0 1.0011 0 

size_class: large 
unmatched 0.0964 0.1306 -0.1123 

100 
- 

- 
- 

matched 0.0687 0.0687 0 - 0 

size_class: medium 
unmatched 0.1185 0.0505 0.2131 

100 
- 

- 
- 

matched 0.0653 0.0653 0 - 0 

size_class: small 
unmatched 0.1047 0.0751 0.1003 

100 
- 

- 
- 

matched 0.1065 0.1065 0 - 0 

size_class: very large 
unmatched 0.6804 0.7438 -0.1425 

100 
- 

- 
- 

matched 0.7595 0.7595 0 - 0 

NACE 
unmatched 5278.3829 3932.7031 0.5482 

100 
1.5911 

99.8 
- 

matched 4755.9141 4755.9141 -0 1.0011 0 

struct_mn 
unmatched 0.2576 0.3167 -0.1352 

100 
- 

- 
- 

matched 0.2852 0. 2852 -0 - 0 
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Appendix 5: F-test results before and after matching 

At the aggregate KET level, the results of the F-Tests show statistically significant 

differences for two covariates before the matching, while the differences between the 

covariates are no longer statistically significant after the matching in most cases. As 

desired, this indicates that the matching process has successfully balanced the treatment 

and control groups. Also, at the level of the individual KETs, the F-tests indicate strong 

balance improvement, as hardly any significant results occur after the matching, while 

statistically significant differences existed in many cases before the matching. The only 

exception is industrial biotechnology, where the result of the F-test org_age is statistically 

significant at the 0.05 significance level (p-value 0.014). 

Tab. A5: F-test results for variables matched via nearest neighbor matching 

  



50/61 
 

#2403 Bremen Papers on Economics & Innovation 

 
The influence of key enabling technologies on technological innovation 

Appendix 6: Decile-based analysis with alternative deciles 

Here, KET patents are assigned to deciles based on their citation count and their 

matched control-patents are assigned to the same decile. Consequently, the mean 

citation count and the maximum citation count of KETs increases with each decile, as 

can be seen in Figures A5.1a through 5.2b. 

In all cases, the analysis reveals a different behavior of KET patents and non-

KETs patents. At the aggregate KET level (Figure A5.1a), the mean citation count of the 

non-KET control group stays relatively similar, except for the last decile. At the individual 

KET level, the variation stays within a rather small range for advanced materials and 

industrial biotech, while it is closer to the overall pattern for photonics and AMTs. With 

the exception of industrial biotechnology, in the last decile(s) the mean forward citation 

count slightly increases for non-KETs, but in no case does it even reach close to the 

mean citation count of KETs. On the other hand, KET patents from the lower deciles 

receive no citations, while their control groups receive citations throughout all deciles. 

Generally, these insights support this study’s previous finding that if KETs have an 

impact, they have the potential to be more impactful than non-KETs. Furthermore, also 

these alternative results suggest that rather a handful of KET patents exerts a great 

impact on innovation. Moreover, the maximum forward citation count (Figures A5.2a and 

A5.2b) highlights that patents from the control groups tend to be cited more frequently 

when considering them in deciles based on KETs’ forward citation frequencies. Only in 

the tenth decile KETs are more impactful in comparison. In summary, the alternative 

decile-based analysis suggests that KETs can have a stronger impact than non-KETs, 

but are not always more impactful. The results highlight that only being a KET is not 

sufficient to drive innovation in many cases. Further studies should explore the 

interactions of the KET status with regional and firm-level characteristics and their effect 

on the forward citation frequency of patents. 
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Figure A6.1b: Mean logged forward citation count across KET-based deciles (individual KETs) 
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Figure A6.2a: Maximum logged forward citation count across KET-based deciles (individual KETs) 
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Figure A6.2b: Maximum logged forward citation count across KET-based deciles for KETs (aggregate 

level) 

 

 

 

 

 

 

 

 

 

 

 

  



54/61 
 

#2403 Bremen Papers on Economics & Innovation 

 
The influence of key enabling technologies on technological innovation 

Appendix 7: Descriptive statistics of datasets used in the negative binomial regressions 

KETs (aggregate level) 
Table A7.1a: Descriptive statistics of KETs (aggregate level) regression dataset, count variables  

obs. mean sd median min max 

agg_cits7  4830 1.344 4.384 0.000 0.000 139.000 

log_popdens  4830 8.340 0.873 8.741 3.970 9.312 

log_acad_lmr_avg 4830 11.281 0.964 11.398 7.763 12.413 

log_av_app_share  4830 -0.076 0.217 0.000 -0.693 0.000 

log_org_age 4830 4.030 1.066 4.382 0.000 5.024 

log_pubs_org 4830 3.274 2.084 2.874 0.000 6.775 

 

Table A7.1b: Count of observations of factor levels, regression dataset for KETs (aggregate level). 
 obs. share in total obs. 
isKET_dum: 1 1857 0.38 

struct_MN: 1 1594 0.33 

size_class: small 429 0.09 

size_class: medium 96 0.02 

size_class: large 362 0.07 

size_class: very_large 3943 0.82 

 
Table A7.1c: Frequency of observations in 2-digit NACE classes, KETs (aggregate level) regression 

dataset. 

NACE Frequency Share NACE Frequency Share 

1 2 0 45 16 0.003 

10 3 0.001 46 82 0.017 

13 5 0.001 47 14 0.003 

16 8 0.002 53 3 0.001 

17 5 0.001 62 313 0.064 

18 56 0.011 64 43 0.009 

20 793 0.162 66 77 0.016 

21 55 0.011 68 14 0.003 

22 31 0.006 70 59 0.012 

23 71 0.015 71 67 0.014 

24 41 0.008 72 588 0.12 

25 20 0.004 74 155 0.032 

26 810 0.166 77 129 0.026 

27 416 0.085 82 37 0.008 

28 203 0.042 85 7 0.001 

29 491 0.1 86 30 0.006 

30 61 0.012 88 2 0 

32 39 0.008 93 2 0 

33 126 0.026 94 5 0.001 

35 6 0.001 96 2 0 

43 4 0.001 
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Advanced materials 

Table A7.2a: Descriptive statistics of advanced materials regression dataset, count variables. 

 obs. mean sd median min max 

agg_cits7  871 1.452 3.006 1.000 0.000 48.000 

log_popdens  871 8.507 0.846 8.808 4.617 9.312 

log_acad_lmr_avg 871 11.125 0.860 10.912 8.226 12.413 

log_av_app_share  871 -0.021 0.118 0.000 -0.693 0.000 

log_org_age 871 4.215 1.034 4.905 1.099 5.024 

log_pubs_org 871 3.458 2.084 2.451 0.000 6.582 

 

Table A7.2b: Count of observations of factor levels, regression dataset for advanced materials. 

obs. share in
total obs

isAM_dum: 1 195 0.22

struct_MN: 1 391 0.45

size_class: small 100 0.11

size_class: medium 14 0.02

size_class: large 54 0.06

size_class: very_large 703 0.81

 

Table A7.2c: Frequency of observations in 2-digit NACE classes, advanced materials regression dataset. 

NACE Frequency Share NACE Frequency Share 

16 10 0.011 43 4 0.005 

17 2 0.002 46 4 0.005 

18 16 0.018 62 54 0.061 

20 358 0.405 64 6 0.007 

22 25 0.028 66 64 0.072 

23 39 0.044 68 10 0.011 

24 14 0.016 70 15 0.017 

25 2 0.002 71 13 0.015 

26 24 0.027 72 64 0.072 

27 18 0.02 74 36 0.041 

28 18 0.02 82 12 0.014 

29 48 0.054 85 4 0.005 

30 24 0.027 
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Advanced manufacturing technologies (AMTs) 
Table A7.3a: Descriptive statistics of AMTs regression dataset, count variables.  

obs. mean sd median min max 

agg_cits7  3212 1.179 3.276 0.000 0.000 85.000 

log_popdens  3212 8.464 0.809 8.808 4.345 9.312 

log_acad_lmr_avg 3212 11.263 0.927 11.372 8.226 12.413 

log_av_app_share  3212 -0.060 0.195 0.000 -0.693 0.000 

log_org_age 3212 4.113 1.039 4.663 0.000 5.024 

log_pubs_org 3212 3.423 2.008 2.874 0.000 6.775 

 

Table A7.3b: Count of observations of factor levels, regression dataset for AMTs 

 obs. share in 
total obs 

isAMT_dum: 1 839 0.26 

struct_MN: 1 1349 0.42 

size_class: small 191 0.06 

size_class: medium 26 0.01 

size_class: large 171 0.05 

size_class: very_large 2824 0.88 

. 

 

Table A7.3c: Frequency of observations in 2-digit NACE classes, AMTs regression dataset. 

NACE Frequency Share NACE Frequency Share 

13 5 0.002 45 5 0.002 

16 2 0.001 46 49 0.015 

17 6 0.002 53 6 0.002 

18 9 0.003 62 259 0.079 

20 706 0.216 64 25 0.008 

21 23 0.007 66 40 0.012 

22 9 0.003 68 6 0.002 

23 55 0.017 70 49 0.015 

24 28 0.009 71 37 0.011 

25 19 0.006 72 374 0.115 

26 450 0.138 74 94 0.029 

27 151 0.046 77 25 0.008 

28 222 0.068 82 37 0.011 

29 396 0.121 85 6 0.002 

30 63 0.019 93 2 0.001 

32 2 0.001 94 6 0.002 

33 99 0.03 
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Industrial biotechnology 

Table A7.4a: Descriptive statistics of industrial biotechnology regression dataset, count variables. 

 obs. mean sd median min max 

agg_cits7  981 1.794 7.019 0.000 0.000 139.000 

log_popdens  981 8.557 0.859 9.031 3.970 9.312 

log_acad_lmr_avg 981 11.086 0.752 10.747 8.598 12.413 

log_av_app_share  981 -0.122 0.264 0.000 -0.693 0.000 

log_org_age 981 4.037 1.160 4.605 0.000 5.024 

log_pubs_org 981 3.326 1.939 2.815 0.000 6.604 

 

Table A7.4b: Count of observations of factor levels, regression dataset for industrial biotechnology. 

 obs. share in 
total obs 

isIB_dum: 1 287 0.29 

struct_MN: 1 339 0.35 

size_class: small 97 0.1 

size_class: medium 39 0.04 

size_class: large 64 0.07 

size_class: very_large 781 0.8 

 

Table A7.4c: Frequency of observations in 2-digit NACE classes, industrial biotechnology regression 

dataset. 

NACE Frequency Share NACE Frequency Share 

1 2 0.002 46 74 0.074 

10 6 0.006 62 22 0.022 

13 2 0.002 64 13 0.013 

18 6 0.006 66 16 0.016 

20 248 0.248 70 2 0.002 

21 56 0.056 71 3 0.003 

22 2 0.002 72 255 0.255 

23 2 0.002 74 52 0.052 

24 11 0.011 82 6 0.006 

26 122 0.122 85 2 0.002 

28 22 0.022 86 34 0.034 

29 20 0.02 88 2 0.002 

32 7 0.007 96 2 0.002 

35 12 0.012 
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Photonics 

Table A7.5a: Descriptive statistics of photonics regression dataset, count variables.  
obs. mean sd median min max 

agg_cits7  2319 1.116 3.039 0.000 0.000 59.000 

log_popdens  2319 8.136 0.860 8.500 3.970 9.312 

log_acad_lmr_avg 2319 11.358 1.051 11.853 8.564 12.413 

log_av_app_share  2319 -0.073 0.213 0.000 -0.693 0.000 

log_org_age 2319 4.039 0.974 4.382 0.000 5.024 

log_pubs_org 2319 2.851 2.157 2.451 0.000 6.709 

 

 

Table A7.5b: Count of observations of factor levels, regression dataset for photonics. 
 

obs. share in 
total obs 

isPT_dum: 1 645 0.28 

struct_MN: 1 529 0.23 

size_class: small 203 0.09 

size_class: medium 38 0.02 

size_class: large 257 0.11 

size_class: very_large 1821 0.79 

 

Table A7.5c: Frequency of observations in 2-digit NACE classes, photonics regression dataset. 

NACE Frequency Share NACE Frequency Share 

18 62 0.027 46 4 0.002 

20 127 0.054 47 15 0.006 

22 12 0.005 62 215 0.092 

23 20 0.009 64 30 0.013 

25 11 0.005 66 9 0.004 

26 498 0.213 68 4 0.002 

27 347 0.148 70 18 0.008 

28 39 0.017 71 45 0.019 

29 286 0.122 72 188 0.08 

30 21 0.009 74 114 0.049 

32 48 0.021 77 139 0.059 

33 67 0.029 82 4 0.002 

45 16 0.007 
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Appendix 8: Technology codes of the International Patent Classification (IPC) which 

were assigned to the European Key Enabling Technologies (KETs). 

Tab A8: Full-digit IPC codes of KETs. (Source: van de Velde et al. 2012)  
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