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Chapter 1

Introduction

Imagine that you are the manager of a translation company. At the beginning of each month,
you receive books that need to be translated. You have a team of translators and each translator
has a different expertise for each language and genre. This means that they translate different
numbers of pages per hour, and most importantly, these translation speeds can be completely
unrelated for each translator and each book. Your task is to schedule the translation of each
book by assigning books to translators over different time periods. Since you want to keep
your customers, your goal is to complete the translations of the books as quickly as possible.
More specifically, your goal is to minimize the average time it takes to complete the translation
of a book each month.

Now, imagine that you are a physicist. For your latest simulation, you need to perform various
calculations. Your university has computers with different hardware accelerators available.
Since your calculations benefit very differently from each kind of hardware acceleration, each
calculation requires a different duration to complete on every computer, and these durations
can be completely unrelated for each calculation and each computer. Your task is to find a
schedule by assigning each calculation to one of the computers. Since you want to examine the
results of your simulation as quickly as possible, your goal is to minimize the time required to
complete all calculations.
These are just two examples of scheduling problems that arise in our everyday lives. In this

thesis, we study these and related scheduling problems. Since good strategies for the above two
examples can be very similar, it would be redundant to study each of these applications on their
own. Instead, we abstract from all details that are specific to an application and focus on the
essential information required to solve the underlying actual scheduling problem. Then, we
can apply these abstract results to concrete applications.

We now give a first look at this abstract view. In a scheduling problem, the task is to assign
jobs (books, calculations) to time windows on shared resources (translators, computers) to
process them. We call these resources machines and such an assignment a schedule. A machine
can process at most one job at any time, and a job can be processed by at most one machine at
any time. Every job has a processing requirement (number of pages of a book) and is processed
at a speed (pages per hour) on each machine. Equivalently, every job requires a different time to
finish if only processed by one machine, that is, the processing time (duration of the physicist’s
calculation) on that machine. For example, if a book has 100 pages (the processing requirement
of the job) and a translator translates 5 pages per hour (the speed of the job on the machine), it
will take them 20 hours to complete the book (the processing time of the job on the machine).
The speeds and thus processing times can be entirely unrelated for each machine and each job.
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Chapter 1 Introduction

Machine 1

Machine 2

Time

1

1 1

1

2 2

3

0 1 2 3 4 5 6 7 8 9

Figure 1.1: A feasible preemptive and migratory schedule with two machines and three jobs.
Job 1 (blue) has a processing requirement of 14, a speed of 3 on Machine 1, and a
speed of 2 on Machine 2. It migrates from Machine 1 to Machine 2 and later back
to Machine 1. Job 1 is completed at time 9 because it runs for 2 + 1 time units on
Machine 1 and 2+0.5 time units on Machine 2, and thus, it receives a total processing
equal to 3 ·3+2 ·2.5 = 14. Machine 2 preempts Job 2 (yellow) at time 1.5 and continues
it at time 5.5. Job 3 (green) has a processing time of 6 on Machine 1. The makespan
of the schedule is 9 and the average completion time is 1

3 (7 + 8 + 9) = 8.

We call the collection of these quantities an instance of a scheduling problem. A job is completed

when it has received as much processing as required (all pages of a book are translated), and
the point in time when this happens in the schedule is the completion time of that job.
Going back to the initial examples, there are additional restrictions on schedules in some

applications. For example, each of the physicist’s calculations must not be interrupted, and
thus, has to be scheduled in a single continuous time interval on one computer. We call such
schedules non-preemptive. Otherwise, if a machine stops working on an unfinished job, we say
that the schedule is preemptive. For the translation company, we may want to allow preemptive
schedules because every translator needs some breaks, or a translator may work on more than
one book at a time, switching between them from time to time. Certain books may need to
be entirely translated by one translator to maintain a consistent style. If this is the case for
every job, we call the schedule non-migratory. Otherwise, if a job can be processed by multiple
machines, we say that the schedule is migratory. We will give precise definitions of schedules
and such properties at the beginning of this thesis. We call a schedule feasible if it completes
all jobs and satisfies the requirements of the problem, for example, that it is preemptive and
non-migratory. Figure 1.1 shows an example of a feasible schedule.

We study scheduling problems with an optimization objective. In an optimization problem,
the task is to find a solution for a given instance that optimizes some numerical objective
among all feasible solutions for that instance. This means that every solution has an associated
numeric objective value, and a feasible solution is optimal if there is no other feasible solution
with a better objective value, that is, a smaller or larger objective value, depending on whether
we want to minimize or maximize the objective. For an instance 𝐼 , we usually denote the
optimal objective value by OPT(𝐼 ). This optimal objective value may be obtained by multiple
distinct optimal solutions. In this thesis, we mainly study two minimization objectives for
scheduling problems: the maximum completion time, also called makespan (the time when the
physicist’s simulation is ready), and the average of the weighted completion times (the average

2



book completion time). In the latter, every job may have an associated numericalweight that can
model different priorities among the jobs. Our goal is the design and analysis of an algorithm

that, for a scheduling problem and any possible instance of that problem, computes a feasible
schedule. For a fixed problem, a fixed deterministic algorithm, and an instance 𝐼 of that problem,
we usually denote by ALG(𝐼 ) the objective value of the schedule computed by the algorithm
for 𝐼 .

One might ask why we do not just compute an optimal solution by considering every feasible
schedule and choosing the best one. While, in principle, this is possible for some problems,
there are various reasons why an algorithm “cannot” compute an optimal solution for every
instance of the problem.

One reason is that the problem is so inherently complex that for a large instance, for example,
the physicist has millions of calculations and there are thousands of computers, an algorithm,
even if executed on the fastest supercomputer1 available today, requires more time than the
current age of the universe. For some problems, we can even prove that every algorithm for
the problem requires such an amount of time for some instance. This is backed up by the
famous P ≠ NP conjecture, which we briefly discuss at the beginning of this thesis. Thus,
for such hard problems, there is only little hope that we can design an algorithm that is fast
with respect to the size of the instance. From an application’s perspective, however, having
near optimal solutions that can be computed fast is often sufficient. This motivates the idea
of approximation algorithms, which guarantee to output good but potentially non-optimal
solutions. For a minimization problem, we say that an algorithm is an 𝛼-approximation if,
for every instance 𝐼 , it computes a solution with an objective value of at most 𝛼 · OPT(𝐼 ), for
some 𝛼 ≥ 1. We call the smallest 𝛼 ≥ 1 such that the algorithm is an 𝛼-approximation its
approximation ratio, which can also be translated to maximization problems. The goal for such
hard problems is to find approximation algorithms with provably small approximation ratios
that compute solutions reasonably fast. This latter requirement is defined by a running time

complexity class, which gives a bound on the time an algorithm is allowed to use to compute a
solution for an instance of a specific size. In this thesis, we mostly consider a class that gives a
bound that is polynomial in the size of the input.

Until now, we have assumed that all information of an instance (number of books, pages per
book, processing times of calculations on computers, etc.) is available to an algorithm. In such
a case, we call the problem an offline problem. We consider offline scheduling problems and
approximation algorithms in the first part of this thesis.
Another reason an algorithm cannot compute an optimal solution is uncertainty about the

instance. That is, parts of the instance are initially unknown to the algorithm, but they arrive
while the algorithm is solving the instance, that is, scheduling jobs. In this case, we say that
a problem is an online problem, and an algorithm that solves it is an online algorithm. In
this thesis, we mainly consider problems where the instance arrives over time, and an online
algorithm cannot revoke earlier decisions. In the translation company, that could happen if an
author submits their book later than expected, say on the 5th of the month, and only when
the book arrives, important information such as genre, language, and page number become
known. Note that when this happens, we cannot revoke our schedule for the first four days of

1We exclude quantum computers here.
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the month, as those days and their schedules have already happened. We say in such a case that
jobs arrive online over time. Another online scenario is when an author sends the next page to
the translation company only after the previous page has been translated. The reason for this
may be that the authors want to identify quality issues early, or to avoid leaks of the plot twists
at the end of their books. We call online scheduling problems (and algorithms) non-clairvoyant
if the processing requirement of a job remains unknown until the job is completed. Otherwise,
the problem and the algorithm are called clairvoyant. These are just two examples of online
variants that we consider in this thesis.

Intuitively, if an online algorithm wants to compute a good solution, it must be prepared for
every possible realization of the future that the currently uncertain information will determine,
for example, whether more jobs will arrive soon. Thus, it must make defensive and potentially
non-optimal decisions at the beginning of the instance. This intuition is the key to many proofs
showing that no online algorithm can compute an optimal solution for every instance of some
problem. Similar to the offline setting, we can still design online algorithms that compute good
approximate solutions. We say that an online algorithm is 𝛼-competitive for a minimization
problem if, for any instance 𝐼 of the problem, it computes a solution with an objective value of
at most 𝛼 · OPT(𝐼 ), for some 𝛼 ≥ 1. We call the smallest value 𝛼 ≥ 1 such that the algorithm
is 𝛼-competitive its competitive ratio, which can also be translated to maximization problems.
Similar to approximation algorithms for offline problems, the goal in the design and analysis
of online algorithms is to provide algorithms with small competitive ratios, or to prove that
certain competitive ratios cannot be achieved for a problem. In the second part of this thesis,
we consider online scheduling problems.

The approximation ratio and the competitive ratio are worst-case guarantees: They ensure
that regardless of the instance we give to the algorithm, it will output a solution with an
objective value of at most 𝛼 times the optimal objective value. However, this can be quite
different from the average performance that is relevant for many practical applications. Indeed,
an online algorithm has a large competitive ratio if it solves all instances optimally except one,
the worst-case instance, where it performs poorly. One reason for strong theoretical worst-case
instances for online algorithms is the pessimistic assumption that absolutely no information
about the uncertain future is known.
Going back to the two types of uncertainty identified for the translation company, we can

see that some additional information may be available. First, we may know from experience
that some authors are more likely to submit their books late than others. Also, we may reject
books submitted after the 10th of the month. This information gives an algorithm a smaller
set of possibilities of when an author’s book will arrive if they are late. Second, if an author
submits their book page by page, we can estimate a lower and upper bound on the total number
of pages from other books by that author, or as we read each page, we can estimate from the
story how far we are from the end. Most of this additional information is rather an estimate or a
prediction, which we generated from experience and historical data. In some larger applications,
we could also imagine that such predictions are generated from a machine-learned model.
Specifically, we should not expect that they match the ground truth. The type of information
that the predictions give is defined by the prediction model. If these predictions are reasonably
accurate, they can help an online algorithm to overcome pessimistic worst-case instances. We
call such algorithms that use possibly imperfect predictions learning-augmented algorithms or

4



1.1 Outline

algorithms with predictions. We study learning-augmented algorithms for online scheduling
problems in the third (and final) part of this thesis.

1.1 Outline

In this thesis, we study unrelated machine scheduling and related problems under the three
information models mentioned above: We start with offline scheduling problems, where an
algorithm knows all information about an instance. Afterwards, we consider various online
scheduling problems, where we gradually increase the level of uncertainty via online job
arrival and non-clairvoyance. Finally, we study scheduling problems in the learning-augmented
framework that lie between the offline and online settings. As a final part of this introduction,
we provide a more detailed overview of the chapters contained in these parts. Before we start
with the first part, we give formal definitions and other preliminaries in Chapter 2.

Part I – Offline Scheduling

Chapter 3 – Santa Claus and Makespan Minimization: In this first chapter, we study the
relationship between two fundamental scheduling problems in terms of their approx-
imability. One problem is minimizing the makespan on unrelated machines without
preemption, which corresponds to the physicist’s problem. The other problem is the
closely related Santa Claus problem, where, compared to the makespan minimization
problem, the goal is, roughly, to maximize the minimum completion time. We prove
approximation-preserving reductions between both problems, thereby improving our
understanding of their difficulty in terms of approximation algorithms. Moreover, we
introduce, study, and utilize new generalizations of both problems and give improved
approximation algorithms for special cases. This chapter is based on joint work with
Étienne Bamas, Nicole Megow, Lars Rohwedder, and Jens Schlöter [Bam+24].

Part II – Online Scheduling

Chapter 4 – Clairvoyant Online Scheduling: We then turn to online scheduling. We first
consider unrelated machine scheduling with preemption in the online-time model where
jobs arrive online over time with the goal of minimizing the average weighted completion
time. We introduce and study two natural and fast algorithms that are based on a simple
well-known preemptive scheduling rule. More specifically, one algorithm tackles the
non-migratory problem, for which we prove a competitive ratio of at most 5.83, and the
other algorithm tackles the migratory problem, for which we prove a competitive ratio
of at most 7.24. These results are based on joint work with Nicole Megow and Martin
Rapp [LM22; LMR23].

Chapter 5 – Non-Clairvoyant Online Scheduling: We addmore uncertainty in the form of
non-clairvoyance to the online scheduling problem of the previous chapter. We study the
Proportional Fairness algorithm, a natural and fundamental resource allocation rule from
economics, for unrelated machine scheduling and a generalization of it. We drastically
improve on the previous analysis of this algorithm and give the currently best known
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Chapter 1 Introduction

bound of 4.62 on the polynomial-time competitive ratio for preemptive and migratory
online scheduling on unrelated machines, even among clairvoyant algorithms. This
chapter is based on joint work with Sven Jäger and Nicole Megow [JLM25].

Part III – Learning-Augmented Scheduling

Chapter 6 – Introduction to Learning-Augmented Algorithms: Finally, in the last part
of the thesis, we study learning-augmented algorithms for online scheduling problems.
In this chapter, we provide a more detailed overview of learning-augmented algorithms
and related work.

Chapter 7 – Permutation Predictions for Unknown Processing Times: We introduce a
novel predictionmodel for non-clairvoyant scheduling. Previous works studied prediction
models that focus on predicting the unknown processing requirements of the jobs. We
propose a more compact prediction model that focuses on essential information to achieve
a small objective value. That is, a permutation (or total order) of the jobs in that an optimal
solution schedules them on a single machine. We show that permutation predictions have
desirable properties, such as being learnable, and admit learning-augmented algorithms
with good guarantees. This chapter is based on joint work with Nicole Megow [LM22].

Chapter 8 – Predictions for Unknown Precedence Constraints: We add further require-
ments to feasible schedules in the form of precedence constraints: certain jobs are only
allowed to start when others have been completed. Such constraints could be present
in the physicist’s simulation, where certain calculations require the results of other
calculations. We study precedence-constrained scheduling problems in an online variant,
where an algorithm is unaware of these relationships, and new jobs appear only when
their predecessors have been completed. We introduce and compare several prediction
models and algorithms for this notoriously difficult online problem. This chapter is based
on joint work with Alexandra Lassota, Nicole Megow, and Jens Schlöter [Las+23].

Chapter 9 – Predictions for Unknown Processing Speeds: In this chapter, we address a
discrepancy between theory and practice: While in scheduling theory we usually assume
that the speeds at which the machines process jobs are known, this is usually not the
case when actually running such algorithms in practice. For example, the physicist may
know how many instructions are needed to complete each calculation. However, it is not
upfront clear how much time each computer requires for these, as this may depend on
other tasks being executed on that computer in parallel by another user. Similarly, it is not
realistic that a translator can consistently translate the same number of pages per hour
for many hours. While we show that the lack of information about the processing speeds
rules out algorithms with a constant competitive ratio, we introduce new information /
prediction models and applicable algorithms that mitigate these issues. This chapter is
based on joint work with Nicole Megow and Martin Rapp [LMR23].

Chapter 10 – Predictions for Uncertain Jobs in Online TSP: In this very last chapter of
the thesis, we study a slightly different scheduling problem than the previous ones. In
the Online Traveling Salesperson Problem (Online TSP or OlTSP), a server (the machine)

6



1.1 Outline

moves at unit speed in a metric space. Requests (jobs) arrive online over time at points
in the space. The goal is to route the server over time through all requests and back to
its starting position as quickly as possible, that is, to minimize the makespan. To see
the connection to unrelated machine scheduling, one can view the server as a moving
machine, and the processing time of a request depends on its location and the machine’s
current location. We consider this online problem in the learning-augmented framework,
where the predicted locations and arrival times of requests are given to an algorithm in
advance. This chapter is based on joint work with Giulia Bernardini, Alberto Marchetti-
Spaccamela, Nicole Megow, Leen Stougie, and Michelle Sweering [Ber+22a].
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Chapter 2

Preliminaries

In this chapter, we formally introduce problems, concepts, and definitions that we use through-
out this thesis. We assume some basic knowledge of combinatorial optimization, and refer to
the books by Schrijver [Sch03] and Korte and Vygen [KV18] for an introduction and overview.
For an introduction and overview of scheduling theory, we refer to the book by Pinedo [Pin22].

We use standard mathematical notation. For an positive integer 𝑘 , we denote by [𝑘] the set
{1, . . . , 𝑘}. For a real number 𝑥 , we denote by 𝑥+ its positive part, that is, 𝑥+ = 𝑥 if 𝑥 ≥ 0 and
𝑥+ = 0 if 𝑥 < 0. For a list or set of elements 𝑥1, 𝑥2, . . . indexed by a set 𝐼 , we denote this list by
(𝑥𝑖)𝑖∈𝐼 , and, if clear from the context, we write 𝑥 instead of (𝑥𝑖)𝑖∈𝐼 . All logarithms are to base 2
unless explicitly stated otherwise.

2.1 Complexity Theory

We give a high-level overview of basic concepts and definitions in complexity theory. This
introduction is based on [Sch03]. We refer to [AB09] for an in-depth overview of complexity
theory.
A deterministic algorithm is a finite set of instructions that modify data stored in an array

of bits. Each instruction can read a fixed predefined number of entries of the list, perform
arithmetic operations on it, and store the result in a prescribed position of the array. The initial
state of the array is given by the input. If the algorithm terminates, the output can be extracted
from the current state of the array. The size of the input is the length of the initial array, that is,
the number of bits required to represent it. For example, the input size of a positive integer 𝑛 is
the length of its binary encoding, which is ⌊log𝑛⌋ + 1.

A deterministic algorithm runs in polynomial time if it terminates after a number of instruction
steps that is polynomial in the input size; we say that the algorithm is a polynomial-time

algorithm. A problem is polynomial-time solvable (or can be solved in polynomial time) if there
exists a polynomial-time algorithm that solves it.
We can now define the complexity classes P and NP, which are a set of decision problems.

Intuitively, a decision problem is a question that can be answered with a binary label such as
“YES” or “NO”. Let Σ be an alphabet of size at least 2, which in its simplest form can be {0, 1},
and let Σ∗ denote the set of finite strings, called words, which can be built from letters of Σ. The
size size(𝑥) of a word 𝑥 is its length. A problem Π is a subset of Σ∗. In a decision problem Π, the
task is to decide, for a given word 𝑥 ∈ Σ∗ (the instance), whether 𝑥 ∈ Π. From an algorithmic
point of view, we can think of 𝑥 as the input. A decision problem Π over the words Σ∗ is
called polynomial-time solvable if there exists an algorithm that decides for every word 𝑥 ∈ Σ∗

9
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whether 𝑥 ∈ Π in time polynomial in size(𝑥). The set of polynomial-time solvable problems is
denoted by P.

We now move to the class NP. Intuitively, a decision problem is in NP if for every input with
answer “YES”, there exists a certificate that can be verified by a polynomial-time algorithm.
Formally, a problem Π is in NP if there is a problem Π′ ∈ P and polynomial function 𝑝 : ℕ→ ℕ

such that, for every𝑤 ∈ Σ∗, it holds that𝑤 ∈ Π if and only if there exists a word 𝑥 ∈ Σ∗, the
certificate, of size at most 𝑝 (size(𝑤)) such that𝑤𝑥 ∈ Π′, where𝑤𝑥 denotes the concatenation
of𝑤 and 𝑥 .
While it clearly holds that P ⊆ NP, since we can select Π′ = Π and an empty certificate in

the definition of NP, one of the biggest open questions in computer science and mathematics
is whether P = NP. An important role in the relationship of both classes is the concept of
NP-complete decision problems. To define them, we say that a problem Π ⊆ Σ∗ can be reduced
to a problem Π′ ⊆ Σ∗ if there exists a polynomial-time algorithm that outputs for every input
𝑥 ∈ Σ∗ an output 𝑥 ′ ∈ Σ∗ such that 𝑥 ∈ Π if and only if 𝑥 ′ ∈ Π′. A decision problem Π is
NP-hard if every problem in NP can be reduced to Π. A decision problem Π is NP-complete if
it is NP-hard and Π ∈ NP. This definition implies that if there is an NP-complete problem that
is also in P, then P = NP. Intuitively, NP-complete problems are the “hardest” problems in NP.
In this thesis, we make the common assumption that P ≠ NP.
Optimization problems can usually be transformed into decision problems: Given an opti-

mization problems which seeks to minimize a rational-valued function 𝑓 (𝑦) over all 𝑦 ∈ 𝑌 , we
can, for any rational number 𝑘 , define a decision problem which asks whether there exists a
𝑦 ∈ 𝑌 such that 𝑓 (𝑦) ≤ 𝑘 . Then, given a polynomial-time algorithm for the decision problem,
we can usually derive a polynomial-time algorithm for the optimization problem by executing
a binary search over values for 𝑘 . Thus, we say that an optimization problem is in P if the
underlying decision problem is in P. Similarly, we can extend the definition of NP-hardness to
optimization problems.
Finally, we end this section with a few additional definitions and properties that appear

throughout this thesis. Another relevant complexity class of optimization problems is APX.
While we omit its formal definition, we note that for an APX-hard optimization problem, there
exists a constant 𝑐 > 1 such that there exists no polynomial-time 𝑐-approximation algorithm,
unless P = NP. An algorithm runs in quasi-polynomial time for a problem if there is a 𝑐 ∈ ℕ
such that for every input of size 𝑛 it terminates after at most 2𝑂 (log𝑐 𝑛) steps. An algorithm runs
in pseudo-polynomial time for a problem if, for every input, it terminates after polynomially
many steps in the size of the input and the magnitude of the largest numeric value of the
input. If a decision problem is strongly NP-hard, then there exists no pseudo-polynomial-time
algorithm that solves it.

2.2 Unrelated Machine Scheduling

Many parts of this thesis consider variants of the problem of scheduling jobs on unrelated
machines. In this section, we give a formal definition of this problem and its variants.

10
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2.2.1 Definitions and Notation

We first introduce the problem of scheduling jobs on unrelated machines and its variants. We
are given a set of 𝑛 jobs 𝐽 . We usually assume that 𝐽 = [𝑛]. Every job 𝑗 ∈ 𝐽 is associated with
a weight 𝑤 𝑗 ≥ 0, a release date 𝑟 𝑗 ≥ 0, and a processing requirement 𝑝 𝑗 ≥ 0. We say that the
problem has uniform release dates if 𝑟 𝑗 = 𝑟 for all 𝑗 ∈ 𝐽 , in which case we can assume without
loss of generality in this thesis that 𝑟 𝑗 = 0 for all jobs 𝑗 . Otherwise, the problem has non-uniform
release dates; we say that the problem is with release dates.

Unrelated Machines. The unrelated machine environment is defined by a set of𝑚 unrelated

machines 𝑀 (we usually assume that 𝑀 = [𝑚]), and every machine 𝑖 ∈ 𝑀 has an associated
speed 𝑠𝑖 𝑗 ≥ 0 at which every job 𝑗 ∈ 𝐽 runs on machine 𝑖 . This means that if we schedule job 𝑗
on machine 𝑖 for one time unit, it receives a processing rate equal to 𝑠𝑖 𝑗 . For every machine
𝑖 ∈ 𝑀 and job 𝑗 ∈ 𝐽 , we denote with 𝑝𝑖 𝑗 ≔ 𝑝 𝑗/𝑠𝑖 𝑗 the processing time of 𝑗 on machine 𝑖 , that is,
the total time required for 𝑗 to complete if it is continuously processed only on machine 𝑖 .

Important and well-studied special cases of unrelated machines are related machines where,
on every machine 𝑖 , the speed 𝑠𝑖 = 𝑠𝑖 𝑗 is the same for every job 𝑗 , restricted assignment where
all 𝑠𝑖 𝑗 ∈ {0, 1}, identical parallel machines, where all 𝑠𝑖 𝑗 = 1, and the single machine where𝑚 = 1
and all 𝑠𝑖 𝑗 = 1.

Schedules and Completion Times. A schedule is described by binary variables 𝑥𝑖 𝑗 (𝑡) that
indicate whether job 𝑗 is being processed on machine 𝑖 at time 𝑡 ∈ ℝ≥0. We say that a machine 𝑖
idles at time 𝑡 if 𝑥𝑖 𝑗 (𝑡) = 0 for all jobs 𝑗 . A schedule is feasible if at any time instant 𝑡 , every job 𝑗
runs on at most one machine, that is,

∑︁
𝑖∈𝑀 𝑥𝑖 𝑗 (𝑡) ≤ 1, and every machine 𝑖 ∈ 𝑀 is occupied by

at most one job, that is,
∑︁
𝑗∈ 𝐽 𝑥𝑖 𝑗 (𝑡) ≤ 1. Moreover, a job can only be processed if it has been

released, that is, the schedule must satisfy 𝑥𝑖 𝑗 (𝑡) = 0 for all 𝑖 ∈ 𝑀 and all times 𝑡 < 𝑟 𝑗 for every
job 𝑗 . In the following, we only refer to feasible schedules when considering schedules. We
denote by

𝑦 𝑗 (𝑡) ≔
∑︁
𝑖∈𝑀

𝑠𝑖 𝑗 · 𝑥𝑖 𝑗 (𝑡)

the amount of processing that 𝑗 receives at time 𝑡 , which we also call processing rate. The
completion time 𝐶 𝑗 of job 𝑗 in a given schedule is the earliest point in time when 𝑗 received as
much processing as required. Formally, that is

𝐶 𝑗 = argmin
𝑡≥0

(︃∫ 𝑡

0
𝑦 𝑗 (𝑡 ′) d𝑡 ′ ≥ 𝑝 𝑗

)︃
.

We denote by 𝐶max ≔ max𝑗∈ 𝐽 𝐶 𝑗 the latest completion time in the schedule. This quantity is
also called the makespan of the schedule.

Preemption andMigration. A schedule is called non-migratory if for every job 𝑗 there exists
a machine 𝑖 such that 𝑥𝑖′ 𝑗 (𝑡) = 0 for every machine 𝑖′ ∈ 𝑀 \ {𝑖} and every time 𝑡 ∈ ℝ≥0, that is,
a job is only being processed on one machine. Otherwise, the schedule is called migratory. In
this case, we say that migration is allowed. Furthermore, a schedule is called non-preemptive if
it is non-migratory and the support of

∑︁
𝑖∈𝑀 𝑥𝑖 𝑗 (𝑡) as a function of 𝑡 is a continuous interval,
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that is, a job is never interrupted after being started with processing. Otherwise, the schedule is
called preemptive, and we say that preemption is allowed. Specifically, every migratory schedule
is preemptive.

Scheduling Problems and 3-Field Notation. We use the 3-field notation by Graham et al.
[Gra+79] to characterize scheduling problems. A scheduling problem is denoted by 𝛼 | 𝛽 | 𝛾 .

• The first field 𝛼 describes the machine environment. We use 𝛼 = 𝑅 for unrelated machines,
𝛼 = 𝑄 for related machines, 𝛼 = 𝑃 for parallel identical machines, and 𝛼 = 1 for the
single machine.

• The second field 𝛽 describes further characteristics of the jobs and a feasible schedule. If
preemption and migration are allowed, we add “pmtn” to 𝛽 . If preemption is allowed but
migration is not, we add “pmtn, non-mig” to 𝛽 . If there are non-uniform release dates,
we add “𝑟 𝑗 ” to 𝛽 .

• The third field 𝛾 describes the objective function of our optimization problem. In this
thesis, we use 𝛾 = 𝐶max, that is, minimizing the makespan, 𝛾 =

∑︁
𝐶 𝑗 , that is, minimizing

the sum of completion times, and 𝛾 =
∑︁
𝑤 𝑗𝐶 𝑗 , that is, minimizing the sum of weighted

completion times. We call the two latter objectives sometimes also min-sum objectives.
Note that it is equivalent whether to minimize the sum or the average of the (weighted)
completion times.

To denote scheduling with restricted assignment, we use 𝛼 = 𝑅 and add “𝑠𝑖 𝑗 ∈ {0, 1}” to 𝛽 .

More Notation. Given a fixed schedule, we write 𝑝 𝑗 (𝑡) ≔ 𝑝 𝑗 −
∫ 𝑡
0 𝑦 𝑗 (𝑡

′) d𝑡 ′ for the total
remaining processing requirement at time 𝑡 , and 𝑝𝑖 𝑗 (𝑡) ≔ 𝑝 𝑗 (𝑡)/𝑠𝑖 𝑗 for all jobs 𝑗 and machines 𝑖 .
Furthermore, we introduce the notation 𝐽 (𝑡) := { 𝑗 ∈ 𝐽 | 𝐶 𝑗 > 𝑡 ≥ 𝑟 𝑗 } for the set of available
jobs, 𝑈 (𝑡) := { 𝑗 ∈ 𝐽 | 𝐶 𝑗 > 𝑡} for the set of unfinished jobs at time 𝑡 , and𝑊 (𝑡) := ∑︁

𝑗∈𝑈 (𝑡 ) 𝑤 𝑗

for their total weight.

Time Discretization. We make the common assumption that all release dates 𝑟 𝑗 , processing
requirements 𝑝 𝑗 , weights𝑤 𝑗 , and speeds 𝑠𝑖 𝑗 are rational numbers. Then, given a schedule with
a rational allocation 𝑥 , we can assume by scaling that the schedule preempts, migrates, and
completes jobs only at integer times. Moreover, we can conclude that

∑︁
𝑗∈ 𝐽 𝑤 𝑗𝐶 𝑗 =

∑︁
𝑡≥0𝑊 (𝑡)

because every job 𝑗 contributes𝑤 𝑗 to the objective value at every integer timeslot before 𝐶 𝑗 .

2.2.2 Offline Scheduling

In the offline setting, an algorithm knows all information about an instance. We present
an overview of basic complexity results for scheduling jobs on unrelated machines with the
objective of minimizing the total weighted completion time. Related work on offline scheduling
problems with makespan objective is deferred to Chapter 3.

The arguably most famous result for this problem is the Weighted-Shortest-Processing-Time
(WSPT) rule, which is also called Smith’s rule. It states that an optimal schedule for 1 | | ∑︁𝑤 𝑗𝐶 𝑗

is given by scheduling the jobs without interruptions in order of non-increasing𝑤 𝑗/𝑝 𝑗 . This
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ratio is also called a job’s density. Moreover, every optimal schedule for this problem satisfies
this property.

Theorem 2.1 (Smith [Smi56]). For the problem 1 | | ∑︁𝑤 𝑗𝐶 𝑗 , a schedule is optimal if and only if

it schedules the jobs one-by-one without interruptions and for all jobs 𝑗 ′ and 𝑗 it holds that 𝑗 ′ is

scheduled before 𝑗 if𝑤 𝑗 ′/𝑝 𝑗 ′ ≥ 𝑤 𝑗/𝑝 𝑗 .

Furthermore, WSPT is also optimal for 1 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 , that is, an optimal solution for
this problem may not use preemptions. In the case of unit weights, the rule becomes the
Shortest-Processing-Time (SPT) rule that schedules the jobs in non-decreasing order of their
length. WSPT can be implemented in polynomial time, and thus, 1 | (pmtn) | ∑︁𝑤 𝑗𝐶 𝑗 is in P.
Other scheduling problems that are in P are listed in the following theorem.

Theorem 2.2. The following scheduling problems are polynomially-time solvable.

• 1 | 𝑟 𝑗 , pmtn | ∑︁𝐶 𝑗 [Sch68]

• 𝑅 | | ∑︁𝐶 𝑗 [BJS74; Hor73]

• 𝑄 | pmtn | ∑︁𝐶 𝑗 [Gon77]

In contrast, the following theorem states problems that are known to be strongly NP-hard.

Theorem 2.3. The following scheduling problems are strongly NP-hard.
• 1 | 𝑟 𝑗 |

∑︁
𝐶 𝑗 [LKB77]

• 1 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 [Lab+84b]

• 𝑃 | (pmtn) | ∑︁𝑤 𝑗𝐶 𝑗 [GJ79; McN59]

• 𝑃 | 𝑟 𝑗 , pmtn | ∑︁𝐶 𝑗 [Bap+07; Bel+15; BK04]

• 𝑅 | pmtn, 𝑠𝑖 𝑗 ∈ {0, 1} |
∑︁
𝐶 𝑗 [Sit17] (not stated explicitly but follows from the construction)

Finally, we give in Table 2.1 an overview of the currently best-known polynomial-time
approximation algorithms for some strongly NP-hard scheduling problems. To this end, we
also recall the definition of approximation algorithms from the introduction.

Definition 2.4 (Approximation ratio). An algorithm is a polynomial-time 𝛼-approximation
for a minimization problem if, for every instance 𝐼 , it computes in polynomial time a solution
to 𝐼 with an objective value of at most 𝛼 · OPT(𝐼 ). The approximation ratio of an algorithm
is the smallest 𝛼 such that it is an 𝛼-approximation algorithm. Similarly, an algorithm is
a polynomial-time 𝛼-approximation for a maximization problem if, for every instance 𝐼 , it
computes in polynomial time a solution to 𝐼 with an objective value of at least 1

𝛼
· OPT(𝐼 ), and

its approximation ratio is the largest 𝛼 such that it is an 𝛼-approximation algorithm.

For an overview of approximation algorithms, we refer to the book by Williamson and
Shmoys [WS11].

2.2.3 Online Scheduling

In online scheduling, an algorithm does not have all information about a scheduling instance,
but they arrive while the algorithm is solving the instance. In this thesis, we study the online-
time model for scheduling problems, where an algorithm needs to continuously, at any time 𝑡 ,
make irrevocable decisions about the schedule at time 𝑡 while only having partial information
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Table 2.1: Current bounds on polynomial-time approximation ratios for strongly NP-hard
scheduling problems.

Problem Bound

𝑃 | 𝑟 𝑗 |
∑︁
𝑤 𝑗𝐶 𝑗 1 + 𝜀 [Afr+99]

𝑄 | 𝑟 𝑗 |
∑︁
𝑤 𝑗𝐶 𝑗 1 + 𝜀 [CK01]

𝑄 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 1 + 𝜀 [CK01]
𝑅 | | ∑︁𝑤 𝑗𝐶 𝑗 1.36 + 𝜀 [Li25]
𝑅 | 𝑟 𝑗 |

∑︁
𝑤 𝑗𝐶 𝑗 1.8786 [IL16]

𝑅 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 1.698 [Sit17]
𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 3 [Sku01]
𝑅 | 𝑟 𝑗 , pmtn, non-mig | ∑︁𝑤 𝑗𝐶 𝑗 1.99971 [IL16]

about the instance. In this thesis, we study the following two online-time models for scheduling
problems.

In the first model, which is scheduling with online job arrival, an algorithm has at time 𝑡 no
knowledge about jobs 𝑗 that have not been released yet, that is, jobs 𝑗 for which 𝑡 < 𝑟 𝑗 . We
study such online algorithms in Chapter 4.
In the second model, which is non-clairvoyance, an algorithm has no knowledge about the

processing requirement 𝑝 𝑗 of a job 𝑗 , and only learns about it at the time when the job has
been completed. We consider non-clairvoyant algorithms (and problems) in Chapter 5. If the
processing requirements are revealed to the algorithm when the job becomes available, the
algorithm (and problem) is called clairvoyant. Both models can also be combined; that is, jobs
arrive online and they do not reveal their processing requirements when they arrive.

We also recall the definition of competitive ratio from the introduction.

Definition 2.5 (Competitive ratio). An online algorithm is 𝛼-competitive for a minimization
problem if, for every instance 𝐼 , it computes a solution for 𝐼 with an objective value of at most
𝛼 ·OPT(𝐼 ). The competitive ratio of the algorithm is the smallest 𝛼 for which it is 𝛼-competitive.

We give an overview of related work on online scheduling for the total weighted completion
time objective in Chapters 4 and 5. For an in-depth overview of online scheduling, we refer
to Pruhs et al. [PST04]. For a general introduction to online algorithms, we refer to the book by
Borodin and El-Yaniv [BE98].

2.3 Linear Programming Relaxations for Min-Sum Scheduling

In this section, we give an overview of linear programming (LP) relaxations for minimizing the
total weighted completion time in different machine environments, which we use in Parts II
and III. We defer LP relaxations for the makespan objective to Chapter 3. For an introduction
to linear programming and (general) linear optimization, we refer to the book by Bertsimas
and Tsitsiklis [BT97].

Single Machine. We start by introducing an LP relaxation for the problem of preemptively
minimizing the total weighted completion time on a single machine, 1 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 . We
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have binary values 𝑥 𝑗𝑡 that indicate whether job 𝑗 is being processed in the integer timeslot
[𝑡, 𝑡 + 1]. To model a feasible schedule, these values must satisfy

∑︁
𝑗∈ 𝐽 𝑥 𝑗𝑡 ≤ 1 for every 𝑡 ≥ 0

and
∑︁
𝑡≥0 𝑥 𝑗𝑡 = 𝑝 𝑗 . In the following, we assume that 𝑝 𝑗 > 0 for every job 𝑗 , as otherwise every

optimal solution would finish the job at time 0. Thus, we can remove jobs 𝑗 with 𝑝 𝑗 = 0 without
changing the optimal objective value.

min
∑︁
𝑗∈ 𝐽

𝑤 𝑗𝐶
LP
𝑗 (LP1)

s.t. 𝐶LP
𝑗 =

𝑝 𝑗

2 +
∑︁
𝑡≥0

(︃
𝑡 + 1

2

)︃
𝑥 𝑗𝑡

𝑝 𝑗
∀𝑗 ∈ 𝐽∑︁

𝑡≥0
𝑥 𝑗𝑡 ≥ 𝑝 𝑗 ∀𝑗 ∈ 𝐽 (2.1)∑︁

𝑗∈ 𝐽
𝑥 𝑗𝑡 ≤ 1 ∀𝑡 ≥ 0 ≥ 0 (2.2)

𝑥 𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 0 ≥ 0 (2.3)

This time-indexed LP formulation has been introduced by Dyer and Wolsey [DW90]. It uses
a linear relaxation 𝐶LP

𝑗 of the completion time 𝐶 𝑗 for every job 𝑗 . We call the value

𝑀 𝑗 =
∑︁
𝑡≥0

(︃
𝑡 + 1

2

)︃
𝑥 𝑗𝑡

𝑝 𝑗

the mean busy time of job 𝑗 in the schedule modelled by 𝑥 = (𝑥 𝑗𝑡 ) 𝑗,𝑡 . This is the average time at
which job 𝑗 is being processed, and further, if𝐶 𝑗 is the completion time of 𝑗 in a non-preemptive
schedule where all completions occur at integer times, we have

𝐶LP
𝑗 =

𝑝 𝑗

2 +𝑀 𝑗 =
𝑝 𝑗

2 +
𝐶 𝑗−1∑︁

𝑡=𝐶 𝑗−𝑝 𝑗

(︃
𝑡 + 1

2

)︃
1
𝑝 𝑗

=
𝑝 𝑗

2 +
𝐶 𝑗 − 𝑝 𝑗
𝑝 𝑗

𝑝 𝑗 +
1
2 +
(𝑝 𝑗 − 1)𝑝 𝑗

2𝑝 𝑗
= 𝐶 𝑗 .

This shows that the objective value of (LP1) of every non-preemptive solution without
unnecessary idle times is equal to the actual objective value of the schedule. Further, Goemans
[Goe96] showed that an optimal solution of (LP1) is given by the the optimal non-preemptive
schedule, that is, scheduling jobs inWSPT order. He proved the following theorem.

Theorem 2.6 (Goemans [Goe96]). An optimal schedule of (LP1) is equal to an optimal schedule

of 1 | (pmtn) | ∑︁𝑤 𝑗𝐶 𝑗 , and they have the same objective value.

Specifically, this shows that (LP1) is indeed an LP relaxation for 1 | (pmtn) | ∑︁𝑤 𝑗𝐶 𝑗 .
To conclude the discussion for a single machine, we introduce a slightly weaker LP relaxation,

which we call the mean busy time relaxation:

min
∑︁
𝑗∈ 𝐽

𝑤 𝑗

∑︁
𝑡≥0

(︃
𝑡 + 1

2

)︃
𝑥 𝑗𝑡

𝑝 𝑗
(LP𝑀1 )

s.t. (2.1), (2.2), (2.3)
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Since the objective of this relaxation differs from the objective of (LP1) by exactly the additive
constant

∑︁
𝑗∈ 𝐽 𝑤 𝑗

𝑝 𝑗

2 , we can immediately conclude that theWSPT rule also gives an optimal
schedule for (LP𝑀1 ) and thus minimizes the total weighted mean busy time for preemptive
schedules. Thus, also (LP𝑀1 ) is an LP relaxation for 1 | (pmtn) | ∑︁𝑤 𝑗𝐶 𝑗 .

Unrelated Machines. We move to the more general unrelated machine environment, where
we additionally consider the case of non-uniform release dates. We first consider the straight-
forward generalization of (LP1) to unrelated machines. The variable 𝑥𝑖 𝑗𝑡 indicates whether
job 𝑗 is being processed during timeslot [𝑡, 𝑡 + 1] on machine 𝑖 .

min
∑︁
𝑗∈ 𝐽

𝑤 𝑗𝐶
LP
𝑗 (LPnm

𝑅
)

s.t. 𝐶LP
𝑗 ≥

∑︁
𝑖∈𝑀

∑︁
𝑡≥𝑟 𝑗

(︃
𝑡 + 1

2

)︃
𝑥𝑖 𝑗𝑡𝑠𝑖 𝑗

𝑝 𝑗
+
𝑥𝑖 𝑗𝑡

2 ∀𝑗 ∈ 𝐽∑︁
𝑖∈𝑀

∑︁
𝑡≥𝑟 𝑗

𝑥𝑖 𝑗𝑡𝑠𝑖 𝑗 ≥ 𝑝 𝑗 ∀𝑗 ∈ 𝐽 (2.4)∑︁
𝑗∈ 𝐽

𝑥𝑖 𝑗𝑡 ≤ 1 ∀𝑖 ∈ 𝑀,∀𝑡 ≥ 0 (2.5)∑︁
𝑖∈𝑀

𝑥𝑖 𝑗𝑡 ≤ 1 ∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 0 (2.6)

𝑥𝑖 𝑗𝑡 ≥ 0 ∀𝑖 ∈ 𝑀,∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 0 (2.7)

This LP formulation was first studied by Schulz and Skutella [SS02b]. They showed that it
is a relaxation of 𝑅 | 𝑟 𝑗 |

∑︁
𝑤 𝑗𝐶 𝑗 . Later, Jäger [Jäg21] argued that it is even a relaxation of the

problem that allows preemption but not migration, 𝑅 | 𝑟 𝑗 , pmtn, non-mig | ∑︁𝑤 𝑗𝐶 𝑗 .
We use the common notion of 𝛼-relaxation to quantify the performance of a time-indexed

LP relaxation [SS02b; Sku01]: We say that an LP is an 𝛼-relaxation of a minimization problem,
if it is a relaxation of that problem and if, for every instance, the optimal objective value of the
problem is at most 𝛼 times the optimal objective value of the LP relaxation.

Theorem 2.7 (Schulz and Skutella [SS02b]). (LPnm
𝑅

) is a 2-relaxation for 𝑅 | 𝑟 𝑗 |
∑︁
𝑤 𝑗𝐶 𝑗 .

Moreover, (LPnm
𝑅

) can be strengthened via

𝐶LP
𝑗 ≥

∑︁
𝑖∈𝑀

∑︁
𝑡≥𝑟 𝑗

𝑥𝑖 𝑗𝑡 (2.8)

to a 3
2 -relaxation for 𝑅 | | ∑︁𝑤 𝑗𝐶 𝑗 [SS02b].

Skutella [Sku98] observed that (LPnm
𝑅

) is not a relaxation of the problem that allows migration,
𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 . We slightly modify his example to obtain the following slightly stronger
version.

Lemma 2.8. (LPnm
𝑅

) is not a relaxation for 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 , even if the machines are related,

release dates are uniform, and𝑚 = 2.

Proof. Consider an instance composed of two jobs with weights 𝑤1 = 2 and 𝑤2 = 1 and
processing requirements 𝑝1 = 𝑝2 = 4, and two related machines with speeds 𝑠1 = 2 and 𝑠2 = 1.
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2.4 Dual Fitting

An optimal solution schedules job 1 on machine 1 and job 2 on machine 2 until time 2. Then,
job 1 completes and job 2 migrates to machine 1, where it requires one more time unit to do
the remaining 2 units of processing. Thus, the optimal objective value is equal to 7. Via an
exchange argument one can show that this schedule also corresponds to an optimal solution of
(LPnm

𝑅
), but the LP objective value is equal to 29

4 . Hence, it is no relaxation. □

The issue of (LPnm
𝑅

) is that
∑︁
𝑖∈𝑀

∑︁
𝑡≥𝑟 𝑗

(︁
𝑡 + 1

2
)︁
𝑥𝑖 𝑗𝑡𝑠𝑖 𝑗/𝑝 𝑗 does not compute the actual mean

busy time of job 𝑗 , as it is the case on single machine, because in this expression different times
can contribute with different weights 𝑠𝑖 𝑗 depending on which machine job 𝑗 runs on. Thus,
this value might be larger than the actual mean busy time in the corresponding schedule and,
therefore, 𝐶LP

𝑗 overshoots the actual completion time.
Sitters [Sit17], however, showed that this phenomenon cannot be arbitrarily bad. Specifically,

he proved that for the problem 𝑅 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 , the optimal objective value of (LPnm
𝑅

) is at
most 1.81 times the objective value of an optimal schedule. While the proof of the following
statement in [Sit17] is only given for uniform release dates, we note that it is easy to check that
it also holds for non-uniform release dates.

Theorem 2.9 (Sitters [Sit17]). For the problem 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 , the optimal objective value

of (LPnm
𝑅

) is at most 1.81 times the objective value of an optimal schedule.

Skutella [Sku98] showed another way to derive a relaxation for 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 . This
formulation uses only the “weighted mean busy time” as relaxation of the total weighted
completion time, and can be seen as the generalization of (LP𝑀1 ) to unrelated machines:

min
∑︁
𝑗∈ 𝐽

𝑤 𝑗𝐶
LP
𝑗 (LP𝑅)

s.t. 𝐶LP
𝑗 ≥

∑︁
𝑖∈𝑀

∑︁
𝑡≥𝑟 𝑗

(︃
𝑡 + 1

2

)︃
𝑥𝑖 𝑗𝑡𝑠𝑖 𝑗

𝑝 𝑗
∀𝑗 ∈ 𝐽

(2.4), (2.5), (2.6), (2.7), (2.8)

Theorem 2.10 (Schulz and Skutella [SS02b]). (LP𝑅) is a 3-relaxation for 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗

and a 2-relaxation for 𝑅 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 .

Schulz and Skutella [SS02b] and Sitters [Sit17] presented approximation algorithms that
produce non-preemptive schedules, and analyzed them against preemptive and migratory
optimal schedules. These results imply the following corollary on the power of preemption on
unrelated machines.

Corollary 2.11 ([Sku98, Corollary 2.10.11], [Sit17, Corollary 3]). The optimal objective value for

𝑅 | 𝑟 𝑗 |
∑︁
𝑤 𝑗𝐶 𝑗 is at most 3 times the optimal objective value for 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 . For uniform

release dates this bound can be improved to 1.81.

2.4 Dual Fitting

A traditional approach for using the optimal objective value OPTLP of an LP relaxation as a
lower bound for minimization problems is first to compute an optimal LP solution and then
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Chapter 2 Preliminaries

round this solution to a feasible integral solution. Then, we can compare the objective value of
the rounded solution to the optimal LP objective value and derive a bound on the approximation
ratio (see, for example, [WS11]). In the online setting, however, one cannot compute an LP
solution upfront, as the instance has not been fully revealed. Therefore, there are two common
techniques to compare the objective value of an online algorithm to the optimal objective value
of an LP relaxation. Both are based on the fundamental property of weak duality, which states
that if both a (minimization) linear program and its dual are feasible, then the objective value
of every feasible solution of the primal program is an upper bound on the objective value of
every feasible solution of its dual.
The first technique is the primal-dual technique. Here, both a feasible primal and dual

solution are constructed simultaneously such that the objective value of the primal solution
is at most 𝜌 times the objective value of the dual solution, which immediately implies that
the primal solution is a 𝜌-approximation via weak duality. Moreover, these solutions can be
constructed and updated online, and decisions of an online algorithm can be guided by these
updates. This technique was arguably first used by Dantzig et al. [DFF56] for solving linear
programs, and it was also used by Edmonds [Edm65] for solving the maximum matching
problem in general graphs. Later, there were many breakthroughs in the area of approximation
algorithms using this technique; see Williamson [Wil02] for an early survey. For a survey on
primal-dual for online problems, we refer to Buchbinder and Naor [BN09].
The second technique is dual fitting, which we mainly use in Parts II and III of this thesis.

Here, we typically consider combinatorial algorithms that work independently of LP relaxations.
In the analysis, we craft a feasible dual solution and compare its objective value to an algorithm’s
objective value ALG. Formally, we construct an assignment 𝑎 of dual variables such that (𝑖) its
objective value DP(𝑎) is at most 1

𝜌
ALG and (𝑖𝑖) 𝑎 is a feasible dual solution. Then, we can

conclude via weak duality that ALG ≤ 𝜌 · DP(𝑎) ≤ 𝜌 · OPTLP.
Jain et al. [Jai+03] arguably first formalized dual fitting and used it to analyze greedy ap-

proximation algorithms for the facility location problem. Freund and Rawitz [FR03] observed
that it had already been implicitly used earlier for the set cover problem [Chv79; Lov75], a
special case of facility location. They also established connections between dual fitting and
the combinatorial local ratio technique [Bar00; BE85], which previously had been shown to be
equivalent to primal-dual [BR01]. Another well-known usage of dual fitting is the analysis of
online matching algorithms [BJN07; DJK13; FN21; FNS21; JM22; Meh13; Meh+07; NK13].

In the context of scheduling, Anand et al. [AGK12] and Gupta et al. [GKP12] independently
introduced analyses based on dual fitting for flow time objectives with speed augmentation.
Subsequently, it became one of the main tools for analyzing scheduling algorithms for the
total completion time objective and more general objectives against time-indexed LPs [ALN15;
Aza+15; Bha+14; Cho+18; Gar+19; GKL18; GKS21; Gup+21; IK16; IKM15a; IKM14; IKM15b;
IKM18; Im+14; IM15; Jäg23; Jäg21; Jai+15; KSS21; Ngu13].

2.5 Matroids and Polymatroids

A set structure that we use in this thesis are (poly)matroids. In this section, we give the most
basic definitions for matroids and polymatroids, and refer to [Sch03] for more details.

18



2.5 Matroids and Polymatroids

Amatroid (𝐸, I) is composed of a ground set 𝐸 and a non-empty downward-closed set system
I ⊆ 2𝐸 that satisfies the augmentation property: for all 𝐼 , 𝐽 ∈ I with |𝐼 | < |𝐽 |, there exists an
element 𝑗 ∈ 𝐽 \ 𝐼 such that 𝐼 ∪ { 𝑗} ∈ I. Given a matroid M = (𝐸, I), a set 𝐼 ⊆ 𝐸 is called
independent if 𝐼 ∈ I, and dependent otherwise. An inclusion-wise maximal independent subset
is a basis of M, and we denote the set of bases by B(M). We associate a matroid M = (𝐸, I)
with a rank function 𝑟 : 2𝐸 → ℤ≥0, where 𝑟 (𝑋 ) describes the maximum cardinality of a subset
of 𝑋 that is independent inM. One of the most basic matroids is the uniform matroid of rank 𝑟 ,
in which all subsets of 𝐸 of cardinality at most 𝑟 are independent.

We now move to polymatroids. Let 𝐸 be a ground set. For a vector 𝑥 ∈ ℝ𝐸 , we write 𝑥 (𝑒) for
the entry of 𝑥 corresponding to 𝑒 ∈ 𝐸, and 𝑥 (𝑆) ≔ ∑︁

𝑒∈𝑆 𝑥 (𝑒). For some𝑋 ⊆ 𝐸, we write 𝑏 ·𝑋 as
the vector 𝑦 ∈ ℤ𝐸 with 𝑦 (𝑒) = 𝑏 for 𝑒 ∈ 𝑋 and 𝑦 (𝑒) = 0 for 𝑒 ∉ 𝑋 . A set function 𝑓 : 2𝐸 → ℝ is
submodular if for all subsets 𝐴, 𝐵 ⊆ 𝐸 holds 𝑓 (𝐴) + 𝑓 (𝐵) ≥ 𝑓 (𝐴 ∪ 𝐵) + 𝑓 (𝐴 ∩ 𝐵), and monotone

if for all 𝐴 ⊆ 𝐵 ⊆ 𝐸 holds 𝑓 (𝐴) ≤ 𝑓 (𝐵).
Given a monotone submodular set function 𝑓 : 2𝐸 → ℝ≥0 with 𝑓 (∅) = 0, the polymatroid

over 𝐸 associated with 𝑓 is defined as

P = {𝑥 ∈ ℝ𝐸≥0 : 𝑥 (𝑆) ≤ 𝑓 (𝑆) ∀𝑆 ⊆ 𝐸} .

A basis of a polymatroid P is a vector 𝑥 ∈ P that satisfies 𝑓 (𝐸) = 𝑥 (𝐸). We denote the
set of bases of P by B(P). For a given polymatroid P and a constant 𝑘 ∈ ℝ≥0, the set
{𝑥 ∈ P : 𝑥 (𝑒) ≤ 𝑘 ∀𝑒 ∈ 𝐸} is again a polymatroid.
Given a monotone submodular integer set function 𝑓 : 2𝐸 → ℤ≥0 with 𝑓 (∅) = 0, the integer

polymatroid over 𝐸 associated with 𝑓 is defined as

P = {𝑥 ∈ ℤ𝐸≥0 : 𝑥 (𝑆) ≤ 𝑓 (𝑆) ∀𝑆 ⊆ 𝐸} .

An integer polymatroid can be interpreted as the generalization of a matroid to multisets.
Most concepts of matroids translate easily to polymatroids. Every element 𝑥 ∈ P can be seen

as an independent (fractional) multiset in which an element 𝑒 appears with multiplicity 𝑥 (𝑒).
In particular, every matroid is an (integer) polymatroid.
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Chapter 3

Santa Claus and Makespan Minimization

3.1 Introduction

In this chapter, we study the relationship of two prominent optimization problems from resource
allocation and scheduling theory: the SantaClaus problem and the Makespan problem.
Regarding polynomial-time approximation algorithms, the best-possible approximation ratios
are unknown for both problems. These issues are widely recognized as major open problems
in the field [Ban17; SW99; WS11; Woe02]. We start by formally defining both problems and
providing an overview of the state-of-the-art in terms of approximability.

The Santa Claus Problem. In the SantaClaus problem, we are given a set of𝑚 players 𝑃
and a set of 𝑛 indivisible resources 𝑅. Each resource 𝑗 ∈ 𝑅 has unrelated values 𝑣𝑖 𝑗 ≥ 0 for each
player 𝑖 ∈ 𝑃 . The task is to find an assignment of resources to players with the objective to
maximize the minimum total value assigned to any player. Formally, we seek for a partition of
resources (𝑅𝑖)𝑖∈[𝑚] that maximizes min𝑖∈𝑃

∑︁
𝑗∈𝑅𝑖 𝑣𝑖 𝑗 .

From the perspective of each individual player, this objective is arguably the best in terms
of fairness compared to the other players. Therefore, this problem is also called the max-min

fair allocation problem in the literature (see, for example, [BD05; CCK09; HS23]). The term
“max-min” comes from the fact that the objective maximizes a minimum. The name “Santa
Claus” is due to Bansal and Sviridenko [BS06], who stated this problem as Santa’s task to
distribute gifts to children in a way that makes the least happy child maximally happy.

In terms of polynomial-time approximation algorithms, it is entirely plausible that there exists
a polynomial-time algorithm with constant approximation ratio for the problem, as it is only
known that it isNP-hard to approximate the problem with a factor better than 2 [BD05]. On the
other hand, the state-of-the-art is a polynomial-time 𝑛𝜀-approximation for any constant 𝜀 > 0
and a quasi-polynomial-time poly(log𝑛)-approximation due to Chakrabarty et al. [CCK09].
Therefore, the big open question for the SantaClaus problem asks whether a constant-factor
approximation in polynomial time is possible.

The Makespan Problem. In theMakespan problem, we are given a set of𝑚 machines𝑀
and a set of 𝑛 jobs 𝐽 . Every job 𝑗 ∈ 𝐽 has size 𝑝𝑖 𝑗 ≥ 0 on machine 𝑖 ∈ 𝑀 . The task is to find an
assignment of jobs to machines that minimizes the maximum load over all machines, which
is called the makespan. Here, the load of a machine is the total size of jobs assigned to that
machine. Formally, we seek for a partition of jobs (𝐽𝑖)𝑖∈[𝑚] that minimizes max𝑖∈𝑀

∑︁
𝑗∈ 𝐽𝑖 𝑝𝑖 𝑗 .
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Note that this definition mimics the SantaClaus problem up to one detail in the objective
function: instead of amax-min objective, we have amin-max objective forMakespan. Therefore,
both problems are also considered to be “dual” to each other. While the above definition uses
terminology from resource allocation, this problem is equal to the fundamental scheduling
problem of finding a non-preemptive schedule on unrelated machines with the objective of
minimizing the makespan, in 3-field notation 𝑅 | |𝐶max.
Lenstra et al. [LST90] gave a beautiful 2-approximation algorithm based on rounding a

sparse vertex solution of the so-called assignment LP (cf. Section 3.1.4). The rounding has
been slightly improved to the factor 2 − 1

𝑚
[SV05], but despite substantial research efforts, this

upper bound remains undefeated. In terms of lower bounds, Lenstra et al. showed that it is
NP-hard to approximate the problem with a factor better than 3

2 [LST90]. Thus, the big open
question is whether computing a better-than-2 approximation in polynomial time is possible
forMakespan.

The Restricted Case and the Two-Value Case. Positive evidence towards affirmative
answers for these notoriously difficult open questions comes from intensively studied special
cases for both problems: the restricted assignment case and the two-value case. In the former,
each resource / job can only be assigned to a specific subset of players / machines, but has
the same value / size for all of those. In the latter, as the name suggests, there are only two
non-trivial values 𝑢 < 𝑤 for resources / jobs. The trivial values are 𝑣𝑖 𝑗 = 0 in SantaClaus,
which means that no solution has a benefit of assigning resource 𝑗 to player 𝑖 , and 𝑝𝑖 𝑗 = ∞ in
Makespan, which means that no reasonable solution can assign job 𝑗 to machine 𝑖 . We note
here that if there only is one non-trivial value, the task becomes finding an assignment such
that every player / machine receives a minimum / maximum number of resources / jobs, hence
it reduces to the polynomial-time solvable 𝑏-matching problem.

In the restricted SantaClaus problem, the values satisfy 𝑣𝑖 𝑗 ∈ {0, 𝑣 𝑗 }. The inapproximability
of 2 from the general case still holds for restricted SantaClaus, even for restricted two-value
SantaClaus [CTW18]. The currently best-known polynomial-time approximation algorithm
has an approximation factor of at most 4 + 𝜀 for any 𝜀 > 0 [DRZ20].
Also the restrictedMakespan problem, where 𝑝𝑖 𝑗 ∈ {𝑝 𝑗 ,∞}, has been studied extensively.

While the inapproximability below 3
2 also holds for this special case [LST90], the barrier

of 2 has been overcome only partially: with non-constructive integrality gap bounds for the
configuration LP [Sve12], better-than-2 approximations in quasi-polynomial time [JR20b], and
for the restricted two-value case [Ann19; CKL15].

By comparing the formal definitions of SantaClaus andMakespan, one might immediately
suspect that formal reductions between both problems, such as in terms of approximability,
must be known. However, despite the community’s belief [BR23; Ban17], nothing has been
proven yet. We prove the first formal reductions between both problems regarding polynomial-
time approximations. Before outlining our results, we highlight various aspects that connected
both problems in the past.

Historical Relationships between both Problems. Various techniques have been previ-
ously transferred between both problems:
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(i) Configuration LP. The configuration LP [BS06] (cf. Section 3.1.4) is the basis of many
results for the restricted assignment variant of both problems.

(ii) Haxell. The local search technique by Haxell [Hax95] for hypergraph matching has
been adopted and shown to be very powerful for both problems. First, it has been picked
up for restricted SantaClaus [AKS17; AFS12; CM18b; CM19; DRZ20; HS23; PS16] and
later it has been further developed for restricted Makespan [Ann19; JR19; JR20b; Sve12].

(iii) Lovász Local Lemma. Chakrabarty et al. [CKL15] transferred the technique of rounding
the configuration LP via Lovász Local Lemma (LLL) used for restricted SantaClaus
[Fei08; HSS11] to restricted Makespan with two job sizes and thereby provided the first
better-than-2 approximation in polynomial time.

(iv) Hardness Reductions. The reduction for establishing NP-hardness of better-than-2
approximations for SantaClaus [BD05] is essentially the same as the earlier construction
for the NP-hardness of better-than- 32 -approximations forMakespan [LST90].

(v) Additive Guarantees. The LP rounding by Lenstra et al. [LST90] achieves an additive
approximation within the maximum (finite) processing time 𝑝max, which can be translated
into a multiplicative 2-approximation. Bezáková and Dani [BD05] show the same additive
approximation for SantaClaus: each player is guaranteed a value at least in a range of
𝑣max within the optimal objective value. Note that for the max-min objective this does
not translate into a multiplicative guarantee.

3.1.1 Our Results

We confirm the existence of a formal relationship between theMakespan and the SantaClaus
problemwith respect to their approximability. Our first result is a one-sided relation between the
two major open questions: any better-than-2 approximation algorithm for Makespan implies
a constant approximation algorithm for SantaClaus. More specifically, we prove that for
every 𝛼 ≥ 2, if there exists a polynomial-time (2 − 1

𝛼
)-approximation algorithm for Makespan,

then there exists a polynomial-time (𝛼 + 𝜀)-approximation algorithm for SantaClaus for any
𝜀 > 0 (Section 3.2). For values of 𝛼 < 2, computing a (2 − 1

𝛼
)-approximation for the Makespan

problem is NP-hard and the implication would still hold, even though clearly uninteresting.
For the two-value cases, we can also prove the reverse relation. Furthermore, we improve

upon the factor of 1 + 𝜀 in the reduced approximation factor. This implies the following
equivalence of Makespan and SantaClaus in terms of approximability for the two-value cases:
for any 𝛼 ≥ 2, there exists an 𝛼-approximation algorithm for two-value SantaClaus if and
only if there exists a (2 − 1

𝛼
)-approximation algorithm for two-valueMakespan (Section 3.3).

As mentioned above, there are many improved results known for the restricted cases of
SantaClaus and Makespan. One might suspect that reductions within this special case could
potentially lead to further improvements of approximation factors. For example, if the existence
of an 𝛼-approximation for restricted SantaClaus would imply an (2− 1

𝛼
)-approximation for re-

strictedMakespan, then we could derive a polynomial-time (1.75+𝜀)-approximation algorithm
for restricted Makespan for any 𝜀 > 0 via the result by Davies et al. [DRZ20], which would
be the first polynomial-time better-than-2 approximation algorithm for restricted Makespan.
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Using our current techniques, however, this seems unclear, since the aforementioned reductions
do not maintain the characteristics of the restricted case, that is, the reduction of a restricted
Makespan instance may not be a restricted SantaClaus instance.
Fortunately, it turns out that we prove similar reductions within a slight generalization

of the restricted SantaClaus and restricted Makespan problems. The high-level idea for
these generalizations is that we allow resources / jobs to be copied to multiple machines, also
potentially multiple times. The set of possible configurations in which a resource / job can be
copied is defined via a polymatroid. More specifically, every resource / job is associated with an
integer polymatroid over the set of players / machines, and the bases of this polymatroid define
the set of possible configurations. We call these generalizations the matroid SantaClaus and
matroid Makespan problem. The formal definitions are given in Section 3.4.

For the restricted two-value cases of these generalizations, we can again prove equivalence
in terms of approximability. We show that for any 𝛼 ≥ 2, there exists a polynomial-time 𝛼-
approximation algorithm for the restricted two-value matroid SantaClaus problem if and only
if there exists a polynomial-time (2 − 1

𝛼
)-approximation algorithm for the restricted two-value

matroid Makespan problem (Section 3.5).
Finally, we show in Section 3.4.2 that the classic additive rounding theorems of the as-

signment LP by Bezáková and Dani [BD05] and Lenstra et al. [LST90] can be lifted to these
generalizations.

3.1.2 Implications and Corollaries

By applying our reductions to existing results, we have two immediate implications to the
state-of-the-art of theMakespan problem.

Corollary 3.1. For every 𝜀 > 0, there exists a polynomial-time (2 − 1/𝑛𝜀)-approximation

algorithm and a quasi-polynomial-time (2 − 1/poly(log𝑛))-approximation algorithm for two-

value Makespan.

This result follows from the algorithm of Chakrabarty et al. [CCK09] and our reduction for
the general two-value problems (cf. Theorem 3.12). This approximation guarantee partially
improves upon the best-known polynomial-time approximation factor of 2− 1

𝑚
for the two-value

Makespan problem [SV05].

Corollary 3.2. For every 𝜀 > 0, there exists a polynomial-time (1.75+𝜀)-approximation algorithm

for the restricted two-value matroid Makespan problem.

As the matroidMakespan problem is a generalization, this statement holds in particular true
for the restrictedMakespan problem; thus, improving upon the previously best polynomial-
time approximation factor of 1 + 2√

5 + 𝜀 ≈ 1.8945 by Annamalai [Ann19]. The corollary follows
from combining the 4-approximation algorithm of Bamas et al. [Bam+24] for the restricted
two-value matroid SantaClaus problem and our reduction for the restricted two-value matroid
problems (cf. Theorem 3.22).

26



3.1 Introduction

3.1.3 Binary Search Framework

A standard tool for proving approximation guarantees for SantaClaus and Makespan is a
so-called guessing framework or binary search framework (see, for example, [HS87; LST90]),
which we now introduce for SantaClaus. There is a straightforward analogue for Makespan.

To this end, consider a SantaClaus instance 𝐼 with optimal objective value OPT(𝐼 ) and
let𝛼 ≥ 1. We canwithout loss of generality assume that all values are integers and thatOPT(𝐼 ) ∈
[0,𝑇max] with 𝑇max =

∑︁
𝑖∈𝑃,𝑗∈𝑅 𝑣𝑖 𝑗 . Given any integer 𝑇 , the 𝛼-decision variant asks whether

there exists a solution with objective value at least 𝑇 , and if so, it asks for a solution with
objective value at least 𝑇 /𝛼 . In other words, an algorithm that solves the 𝛼-decision variant
must compute, if there exists at solution with value at least 𝑇 , a solution with objective value
at least 𝑇 /𝛼 .

We first argue that if there exists a polynomial-time algorithm for the 𝛼-decision variant, then
there exists a polynomial-time 𝛼-approximation algorithm for SantaClaus. This is because
we can define a binary search that finds OPT(𝐼 ) as follows. If the algorithm, given the current
guess 𝑇 , outputs no solution of value at least 𝑇 /𝛼 , we can conclude that OPT(𝑇 ) < 𝑇 , and
repeat the process using a smaller guess. Otherwise, we can repeat with a larger guess. Since
all values are integers, this process terminates after𝑂 (log𝑇max) iterations, which is polynomial
in the size of the instance. After OPT(𝐼 ) is determined, the algorithm for the 𝛼-decision variant
outputs a solution with objective value at least OPT(𝐼 )/𝛼 .

Moreover, since the objective of SantaClaus is linear in the values 𝑣 , we can scale all values
by 𝑇 and obtain the following tool.

Proposition 3.3. If there exists a polynomial-time algorithm that, given a SantaClaus instance 𝐼

with OPT(𝐼 ) ≥ 1, computes a solution for 𝐼 with objective value at least
1
𝛼
, then there exists a

polynomial-time 𝛼-approximation algorithm for SantaClaus.

3.1.4 Linear Programming Relaxations

There are two relevant linear programming relaxations for both SantaClaus andMakespan.
We state both for the decision variants of the problems. That is, given a value 𝑇 , the decision
problem asks whether there exists a solution with objective value at least 𝑇 for SantaClaus or
at most 𝑇 forMakespan. Therefore, the LP relaxations have no objective functions and only
try to find a feasible solution. We state both relaxations forMakespan, but the adaption for
SantaClaus is straightforward.
The assignment LP uses for every machine 𝑖 and job 𝑗 a (relaxed) binary variable 𝑥𝑖 𝑗 to

indicate whether job 𝑗 is assigned to machine 𝑖 . The set of feasible solutions 𝑥 = (𝑥𝑖 𝑗 )𝑖∈𝑀,𝑗∈ 𝐽
must satisfy the following constraints:∑︁

𝑗∈ 𝐽
𝑝𝑖 𝑗 · 𝑥𝑖 𝑗 ≤ 𝑇 ∀𝑖 ∈ 𝑀∑︁
𝑖∈𝑀

𝑥𝑖 𝑗 = 1 ∀𝑗 ∈ 𝐽

𝑥𝑖 𝑗 ≥ 0 ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽
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Chapter 3 Santa Claus and Makespan Minimization

The first set of constraints guarantees that every machine receives a load of at most 𝑇 , and
the second set of constraints ensures that every job is assigned to exactly one machine. For
the Makespan problem, one can additionally strengthen this relaxation by forbidding even
fractional assignments of jobs 𝑗 to machines 𝑖 if their size on 𝑖 is larger than 𝑇 :

𝑥𝑖 𝑗 = 0 ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽 where 𝑝𝑖 𝑗 > 𝑇 .

This was used by Lenstra et al. when they introduced this relaxation for their aforementioned
2-approximation [LST90]. For SantaClaus, this relaxation was first used by Bezáková and
Dani [BD05].
For the configuration LP, we first introduce for every machine 𝑖 the set of feasible con-

figurations C𝑖 , that is, sets of jobs with a total size of at most 𝑇 on machine 𝑖 . Formally,
C𝑖 = {𝑆 ⊆ 𝐽 | ∑︁𝑗∈𝑆 𝑝𝑖 𝑗 ≤ 𝑇 }. The configuration LP then uses for every machine 𝑖 and con-
figuration 𝐶 ∈ C𝑖 a (relaxed) binary variable 𝑥𝑖𝐶 to indicate whether jobs of configuration 𝐶
should be assigned to machine 𝑖 . The set of feasible solutions 𝑥 = (𝑥𝑖𝐶 )𝑖∈𝑀,𝐶∈C𝑖 must satisfy
the following constraints: ∑︁

𝐶∈C𝑖

𝑥𝑖𝐶 = 1 ∀𝑖 ∈ 𝑀∑︁
𝑖∈𝑀

∑︁
𝐶∈C𝑖 :𝑗∈𝐶

𝑥𝑖𝐶 = 1 ∀𝑗 ∈ 𝐽

𝑥𝑖𝐶 ≥ 0 ∀𝑖 ∈ 𝑀,𝐶 ∈ C𝑖

The first set of constraints ensures that exactly one configuration is selected for every machine,
and the second set of constraints guarantees that every job appears in exactly one selected
configuration. This relaxation was introduced for the SantaClaus problem by Bansal and
Sviridenko [BS06], who also proved that it is stronger than the assignment LP. Furthermore,
they showed that, despite its exponential number of variables, if there exists a feasible solution
of value 𝑇 , then a solution of value at most (1 + 𝜀)𝑇 can be computed in polynomial time for
any 𝜀 > 0.

3.1.5 Further Related Work

Makespan. The first polynomial-time 2-approximation algorithm forMakespan is due to
Lenstra et al. [LST90]. Their rounding of the assignment LP has later been slightly improved by
Shchepin and Vakhania [SV05] to an approximation ratio of at most 2 − 1

𝑚
. This matches the

integrality gap of the assignment LP, even in the restricted case. It is worth noting that there
are other 2-approximation algorithms known, for example, by a different rounding technique
for the assignment LP [ST93], or a simpler, combinatorial approach [GMW07].
For the restricted Makespan problem, Svensson [Sve12] proved in his seminal work that

the configuration LP has an integrality gap of at most 33
17 , and thus, is stronger than the

assignment LP. Jansen and Rohwedder [JR20b] improved this bound to 11
6 and further presented

an ( 116 +𝜀)-approximation algorithm that terminates with a feasible solution in quasi-polynomial
time for any 𝜀 > 0. In the two-value case of the restricted Makespan problem, it is known that
the configuration LP has an integrality gap of at most 5

3 [JLM18]. For this problem, Chakrabarty
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et al. [CKL15] presented the first polynomial time better-than-2 approximation algorithm.
Annamalai [Ann19] improved this factor further to 1 + 2√

5 + 𝜀 ≈ 1.8945.
The integrality gap of the configuration LP for the general Makespan problem is equal to 2

(for an arbitrary number of machines). The upper bound follows from the positive results by
Lenstra et al. and the fact that the configuration LP is stronger than the assignment LP. The
lower bound of 2 already holds in the special case where every job has a non-trivial size on
at most two machines [VW14]. This special case is also called graph balancing, as one can
imagine that the machines are vertices and the jobs are edges of a graph, and orienting an edge
to a vertex corresponds to assigning the job to the machine. For the restricted graph balancing
problem, Ebenlendr et al. [EKS14] developed an 7

4 -approximation algorithm, which rounds a
solution of a strengthened version of assignment LP. Furthermore, the assignment LP has an
integrality gap equal to 7

4 , and, similar to the restrictedMakespan problem, the configuration LP
for restricted graph balancing has a strictly smaller integrality gap of at most 1.749 [JR19].
The hardness of approximation for factors better than 3

2 even holds for the restricted graph
balancing problem [EKS14].

If the machines are identical, that is, 𝑝 𝑗 = 𝑝𝑖 𝑗 for all jobs 𝑗 , then, for any 𝜀 > 0, there exists an
(1+ 𝜀)-approximation algorithm [HS87]. This special case is already NP-hard to solve optimally
for two machines via a straightforward reduction from the Partition problem.

If the number of machines𝑚 is fixed and not part of the input, there exists, for any 𝜀 > 0, a
(1 + 𝜀)-approximation algorithm for the generalMakespan [HS76].

Santa Claus. For the general SantaClaus problem, the state-of-the-art polynomial-time
approximation algorithm by Chakrabarty et al. has an approximation factor of at most 𝑛𝜀 for
any 𝜀 > 0 [CCK09]. Their algorithm can also be configured to a poly(log𝑛)-approximation
algorithm that runs in quasi-polynomial-time 𝑛𝑂 (log𝑛/log log𝑛) . The same result was previously
achieved by Bateni et al. [BCG09] for the max-min degree arborescence problem, a special case
of SantaClaus where all values satisfy 𝑣𝑖 𝑗 ∈ {0, 1,∞}, for every resource 𝑗 there is at most
one player 𝑖 with 𝑣𝑖 𝑗 = ∞, and for every player 𝑖 there is at most one resource 𝑗 with 𝑣𝑖 𝑗 = ∞.
Recently, Bamas and Rohwedder gave an improved quasi-polynomial-time approximation
factor of poly(log log𝑛) for this problem [BR23].

In the restricted setting, Bansal and Sviridenko [BS06] showed an log log𝑛
log log log𝑛 -approximation

algorithm by rounding the configuration LP randomly and applying Lovász Local Lemma
(LLL). Feige [Fei08] then showed by a non-constructive argument that the integrality gap
of the configuration LP is constant, which later was turned into the first constant-factor
approximation algorithm for restricted SantaClaus by making LLL constructive [HSS11].
A second line of research for this problem was initiated by Asadpour et al. [AFS12], who
established a connection between analyzing the restricted SantaClaus problem against the
configuration LP and a classical result by Haxell [Hax95] for hypergraph matching. Several
results [AKS17; CM18b; CM19; PS16] in this direction converged to the current state-of-the-
art polynomial-time approximation algorithm with an approximation factor of 4 + 𝜀 for any
𝜀 > 0 [DRZ20]. The upper bound on the integrality gap of the configuration LP has been further
improved to 53

15 ≈ 3.534 [AFS12; CM18a; CM19; HS23; JR20a].
If there are only two non-trivial values in restricted SantaClaus problem, Chan, Tang and

Wu [CTW18] showed that the integrality gap of the configuration LP is at most 3 + 𝜀 for any
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𝜀 > 0, and further gave a quasi-polynomial-time algorithm with an approximation factor of at
most 3 + 4𝑢, where the two values are 1 and 𝑢 ∈ (0, 1).

For the special case of the SantaClaus problem where every resource has non-trivial values
for two players (the graph balancing special case of SantaClaus), the integrality gap of the
configuration LP is equal to 2 [VW14], and there is a polynomial-time approximation algorithm
matching this factor [CCK09; VW14].

Matroid Variants. Davies et al. [DRZ20] introduced along the way to their approximation
algorithm a different matroid generalization of (restricted) SantaClaus. One can see this prob-
lem as being halfway between the traditional restricted problem and our matroid generalization
of restricted SantaClaus. Indeed, in their problem there is one resource of large value, that can
be copied to multiple players subject to a matroid constraint, and many traditional resources of
small value that each can only be assigned to one player. In particular, our matroid SantaClaus
problem generalizes their matroid variant.
Further, a special case of the matroid Makespan problem has already been considered in

the past. Azar et al. [ACL18] give a 2-approximation for theMakespan problem where each
job 𝑗 needs to be processed by at least 𝑘 𝑗 different machines (possibly in parallel), which is the
special case of our matroidMakespan problem where each job 𝑗 is equipped with a uniform
matroid of rank 𝑘 𝑗 . Interestingly, Azar et al. [ACL18] mention that the rounding theorem of
Lenstra et al. [LST90] cannot be applied in the matroid setting, because it crucially relies on a
counting argument that does not hold anymore. In our 2-approximation rounding theorem
of the assignment LP for the matroidMakespan problem, we use the rounding technique of
Shmoys and Tardos [ST93], which does not need this argument.

3.2 Reduction of Santa Claus to Makespan

We prove our first main result, the reduction of the problem of finding a constant-factor approx-
imation algorithm for SantaClaus to the problem of finding a better-than-2 approximation
algorithm forMakespan.

Theorem 3.4. For any 𝛼 ≥ 2 and 𝜀 > 0, if there exists a polynomial-time (2 − 1
𝛼
)-approximation

algorithm for Makespan, then there exists a polynomial-time (𝛼 + 𝜀)-approximation algorithm

for SantaClaus.

Using the binary search framework and Proposition 3.3, this theorem is implied by the
following lemma, which we prove in this section.

Lemma 3.5. For any 𝛼 ≥ 2 and 𝜀 > 0, given an instance 𝐼𝑆 of SantaClaus with OPT(𝐼𝑆 ) ≥ 1,
we can construct in polynomial time an instance 𝐼𝑀 of Makespan such that, given a (2 − 1

𝛼
)-

approximate solution for 𝐼𝑀 , we can compute in polynomial time a solution for 𝐼𝑆 with an objective

value of at least
1
𝛼+𝜀 .

The proof of this lemma is split into two parts: Lemma 3.6 and Lemma 3.9. Before moving to
those, we give a high-level idea for the reduction.

In the Makespan instance 𝐼𝑀 , we introduce for every player a gadget (several machines and
jobs) that encodes different configurations (sets) of resources, each giving the player a total
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value of at least 1. The gadget structure forces any solution for 𝐼𝑀 to select one configuration
for each player. Further, a solution can use a resource of the selected configuration for a player,
which we then can translate back to a solution for 𝐼𝑆 by giving the used resource to that player.
To ensure that this interpretation is well-defined, we connect these gadgets in a way that
prevents any solution for 𝐼𝑀 for using a distinct resource in selected configurations of two or
more different players.

The construction roughly satisfies the following properties. An optimal solution for 𝐼𝑀 has
to select for every player a configuration in a way that they can use all of their resources. This
can be translated to a solution for 𝐼𝑆 with objective value at least 1. Note that this essentially
mimics the idea of the configuration LP for SantaClaus. On the other side, a 2-approximation
for 𝐼𝑀 can select configurations without using any resources, hence we cannot guarantee any
approximation factor for 𝐼𝑆 . A (2 − 1

𝛼
)-approximation for 𝐼𝑀 , however, must use for every

selected configuration resources of total value at least 1
𝛼
, which translates to a solution for 𝐼𝑆

with objective value at least 1
𝛼
.

In fact, this high-level description matches the full proof if we allow exponential time. This is
because there can be exponentially many configurations of resources that give a player a value
of at least 1. We overcome this issue in the next section, where we introduce an intermediate
rounded instance and for every player a polynomial number of relevant configurations. In
Section 3.2.2, we then formalize the above intuition and prove Lemma 3.5.

3.2.1 Reduction to a Polynomial Number of Configurations

Consider a SantaClaus instance 𝐼𝑆 with players 𝑃 and 𝑛 resources 𝑅. We define the set of
value types as T = {𝑣𝑖 𝑗 : 𝑖 ∈ 𝑃, 𝑗 ∈ 𝑅} that contains all distinct resource values that occur in the
instance. We call a function 𝑐 : T → {0, 1, . . . , 𝑛} a configuration, and define the total value of 𝑐
as |𝑐 | = ∑︁

𝑣∈T 𝑐 (𝑣) · 𝑣 . One can also see a configuration as a multiset of value types.
Given a configuration 𝑐𝑖 for a player 𝑖 of a SantaClaus instance 𝐼𝑆 , we say that a resource

assignment (𝑅𝑖)𝑖∈𝑃 for 𝐼𝑆 that assigns the set of resources 𝑅𝑖 to player 𝑖 matches the configura-
tion 𝑐𝑖 if |{ 𝑗 ∈ 𝑅𝑖 : 𝑣𝑖 𝑗 = 𝑣}| = 𝑐𝑖 (𝑣) for every value type 𝑣 ∈ T.

We use C𝑖 to refer to a set of configurations for a player 𝑖 ∈ 𝑃 and call C = (C𝑖)𝑖∈𝑃 a collection
of configurations. A resource assignment (𝑅𝑖)𝑖∈𝑃 matches a collection of configurations C if, for
each player 𝑖 , there exists a configuration 𝑐 ∈ C𝑖 such that 𝑅𝑖 matches 𝑐 . Given a SantaClaus
instance 𝐼𝑆 and a collection of configurations C = (C𝑖)𝑖∈𝑃 , we use OPTC(𝐼𝑆 ) to refer to the
optimal objective value for instance 𝐼𝑆 among those solutions that match C.

The main result of this section is the following lemma.

Lemma 3.6. For every 𝜀 > 0 and a given instance 𝐼𝑆 of SantaClaus with OPT(𝐼𝑆 ) ≥ 1, we
can construct a rounded instance 𝐼 ′

𝑆
and a collection of configurations C such that the number of

configurations for each player is polynomial in the input size of 𝐼𝑆 and OPTC(𝐼 ′𝑆 ) ≥
1

1+𝜀 . Further,

every solution for 𝐼 ′
𝑆
of objective value 𝑇 is a solution for 𝐼𝑆 with objective value at least 𝑇 .

The lemma essentially allows us to consider only solutions that partially match the con-
structed collection of configurations C. That are solutions (𝑅𝑖)𝑖∈𝑃 in which for every player 𝑖
there is some 𝑐𝑖 ∈ C𝑖 such that |{ 𝑗 ∈ 𝑅𝑖 : 𝑣𝑖 𝑗 = 𝑣}| ≤ 𝑐𝑖 (𝑣) for every value type 𝑣 ∈ T. If we find
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such a solution that 𝛼-approximates OPTC(𝐼 ′𝑆 ), we immediately get a (𝛼 + 𝜀)-approximation
for OPT(𝐼𝑆 ). The remaining section is dedicated to the proof of Lemma 3.6.
Let 𝐼𝑆 be a SantaClaus instance with the set 𝑃 of𝑚 players, the set 𝑅 of 𝑛 resources and

OPT(𝐼𝑆 ) ≥ 1. We first describe the construction of 𝐼 ′
𝑆
and C. Let 𝜀 > 0 be a sufficiently small

constant and 𝜅 = ⌈1/𝜀3⌉. We construct the SantaClaus instance 𝐼 ′
𝑆
by executing the following

steps:

1. Use the same set of players and resources as in 𝐼𝑆 .

2. Round each resource values 𝑣𝑖 𝑗 down to the closest power of 1
1+𝜀 . If 𝑣𝑖 𝑗 ≥ 1, then we

set 𝑣𝑖 𝑗 = 1. Furthermore, we round all 𝑣𝑖 𝑗 with 𝑣𝑖 𝑗 < 1
(1+𝜀 )𝑛 to 0. In summary, each 𝑣 ∈ T

is either a power of 1
1+𝜀 of value at least

1
(1+𝜀 )𝑛 or 0.

Next, we construct a collection of configurations C for the rounded instance 𝐼 ′
𝑆
by executing

the following steps. Since these steps reduce the number of possible configurations per player to
a polynomial, an algorithm creating the configurations can just compute them via enumeration.

3. For each player 𝑖 ∈ 𝑃 , we have a set C𝑖 of configurations 𝑐 such that, for every value
type 𝑣 ∈ T, either 𝑐 (𝑣) = 0, 𝑐 (𝑣) = ⌈(1 + 𝜀)ℓ⌉ or 𝑐 (𝑣) = ⌊(1 + 𝜀)ℓ⌋ for some ℓ ∈ ℕ0
with (1 + 𝜀)ℓ ≤ 𝑛.

4. Let 𝑣1 ≥ . . . ≥ 𝑣𝜏 be the rounded value types in T. We partition T into 𝜅 value classes

T1, . . . , T𝜅 where Tℓ ≔ {𝑣ℓ+𝑠 ·𝜅 : 𝑠 = 0, 1, . . .}. For every player 𝑖 , we further restrict the
set of configurations C𝑖 to configurations 𝑐 that satisfy for every 1 ≤ ℓ ≤ 𝜅 and for
every 𝑣, 𝑣 ′ ∈ Tℓ with 𝑣 > 𝑣 ′ that either 𝑐 (𝑣) < 𝑐 (𝑣 ′) or 𝑐 (𝑣) = 0 or 𝑐 (𝑣 ′) = 0. That is, the
number of occurrences of a value type 𝑣 ∈ Tℓ of one value class that actually occur in a
configuration (that is, 𝑐 (𝑣) > 0) increase with decreasing value 𝑣 .

Having 𝐼 ′
𝑆
and C constructed, we prove below two auxiliary lemmas that immediately imply

the first part of Lemma 3.6. For the second part, note that the values of 𝐼 ′
𝑆
are only rounded

down. Thus, every solution for 𝐼 ′
𝑆
of objective value 𝑇 is a solution for 𝐼𝑆 with objective value

at least 𝑇 .

Lemma 3.7. For every player 𝑖 , the size of C𝑖 is polynomial in the size of 𝐼𝑆 .

Proof. Because of the Step 2, the number of value types in 𝐼 ′
𝑆
is in 𝑂 (log1+𝜀 𝑛) ⊆ 𝑂 ( 1𝜀 log𝑛).

By Step 3, the number of distinct function values 𝑐 (𝑣) over all configurations 𝑐 ∈ C𝑖 and all
value types 𝑣 ∈ T is in 𝑂 (log1+𝜀 𝑛) ⊆ 𝑂 ( 1𝜀 log𝑛) as well. By Step 4, we can for every 1 ≤ ℓ ≤ 𝜅
represent the entries of 𝑐 ∈ C𝑖 that correspond to the same value class Tℓ in terms of a vector
with𝑂 ( 1

𝜀
log𝑛) entries such that all non-zero entries strictly increase in value. Here, each entry

of the vector corresponds to a value type 𝑣 ∈ Tℓ , in decreasing order, and the entry values
represent the corresponding function values 𝑐 (𝑣). We can represent such a vector by the set of
indices whose corresponding entries have a non-zero value and by the set of non-zero values
that occur in the vector, because, given these two sets, we can reconstruct the corresponding
unique vector. Since there are at most 2𝑂 (log(𝑛)/𝜀 ) different sets of non-zero values that can
occur in the vector and at most 2𝑂 (log(𝑛)/𝜀 ) different sets of non-zero entries, the number of
such vectors is 2𝑂 (log(𝑛)/𝜀 ) · 2𝑂 (log(𝑛)/𝜀 ) ⊆ 𝑛𝑂 (1/𝜀 ) .
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Finally, we can compose the vectors of every value class to a vector of size 𝑛𝑂 (𝜅/𝜀 ) = 𝑛𝑂 (1/𝜀4 )
for all value types T using the unique partition of value classes. Since 𝜀 is constant, the total
number of vectors representing C𝑖 is polynomial in the size of 𝐼𝑆 . □

Lemma 3.8. It holds that OPTC(𝐼 ′𝑆 ) ≥
1

1+𝜀 .

Proof. Let C′ denote the collection of configurations that is created by only executing Step 3 of
the construction and let C denote the final collection of configurations. We separately prove
OPTC′ (𝐼 ′𝑆 ) ≥ 1/(1+ 𝜀)3 and OPTC(𝐼 ′𝑆 ) ≥

1
1+𝜀 ·OPTC′ (𝐼 ′𝑆 ). Then, for any sufficiently small 𝜀′ > 0,

we can choose 𝜀 = 𝜀′/5 and conclude OPTC(𝐼 ′𝑆 ) ≥
1

1+𝜀′ .
We first show OPTC′ (𝐼 ′𝑆 ) ≥ 1/(1 + 𝜀)3. Consider an optimal solution for 𝐼𝑆 . For a player 𝑖 ,

let 𝑅𝑖 denote the resources that are assigned to 𝑖 in this optimal solution. Clearly 𝑣 (𝑅𝑖) ≥ 1.
Discarding all resources in 𝑅𝑖 with value smaller than 1

(1+𝜀 )𝑛 reduces the value of 𝑅𝑖 by a factor
of at most 1 + 𝜀. Rounding the remaining resource values down to powers of 1 + 𝜀 reduces
the value by another factor of 1 + 𝜀. To make sure that the remaining resources in 𝑅𝑖 with
their rounded values match a configuration in C′𝑖 , we might have to remove a 1 + 𝜀 fraction
of the resources for each value type from 𝑅𝑖 . This reduces the value of 𝑅𝑖 by another factor
of 1 + 𝜀. The remaining value is at least 1/(1 + 𝜀)3. By doing this for every player 𝑖 , we obtain a
solution for 𝐼 ′

𝑆
that matches C′ (recall that C′ does not enforce the monotonicity of Step 4) with

an objective value of at least 1/(1 + 𝜀)3, which implies OPTC′ (𝐼 ′𝑆 ) ≥ 1/(1 + 𝜀)3.
Finally, we proveOPTC(𝐼 ′𝑆 ) ≥

1
1+𝜀 ·OPTC′ (𝐼 ′𝑆 ). To that end, fix an optimal solution for 𝐼 ′

𝑆
among

those solutions that match C′. Fix any player 𝑖 and let 𝑐′𝑖 ∈ C′𝑖 denote the configuration that is
selected for player 𝑖 in the optimal solution for 𝐼 ′

𝑆
. We argue that we can find a configuration 𝑐𝑖 ∈

C𝑖 that

(i) has a total value that is at least a 1
1+𝜀 fraction of the value of 𝑐′𝑖 , and

(ii) satisfies 𝑐𝑖 (𝑣) ≤ 𝑐′𝑖 (𝑣) for all 𝑣 ∈ T.

This gives us a feasible solution for 𝐼 ′
𝑆
that matches C and has an objective value of at least 1

1+𝜀 ·
OPTC′ (𝐼 ′𝑆 ), and thus proves the statement.

We start by building a configuration 𝑐𝑖 independently for every value class Tℓ , for 1 ≤ ℓ ≤ 𝜅 .
First, we iteratively construct a subset 𝑆ℓ ⊆ Tℓ of value types as follows: Start with the
largest 𝑣 ∈ Tℓ such that 𝑐′𝑖 (𝑣) > 0 and add 𝑣 to 𝑆ℓ . Then, find the largest 𝑣 ′ ∈ Tℓ with 𝑣 > 𝑣 ′

and 𝑐′𝑖 (𝑣) < 𝑐′𝑖 (𝑣 ′). Add 𝑣 ′ to 𝑆ℓ and repeat from 𝑣 ′ until we do not find another value type to
add. Based on 𝑆ℓ , define configuration 𝑐𝑖 as 𝑐𝑖 (𝑣) = 𝑐′𝑖 (𝑣) if 𝑣 ∈ 𝑆ℓ and 𝑐𝑖 (𝑣) = 0 otherwise.

Note that by the choice of the sets 𝑆ℓ , the configuration 𝑐𝑖 is contained in C𝑖 and satisfies (ii).
It remains to prove that 𝑐𝑖 also satisfies (i). Fix a value class ℓ and an arbitrary value type

𝑣 𝑗 ∈ 𝑆ℓ , and let 𝑣 𝑗 ′ denote the next smaller value type in 𝑆ℓ . Recall that the rounded value types
are indexed in decreasing order, and let 𝑠 be the integer such that 𝑗 ′ = 𝑗 + 𝜅 · (𝑠 + 1). If 𝑣 𝑗
is already the smallest value type in 𝑆ℓ , we set 𝑠 to the largest integer such that ℓ + 𝜅 · 𝑠 ≤ 𝜏 .
(Recall that 𝜏 is the number of value types in 𝐼 ′

𝑆
.)

We show that

𝑐𝑖 (𝑣 𝑗 ) · 𝑣 𝑗 ≥
1

1 + 𝜀 ·
𝑠∑︁

𝑠′=0
𝑐′𝑖 (𝑣 𝑗+𝑠′ ·𝜅) · 𝑣 𝑗+𝑠′ ·𝜅 . (3.1)

If this inequality holds for all 𝑣 𝑗 ∈ 𝑆ℓ , and for all 1 ≤ ℓ ≤ 𝜏 , then (i) follows.
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To prove the inequality, observe that, by the choice of 𝑆ℓ , all integers 0 ≤ 𝑠′ ≤ 𝑠 sat-
isfy 𝑐′𝑖 (𝑣 𝑗+𝑠′ ·𝜅) ≤ 𝑐′𝑖 (𝑣 𝑗 ). Furthermore, 𝑣 𝑗+𝑠′ ·𝜅 = 𝑣 𝑗/(1 + 𝜀)𝜅 ·𝑠

′ by the rounding of the value types.
This gives us

𝑠∑︁
𝑠′=0

𝑐′𝑖 (𝑣 𝑗+𝑠′ ·𝜅) · 𝑣 𝑗+𝑠′ ·𝜅 ≤ 𝑐′𝑖 (𝑣 𝑗 ) ·
𝑠∑︁

𝑠′=0
𝑣 𝑗+𝑠′ ·𝜅

= 𝑐𝑖 (𝑣 𝑗 ) · 𝑣 𝑗 ·
𝑠∑︁

𝑠′=0

1
(1 + 𝜀)𝜅 ·𝑠′ ≤ 𝑐𝑖 (𝑣 𝑗 ) · 𝑣 𝑗 ·

1
1 − 1

(1+𝜀 )𝜅
(3.2)

using the geometric series. Since

𝜅 ≥ 1 + 𝜀
𝜀2
≥ 1
𝜀
· 1
ln(1 + 𝜀) ≥

ln(1 + 1
𝜀
)

ln(1 + 𝜀) = log1+𝜀
(︃
1 + 𝜀
𝜀

)︃
,

we conclude that (3.2) is at most 𝑐𝑖 (𝑣 𝑗 ) · 𝑣 𝑗 · (1 + 𝜀), which implies (3.1). This concludes the
proof of OPTC(𝐼 ′𝑆 ) ≥ OPTC′ (𝐼 ′𝑆 )/(1 + 𝜀), and the proof of the lemma. □

3.2.2 Construction of a Makespan Instance

Using Lemma 3.6, we can assume that we are given both a SantaClaus instance 𝐼𝑆 and a collec-
tion of configurations C. We now prove the following lemma, which, together with Lemma 3.6,
implies Lemma 3.5.

Lemma 3.9. Let 𝐼𝑆 be a SantaClaus instance and let C be a collection of configurations with

OPTC(𝐼𝑆 ) ≥ 1. For any 𝛼 ≥ 1, we can construct in polynomial time a Makespan instance 𝐼𝑀 such

that, given a (2 − 1
𝛼
)-approximate solution for 𝐼𝑀 , we can compute in polynomial time a solution

for 𝐼𝑆 with value at least
1
𝛼
. The running times are polynomial in the size of (𝐼𝑆 ,C).

We now prove this lemma. Fix an instance 𝐼 of the SantaClaus problem and a collection of
configurations C for 𝐼 withOPTC(𝐼 ) ≥ 1. We proceed by constructing theMakespan instance 𝐼 ′
as follows:

1. Remove all configurations from C of value strictly less than 1.

2. For every player 𝑖 introduce a player-job 𝑗𝑖 in 𝐼 ′.

3. For every resource 𝑗 introduce a resource-machine𝑚 𝑗 in 𝐼 ′.

4. For every player 𝑖 and every configuration 𝑐 ∈ C𝑖 introduce a configuration-machine𝑚𝑖
𝑐

in 𝐼 ′, where the size of the player-job 𝑗𝑖 is equal to 1 on every configuration-machine𝑚𝑖
𝑐

and∞ on all other machines.

5. For every player 𝑖 , every configuration 𝑐 ∈ C𝑖 and every value type 𝑣 ∈ T introduce a
set 𝐽 𝑖𝑐,𝑣 of 𝑐 (𝑣) many configuration-jobs. A configuration-job in 𝐽 𝑖𝑐,𝑣 has size 1 on every
resource-machine𝑚 𝑗 if resource 𝑗 has value type 𝑣 for player 𝑖 (that is, 𝑣𝑖 𝑗 = 𝑣), size 𝑣

|𝑐 |
on the configuration-machine𝑚𝑖

𝑐 , and∞ on all other machines.

Since we assumed that OPTC(𝐼𝑆 ) ≥ 1, the first step does not affect OPTC(𝐼𝑆 ). See Figure 3.1
for an example of this construction. In the following, we prove two auxiliary lemmas that
imply Lemma 3.9.
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3.2 Reduction of Santa Claus to Makespan

Lemma 3.10. The optimal objective value of 𝐼𝑀 is at most 1.

Proof. Fix a solution of 𝐼𝑆 that is optimal among the solutions that match C. Consider a player 𝑖
of instance 𝐼𝑆 and let 𝑐𝑖 ∈ C𝑖 be the matched configuration for player 𝑖 in the fixed solution.
Let 𝑅𝑖 be the set of resources assigned to player 𝑖 .
We construct a solution for 𝐼𝑀 as follows. We assign job 𝑗𝑖 to machine 𝑚𝑖

𝑐𝑖
, giving it a

load equal to 1. Further, we assign the configuration-jobs 𝐽 𝑖𝑐𝑖 ,𝑣 of configuration 𝑐𝑖 to resource-
machines {𝑚 𝑗 : 𝑗 ∈ 𝑅𝑖} such that every resource-machine receives at most one job. Such an
assignment must exist, because configuration 𝑐𝑖 is matched by the fixed solution for 𝐼𝑆 . For
every configuration 𝑐′ ∈ C𝑖 \ {𝑐𝑖} and for every 𝑣 ∈ T, we assign every configuration-job in 𝐽 𝑖

𝑐′,𝑣

to machine𝑚𝑖
𝑐′ , giving those machines a load equal to

∑︁
𝑣∈T 𝑐

′(𝑣) 𝑣|𝑐′ | = 1. Since in the given
solution every resource 𝑗 is assigned to at most one player 𝑖 , and since we have assigned at
most one configuration-job to machine𝑚 𝑗 , every resource-machine also has a load of at most 1.
Hence, the makespan of the constructed solution for 𝐼𝑀 is at most 1. □

Using Lemma 3.10, we can conclude that a (2 − 1
𝛼
)-approximation algorithm computes a

solution with a makespan of at most 2 − 1
𝛼
for instance 𝐼𝑀 . Thus, the following lemma implies

Lemma 3.9.

Lemma 3.11. For any 𝛼 ≥ 1, given a solution for 𝐼𝑀 with a makespan of at most 2 − 1
𝛼
, we

can construct in polynomial time a solution for 𝐼𝑆 where every player receives a total value of at

least
1
𝛼
.

Proof. Suppose that we are given such a solution for 𝐼𝑀 . We first construct a solution for 𝐼𝑆 .
Fix a player 𝑖 and assume that 𝑗𝑖 is assigned to machine 𝑚𝑖

𝑐 for some configuration 𝑐 ∈ C𝑖 .
Let 𝑁𝑖 be the set of configuration-jobs (of potentially different values) of configuration 𝑐 of
player 𝑖 that are not assigned to𝑚𝑖

𝑐 . Thus, every job in 𝑁𝑖 is assigned to one resource-machine.
Also, every resource-machine has at most one assigned job because every job has a size of at
least 1 on these machines, and the given solution has a makespan of less than 2. Let 𝑅𝑖 be the
set of resources for which the corresponding resource-machines receive a job of 𝑁𝑖 . For the
solution of 𝐼𝑆 , we assign resources 𝑅𝑖 to player 𝑖 . After doing this for every player, we distribute
unassigned resources arbitrarily.
We now argue that the total value of resources in 𝑅𝑖 for player 𝑖 is at least 1

𝛼
, which concludes

the proof. Let 𝐽 𝑖𝑐 = ∪𝑣∈T 𝐽 𝑖𝑐,𝑣 be the set of all configuration-jobs of configuration 𝑐 of player 𝑖 ,
and note that their total size on machine𝑚𝑖

𝑐 is equal to
∑︁
𝑣∈T 𝑐 (𝑣) 𝑣|𝑐 | = 1. Thus, 𝐽 𝑖𝑐 \𝑁𝑖 are those

configuration-jobs that are assigned to𝑚𝑖
𝑐 , and since the makespan of the given solution is at

most 2 − 1
𝛼
, their load contributed to𝑚𝑖

𝑐 can be at most 1 − 1
𝛼
. This is because job 𝑗𝑖 is also

assigned to𝑚𝑖
𝑐 and has size 1. We conclude that∑︁

𝑗∈𝑁𝑖 :𝑗∈ 𝐽 𝑖𝑐,𝑣

𝑣

|𝑐 | = 1 −
∑︁

𝑗∈ 𝐽 𝑖𝑐 :𝑗∈ 𝐽 𝑖𝑐,𝑣

𝑣

|𝑐 | ≥ 1 −
(︃
1 − 1

𝛼

)︃
=

1
𝛼
.

Since |𝑐 | ≥ 1 by Step 1, we conclude that player 𝑖 receives a total value of at least∑︁
𝑗∈𝑅𝑖

𝑣𝑖 𝑗 =
∑︁

𝑗∈𝑁𝑖 :𝑗∈ 𝐽 𝑖𝑐,𝑣

𝑣 ≥
∑︁

𝑗∈𝑁𝑖 :𝑗∈ 𝐽 𝑖𝑐,𝑣

𝑣

|𝑐 | ≥
1
𝛼
.
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Player 1 Player 2

Resource 1 Resource 2 Resource 3 Resource 4

𝑣𝑎
𝑣𝑏

𝑣𝑐
𝑣𝑏

𝑣𝑒
𝑣𝑎 𝑣𝑎

(a) 𝛼-approximation in SantaClaus instance 𝐼𝑆 . Players are visualized by smileys and re-
sources by gifts. Resource 1 can be assigned arbitrarily.

𝑗1

𝑚1
𝑐1

. . . 𝑚1
𝑐2

𝑣𝑎 𝑣𝑏 𝑣𝑐

1 1

𝑗2

𝑚2
𝑐3

. . . 𝑚2
𝑐4

𝑣𝑏 𝑣𝑑 𝑣𝑒 𝑣𝑎 𝑣𝑎

1 1

𝑣𝑏
𝑣𝑏+𝑣𝑐

𝑣𝑐
𝑣𝑏+𝑣𝑐 ≥

1
𝛼

𝑚1 𝑚2 𝑚3 𝑚4

1 1 1

≤ 2 − 1
𝛼

at most one job

𝐽 2𝑐4,𝑣𝑒 𝐽 2𝑐4,𝑣𝑎

𝑁1

(b) (2− 1
𝛼
)-approximation inMakespan instance 𝐼𝑀 . Machines are visualized by squares with

gears and jobs by circles. The depicted solution selects configuration 𝑐2 for Player 1 and
configuration 𝑐4 for Player 2. Note that Player 2 has the same value for resources 3 and 4.

Figure 3.1: The construction of Lemma 3.9: the given SantaClaus instance 𝐼𝑆 in (a) and the
constructedMakespan instance 𝐼𝑀 in (b). In both pictures, edges indicate non-trivial
values of resources / jobs for players / machines. The pictures show the reduction of
an approximate solution for 𝐼𝑀 to an approximate solution for 𝐼𝑆 , which is used in
Lemma 3.11. The SantaClaus instance 𝐼𝑆 has 5 value types T = {𝑣𝑎, 𝑣𝑏, 𝑣𝑐 , 𝑣𝑑 , 𝑣𝑒 }. In
(b), there are only two configuration {𝑐1, 𝑐2} ⊆ C1 for Player 1 and two configurations
{𝑐3, 𝑐4} ⊆ C2 for Player 2 depicted.
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3.3 Equivalence of Two-Value Problems

A visualization of this argument is given in Figure 3.1. This concludes the proof. □

3.3 Equivalence of Two-Value Problems

We move to the two-value cases. Recall that in the two-value case of SantaClaus and
Makespan, all resource values and job sizes are in {𝑢,𝑤, 0} and {𝑢,𝑤,∞}, respectively,
with 𝑢,𝑤 ≥ 0. For these special cases, we prove an equivalence between establishing a
better-than-2 approximation algorithm for Makespan and a constant-factor approximation
algorithm for SantaClaus. More specifically, we show the following theorem in this section.

Theorem 3.12. For any 𝛼 ≥ 2, there exists an 𝛼-approximation algorithm for two-value Santa-

Claus if and only if there exists a (2 − 1
𝛼
)-approximation algorithm for two-value Makespan.

We prove this equivalence by showing the implication in both directions separately in the
following two subsections.

3.3.1 Reduction of Santa Claus to Makespan

For this direction, we show that we can apply a similar reduction as in Theorem 3.4. Recall
that the additional factor of 1 + 𝜀 comes from reducing the number of relevant configurations
to polynomial in Lemma 3.6. However, we can observe that for the two-value case, there are
naturally only polynomially many relevant configurations. To see this, suppose that 𝑤 = 1
and 𝑢 = 1

𝑏
for some integer 𝑏. Then, a player reaches a value of at least 1 whenever they receive

one resource of value𝑤 or at least 𝑏 resources of value 𝑢. Thus, the remaining task is to prove
a similar argument in the general two-value case, and ensure that in the reducedMakespan
instance we only have two non-trivial values. The desired implication then follows from the
following lemma and Proposition 3.3.

Lemma 3.13. Let 𝐼𝑆 be a two-value SantaClaus instance with OPT(𝐼𝑆 ) ≥ 1. For any 𝛼 ≥ 2, we
can construct in polynomial time a two-value Makespan instance 𝐼𝑀 such that, given an (2 − 1

𝛼
)-

approximate solution for 𝐼𝑀 , we can compute in polynomial time a solution for 𝐼𝑆 with an objective

value of at least
1
𝛼
.

Proof. Let 𝐼𝑆 be an instance of the two-value SantaClaus problem with OPT(𝐼𝑆 ) ≥ 1 and 𝑣𝑖 𝑗 ∈
{0, 𝑢,𝑤}. We assume without loss of generality that 𝑢 ≤ 𝑤 . We consider three exhaustive cases.
In the first case, we assume that𝑤 < OPT(𝐼𝑆 )/𝛼 . Then, we can use the algorithm of Bezáková

and Dani [BD05] to compute in polynomial time a solution in which every player receives a
total value of at least

OPT(𝐼𝑆 ) − max
𝑖∈𝑃,𝑗∈𝑅

𝑣𝑖 𝑗 = OPT(𝐼𝑆 ) −𝑤 >

(︃
1 − 1

𝛼

)︃
· OPT(𝐼𝑆 ) ≥

1
𝛼
· OPT(𝐼𝑆 ) ,

using 𝛼 ≥ 2.
In the second case, we assume that 𝑤 ≥ OPT(𝐼𝑆 )/𝛼 and that there is an optimal solution

for 𝐼𝑆 in which every player 𝑖 receives a resource 𝑗 of value 𝑣𝑖 𝑗 = 𝑤 . Then, we can set 𝑢 to 0
and compute such a promised solution where every player receives a resource of value𝑤 in
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polynomial time by solving a bipartite matching problem. Since𝑤 ≥ OPT(𝐼𝑆 )/𝛼 ≥ 1
𝛼
, we are

done.
In the third case, we assume that𝑤 ≥ OPT(𝐼𝑆 )/𝛼 and that in every optimal solution for 𝐼𝑆

there is some player 𝑖 that does not receive a resource 𝑗 of value 𝑣𝑖 𝑗 = 𝑤 . We can conclude
that such a player must receive at least 𝑏 = ⌈1/𝑢⌉ many resources 𝑗 ′ for which they have a
value of 𝑣𝑖 𝑗 ′ = 𝑢, because OPT(𝐼𝑆 ) ≥ 1. Then, we construct a new instance 𝐼 ′

𝑆
by copying 𝐼𝑆

and adjusting the resource values to𝑤 ′ = 1 and 𝑢′ = 1
𝑏
. Observe that OPT(𝐼 ′

𝑆
) ≥ 1 and that any

solution for 𝐼 ′
𝑆
in which every player either receives a resource of value 1 or𝑏 resources of value 1

𝑏

gives an objective value of at least 1. We can therefore define a collection of configurations C
in which every player has these two configurations. Then, we can use Lemma 3.9 (by noting
that in the constructed Makespan instance every job has either size 1 or 1

𝑏
) to compute a

solution for 𝐼 ′
𝑆
in which every player receives a total value of at least 1

𝛼
. Since 𝑢 ≥ 1

𝑏
= 𝑢′

and𝑤 ≥ 1
𝛼
·OPT(𝐼𝑆 ), this means that we can use the same solution for instance 𝐼 and guarantee

that every player receives a total value of at least 1
𝛼
. □

3.3.2 Reduction of Makespan to Santa Claus

For this direction, we cannot rely on Lemma 3.9. However, given a makespan instance 𝐼𝑀 ,
we can use a “dual” construction of a SantaClaus instance 𝐼𝑆 . Further, we can use similar
observations as in the previous section. Suppose that OPT(𝐼𝑀 ) ≤ 1 and that the two sizes
are 𝑤 = 1 and 𝑢 = 1

𝑏
for some integer 𝑏. Then, a machine with load at most 1 can either

have assigned one job of size𝑤 , or at most 𝑏 jobs of size 𝑢. This keeps the number of relevant
configurations small, and the implication follows from Proposition 3.3 and the following lemma.

Lemma 3.14. Let 𝐼𝑀 be a two-value Makespan instance with OPT(𝐼𝑀 ) ≤ 1. For any 𝛼 ≥ 2,
we can construct in polynomial time a two-value SantaClaus instance 𝐼𝑆 such that, given an

𝛼-approximate solution for 𝐼𝑆 , we can compute in polynomial time a solution for 𝐼𝑀 with an

objective value of at most 2 − 1
𝛼
.

The remainder of this section is dedicated to the proof of this lemma. To this end, fix a
two-valueMakespan instance 𝐼𝑆 with OPT(𝐼𝑀 ) ≤ 1 and sizes in {𝑢,𝑤,∞} with 𝑢 ≤ 𝑤 . For a
fixed machine, we call jobs of size 𝑢 small and jobs of size𝑤 big.
First, we observe that we can without loss of generality assume that𝑤 > 1

2OPT(𝐼𝑀 ). Oth-
erwise, the algorithm by Lenstra et al. [LST90] gives us a solution of objective value at most
OPT(𝐼𝑀 ) +𝑤 ≤ 3

2 ·OPT(𝐼𝑀 ). Since 𝛼 ≥ 2, this solution satisfies the lemma for every possible 𝛼 .
We now construct a two-value SantaClaus instance 𝐼𝑆 as follows:

1. Let 𝑏 ≔ min{⌊1/𝑢⌋, 𝑛}, where 𝑛 is the number of jobs in 𝐼𝑀 . That is, 𝑏 denotes the
maximal number of small jobs that can be assigned to every machine in an optimal
solution with OPT(𝐼𝑀 ) ≤ 1. By our assumption that 𝑤 ≥ 1

𝛼
· OPT(𝐼𝑆 ), there can be at

most one big job placed on every machine.

2. For every machine 𝑖 , we introduce a machine-player 𝑞𝑖 , one big resource 𝑟𝑖 , and 𝑏 small

resources 𝑟 1𝑖 , . . . , 𝑟
𝑏
𝑖 . The value of the big resource 𝑟𝑖 for player 𝑞𝑖 is equal to𝑤 , the value

of every small resource 𝑟 ℓ𝑖 for player 𝑞𝑖 is equal to 𝑢.
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3. For every job 𝑗 , we introduce a job-player 𝑞 𝑗 . Furthermore, for every machine 𝑖 , we
set the value of resource 𝑟𝑖 for 𝑞 𝑗 to 𝑤 if 𝑝𝑖 𝑗 = 𝑤 and to 0 otherwise. For every small
resource 𝑟 ℓ𝑖 , we set the value for 𝑞 𝑗 to𝑤 if 𝑝𝑖 𝑗 = 𝑢 and to 0 otherwise.

Note that in 𝐼𝑀 , every machine-player 𝑞𝑖 has only values in {0, 𝑢,𝑤}, and every job-player 𝑞 𝑗
has only values in {0,𝑤}. Thus, 𝐼𝑀 is a two-value SantaClaus instance. Further, for every
machine, the number of introduced resources is at most the total number of jobs in 𝐼𝑆 plus
one, asserting that 𝐼𝑀 is of polynomial size. An illustration of this construction is depicted in
Figure 3.2.

We continue by proving two auxiliary lemmas on the constructed instance 𝐼𝑀 , which together
imply Lemma 3.14. To this end, let 𝑡 = 𝑤 + 𝑏 · 𝑢 − 1 and note that 𝑡 ≤ 1 holds by construction.
Also, observe that

𝑡 = 𝑤 + 𝑏 · 𝑢 − 1 ≤ 𝑤 + 𝑏 · 𝑢 − 𝑏 · 𝑢 = 𝑤 . (3.3)

Using this, we prove the following lemma.

Lemma 3.15. The optimal objective value of 𝐼𝑆 is at least 𝑡 .

Proof. Fix an optimal solution of 𝐼𝑀 , and recall that we assume OPT(𝐼𝑀 ) ≤ 1. In the following,
we construct a solution for 𝐼𝑆 .

Fix a machine 𝑖 of instance 𝐼𝑀 . If the given solution for 𝐼𝑀 assigns a job 𝑗 of size 𝑤 to 𝑖 ,
we assign resource 𝑟𝑖 to job-player 𝑞 𝑗 . If the given solution for 𝐼𝑀 assigns a job 𝑗 of size 𝑢
to machine 𝑖 , we assign an arbitrary unassigned small resource 𝑟 ℓ𝑖 to job-player 𝑞 𝑗 . All yet
unassigned resources are assigned to their corresponding machine-players.
We continue by separately proving that each player in instance 𝐼 ′ receives a value of at least 𝑡 ,

which implies the lemma.
First, consider the job-players. Since every job 𝑗 is assigned to exactly one machine in 𝐼𝑀 , the

job-player 𝑞 𝑗 receives exactly one resource in the constructed solution for 𝐼𝑆 . These resources
have value𝑤 for those players, giving them a sufficiently large value of𝑤 ≥ 𝑡 .
Next, we consider the machine-players. Fix a machine 𝑖 . Since we assume OPT(𝐼𝑀 ) ≤ 1,

every machine 𝑖 receives jobs of total size at most 1 in the solution for instance 𝐼𝑀 . For our
constructed solution to instance 𝐼𝑆 , this means that the subset 𝑁𝑖 of resources 𝑟𝑖 , 𝑟 1𝑖 , . . . , 𝑟𝑏𝑖 that
are not assigned to machine-player 𝑞𝑖 satisfies

∑︁
𝑟 ∈𝑁𝑖

𝑣𝑞𝑖 ,𝑟 ≤ 1. This implies that the value
assigned to machine-player 𝑖 is a least

𝑤 + 𝑏 · 𝑢 −
∑︁
𝑟 ∈𝑁𝑖

𝑣𝑞𝑖 ,𝑟 ≥ 𝑤 + 𝑏 · 𝑢 − 1 = 𝑡 ,

which implies OPT(𝐼𝑆 ) ≥ 𝑡 . □

Using Lemma 3.15, we can conclude that an 𝛼-approximation algorithm computes a solution
for instance 𝐼𝑆 where every player receives a total value of at least 𝑡/𝛼 . Thus, the following
lemma implies Lemma 3.14.

Lemma 3.16. For any 𝛼 ≥ 2, given an solution for 𝐼𝑆 where every player receives a total value of

at least 𝑡/𝛼 , we can construct in polynomial time a solution for 𝐼𝑀 of makespan at most 2 − 1
𝛼
.
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Machine 1 Machine 2

Job 1 Job 2 Job 3 Job 4

𝑤
𝑤

𝑢 𝑤

𝑢 𝑢

𝑤 + 2𝑢 = 1 + 𝑡 − 𝑢

≤ 1 + 𝑡 − 𝑡
𝛼

(a) (2 − 1
𝛼
)-approximation in two-valueMakespan instance 𝐼𝑀 . Machines are visualized by

squares with gears and jobs by circles.

𝑞1

𝑟1 𝑟 11 𝑟 31

𝑤

𝑢 𝑢 𝑢

𝑞2

𝑟2 𝑟 12 𝑟 32

𝑤

𝑢 𝑢 𝑢

𝑞1 𝑞2 𝑞3 𝑞4

𝑤 𝑤𝑤

𝑁2

𝑢 ≥ 𝑡
𝛼

(b) 𝛼-approximation in two-value SantaClaus instance 𝐼𝑆 . Players are visualized by smileys
and resources by gifts.

Figure 3.2: The construction of Lemma 3.14: the given two-value Makespan instance 𝐼𝑀 in
(a) and the constructed two-value SantaClaus instance 𝐼𝑆 in (b). In both pictures,
edges indicate non-trivial values of resources / jobs for players / machines. The
pictures show the reduction of an approximate solution for 𝐼𝑆 to an approximate
solution for 𝐼𝑀 , which is used in Lemma 3.16. Note that in this example, 𝑏 = 3 and
𝑡 = 𝑤 + 3𝑢 − 1.
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Proof. Clearly, in the given solution for 𝐼𝑆 , every job-player receives at least one resource of
positive value, as otherwise the objective value would be zero. We modify the given solution in
a way such that each job-player receives exactly one resource of positive value. If a job-player
receives more than one resource, we select an arbitrary resource of positive value and reassign
all other resources to their corresponding machine-players. Since the only positive value of
resources for job-players is𝑤 , the single resource that remains assigned to a job-player gives
them a value of at least 𝑡 because of (3.3). Thus, the modified solution for 𝐼𝑆 still has an objective
value of at least 𝑡/𝛼 .

Now, we can construct a solution for 𝐼𝑀 as follows. If one of the resources 𝑟𝑖 , 𝑟 1𝑖 , . . . , 𝑟𝑏𝑖
belonging to machine 𝑖 has been assigned to a job-player 𝑞 𝑗 , we assign job 𝑗 to machine 𝑖 . By
the above assumption this assignment is feasible.

It remains to argue about the load of every machine in 𝐼𝑀 . Fix a machine 𝑖 . In the solution for
instance 𝐼𝑆 , the corresponding machine-player 𝑞𝑖 receives resources of value at least 𝑡/𝛼 . This
means that the subset 𝑁𝑖 of resources 𝑟𝑖 , 𝑟 1𝑖 , . . . , 𝑟𝑏𝑖 that are not assigned to machine-player 𝑞𝑖
satisfies ∑︁

𝑟 ∈𝑁𝑖

𝑣𝑞𝑖 ,𝑟 ≤ 𝑤 + 𝑏 · 𝑢 −
𝑡

𝛼
= 1 + 𝑡 − 𝑡

𝛼
.

Since by construction 𝑡 ≤ 1, we have 𝑡 − 𝑡/𝛼 ≤ 1 − 1
𝛼
, which implies

∑︁
𝑟 ∈𝑁𝑖

𝑣𝑞𝑖 ,𝑟 ≤ 2 − 1
𝛼
. We

conclude the proof by observing that, by construction, the load of machine 𝑖 in the constructed
solution for 𝐼𝑀 is equal to

∑︁
𝑟 ∈𝑁𝑖

𝑣𝑞𝑖 ,𝑟 ≤ 2 − 1
𝛼
.

A visualization of this argument is given in Figure 3.2. □

3.4 Matroid Allocation Problems

In this section, we introduce generalizations of SantaClaus andMakespan and prove basic
results for them. The key feature of these generalizations, in the case of Makespan, is that
a single job can be assigned to multiple machines at the same time, possibly also multiple
times to one machine. It is instructive to think of assigning copies of this job to machines. The
configurations in which a job 𝑗 can be copied to machines are specified by bases B(P𝑗 ) of an
integer polymatroid P𝑗 over the set of machines: given a basis 𝑥 𝑗 , we copy the job 𝑥 𝑗 (𝑖) times
to machine 𝑖 . We now give formal definitions.

The Matroid Santa Claus Problem. In the matroid SantaClaus problem, there are sets
of 𝑚 players 𝑃 and 𝑛 resources 𝑅 with values 𝑣𝑖 𝑗 ≥ 0 for all 𝑗 ∈ 𝑅 and 𝑖 ∈ 𝑃 . Further, for
every resource 𝑗 ∈ 𝑅 there is an integer polymatroid P𝑗 over 𝑃 . The task is to allocate each
resource 𝑗 ∈ 𝑅 to a basis 𝑥 𝑗 ∈ B(P𝑗 ) and let each player 𝑖 profit from the resource 𝑗 with
value 𝑣𝑖 𝑗 · 𝑥 𝑗 (𝑖). The goal is to maximize the minimum total value any player receives, that is,
min𝑖∈𝑃

∑︁
𝑗∈𝑅 𝑣𝑖 𝑗 · 𝑥 𝑗 (𝑖) .

The Matroid Makespan Problem. In the matroid Makespan problem, there are sets of
𝑚 machines 𝑀 and 𝑛 jobs 𝐽 with sizes 𝑝𝑖 𝑗 ≥ 0 for all 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝑀 . Further, for every job
𝑗 ∈ 𝐽 there is an integer polymatroid P𝑗 over𝑀 . The task is to allocate each job 𝑗 ∈ 𝐽 to a basis
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𝑥 𝑗 ∈ B(P𝑗 ), which means that 𝑗 contributes load 𝑝𝑖 𝑗 · 𝑥 𝑗 (𝑖) to the total load of machine 𝑖 . The
goal is to minimize the maximum total load over all machines, that is, max𝑖∈𝑀

∑︁
𝑗∈ 𝐽 𝑝𝑖 𝑗 · 𝑥 𝑗 (𝑖) .

These new matroid allocation problems generalize SantaClaus andMakespan, respectively.
In fact, the variants that use polymatroids of rank 1 correspond to the respective traditional
problems.

Note that in matroid SantaClaus, it is equivalent to require that 𝑥 𝑗 ∈ P𝑗 for each resource 𝑗
instead of 𝑥 𝑗 ∈ B(P𝑗 ), since we can always increase 𝑥 𝑗 to reach a basis without making the
solution worse. In matroid Makespan this is not the case. These properties are analogue to the
traditional problems.
Finally, we note that special cases such as the restricted and the two-value case naturally

generalize to the matroid problems.
The proofs in this section rely on properties of the polymatroid intersection problem, which

we briefly define. In the polymatroid intersection problem, we are given two polymatroids P
and P′ over the same universe 𝐸, and the task is to find an element 𝑦 ∈ P ∩ P′ that maximizes∑︁
𝑒∈𝐸 𝑦 (𝑒). For further details, we refer to [Sch03, Chapter 41].

3.4.1 Reducing the Number of Polymatroids in the Restricted Case

In the restricted case, both matroid problems can be reduced to instances where the number
of polymatroids is equal to the number of distinct job sizes / resource values. This is because
we can sum up polymatroids associated with jobs / resources of equal size / value to a single
one, and then decompose a basis for such a summed polymatroid into bases for the original
polymatroids via polymatroid intersection. Formally, we get the following proposition.

Proposition 3.17. For any 𝛼 ≥ 1, if there exists a polynomial-time 𝛼-approximation algorithm

for restricted matroid Makespan (matroid SantaClaus) with ℎ jobs (resources), then there ex-

ists a polynomial-time 𝛼-approximation algorithm for restricted matroid Makespan (matroid

SantaClaus) with 𝑝 𝑗 ∈ {𝑤1, . . . ,𝑤ℎ} (𝑣 𝑗 ∈ {𝑤1, . . . ,𝑤ℎ}) and𝑤1, . . . ,𝑤ℎ ≥ 0.

Proof. Let 𝐼 be an instance of the restricted matroidMakespan problem with machines 𝐸 and ℎ
distinct processing times 𝑝1, . . . , 𝑝ℎ . Let 𝐽ℓ , ℓ ∈ [ℎ], denote the set of jobs with processing
times 𝑝ℓ . Further, let Pℓ𝑗 with ℓ ∈ [ℎ] and 𝑗 ∈ 𝐽ℓ denote the corresponding polymatroids over 𝐸
and let 𝑓 ℓ𝑗 be the associated submodular function.
We construct an instance 𝐼 ′ of the restricted matroid Makespan problem with ℎ jobs by

using the same set of machines 𝐸 and creating the polymatroids Pℓ for ℓ ∈ [ℎ] with the
monotone submodular function 𝑓ℓ (𝑆) =

∑︁
𝑗∈ 𝐽ℓ 𝑓

ℓ
𝑗 (𝑆) for every subset 𝑆 ⊆ 𝐸. Note that Pℓ =∑︁

𝑗∈ 𝐽ℓ P
ℓ
𝑗 [Sch03]. For ℓ ∈ [ℎ], the goal in instance 𝐼 ′ is to find vectors 𝑥ℓ ∈ B(Pℓ ) such that

max𝑒∈𝐸
∑︁
ℓ∈[ℎ] 𝑝ℓ ·𝑥ℓ (𝑒) is minimized. We prove that this reduction preserves the approximation

factor.
Consider a solution of instance 𝐼 that selects the bases 𝑥 ℓ𝑗 for job 𝑗 ∈ 𝐽ℓ with ℓ ∈ [ℎ] and

consider the vectors 𝑥 ′ℓ with 𝑥 ′ℓ (𝑒) =
∑︁
𝑗∈ 𝐽ℓ 𝑥

ℓ
𝑗 (𝑒) for all 𝑒 ∈ 𝐸. Using again Pℓ =

∑︁
𝑗∈ 𝐽ℓ P

ℓ
𝑗 , we

have 𝑥 ′ℓ ∈ Pℓ for all ℓ ∈ [ℎ]. In particular, 𝑥 ′ℓ (𝐸) =
∑︁
𝑒∈𝐸

∑︁
𝑗∈ 𝐽ℓ 𝑥

ℓ
𝑗 (𝑒) =

∑︁
𝑗∈ 𝐽ℓ 𝑓

ℓ
𝑗 (𝐸) = 𝑓ℓ (𝐸),

so 𝑥 ′ℓ is a basis of Pℓ . Thus, (𝑥 ′1, . . . , 𝑥 ′ℎ) is a feasible solution for instance 𝐼 ′. Furthermore,

OPT(𝐼 ′) ≤ max
𝑒∈𝐸

∑︁
ℓ∈[ℎ]

𝑥 ′ℓ (𝑒) · 𝑝ℓ = max
𝑒∈𝐸

∑︁
ℓ∈[ℎ]

∑︁
𝑗∈ 𝐽ℓ

𝑥 ℓ𝑗 (𝑒) · 𝑝ℓ = OPT(𝐼 ) .
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Consider some solution (𝑦′1, . . . , 𝑦′ℎ) to instance 𝐼 ′, that is, 𝑦′ℓ ∈ B(Pℓ ) and 𝑓ℓ (𝐸) = 𝑦′ℓ (𝐸) for
all ℓ ∈ [ℎ]. We construct a solution to 𝐼 by decomposing each 𝑦′ℓ , ℓ ∈ [ℎ], into bases 𝑦ℓ𝑗 ∈ B(Pℓ𝑗 )
such that 𝑦′ℓ (𝑒) =

∑︁
𝑗∈ 𝐽ℓ 𝑦

ℓ
𝑗 (𝑒) holds for all 𝑒 ∈ 𝐸. As OPT(𝐼 ′) ≤ OPT(𝐼 ), this implies that the

reduction preserves the approximation factor. If such decomposition would not exist for some
ℓ ∈ [ℎ], then, by construction of the submodular function 𝑓ℓ , we would arrive at a contradiction
to 𝑓ℓ (𝐸) = 𝑦′ℓ (𝐸).

To find the decomposition for an ℓ ∈ [ℎ] in polynomial time, consider the polymatroids
P̂ℓ𝑗 that are just copies of the original polymatroids Pℓ𝑗 on pairwise disjoint copies 𝐸 𝑗 of the
ground set 𝐸. For each ℓ ∈ [ℎ], we decompose the solution 𝑦′ℓ of instance 𝐼 ′ into bases of the
copy polymatroids, which then implies a decomposition into bases of the original polymatroids.
For each 𝑒 ∈ 𝐸, let 𝐶𝑒 denote the set of copies of 𝑒 introduced by the ground set copies. We
want to find a basis 𝑦ℓ𝑗 for every 𝑗 ∈ 𝐽ℓ such that

∑︁
𝑒∈𝐶𝑒

𝑦ℓ𝑗 (𝑒) = 𝑦′ℓ (𝑒) holds for all 𝑒 ∈ 𝐸 and
ℓ ∈ [ℎ]. For an element 𝑒 ∈ 𝐸 and ℓ ∈ [ℎ], consider the polymatroid Xℓ𝑒 on the ground set
𝐶𝑒 implied by bases B(Xℓ𝑒) = {𝑥 ∈ ℤ

𝐶𝑒

≥0 : 𝑥 (𝐶𝑒) = 𝑦′ℓ (𝑒)} and let Xℓ denote the union of these
polymatroids. Furthermore, let P̂ℓ denote the union of the polymatroids P̂ℓ𝑗 . The largest element
in the intersection ofXℓ and P̂ℓ gives us the decomposition. We can compute the largest element
in the intersection in polynomial time using algorithms for polymatroid intersection (cf. [Sch03,
Chapter 41]).

The statement for matroid SantaClaus can be shown with the same reduction and proof;
only the inequality OPT(𝐼 ′) ≤ OPT(𝐼 ) trivially changes to OPT(𝐼 ′) ≥ OPT(𝐼 ). □

3.4.2 Rounding Theorems for the Assignment LP

In this section, we show that the rounding theorems by Bezáková and Dani [BD05], Lenstra
et al. [LST90], and Shmoys and Tardos [ST93] for the traditional SantaClaus and Makespan
problems can be lifted to our matroid generalizations. To this end, we mainly employ a rounding
technique for the assignment LP introduced by Shmoys and Tardos [ST93].

We start with the matroid SantaClaus problem. We first introduce the assignment LP for
this problem. We have one fractional variable 𝑥 𝑗 (𝑖) for every resource 𝑗 and every player 𝑖 that
indicates how many (fractional) copies of resource 𝑗 player 𝑖 receives in the solution. Let 𝑓𝑗 be
the submodular function associated with resource 𝑗 ’s polymatroid. Then, the assignment LP
defines a set of feasible solutions that give every player a total value of at least 𝑇 via the
following set of linear constraints:∑︁

𝑗∈𝑅
𝑥 𝑗 (𝑖) · 𝑣𝑖 𝑗 ≥ 𝑇 ∀𝑖 ∈ 𝑃 (3.4)∑︁
𝑖∈𝑆

𝑥 𝑗 (𝑖) ≤ 𝑓𝑗 (𝑆) ∀𝑆 ⊆ 𝑃 ∀𝑗 ∈ 𝑅 (3.5)∑︁
𝑖∈𝑃

𝑥 𝑗 (𝑖) = 𝑓𝑗 (𝑃) ∀𝑗 ∈ 𝑅 (3.6)

𝑥 𝑗 ≥ 0 ∀𝑗 ∈ 𝑅 (3.7)
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Note that Constraint (3.5) ensures that 𝑥 𝑗 is contained in the fractional relaxation of 𝑗 ’s poly-
matroid P𝑗 . Moreover, Constraint (3.6) requires that 𝑥 𝑗 is a basis of the fractional relaxation
of P𝑗 .

Our rounding theorem for the matroid SantaClaus problem now guarantees, for a given
fractional solution, an integral solution with a close objective value.

Theorem 3.18. Given an instance 𝐼 of the matroid SantaClaus problem and a feasible solution 𝑥

for the assignment LP that gives every player a total value of at least 𝑇 , we can compute in

polynomial time a solution for 𝐼 with objective value at least 𝑇 −max𝑖∈𝑃,𝑗∈𝑅 𝑣𝑖 𝑗 .

Proof of Theorem 3.18. Let 𝑃 = {1, . . . ,𝑚} and 𝑅 = {1, . . . , 𝑛}. We first define for every player 𝑖
an ordering 𝜎𝑖 over the resources by the a non-increasing order of their values. That is, 𝑣𝑖𝜎𝑖 (1) ≥
𝑣𝑖𝜎𝑖 (2) ≥ · · · ≥ 𝑣𝑖𝜎𝑖 (𝑛) . We assume without loss of generality that 𝑣𝑖𝜎𝑖 (𝑛) = 0, which can always
be achieved by adding a dummy resource. For every resource 𝑗 ∈ 𝑅, we denote its associated
polymatroid by P𝑗 and the corresponding submodular function by 𝑓𝑗 .

We now define a polymatroid intersection problem based on 𝑥 . The universe 𝐸 and the two
polymatroids P and P′ are based on following bipartite graph. On the left side of the graph, we
have a set of vertices𝑊 with one vertex𝑤 𝑗 for each resource 𝑗 , and on the right side we have
a set of vertices 𝑈 with one vertex 𝑢𝑖 𝑗 for each player 𝑖 and the resource that appears in 𝑗th
position in the ordering 𝜎𝑖 of player 𝑖 . The set of edges is given by

𝐸 = {(𝑤𝜎𝑖 ( 𝑗 ) , 𝑢𝑖 𝑗 )}𝑖∈𝑃,𝑗∈𝑅 ∪ {(𝑤𝜎𝑖 ( 𝑗 ) , 𝑢𝑖 ( 𝑗+1) )}𝑖∈𝑃,𝑗∈𝑅\{𝑛} .

For some edge 𝑒 ∈ 𝐸, we denote by 𝑒𝑤 the resource corresponding to its left side vertex, and
by 𝑒𝑢 the player corresponding to its right side endpoint.

For the polymatroid intersection problem, we use the set of edges 𝐸 as universe. The first
polymatroid P is defined via the submodular function 𝑓 that satisfies for every 𝑆 ⊆ 𝐸

𝑓 (𝑆) ≔
𝑛∑︁
𝑗=1

𝑓𝑗

(︄ ⋃︂
𝑒∈𝑆 :𝑒𝑤=𝑗

𝑒𝑢

)︄
.

The second polymatroid P′ is defined via the submodular function 𝑓 ′ that itself is defined via
the right side of the bipartite graph. We define below for every vertex 𝑢 ∈ 𝑈 a degree constraint
𝑑 (𝑢), and then have for every 𝑆 ⊆ 𝐸

𝑓 ′(𝑆) ≔
∑︁

𝑢∈𝑈 :(𝑤,𝑢 ) ∈𝑆
𝑑 (𝑢) .

We define the degree constraints using the following process for every player 𝑖 . We start with

𝑑 (𝑢𝑖1) ≔
⌊︁
𝑥𝜎𝑖 (1) (𝑖)

⌋︁
,
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and define the remainder 𝑅1 ≔ 𝑥𝜎𝑖 (1) (𝑖) − 𝑑 (𝑢𝑖1) (for ease of notation we define 𝑅0 = 0). Then,
we define recursively the degree constraint 𝑑 (𝑢𝑖 𝑗 ) and remainders as follows. (We use the
notation {𝑎} ≔ 𝑎 − ⌊𝑎⌋ for every 𝑎 ∈ ℝ≥0 for the fractional part of 𝑎.)

𝑑 (𝑢𝑖 𝑗 ) ≔
⌊︁
𝑅 𝑗−1 + 𝑥𝜎𝑖 ( 𝑗 ) (𝑖)

⌋︁
, and

𝑅 𝑗 ≔ {𝑅 𝑗−1 + 𝑥𝜎𝑖 ( 𝑗 ) (𝑖)} = 𝑅 𝑗−1 + 𝑥𝜎𝑖 ( 𝑗 ) (𝑖) −
⌊︁
𝑅 𝑗−1 + 𝑥𝜎𝑖 ( 𝑗 ) (𝑖)

⌋︁
= 𝑅 𝑗−1 + {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)} −

⌊︁
𝑅 𝑗−1 + {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)}

⌋︁
.

We now argue that there exists an element 𝑦 ∈ P ∩ P′ such that for every 𝑆 ⊆ 𝐸 holds
that

∑︁
𝑒∈𝑆 𝑦 (𝑒) = 𝑓 ′(𝑆), that is, 𝑦 is a basis of P′. To see this, fix a player 𝑖 . The first resource

(in the order defined by player 𝑖) can be assigned to vertex 𝑢𝑖1 up to an extent of
⌊︁
𝑥𝜎𝑖 (1) (𝑖)

⌋︁
,

which is represented in our graph as taking
⌊︁
𝑥𝜎𝑖 (1) (𝑖)

⌋︁
copies of the edge (𝑤𝜎𝑖 (1) , 𝑢𝑖1), that

is, 𝑦 ((𝑤𝜎𝑖 (1) , 𝑢𝑖1)) =
⌊︁
𝑥𝜎𝑖 (1) (𝑖)

⌋︁
. Note that this makes the degree constraint at 𝑢𝑖1 tight, as

𝑦 ((𝑤𝜎𝑖 (1) , 𝑢𝑖1)) = 𝑑 (𝑢𝑖1). The remaining fraction of 𝑥𝜎𝑖 (1) (𝑖) can be assigned to player 𝑖 by
taking the edge (𝑤𝜎𝑖 (1) , 𝑢𝑖2) fractionally by {𝑥𝜎𝑖 (1) (𝑖)}, that is, 𝑦 ((𝑤𝜎𝑖 (1) , 𝑢𝑖2)) = {𝑥𝜎𝑖 (1) (𝑖)}.
Note that this fraction is equal to 𝑅1. Then, we move on to the second resource, and we take
the edge (𝑤𝜎𝑖 (2) , 𝑢𝑖2) by the maximal amount possible until the degree constraint 𝑑 (𝑢𝑖2) of
vertex 𝑢𝑖2 becomes tight. That is, we set 𝑦 ((𝑤𝜎𝑖 (2) , 𝑢𝑖2)) = 𝑑 (𝑢𝑖2) − 𝑅1, because the amount
equal to 𝑅1 at vertex 𝑢𝑖2 is already taken by (𝑤𝜎𝑖 (1) , 𝑢𝑖2). We again see that there might be
some leftover of the value 𝑥𝜎𝑖 (2) (𝑖) that was not assigned to 𝑢𝑖2 and that is precisely equal to
𝑥𝜎𝑖 (2) (𝑖) − 𝑑 (𝑢𝑖2) − 𝑅1 = 𝑅2. But this amount we assign to 𝑢𝑖3 We continue this assignment
until the last resource. Note that our definition of remainder 𝑅 𝑗 is precisely this small leftover
of 𝑥𝜎𝑖 ( 𝑗 ) (𝑖) that carries over to the edge going to vertex 𝑢𝑖 ( 𝑗+1) (note that this remainder is
always less than 1). One slight caveat at the end is that a some small amount of the fractional
assignment of 𝑥𝜎𝑖 (𝑛) (𝑖) might be thrown away, but this will be no issue as we assume that
𝑣𝑖𝜎𝑖 (𝑛) = 0.

Thus, the assignment 𝑦 makes all degree constraints tight, implying 𝑦 ∈ B(P′). Moreover,
observe that since we distribute for every resource 𝑗 in 𝑦 a value of at most

∑︁
𝑖∈𝑃 𝑥𝜎𝑖 ( 𝑗 ) (𝑖) to

edges in {(𝑤𝜎𝑖 ( 𝑗 ) , 𝑢𝑖 𝑗 ), (𝑤𝜎𝑖 ( 𝑗 ) , 𝑢𝑖,min{𝑛,𝑗+1})}𝑖∈𝑃 , we have that 𝑦 ∈ P.

We showed that by construction of the polymatroid intersection problem, there always exists
an element 𝑦 ∈ P ∩ P′ such that 𝑦 ∈ B(P′). Since P and P are integer polymatroids, the
integrality of the polymatroid intersection polytope (cf. Corollary 46.1a in [Sch03]) implies that
there exists an integral solution 𝑧 ∈ P ∩ P′ such that 𝑧 ∈ B(P′). Further, we can compute such
an integral solution by finding the maximum cardinality multiset of edges in𝐺 that belongs to
the polymatroids intersection, which can be algorithmically done in polynomial time using a
𝑏-matching algorithm in a multigraph extension of 𝐺 .

We can now interpret such an integral solution 𝑧 as an integral assignment of resources to
players in the matroid SantaClaus instance 𝐼 : we assign 𝑧 ((𝑤𝜎𝑖 ( 𝑗 ) , 𝑢𝑖 𝑗 )) = 𝑑 (𝑢𝑖 𝑗 ) copies of
resource 𝑗 to player 𝑖 . In this assignment, every player 𝑖 receives a total value of at least

𝑛∑︁
𝑗=1

⌊︁
𝑅 𝑗−1 + 𝑥𝜎𝑖 ( 𝑗 ) (𝑖)

⌋︁
· 𝑣𝑖𝜎𝑖 ( 𝑗 ) .
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To conclude the theorem, we now compute for every player 𝑖 the difference Δ𝑖 between the
total value player 𝑖 receives in the given fractional solution 𝑥 and the above value. We have that

Δ𝑖 ≤
𝑛∑︁
𝑗=1

(︁
𝑥𝜎𝑖 ( 𝑗 ) (𝑖) −

⌊︁
𝑅 𝑗−1 + 𝑥𝜎𝑖 ( 𝑗 ) (𝑖)

⌋︁ )︁
· 𝑣𝑖𝜎𝑖 ( 𝑗 )

=

𝑛∑︁
𝑗=1

(︁
{𝑥𝜎𝑖 ( 𝑗 ) (𝑖)} −

⌊︁
𝑅 𝑗−1 + {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)}

⌋︁ )︁
· 𝑣𝑖𝜎𝑖 ( 𝑗 ) .

Looking at each term of the sum individually, we notice that either
⌊︁
𝑅 𝑗−1 + {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)}

⌋︁
= 0,

or that
⌊︁
𝑅 𝑗−1 + {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)}

⌋︁
= 1. In the first case, the next remainder 𝑅 𝑗 is equal to 𝑅 𝑗−1 +

{𝑥𝜎𝑖 ( 𝑗 ) (𝑖)} < 1. In the second case, we have that

𝑅 𝑗 = 𝑅 𝑗−1 + {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)} −
⌊︁
𝑅 𝑗−1 + {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)}

⌋︁
= 𝑅 𝑗−1 + {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)} − 1 .

Let 𝑅′ denote the set of all indices where the second case happens. Then, we can write

Δ𝑖 ≤
𝑛∑︁
𝑗=1
{𝑥𝜎𝑖 ( 𝑗 ) (𝑖)} · 𝑣𝑖𝜎𝑖 ( 𝑗 ) −

∑︁
𝑗∈𝑅′

𝑣𝑖𝜎𝑖 ( 𝑗 ) .

Now, note that if 𝑗 ∉ 𝑅′ then {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)} = 𝑅 𝑗 − 𝑅 𝑗−1, and that if 𝑗 ∈ 𝑅′ then {𝑥𝜎𝑖 ( 𝑗 ) (𝑖)} =
1 + 𝑅 𝑗 − 𝑅 𝑗−1. Using this observation, we obtain

Δ𝑖 ≤
𝑛∑︁
𝑗=1
(𝑅 𝑗 − 𝑅 𝑗−1) · 𝑣𝑖𝜎𝑖 ( 𝑗 ) +

∑︁
𝑗∈𝑅′

𝑣𝑖𝜎𝑖 ( 𝑗 ) −
∑︁
𝑗∈𝑅′

𝑣𝑖𝜎𝑖 ( 𝑗 )

=

𝑛∑︁
𝑗=1
(𝑅 𝑗 − 𝑅 𝑗−1) · 𝑣𝑖𝜎𝑖 ( 𝑗 ) =

𝑛−1∑︁
𝑗=1
(𝑣𝑖𝜎𝑖 ( 𝑗 ) − 𝑣𝑖𝜎𝑖 ( 𝑗+1) ) · 𝑅 𝑗 ≤ 𝑣𝑖𝜎𝑖 (1) ,

where we use the facts that 𝑅0 = 0, 𝑣𝑖𝜎𝑖 (𝑛) = 0, and 𝑅 𝑗 ≤ 1 for all resources 𝑗 .

Therefore, our computed integral assignment gives every player 𝑖 a total value of at least

𝑛∑︁
𝑗=1

⌊︁
𝑅 𝑗−1 + 𝑥𝜎𝑖 ( 𝑗 ) (𝑖)

⌋︁
𝑣𝑖𝜎𝑖 ( 𝑗 ) ≥

(︄
𝑛∑︁
𝑗=1

𝑥𝜎 𝑗 (𝑖 ) (𝑖) · 𝑣𝑖𝜎 𝑗 (𝑖 )

)︄
− Δ𝑖 ≥ 𝑇 − 𝑣𝑖𝜎𝑖 (1) ≥ 𝑇 − max

𝑖∈𝑃,𝑗∈𝑅
𝑣𝑖 𝑗 ,

which concludes the proof of the theorem. □

We continue with the matroidMakespan problem. Similarly to the assignment LP for the
matroidMakespan problem, we have one variable 𝑥 𝑗 (𝑖) for every job 𝑗 and every machine 𝑖 .
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Then, the assignment LP defines a set of feasible solutions with makespan at most 𝑇 via the
following constraints:∑︁

𝑗∈ 𝐽
𝑥 𝑗 (𝑖) · 𝑝𝑖 𝑗 ≤ 𝑇 ∀𝑖 ∈ 𝑀 (3.8)∑︁
𝑖∈𝑆

𝑥 𝑗 (𝑖) ≤ 𝑓𝑗 (𝑆) ∀𝑆 ⊆ 𝑀 ∀𝑗 ∈ 𝐽 (3.9)∑︁
𝑖∈𝑀

𝑥 𝑗 (𝑖) = 𝑓𝑗 (𝑀) ∀𝑗 ∈ 𝐽 (3.10)

𝑥 𝑗 (𝑖) = 0 ∀𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀 s.t. 𝑝𝑖 𝑗 > 𝑇 (3.11)
𝑥 𝑗 ≥ 0 ∀𝑗 ∈ 𝐽 (3.12)

Constraints (3.8), (3.9), and (3.10) correspond to (3.4), (3.5), and (3.6) of the matroid SantaClaus
problem. Constraint (3.11) however is specific to theMakespan problem. The idea is that, since
no integral solution can assign job 𝑗 to machine 𝑖 if 𝑝𝑖 𝑗 > 𝑇 , we can safely disallow even a
fractional assignment of 𝑗 to 𝑖 . This idea is also called parametric pruning and already appeared
in the proofs of the rounding theorems for the non-matroid Makespan problem [LST90; ST93].

Given a fractional assignment that satisfies the constraints of the assignment LP, our rounding
theorem for the matroid Makespan problem now guarantees an integral solution with a close
objective value.

Theorem 3.19. Given an instance 𝐼 of the matroid Makespan problem and given a feasible

solution 𝑥 for the assignment LP with makespan at most 𝑇 , we can compute in polynomial time a

solution for 𝐼 with makespan at most 𝑇 +max{𝑝𝑖 𝑗 | 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽 s.t. 𝑝𝑖 𝑗 < 𝑇 }.

Since the proof of Theorem 3.19 is very similar to the proof of Theorem 3.18, we omit it here
and refer to [Bam+24].

3.4.3 Reducing Restricted Santa Claus to Restricted Two-Value Santa Claus

The goal of this section is to prove the following lemma, which allows us to heavily reduce
restricted matroid SantaClaus instances to instances with only one matroid and one polyma-
troid.

Lemma 3.20. For any 𝛼 ≥ 2, if there is a polynomial-time algorithm that, given an instance

of restricted two-value matroid SantaClaus problem with one matroid of value 𝑣1 = ∞ and one

(integer) polymatroid of value 𝑣2 = 1 and a number 𝑏 ∈ ℕ, finds a solution of value at least 𝑏 or

determines that there is no solution of value 𝛼𝑏, then there is also:

1. a polynomial-time 𝛼-approximation algorithm for (any instance of) the restricted two-value

matroid SantaClaus problem and

2. a polynomial-time 2𝛼-approximation algorithm for (any instance of) the restricted matroid

SantaClaus problem.

The above lemma implies the following reduction.
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Corollary 3.21. For any 𝛼 ≥ 2, if there is a polynomial-time 𝛼-approximation algorithm for

the restricted two-value matroid SantaClaus problem, then there also is a polynomial-time

2𝛼-approximation algorithm for the restricted matroid SantaClaus problem.

Proof of Lemma 3.20. We start by proving the first result of the lemma. Let 𝑢 and 𝑤 with
𝑤 ≥ 𝑢 be the two sizes of a given restricted two-value matroid SantaClaus instance 𝐼 . By
Proposition 3.17, we can assume that there are exactly two resources in 𝐼 , one for each size, with
corresponding polymatroids P𝑢 and P𝑤 . Let 𝑓𝑢 and 𝑓𝑤 be the associated submodular functions.
There are three possible cases.

If OPT(𝐼 )/𝛼 ≤ 𝑢, then it suffices to give at least one resource to any player to obtain an
𝛼-approximate solution. This requires to check whether the vector of ones is in the union of P𝑢
and P𝑤 , which can be done in polynomial time [Sch03].
If 𝑢 < OPT(𝐼 )/𝛼 ≤ 𝑤 , then, in an 𝛼-approximate solution, it suffices to give to each player

either one resource of value𝑤 or 1
𝛼 ·𝑢OPT(𝐼 ) resources of value 𝑢. We define a new instance 𝐼2

over the same set of players with one matroid of value 𝑣1 = ∞ and one polymatroid of value 𝑣2 =
1. The independent sets of the matroid are the sets of players that can be covered by at least one
resource of value𝑤 each in the original instance. The polymatroid is defined by the submodular
function 𝑓2 = 𝑓𝑢 . Clearly, in this case, we have that OPT(𝐼2) ≥ 1

𝑢
OPT(𝐼 ), and a solution of

value 𝑇 in instance 𝐼2 can immediately be translated to a solution of value min{OPT(𝐼 )/𝛼,𝑇𝑢}
in the original instance. So an 𝛼-approximation on instance 𝐼2 gives us an 𝛼-approximation on
the original instance.

In the last case where OPT(𝐼 )/𝛼 > 𝑤 , we first assume without loss of generality by scaling
that 𝑢 and𝑤 are integers. Then, we define an integer polymatroid P3 over the set of players 𝑃
with the integer submodular function 𝑓3(𝑆) = 𝑢 · 𝑓𝑢 (𝑆) +𝑤 · 𝑓𝑤 (𝑆); this should be thought of
splitting the resources of value𝑤 (respectively 𝑢) into𝑤 (respectively 𝑢) individual resources
of value 1 each. We can then compute the largest integer 𝑏 such that 𝑏 · 𝑃 ∈ P3 (where 𝑏 · 𝑃 is
the |𝑃 | dimensional vector with all entries equal to 𝑏) by binary search and checking whether
the submodular function 𝑓 ′3 (𝑆) = 𝑓3(𝑆) − 𝑏 · |𝑆 | is non-negative. The latter can be done by
computing the minimum value of 𝑓 ′3 (𝑆) in polynomial time (cf. Theorem 45.1 in [Sch03]). By
the construction of 𝑓3, we can decompose 𝑏 · 𝑃 into a fractional solution for instance 𝐼 with an
objective value equal to OPT(𝐼 ). Using Theorem 3.18, we can then round in polynomial time
this fractional solution into an integral solution with an objective value of at least

OPT(𝐼 ) −max{𝑢,𝑤} ≥
(︃
1 − 1

𝛼

)︃
· OPT(𝐼 ) ≥ 1

𝛼
OPT(𝐼 ) ,

using 𝛼 ≥ 2. This concludes the proof of the first point of the lemma.
For the second point, using the binary search framework (cf. Proposition 3.3), we can assume

that we know the optimal objective value OPT(𝐼 ). We call a resource 𝑗 heavy if 𝑣 𝑗 ≥ 1
2𝛼OPT(𝐼 )

and light otherwise. Let 𝐻 and 𝐿 be the set of heavy and light resources, respectively. We then
define an instance 𝐼 ′ with the same set of players and with one matroid of value ∞, whose
independent sets are the sets of players that can be covered by at least one heavy resource each,
which is a matroid by the matroid union theorem [Sch03, Chapter 42]. Again, assuming that
all values 𝑣 𝑗 are integers, we define one polymatroid of value 1 associated to the submodular
function 𝑓 ′(𝑆) := ∑︁

𝑗∈𝐿 𝑣 𝑗 · 𝑓𝑗 (𝑆). In this new instance, it is clear that OPT(𝐼 ′) ≥ OPT(𝐼 ). Hence
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an 𝛼-approximate solution to instance 𝐼 ′ can be transformed into an 𝛼-approximate solution
to instance 𝐼 , in which the heavy resources are assigned integrally, and the light resources
fractionally. Using Theorem 3.18, we can round this fractional assignment in polynomial time
into an integral assignment with an objective value of at least

1
𝛼
OPT(𝐼 ) −max

𝑗∈𝐿
𝑣 𝑗 ≥

1
𝛼
OPT(𝐼 ) − 1

2𝛼OPT(𝐼 ) =
1
2𝛼OPT(𝐼 ) .

This concludes the proof of the second point of the lemma. □

3.5 Equivalence of Restricted Two-Value Matroid Problems

In this final section of this chapter, we prove the equivalence of matroid SantaClaus and
matroid Makespan in terms of approximation within the restricted two-value case. We prove
the following theorem.

Theorem 3.22. For any 𝛼 ≥ 2, there exists an 𝛼-approximation algorithm for restricted two-value

matroid SantaClaus if and only if there exists a (2 − 1
𝛼
)-approximation algorithm for restricted

two-value matroid Makespan.

We prove this equivalence by showing the implication in both directions separately in the
following two subsections. Both directions heavily rely on polymatroid duality, which we briefly
explain now. For a given integer polymatroid P over a universe 𝐸 with associated submodular
function 𝑓 : 2𝐸 → ℤ≥0 and some vector 𝑧 ∈ ℤ𝐸≥0 with 𝑥 ≤ 𝑧 for all 𝑥 ∈ P, the dual polymatroid

P of P with respect to 𝑧 is defined via the integer set function 𝑔 : 2𝐸 → ℤ≥0 with

𝑔(𝑆) =
∑︁
𝑒∈𝑆

𝑧 (𝑒) + 𝑓 (𝐸 \ 𝑆) − 𝑓 (𝐸)

for every 𝑆 ⊆ 𝐸. This function is submodular, monotone, and satisfies 𝑔(∅) = 0, hence P

is in fact a polymatroid. In particular, a value oracle for 𝑔 can be simulated in polynomial
time using a value oracle for 𝑓 . The important property we exploit below is that the set of
bases of P and P are dual to each other in the following sense: for every 𝑥 ∈ B(P) it follows
𝑔(𝐸) = ∑︁

𝑒∈𝐸 𝑧 (𝑒) + 𝑓 (∅) − 𝑓 (𝐸) =
∑︁
𝑒∈𝐸 𝑧 (𝑒) − 𝑥 (𝐸), and therefore 𝑧 − 𝑥 ∈ B(P).

For an integer 𝑏 and a set 𝑆 , we again write 𝑏 · 𝑆 to denote the |𝑆 |-dimensional vector where
each entry is equal to 𝑏.

3.5.1 Reduction of Matroid Santa Claus to Matroid Makespan

We start with reducing matroid SantaClaus to matroid Makespan. This direction in The-
orem 3.22 follows from the following lemma combined with the binary search framework
(Proposition 3.3).

Lemma 3.23. Let 𝛼 ≥ 2 and 𝐼 be an instance of the restricted two-value matroid SantaClaus

problem such that OPT(𝐼 ) ≥ 1. Then, we can compute an instance 𝐼 ′ of the restricted two-value

matroidMakespan problem, such that, given a (2− 1
𝛼
)-approximate solution for 𝐼 ′, we can compute

a solution for 𝐼 with an objective value of at least
1
𝛼
.
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Proof. Let 𝐼 be an instance of the restricted two-value matroid SantaClaus problem with
players 𝐸 and two resources with associated polymatroids P1,P2 and values 𝑣1, 𝑣2 ≥ 0 such that
OPT(𝐼 ) ≥ 1. By Lemma 3.20, we can assume that we are given a simplified case of the problem.
For convenience, we slightly reformulate it as follows: given 𝑣1 = 1 (instead of∞), 𝑣2 = 1

𝑏
≤ 𝑣1

(instead of 1) for 𝑏 ∈ ℕ, and OPT(𝐼 ) ≥ 1, find a solution of value at least 1
𝛼
.

Consider the truncated polymatroids P′1 = {𝑥 ∈ P1 : 𝑥 (𝑒) ≤ 1 ∀𝑒 ∈ 𝐸} and P′2 = {𝑥 ∈ P2 :
𝑥 (𝑒) ≤ 𝑏 ∀𝑒 ∈ 𝐸}. Let P1 be the dual polymatroid of P′1 with respect to the vector 1 · 𝐸, and
let P2 be the dual polymatroid of P′2 with respect to the vector 𝑏 · 𝐸. We compose an instance 𝐼 ′
of matroidMakespan using machines 𝐸, one job of size 𝑝1 = 1 with polymatroid P1 and one
job of size 𝑝2 = 1

𝑏
with polymatroid P2.

We first show that OPT(𝐼 ′) ≤ 1. Fix an optimal solution for 𝐼 that selects bases 𝑥1 ∈ B(P1)
and 𝑥2 ∈ B(P2). Since OPT(𝐼 ) ≥ 1, we have 𝑣1 · 𝑥1(𝑒) + 𝑣2 · 𝑥2(𝑒) ≥ 1 for every 𝑒 ∈ 𝐸.
Further, 𝑣1 = 1 and 𝑣2 = 1

𝑏
that implies 𝑥1(𝑒) + 1

𝑏
· 𝑥2(𝑒) ≥ 1. Our goal is to dualize bases

of P′1 and P′2 to obtain bases of P1 and P2, which are feasible for 𝐼 ′. To this end, we first
construct vectors 𝑥 ′1 ∈ P′1 and 𝑥 ′2 ∈ P′2 such that 𝑥 ′1(𝑒) + 1

𝑏
· 𝑥 ′2(𝑒) ≥ 1 for all 𝑒 ∈ 𝐸. This

can be done by restricting 𝑥1 to values of at most 1 and 𝑥2 to values of at most 𝑏, and then
selecting any bases that dominate these intermediate vectors. Now, we define 𝑥1(𝑒) = 1− 𝑥 ′1(𝑒)
and 𝑥2(𝑒) = 𝑏 − 𝑥 ′2(𝑒) for all 𝑒 ∈ 𝐸. By the construction of P1 and P2, this solution is feasible
for 𝐼 ′, that is, 𝑥 𝑗 ∈ B(P𝑗 ) for 𝑗 ∈ {1, 2}. We further have for every machine 𝑒 ∈ 𝐸

𝑥1(𝑒) +
1
𝑏
· 𝑥2(𝑒) = 2 −

(︃
𝑥 ′1(𝑒) +

1
𝑏
· 𝑥 ′2(𝑒)

)︃
≤ 1 ,

showing that OPT(𝐼 ′) ≤ 1.
Second, we prove the stated bound on the objective value of an approximate solution. Fix

an (2 − 1
𝛼
)-approximate solution for 𝐼 ′ that selects bases 𝑦1 ∈ B(P1) and 𝑦2 ∈ B(P2). We

construct a solution for 𝐼 by defining 𝑦′1(𝑒) = 1 − 𝑦1(𝑒) and 𝑦′2(𝑒) = 𝑏 − 𝑦2(𝑒) for every 𝑒 ∈ 𝐸,
meaning that 𝑦′𝑗 ∈ B(P′𝑗 ), and then choose an arbitrary basis 𝑦 𝑗 ∈ B(P𝑗 ) that dominates 𝑦′𝑗 ,
for 𝑗 ∈ {1, 2}. We have for every player 𝑒 ∈ 𝐸

𝑦1(𝑒) +
1
𝑏
· 𝑦2(𝑒) ≥ 𝑦′1(𝑒) +

1
𝑏
· 𝑦′2(𝑒) = 2 −

(︃
𝑦1(𝑒) +

1
𝑏
· 𝑦2(𝑒)

)︃
≥ 2 −

(︃
2 − 1

𝛼

)︃
· OPT(𝐼 ′) ≥ 1

𝛼
.

Since 𝑣2 = 1
𝑏
and 𝑣1 = 1, we conclude 𝑣1 ·𝑦1(𝑒) + 𝑣2 ·𝑦2(𝑒) ≥ 1

𝛼
for every 𝑒 ∈ 𝐸, which implies

that the value of the constructed solution 𝑦1 and 𝑦2 is at least 1
𝛼
. □

3.5.2 Reduction of Matroid Makespan to Matroid Santa Claus

For the other direction, from matroid Makespan to matroid SantaClaus, we cannot make
use of Lemma 3.20 to simplify the given instance whenever the two values satisfy 𝑢 < 𝑤 < 1.
However, we can use a similar scaling trick as for the general two-value reduction in Section 3.3.2.
Theorem 3.22 then follows from the following lemma applied to the binary search framework
(Proposition 3.3).

Lemma 3.24. Let 𝛼 ≥ 2 and 𝐼 be an instance of the restricted matroid Makespan problem with

two jobs such that OPT(𝐼 ) ≤ 1. Then we can compute an instance 𝐼 ′ of the restricted matroid
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SantaClaus problem with two resources, such that, given an 𝛼-approximate solution for 𝐼 ′, we

can compute a solution for 𝐼 with an objective value of at most 2 − 1
𝛼
.

Proof. Given an instance 𝐼 with OPT(𝐼 ) ≤ 1 of the restricted matroid Makespan problem
with machines 𝐸 and two jobs with sizes 𝑝1, 𝑝2 ≥ 0 and polymatroids P1,P2, we construct an
instance 𝐼 ′ of the restricted matroid SantaClaus problem as follows.

Let𝑘1 = ⌊1/𝑝1⌋ and let𝑘2 = ⌊1/𝑝2⌋. We first consider the polymatroidsP′1 = {𝑥 ∈ P1 : 𝑥 (𝑒) ≤
𝑘1 ∀𝑒 ∈ 𝐸} and P′2 = {𝑥 ∈ P2 : 𝑥 (𝑒) ≤ 𝑘2 ∀𝑒 ∈ 𝐸}. Let 𝑓 ′1 and 𝑓 ′2 be the associated submodular
functions of these polymatroids. Since OPT(𝐼 ) ≤ 1, any optimal solution 𝑥 𝑗 ∈ B(𝑃 𝑗 ) satisfies
𝑥 𝑗 (𝑒) ≤ 𝑘 𝑗 for all 𝑒 ∈ 𝐸, and therefore, 𝑥 𝑗 ∈ B(𝑃 ′𝑗 ), for 𝑗 ∈ {1, 2}. Thus, 𝑓𝑗 (𝐸) = 𝑥 𝑗 (𝐸) = 𝑓 ′𝑗 (𝐸).
Let P𝑗 be the dual polymatroid of P′𝑗 with respect to the vector 𝑘 𝑗 · 𝐸, for 𝑗 ∈ {1, 2}. We
compose instance 𝐼 ′ using players 𝐸 and two resources with polymatroids P1,P2 and resource
values 𝑝1, 𝑝2.

Let 𝑡 = 𝑘1 · 𝑝1 + 𝑘2 · 𝑝2 − 1. We show that OPT(𝐼 ′) ≥ 𝑡 . Fix an optimal solution for 𝐼
that selects bases 𝑥1 ∈ B(P1) and 𝑥2 ∈ B(P2). For each 𝑗 ∈ {1, 2}, we define a vector 𝑥 𝑗
with 𝑥 𝑗 (𝑒) = 𝑘 𝑗 − 𝑥 𝑗 (𝑒) for all 𝑒 ∈ 𝐸, and conclude that 𝑥 𝑗 ∈ B(P𝑗 ), because 𝑥 𝑗 ∈ B(P′𝑗 ). This
means that 𝑥1 and 𝑥2 are a feasible solution for 𝐼 ′. Using OPT(𝐼 ) ≤ 1, for every player 𝑒 ∈ 𝐸 it
holds that

𝑝1 · 𝑥1(𝑒) + 𝑝2 · 𝑥2(𝑒) = (1 + 𝑡) − (𝑝1 · 𝑥1(𝑒) + 𝑝2 · 𝑥2(𝑒)) = (1 + 𝑡) − OPT(𝐼 ) ≥ 𝑡 ,

showing that OPT(𝐼 ′) ≥ 𝑡 .
We finally prove the stated bound on the objective value of an approximate solution. Fix

an 𝛼-approximate solution for 𝐼 ′ that selects bases 𝑦1 ∈ P1 and 𝑦2 ∈ P2. We construct a
solution 𝑦 𝑗 ∈ B(P𝑗 ) for instance 𝐼 by setting 𝑦 𝑗 (𝑒) = 𝑘 𝑗 − 𝑦 𝑗 (𝑒) for every 𝑒 ∈ 𝐸 and 𝑗 ∈
{1, 2}. The construction of the dual polymatroid P𝑗 implies 𝑦 𝑗 ∈ B(P′𝑗 ) for 𝑗 ∈ {1, 2}. We
further have 𝑦 𝑗 ∈ B(P𝑗 ), because P′𝑗 ⊆ P𝑗 and 𝑦 𝑗 (𝐸) = 𝑓 ′𝑗 (𝐸) = 𝑓𝑗 (𝐸). Moreover, for every
machine 𝑒 ∈ 𝐸 it holds that

𝑝1 · 𝑦1(𝑒) + 𝑝2 · 𝑦2(𝑒) = (1 + 𝑡) −
(︁
𝑝1 · 𝑦1(𝑒) + 𝑝2 · 𝑦2(𝑒)

)︁
≤ (1 + 𝑡) − 1

𝛼
· OPT(𝐼 ′) ≤ 1 + 𝑡 − 𝑡

𝛼
.

Since by construction 𝑡 ≤ 1, we have 𝑡 − 𝑡/𝛼 ≤ 1 − 1
𝛼
, which implies that the makespan of the

constructed solution 𝑦1 and 𝑦2 is at most 2 − 1
𝛼
. □

3.6 Concluding Remarks

For the two notorious open problems in scheduling theory, we prove Makespan to be at least
as difficult as SantaClaus; more precisely, a better-than-2 approximation forMakespan would
imply a constant approximation for SantaClaus. In the two-value case, both problems appear
equivalent with respect to approximability. The obvious open question is whether there is
also aMakespan-to-SantaClaus reduction (for restricted or the general case). Here we note
that for restricted Makespan, all efforts to refine the local search method in order to give a
better-than-2 approximation have failed so far. Also with our new reduction techniques it
seems that it would require additional ideas to handle this problem.
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Finally, we comment on an alternative matroid scheduling variant with matroid constraints
on the items allocated to a specific machine/player. In themachine-matroid Makespan problem,
each machine would be given a matroid on the jobs. All jobs must be assigned such that each
machine receives an independent set of its matroid. The player-matroid SantaClaus can be
defined similarly.

Kawase et al. [Kaw+21] consider such matroid partition problems for various objective func-
tions showing complexity results. Further, two special-matroid examples forMakespan have
been studied, namely, bag-constrained scheduling [DW17; GJK19] (single partition matroid)
and scheduling with capacity constraints [Che+16] (uniform matroids). The approximabil-
ity lower bound Ω(log1/4 𝑛) by [DW17] holds for the restricted setting and even translates
to an inapproximability bound for machine-matroidMakespan for identical machines with
machine-dependent matroids. We are not aware of any similarly strong lower bounds for the
SantaClaus variant.

Bibliographic Note

This chapter is based on joint work with Étienne Bamas, Nicole Megow, Lars Rohwedder, and
Jens Schlöter [Bam+24]. Thus, some parts of this chapter are identical with [Bam+24].
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Online Scheduling
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Chapter 4

Clairvoyant Online Scheduling

4.1 Introduction

In this chapter, we introduce and analyze two clairvoyant online algorithms for minimizing the
total weighted completion time on unrelated machines. This means that jobs arrive online over
time and, whenever a job arrives, all of its characteristics become known to the algorithm. Both
algorithms preempt jobs, one computes amigratory schedule, and the other one a non-migratory
schedule.

The results of this section are motivated by the PreemptiveWSPT rule. On a single machine,
this algorithm schedules the available job 𝑗 with the highest density 𝑤 𝑗/𝑝 𝑗 at any time. In
particular, if job 𝑘 is released while another job 𝑗 is running, the rule preempts 𝑗 and processes 𝑘
if𝑤𝑘/𝑝𝑘 > 𝑤 𝑗/𝑝 𝑗 . Schulz and Skutella, as well as Goemans, Wein, and Williamson, proved that
PreemptiveWSPT has a competitive ratio equal to 2 for 1 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 [SS02a]. Megow
and Schulz [MS04] showed that on parallel identical machines, a natural generalization, which
schedules at any time the at most𝑚 available jobs with highest densities, also has a competitive
ratio equal to 2. Moreover, Goemans [Goe96] proved that PreemptiveWSPT minimizes the
total weighted mean busy time on a single machine.

4.1.1 Our Results

We present and analyze two generalizations of the PreemptiveWSPT rule for online scheduling
on unrelated machines.

• The first algorithm is based on the MinIncrease paradigm to assign arriving jobs to
machines, where it then schedules assigned jobs by PreemptiveWSPT. In particular, it
computes a non-migratory schedule. In Section 4.3, we prove that it has a competitive
ratio of at most 5.83 for 𝑅 | 𝑟 𝑗 , pmtn, non-mig | ∑︁𝑤 𝑗𝐶 𝑗 .

• The second algorithm computes a migratory schedule. On a high-level, it computes
at any time a set of at most 𝑚 jobs and assigns them to machines so that the sum of
their densities in this assignment is maximized. In Section 4.4, we formally define this
algorithm and show that it is 7.24-competitive for 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 .

Both analyses are based on dual fitting (cf. Section 2.4). Next, we provide an overview of state-
of-the-art results and techniques used for clairvoyant online scheduling for total completion
time objectives.
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4.2 Related Work on Clairvoyant Online Scheduling

The arguably first analysis of a clairvoyant online algorithm for the total completion time
objective is by Schrage [Sch68], who showed that the Shortest-Remaining-Processing-Time
rule (SRPT), which schedules at any time the job with the smallest remaining processing time,
minimizes the sum of flow times on a single machine, where the flow time of a job is defined as
𝐶 𝑗 −𝑟 𝑗 . Thus, SRPT also computes an optimal solution for 1 | 𝑟 𝑗 , pmtn | ∑︁𝐶 𝑗 . Other early results
are 2-competitive algorithms for 1 | 𝑟 𝑗 |

∑︁
𝐶 𝑗 via delaying jobs 𝑗 to max{𝑟 𝑗 , 𝑝 𝑗 } and 𝑟 𝑗 + 𝑝 𝑗 , and

then scheduling them greedily via SPT (calledDelayedSPT) by Hoogeveen and Vestjens [HV96]
and Stougie (cited in [Ves97]), respectively. Anderson and Potts [AP04] extended these ideas to
the weighted objective.
For scheduling on unrelated machines, two main techniques have been very successful.

The first technique is the doubling framework by Hall et al. [Hal+97]. Roughly speaking, it
divides time into geometric intervals and schedules in every interval a set of jobs of largest total
weight to completion, while completely ignoring newly arriving jobs. Since computing such
sets is in general NP-hard, we distinguish between whether bounds admit polynomial-time
algorithms, unless P = NP. For 𝑅 | 𝑟 𝑗 |

∑︁
𝑤 𝑗𝐶 𝑗 , Hall et al. [Hal+97] prove bounds of 4 and 8

(polynomial-time), which soon later have been improved by Chakrabarti et al. [Cha+96] to 2.886
and 5.771 (polynomial-time), respectively, via choosing the interval offset randomly. Rather
recently, Bienkowski et al. [BKL21] gave an improved deterministic 3-competitive algorithm
and a randomized 2.443-competitive algorithm, without polynomial-time restriction.
The second technique uses theMinIncrease paradigm, also known as greedy assignment.

The main idea is to immediately assign a job to a machine when it arrives (immediate dispatch),
and to schedule assigned jobs on amachine using some single machine policy. The assignment of
a job is chosen in a way such that a certain cost function is minimized, which in its simplest form
is the actual increase of the objective value when assigning the job to a machine. Specifically, a
job is never reassigned, hence every algorithm using this framework computes a non-migratory
schedule. This idea was arguably first used in the design of algorithms that minimize the
makespan for jobs that arrive one-by-one in a list and have to be immediately assigned. For𝑚
identical parallel machines, Graham [Gra66; Gra69] proved a competitive ratio of 2 − 1

𝑚
when

assigning the job to the currently least loaded machine, which indeed is an assignment that
increases the current makespan the least. This idea was extended later to Θ(log𝑛)-competitive
algorithms for restricted assignment [ANR95] and general unrelated machines [Asp+97]. For
min-sum objectives in the online-time model, around the same time, Avrahami and Azar
[AA03; AA07] usedMinIncrease to minimize the total flow time with speed augmentation
and Megow et al. [MUV04; MUV05] to minimize the total weighted completion time in a
stochastic setting, both on parallel identical machines. Chekuri et al. [Che+04] analyzed the
algorithm of Avrahami and Azar [AA07] for more general objectives. Later, Chadha et al.
[Cha+09] extended it and gave the first constant competitive algorithm for the total weighted
flow time objective on unrelated machines with speed augmentation, which subsequently was
again improved and generalized [AGK12; GKP10; IM11]. For minimizing the total weighted
completion time on unrelated machines, Gupta et al. [Gup+21] showed that a combination of
MinIncrease and DelayedWSPT has a competitive ratio of at most 7.216 for 𝑅 | 𝑟 𝑗 |

∑︁
𝑤 𝑗𝐶 𝑗 ,

and Jäger [Jäg21] proved thatMinIncreasewith WSRPT machine policy is 4-competitive when
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Table 4.1: Current bounds on the competitive ratio of clairvoyant online problems
subject to deterministic polynomial-time algorithms.

Problem Lower bound Upper bound

1 | 𝑟 𝑗 , pmtn | ∑︁𝐶 𝑗 1 1 [Sch68]
1 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 1.104 [JS23] 1.226 [JS23]
1 | 𝑟 𝑗 |

∑︁
𝑤 𝑗𝐶 𝑗 2 [HV96] 2 [AP04; HV96]

𝑃 | 𝑟 𝑗 , pmtn | ∑︁𝐶 𝑗 1.105 [XC12] 1.25 [Sit10]
𝑃 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 1.114 [XC12] 1.791 + 𝑜 (1) [Sit10], 2 [MS04]
𝑃 | 𝑟 𝑗 |

∑︁
𝐶 𝑗 1.309 [Ves97] 1.546a [Sch22]

𝑃 | 𝑟 𝑗 |
∑︁
𝑤 𝑗𝐶 𝑗 1.309 1.791 + 𝑜 (1) [Sit10], 2.618 [CW09]

𝑅 | 𝑟 𝑗 , pmtn, non-mig | ∑︁𝑤 𝑗𝐶 𝑗 1.114 4 [Jäg21], 5.83 (Thm. 4.1)
𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 1.114 4.62 (Thm. 5.27), 7.24 (Thm. 4.5)
𝑅 | 𝑟 𝑗 |

∑︁
𝑤 𝑗𝐶 𝑗 1.309 7.216 [Gup+21]

a This bound only holds if the number of machines is even.

allowing preemption but not migration. The WSRPT machine policy schedules at any time
𝑡 the assigned job 𝑗 with largest weight to remaining processing time ratio on that machine,
that is,𝑤 𝑗/𝑝𝑖 𝑗 (𝑡). This latter result is tight, because it is known that MinIncrease with WSPT
machine policy has a competitive ratio of at least 4 for uniform release dates [CQ12; Gup+21].
Moreover, there is a 2-competitive algorithm for a special case of related machines for that

the ordered speed vector 𝑠1 ≥ · · · ≥ 𝑠𝑚 does not decrease too quickly [Liu+09].
We give an overview of state-of-the-art competitive ratios in Table 4.1.

4.3 Non-Migratory Preemptive Online Scheduling on Unrelated

Machines

We study a variant of MinIncrease for the online problem 𝑅 | 𝑟 𝑗 , pmtn, non-mig | ∑︁𝑤 𝑗𝐶 𝑗 . Our
algorithm uses the PreemptiveWSPT machine policy and assigns an arriving job to a machine
that minimizes the increase in the current objective. Inspired by the analyses of previous
MinIncrease variants [AGK12; Gup+21; Jäg21], we prove the following theorem.

Theorem 4.1. The MinIncrease PreemptiveWSPT algorithm has a competitive ratio of at most

3 + 2
√
2 ≈ 5.8284 for minimizing the total weighted completion time on unrelated machines with

release dates, preemption, and without migration, 𝑅 | 𝑟 𝑗 , pmtn, non-mig | ∑︁𝑤 𝑗𝐶 𝑗 .

As mentioned above, Jäger [Jäg21] showed that theMinIncreaseWSRPT algorithm has a
competitive ratio of 4. While the bound on the competitive ratio of our algorithm is worse, our
machine policy has the advantage that it only requires to know for every machine 𝑖 the fixed
non-increasing order of the jobs’ densities (𝑑𝑖 𝑗 ) 𝑗 .
The remainder of this section is dedicated to the proof of Theorem 4.1, which uses dual

fitting. We first formalize the algorithm. Fix an instance and let 𝜅 > 1 be a real number that we
will set later. We assume without loss of generality by scaling the instance that all processing
requirements, speeds and release dates are integer multiples of 𝜅.
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Let 𝐽𝑖 ( 𝑗) be the set of available jobs that are assigned to machine 𝑖 at time 𝑟 𝑗 , excluding job 𝑗 .
As this definition is ambiguous if there are two jobs 𝑗 and 𝑗 ′ with 𝑟 𝑗 = 𝑟 𝑗 ′ being assigned to 𝑖 ,
we assume that we assign them in the order of their index. The increase of the objective value
of the algorithm due to assigning job 𝑗 to machine 𝑖 at time 𝑟 𝑗 equals

𝑄 (𝑖, 𝑗) = 𝑤 𝑗

(︃
𝑟 𝑗 + 𝑝𝑖 𝑗 +

∑︁
𝑗 ′∈ 𝐽𝑖 ( 𝑗 )
𝑑𝑖 𝑗 ′≥𝑑𝑖 𝑗

𝑝𝑖 𝑗 ′ (𝑟 𝑗 )
)︃
+ 𝑝𝑖 𝑗

∑︁
𝑗 ′∈ 𝐽𝑖 ( 𝑗 )
𝑑𝑖 𝑗 ′<𝑑𝑖 𝑗

𝑤 𝑗 ′ .

Thus, the algorithm assigns job 𝑗 to machine 𝑔( 𝑗) = argmin𝑖 𝑄 (𝑖, 𝑗), where ties are broken
arbitrarily. We now perform a dual fitting argument. As we have seen in Section 2.3, the LP
formulation (LPnm

𝑅
) is a relaxation of our problem. Its dual (without (2.6)) can be written as

follows.

max
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
∑︁
𝑖∈𝑀

∑︁
𝑡≥0

𝑏𝑖𝑡 (DLPnmR )

s.t.
𝑎 𝑗

𝑝𝑖 𝑗
≤ 𝑏𝑖𝑡 +𝑤 𝑗 ·

(︃
𝑡 + 1/2
𝑝𝑖 𝑗

+ 1
2

)︃
∀𝑖 ∈ 𝑀,∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 𝑟 𝑗 (4.1)

𝑎 𝑗 , 𝑏𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝑀,∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 0

Let 𝐶 𝑗 be the completion time of 𝑗 in the algorithm’s schedule and ALG be the algorithm’s
objective value. Let𝑈𝑖 (𝑡) be the set of unfinished jobs at time 𝑡 that are assigned to machine 𝑖
when they arrive, that is, 𝑈𝑖 (𝑡) = { 𝑗 ∈ 𝐽 | 𝑔( 𝑗) = 𝑖 ∧ 𝑡 < 𝐶 𝑗 }. Note that 𝑈𝑖 (𝑡) includes
unreleased jobs. We define the following assignment:

• 𝑎 𝑗 ≔ 𝑄 (𝑔( 𝑗), 𝑗) for every job 𝑗 and

• 𝑏𝑖𝑡 ≔
∑︁
𝑗∈𝑈𝑖 (𝜅 ·𝑡 ) 𝑤 𝑗 for every machine 𝑖 and time 𝑡 .

The following two lemmas show that this assignment is feasible and that its dual objective
value captures a fraction of the algorithm’s objective value.

Lemma 4.2. It holds that

∑︁
𝑗∈ 𝐽 𝑎 𝑗 −

∑︁
𝑖∈𝑀

∑︁
𝑡≥0 𝑏𝑖𝑡 =

(︁
1 − 1

𝜅

)︁
· ALG.

Proof. The definition of 𝑄 (𝑔( 𝑗), 𝑗) implies
∑︁
𝑗∈ 𝐽 𝑎 𝑗 =

∑︁
𝑗∈ 𝐽 𝑄 (𝑔( 𝑗), 𝑗) = ALG. Since we as-

sumed that all release dates, speeds and processing requirements are integer multiples of 𝜅,
all preemptions occur at integer multiples of 𝜅 and therefore also all job completions. Thus,∑︁
𝑡≥0

∑︁
𝑗∈𝑈𝑖 (𝜅 ·𝑡 ) 𝑤 𝑗 =

1
𝜅

∑︁
𝑡≥0

∑︁
𝑗∈𝑈𝑖 (𝑡 ) 𝑤 𝑗 for every machine 𝑖 , and∑︁

𝑖∈𝑀

∑︁
𝑡≥0

𝑏𝑖𝑡 =
∑︁
𝑖∈𝑀

∑︁
𝑡≥0

∑︁
𝑗∈𝑈𝑖 (𝜅 ·𝑡 )

𝑤 𝑗 =
1
𝜅

∑︁
𝑖∈𝑀

∑︁
𝑡≥0

∑︁
𝑗∈𝑈𝑖 (𝑡 )

𝑤 𝑗 =
1
𝜅
· ALG ,

which implies the desired equality. □

Lemma 4.3. The solution ( 1
𝜅+1𝑎 𝑗 ) 𝑗 and (

1
𝜅+1𝑏𝑖𝑡 )𝑖,𝑡 is feasible for (DLP

nm
R ).

Proof. Since our defined variables are non-negative by definition, it suffices to show that this
assignment satisfies (4.1). Fix a job 𝑗 , a machine 𝑖 and a time 𝑡 ≥ 𝑟 𝑗 . We assume that no new job
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arrives after 𝑗 , since such a job may only increase 𝑏𝑖𝑡 while 𝑎 𝑗 stays unchanged. Let 𝑗1, . . . , 𝑗𝑧
be the jobs of 𝐽𝑖 ( 𝑗) indexed in WSPT order by densities 𝑑𝑖 𝑗 = 𝑤 𝑗/𝑝𝑖 𝑗 . Defining

• 𝐻 ≔ { 𝑗 ′ ∈ 𝐽𝑖 ( 𝑗) : 𝑑𝑖 𝑗 ′ ≥ 𝑑𝑖 𝑗 } = { 𝑗1, . . . , 𝑗𝑟 } and
• 𝐿 ≔ { 𝑗 ′ ∈ 𝐽𝑖 ( 𝑗) : 𝑑𝑖 𝑗 ′ < 𝑑𝑖 𝑗 } = { 𝑗𝑟+1, . . . , 𝑗𝑧},

and using 𝑎 𝑗 = 𝑄 (𝑔( 𝑗), 𝑗) ≤ 𝑄 (𝑖, 𝑗) and 𝜅 + 1 > 2 yields

𝑎 𝑗

𝑝𝑖 𝑗
=

𝑎 𝑗

(𝜅 + 1)𝑝𝑖 𝑗
≤

𝑑𝑖 𝑗

𝜅 + 1

(︄
𝑟 𝑗 +

∑︁
𝑗 ′∈𝐻

𝑝𝑖 𝑗 ′ (𝑟 𝑗 )
)︄
+
𝑤 𝑗

2 +
∑︁
𝑗 ′∈𝐿

𝑤 𝑗 ′

𝜅 + 1 .

Thus, asserting (4.1) reduces to proving

𝑑𝑖 𝑗

𝜅 + 1

(︄
𝑟 𝑗 +

∑︁
𝑗 ′∈𝐻

𝑝𝑖 𝑗 ′ (𝑟 𝑗 )
)︄
+

∑︁
𝑗 ′∈𝐿

𝑤 𝑗 ′

𝜅 + 1 ≤ 𝑑𝑖 𝑗 · 𝑡 + 𝑏𝑖𝑡 . (4.2)

Observe that the total processing time of all jobs in 𝐽𝑖 ( 𝑗) that are completed before time 𝜅 · 𝑡
is at most 𝜅 · 𝑡 . Further, 𝑟 𝑗 + 𝜅 · 𝑡 ≤ (𝜅 + 1)𝑡 . Now consider the case that machine 𝑖 processes a
job 𝑗𝑘 at time 𝜅 · 𝑡 . If 𝑗𝑘 ∈ 𝐻 , using 𝑑𝑖 𝑗 ≤ 𝑤 𝑗ℓ /𝑝𝑖 𝑗ℓ ≤ 𝑤 𝑗ℓ /𝑝𝑖 𝑗ℓ (𝑟 𝑗 ) for all 𝑗ℓ ∈ 𝐻 gives

𝑑𝑖 𝑗

𝜅 + 1

(︄
𝑟 𝑗 +

𝑘−1∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗 )
)︄
+

𝑑𝑖 𝑗

𝜅 + 1

𝑟∑︁
ℓ=𝑘

𝑝𝑖 𝑗ℓ (𝑟 𝑗 ) +
∑︁
𝑗 ′∈𝐿

𝑤 𝑗 ′

𝜅 + 1

≤ 𝑑𝑖 𝑗 · 𝑡 +
1

𝜅 + 1

𝑟∑︁
ℓ=𝑘

𝑤 𝑗ℓ +
∑︁
𝑗 ′∈𝐿

𝑤 𝑗 ′

𝜅 + 1 ≤ 𝑑𝑖 𝑗 · 𝑡 +
𝑏𝑖𝑡

𝜅 + 1 = 𝑑𝑖 𝑗 · 𝑡 + 𝑏𝑖𝑡 .

The last inequality holds since all jobs in 𝐽𝑖 ( 𝑗) that are processed after job 𝑗𝑘−1 are unfinished
at time 𝜅 · 𝑡 and assigned to 𝑖 in the algorithm’s schedule, hence part of 𝑈𝑖 (𝜅 · 𝑡). If 𝑗𝑘 ∈ 𝐿,
using𝑤 𝑗ℓ < 𝑑𝑖 𝑗 · 𝑝𝑖 𝑗ℓ for all 𝑗ℓ ∈ 𝐿 implies

𝑑𝑖 𝑗

𝜅 + 1

(︄
𝑟 𝑗 +

𝑟∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗 )
)︄
+ 1
𝜅 + 1

𝑘−1∑︁
ℓ=𝑟+1

𝑤 𝑗ℓ +
1

𝜅 + 1

𝑧∑︁
ℓ=𝑘

𝑤 𝑗ℓ

≤
𝑑𝑖 𝑗

𝜅 + 1

(︄
𝑟 𝑗 +

𝑟∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗 ) +
𝑘−1∑︁
ℓ=𝑟+1

𝑝𝑖 𝑗ℓ

)︄
+ 1
𝜅 + 1

𝑧∑︁
ℓ=𝑘

𝑤 𝑗ℓ ≤ 𝑑𝑖 𝑗 · 𝑡 +
1

𝜅 + 1

𝑧∑︁
ℓ=𝑘

𝑤 𝑗ℓ ≤ 𝑑𝑖 𝑗 · 𝑡 + 𝑏𝑖𝑡 .

If no job is running at time 𝜅 · 𝑡 , we conclude that all jobs in 𝐽𝑖 ( 𝑗) must already be completed,
because the algorithm does not idle unnecessarily, and we assumed that no job is released
after 𝑗 . By using𝑤 𝑗ℓ < 𝑑𝑖 𝑗 · 𝑝𝑖 𝑗ℓ for all 𝑗ℓ ∈ 𝐿 we have

𝑑𝑖 𝑗

𝜅 + 1

(︄
𝑟 𝑗 +

𝑟∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗 )
)︄
+

𝑧∑︁
ℓ=𝑟+1

𝑤 𝑗ℓ ≤
𝑑𝑖 𝑗

𝜅 + 1

(︄
𝑟 𝑗 +

𝑟∑︁
ℓ=1

𝑝𝑖 𝑗ℓ (𝑟 𝑗 ) +
𝑧∑︁

ℓ=𝑟+1
𝑝𝑖 𝑗ℓ

)︄
≤ 𝑑𝑖 𝑗 · 𝑡 .

Since we established (4.2) in every case, we conclude the lemma. □
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We finally prove Theorem 4.1. Weak duality and Lemma 4.3 imply that the objective value
of (DLPnmR ) of our assignment is a lower bound on the optimal objective value. Lemma 4.2 gives

OPT ≥
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
∑︁
𝑖∈𝑀

∑︁
𝑡≥0

𝑏𝑖𝑡 =
1

𝜅 + 1

(︄∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
∑︁
𝑖∈𝑀

∑︁
𝑡≥0

𝑏𝑖𝑡

)︄
=

(︃
1 − 1/𝜅
𝜅 + 1

)︃
· ALG .

We conclude that the algorithm has a competitive ratio of at most 3 + 2
√
2 ≈ 5.8284 by

choosing 𝜅 ≔ 1 +
√
2.

4.4 Migratory Preemptive Online Scheduling on Unrelated

Machines

In this section, we move to the migratory setting. We study a simple and efficient online
algorithm for the problem 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 .
We first review the best-known deterministic polynomial-time algorithm for this problem,

which is the doubling framework by Hall et al. [Hal+97]. It achieves a competitive ratio of
at most 8. While they only state this bound for the non-preemptive problem, we quickly
argue that it extends also to the preemptive case; this could be folklore. On a high level, their
algorithm divides time into geometric intervals, and schedules in every interval [2ℓ , 2ℓ+1] the
set 𝑆ℓ of jobs of maximum weight that are released before time 2ℓ and can be feasibly scheduled
non-preemptively to completion within that interval. This ensures that the total weight of
jobs completed by the algorithm by time 2ℓ+1 is at least the total weight of all jobs completed
by an optimal non-preemptive schedule by time 2ℓ . This implies that, at any time, the total
weight of unfinished jobs in the algorithm’s schedule is at most 4 times that of the optimal’s
schedule, yielding a competitive ratio of at most 4. This argument works analogously for
preemptive schedules. Since computing such sets of maximum total weight is NP-hard, Hall
et al. propose an approximation algorithm that finds a set 𝑆ℓ of maximum weight that can
be non-preemptively scheduled in the doubled interval [2ℓ+1, 2ℓ+2]. Thus, the bound on the
competitive ratio also doubles to 8. This subroutine uses the approximation framework for the
generalized assignment problem by Shmoys and Tardos [ST93], and thus requires solving a
linear program. Since the approximation compares against a solution of maximum weight that
allows a preemptive schedule, the subroutine can also be integrated in the framework for the
preemptive setting. This argumentation can analogously be applied to the randomized variant
of the doubling framework by Chakrabarti et al. [Cha+96].

Theorem 4.4 (Hall et al. [Hal+97], Chakrabarti et al. [Cha+96]). The doubling framework

yields a deterministic polynomial-time online algorithm with a competitive ratio of at most 8,
and a randomized polynomial-time online algorithm with a competitive ratio of at most 5.78,
for minimizing the total weighted completion time on unrelated machines with release dates,

preemption, and migration, 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 .

While the doubling framework can be seen as applying theWSPT rule in every geometric
interval, we propose an algorithm that resembles the PreemptiveWSPT rule more directly.
Our algorithm computes at any time an assignment of at most 𝑚 jobs to machines that

maximizes the total density, that is, the sum of the densities for this job-to-machine assignment.
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This can be done efficiently by computing, at any time 𝑡 , a maximum-weight matching 𝐴𝑡
between alive jobs 𝑗 ∈ 𝐽 (𝑡) = { 𝑗 ∈ 𝐽 | 𝑟 𝑗 ≤ 𝑡 ≤ 𝐶 𝑗 } and machines 𝑖 ∈ 𝑀 with edge weights
𝑑𝑖 𝑗 ≔ 𝑤 𝑗𝑠𝑖 𝑗/𝑝 𝑗 . Note that we need to recompute the matching only if the set 𝐽 (𝑡) changes, that
is, when a job arrives or completes. Thus, the algorithms makes only a polynomial number
of migrations and preemptions and therefore runs in polynomial time. As this algorithm
essentially follows the PreemptiveWSPT paradigm, we do not give it another name. Our main
result is the following theorem.

Theorem 4.5. PreemptiveWSPT has a competitive ratio of at most 7.24 for minimizing the total

weighted completion time on unrelated machines with release dates, preemption, and migration,

𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 .

The remainder of this section is dedicated to the proof of Theorem 4.5. Fix an instance
and a schedule of the algorithm for this instance. Let 𝐶 𝑗 be the completion time of 𝑗 in the
algorithm’s schedule and ALG be the algorithm’s objective value. Given rational input, we
assume by scaling that all processing requirements and speeds are integers. Thus, the schedule
of PreemptiveWSPT only preempts and completes jobs at integer times.
We perform a dual fitting argument. Since we allow migration, (LPnm

𝑅
) is not a relaxation

of our problem (cf. Lemma 2.8). However, Theorem 2.9 gives that the optimal objective value
of (LPnm

𝑅
) is at most 1.81 times the objective value OPT of an optimal solution. Moreover, this

statement holds even for the following LP relaxation with a slightly stronger objective function
(cf. [Sit17]). We state this relaxation in the setting where every machine is slowed down by
a factor of 1

𝜅
for a constant 𝜅 ≥ 1. Thus, by the scalability of completion times, the optimal

objective value of the following LP is at most 1.81𝜅 · OPT.

min
∑︁
𝑗∈ 𝐽

𝑤 𝑗

∑︁
𝑖∈𝑀

∑︁
𝑡≥𝑟 𝑗

(︃
𝑡 + 1

2

)︃
𝑥𝑖 𝑗𝑡𝑠𝑖 𝑗

𝑝 𝑗
+ 𝑥𝑖 𝑗𝑡 (˜︂LPnm𝑅 (𝜅))

s.t.
∑︁
𝑖∈𝑀

∑︁
𝑡≥𝑟 𝑗

𝑥𝑖 𝑗𝑡𝑠𝑖 𝑗 ≥ 𝑝 𝑗 ∀𝑗 ∈ 𝐽∑︁
𝑗∈ 𝐽

𝑥𝑖 𝑗𝑡 ≤
1
𝜅

∀𝑖 ∈ 𝑀,∀𝑡 ≥ 0

𝑥𝑖 𝑗𝑡 ≥ 0 ∀𝑖 ∈ 𝑀,∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 0

The dual of (˜︂LPnm𝑅 (𝜅)) can be written as follows.

max
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
∑︁
𝑖∈𝑀

∑︁
𝑡≥0

𝑏𝑖𝑡 (˜︃DLPnm𝑅 (𝜅))
s.t.

𝑎 𝑗𝑠𝑖 𝑗

𝑝 𝑗
−
𝑤 𝑗𝑠𝑖 𝑗

𝑝 𝑗
𝑡 ≤ 𝜅 · 𝑏𝑖𝑡 +𝑤 𝑗 ∀𝑖 ∈ 𝑀,∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 𝑟 𝑗

𝑎 𝑗 , 𝑏𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝑀,∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 0

Before presenting our dual setup, we first define for every machine 𝑖 and any time 𝑡

𝛽𝑖𝑡 ≔

{︄
𝑑𝑖 𝑗 if machine 𝑖 is matched to job 𝑗 ∈ 𝐽 (𝑡) in 𝐴𝑡
0 otherwise,
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and for every job 𝑗 and any time 𝑡

𝛾 𝑗𝑡 ≔

{︄
𝑑𝑖 𝑗 if job 𝑗 is matched to machine 𝑖 ∈ 𝑀 in 𝐴𝑡
0 otherwise.

Now, we define the following assignment of dual variables:

• 𝑎 𝑗 ≔ 𝑤 𝑗𝐶 𝑗 for every job 𝑗 ,

• 𝑏𝑖𝑡 ≔ 1
2
∑︁
𝑡 ′≥𝑡 𝛽𝑖𝑡 ′ for every machine 𝑖 and time 𝑡 .

For a job 𝑗 and a time 𝑡 , let 𝜎 𝑗 (𝑡) be the machine assignment of 𝑗 at time 𝑡 according to 𝐴𝑡 . If
𝑗 is not assigned to any machine at time 𝑡 , we set 𝜎 𝑗 (𝑡) ≔ ⊥, and further define 𝑠⊥, 𝑗 ≔ 0. Since
no job receives more processing than required, we have the following observation.

Observation 4.6. For every 𝑗 and time 𝑡 , it holds that
∑︁𝐶 𝑗

𝑡 ′=𝑡 𝑠𝜎 𝑗 (𝑡 ′ ), 𝑗
𝑤𝑗

𝑝 𝑗
≤ 𝑤 𝑗 .

The following two lemmas show that this assignment is feasible and that its dual objective
value captures a fraction of the algorithm’s objective value.

Lemma 4.7. It holds that
1
2ALG ≤

∑︁
𝑗∈ 𝐽 𝑎 𝑗 −

∑︁
𝑖∈𝑀

∑︁
𝑡≥0 𝑏𝑖𝑡 .

Proof. Clearly,
∑︁
𝑗∈ 𝐽 𝑎 𝑗 = ALG. Moreover, Observation 4.6 implies

∑︁
𝑖∈𝑀

𝑏𝑖𝑡 =
1
2

∑︁
𝑗∈𝑈 (𝑡 )

𝐶 𝑗∑︁
𝑡 ′=𝑡

𝑠𝜎 𝑗 (𝑡 ′ ), 𝑗
𝑤 𝑗

𝑝 𝑗
≤ 1

2𝑊 (𝑡) ,

which gives
∑︁
𝑖∈𝑀

∑︁
𝑡≥0 𝑏𝑖𝑡 ≤ 1

2ALG, and thus concludes the proof. □

Lemma 4.8. The solution (𝑎 𝑗 ) 𝑗 and (𝑏 𝑗 ) 𝑗 is feasible for (˜︃DLPnm𝑅 (𝜅)) if 𝜅 = 2.

Proof. First note that the dual assignment is non-negative. To verify the dual constraint, fix a
machine 𝑖 , a job 𝑗 and a time 𝑡 ≥ 𝑟 𝑗 . The definition of 𝑎 𝑗 yields 𝑎 𝑗

𝑠𝑖 𝑗

𝑝 𝑗
−𝑤 𝑗𝑡

𝑠𝑖 𝑗

𝑝 𝑗
≤ ∑︁𝐶 𝑗

𝑡 ′=𝑡
𝑤𝑗𝑠𝑖 𝑗

𝑝 𝑗
=∑︁𝐶 𝑗

𝑡 ′=𝑡 𝑑𝑖 𝑗 . Since
∑︁𝐶 𝑗

𝑡 ′=𝑡 𝛾 𝑗𝑡 ′ ≤ 𝑤 𝑗 by Observation 4.6, it remains to validate 𝑑𝑖 𝑗 ≤ 𝛽𝑖𝑡 ′ + 𝛾 𝑗𝑡 ′ for
every 𝑡 ≤ 𝑡 ′ ≤ 𝐶 𝑗 . We distinguish five cases:

(i) If (𝑖, 𝑗) ∈ 𝐴𝑡 ′ , then 𝑑𝑖 𝑗 = 𝛽𝑖𝑡 ′ = 𝛾 𝑗𝑡 ′ .

(ii) If (𝑖, 𝑗 ′) ∈ 𝐴𝑡 ′ and (𝑖′, 𝑗) ∈ 𝐴𝑡 ′ s.t. 𝑖′ ≠ 𝑖 (and thus 𝑗 ′ ≠ 𝑗 ), we know by the optimality
of 𝐴𝑡 ′ that 𝑑𝑖 𝑗 ≤ 𝑑𝑖 𝑗 + 𝑑𝑖′ 𝑗 ′ ≤ 𝑑𝑖′ 𝑗 + 𝑑𝑖 𝑗 ′ = 𝛾 𝑗𝑡 ′ + 𝛽𝑖𝑡 ′ .

(iii) If (𝑖′, 𝑗) ∈ 𝐴𝑡 ′ and 𝑖 is not matched in 𝐴𝑡 ′ , we conclude 𝑑𝑖 𝑗 ≤ 𝑑𝑖′ 𝑗 = 𝛾 𝑗𝑡 ′ .

(iv) If (𝑖, 𝑗 ′) ∈ 𝐴𝑡 ′ and 𝑗 is not matched in 𝐴𝑡 ′ , we conclude 𝑑𝑖 𝑗 ≤ 𝑑𝑖 𝑗 ′ = 𝛽𝑖𝑡 ′ .

(v) The case where 𝑠𝑖 𝑗 > 0,𝑤 𝑗 > 0, but both 𝑖 and 𝑗 are unmatched in 𝐴𝑡 ′ contradicts the
optimality of 𝐴𝑡 ′ , as 𝑡 ′ ≤ 𝐶 𝑗 . Otherwise, 𝑑𝑖 𝑗 = 0, and the inequality holds since the right
side is non-negative.

This concludes the proof of the lemma. □
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We finally prove Theorem 4.5. Weak duality, Lemma 4.7, and Lemma 4.8 imply

1.81 · 2 · OPT ≥
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
∑︁
𝑖∈𝑀

∑︁
𝑡≥0

𝑏𝑖𝑡 ≥
1
2 · ALG ,

which concludes that PreemptiveWSPT has a competitive ratio of at most 7.24.

4.5 Concluding Remarks

In this section, we presented two natural extensions of the well-known PreemptiveWSPT
single-machine scheduling rule to unrelated machines. We showed that these have a competitive
ratio of at most 5.83 and 7.24 for preemptively minimizing the total weighted completion time
on unrelated machines with online job arrival, without and with migration, respectively.

For online clairvoyant 𝑅 | 𝑟 𝑗 , pmtn, non-mig | ∑︁𝑤 𝑗𝐶 𝑗 , there exists a 4-competitive algorithm
[Jäg21], and it remains open whether a better competitive ratio among polynomial-time algo-
rithms is possible. For online clairvoyant𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 , the best-known polynomial-time
algorithm has a competitive ratio of at most 5.78 but requires randomization [Cha+96]. In the
next chapter, we give a 4.62-competitive polynomial-time online algorithm for this problem,
which is even non-clairvoyant. Thus, we believe that it should be possible to prove a better
competitive ratio than 4.62 for a polynomial-time online algorithm by exploiting clairvoyance.
If the polynomial-time constraint is lifted, a deterministic 3-competitive and randomized

2.443-competitive online algorithm is possible for 𝑅 | 𝑟 𝑗 |
∑︁
𝑤 𝑗𝐶 𝑗 [BL19], which also transfer to

both, 𝑅 | 𝑟 𝑗 , pmtn, non-mig | ∑︁𝑤 𝑗𝐶 𝑗 and 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 (similar to Theorem 4.4).

Bibliographic Note

This chapter is based on joint work with Nicole Megow and Martin Rapp [LM22; LMR23].
Specifically, Theorem 4.1 and its proof appear very similarly in [LM22]. The generalization
of PreemptiveWSPT presented in Section 4.4 has been introduced in [LMR23], but there it is
only proved that the algorithm is 8-competitive. Thus, some parts of this chapter are identical
with [LM22; LMR23].
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Chapter 5

Non-Clairvoyant Online Scheduling

5.1 Introduction

In this chapter, we study online algorithms that cope with both uncertainties, online job arrival
and non-clairvoyance, while aiming to minimize the total weighted completion time. Recall that
a non-clairvoyant online algorithm has no knowledge about a job’s processing requirement
until it completes.

To capture a variety of preemptive scheduling environments, we adopt the abstract perspective
of instantaneous resource allocation. Specifically, at any time 𝑡 , an algorithm can process a job
𝑗 at a rate 𝑦 𝑗 (𝑡) such that the rate vector 𝑦 (𝑡) over all 𝑛 jobs satisfies polyhedral constraints
given by a packing polytope P = {𝑦 ∈ ℝ𝑛≥0 | 𝐵 · 𝑦 ≤ 1}, where 𝐵 ∈ ℚ𝐷×𝑛

≥0 . A job is considered
complete when it has received the total required processing. This abstract problem, termed
Polytope Scheduling Problem (PSP), was introduced in a seminal paper by Im et al. [IKM18]. It
generalizes many well-studied preemptive scheduling problems, such as unrelated machine
scheduling, multidimensional scheduling [Gho+11], or broadcast scheduling [BCS08]. The
power of the general PSP formulation is that it abstracts away the specific details of the
scheduling environment and extracts the essence of “packing over time”.
We consider a simple and well-known mechanism, known as Proportional Fairness (PF),

which dates back to Nash [Nas50] and is widely studied in the context of fair allocation and
markets [JV10; Jal+23; Mou03; PTV21]. At any time 𝑡 it allocates processing rates 𝑦 𝑗 (𝑡) to the
available jobs 𝑗 such that theWeighted Nash Social Welfare [KN79] is maximized, where the
rates are interpreted as utilities. This has desirable properties from the perspective of fairness,
such as Pareto-efficiency and envy-freeness [IKM18; TV24; Var76]. Im et al. [IKM18] were the
first who studied this allocation rule in the context of scheduling. They proved that PF is a 1281-
competitive non-clairvoyant algorithm for PSP, while the best-known non-clairvoyant lower
bound for this problem is only 2. Interestingly, this lower bound already holds in the simple
case of single-machine scheduling, a classical result by Motwani et al. [MPT94]. It is not hard
to see that Round-Robin, the classical non-clairvoyant algorithm that splits a single machine
evenly among all available jobs [MPT94], corresponds to PF for the unweighted single-machine
problem. This algorithm achieves the optimal competitive ratio of 2 for 1 | pmtn | ∑︁𝐶 𝑗 [MPT94].
A fundamental PSP is scheduling on unrelated machines with preemption and migration,

𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 . At any time a job can be assigned to at most one machine and on ev-
ery machine there can be at most one job assigned. These matching constraints determine
1The factor stated in [IKM18] is 64, but the proof contained an algebraic mistake and is fixed by losing a fac-
tor 2 [IKM].
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the polytope for the this PSP. Any fractional rate vector in this polytope can be efficiently
transformed to a preemptive and migratory schedule for one time unit by the Birkhoff–von
Neumann Theorem. We emphasize that both preemption [MPT94] and migration are necessary
for competitive non-clairvoyant algorithms for this problem; we provide a general lower bound
for non-migratory algorithms (cf. Theorem 5.3).
Little is known about non-clairvoyantly scheduling jobs with online arrival on unrelated

machines with preemption and migration. The bound of 128 on the competitive ratio of
PF [IKM18] holds for this problem. We can also prove that an algorithm designed for minimizing
the total weighted flow time [Im+14] is 32-competitive for our total weighted completion
time objective. There remains a substantial gap to the lower bound of 2, and to the best of
our knowledge, even for the simpler cases of restricted assignment and related machines no
substantially better constants are known.

In the clairvoyant setting, where a job’s processing requirement becomes known at the job’s
release date, better constants are known; we refer to Section 4.2 for an overview of current
bounds.
This chapter uses tools and concepts from convex optimization. For a general introduction

to convex optimization, we refer to the book by Boyd and Vandenberghe [BV14], and for a
modern overview of solution algorithms for convex programs to the book by Vishnoi [Vis21].

5.1.1 Our Results

For the general polytope scheduling problem (PSP), we simplify and substantially improve
the original analysis of the non-clairvoyant Proportional Fairness algorithm (PF) by Im et al.
[IKM18]. By exploiting the monotonicity of unfinished weight more directly and by optimizing
scaling constants, we reduce the bound on the competitive ratio from 128 down to 27 (cf.
Section 5.3).

Our main technical contribution is to provide new techniques that lead to further improve-
ments for major special cases of PSP. On a high level, these fall into two categories: (i) we
show and exploit a monotonicity property of PF and (ii) we prove and utilize a superadditivity
property of the objective function value of an optimal offline solution. A more detailed overview
of our techniques is provided in the following subsection; here we state and discuss the results
obtained through each of them. Tables 5.1 and 5.2 summarize our non-clairvoyant scheduling
results distinguished by online and and simultaneous job arrival, respectively.

Results via Monotonicity. Our first results concern PSP variants for which PF computes
monotone rates, a subclass introduced by Im et al. [IKM18]. Informally speaking, inMonPSP the
completion of a job does not harm any other job’s processing, as it does not cause a decrease of
that job’s rate.

Definition 5.1 (PF-monotone PSP [IKM18]). Given job sets 𝐽 ′ ⊆ 𝐽 with corresponding rates 𝑦′
and 𝑦 computed by PF, we say the PSP is PF-monotone (shortMonPSP) if for every 𝑗 ′ ∈ 𝐽 ′ it
holds that 𝑦′

𝑗 ′ ≥ 𝑦 𝑗 ′ .

We exploit this structural property rigorously to prove that PF has a competitive ratio of at
most 4 forMonPSP (cf. Section 5.4). This substantially reduces the previously known bound
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Table 5.1: Current bounds on the competitive ratio of online min-sum scheduling problems
subject to polynomial-time algorithms.

Problem old (nclv.) old (clv.) our upper bound

PSP 128‡ [IKM18] 128 27‡
MonPSP 25.74∗‡ [IKM18] 25.74 4‡

𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 32∗ [Im+14] 5.78† [Cha+96] 4.62
𝑅 | 𝑟 𝑗 , pmtn, 𝑠𝑖 𝑗 ∈ {0, 1} |

∑︁
𝐶 𝑗 25.74 5.78† 3

𝑄 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 25.74 5.78† 4
𝑄 | 𝑟 𝑗 , pmtn | ∑︁𝐶 𝑗 25.74 5.78† 3
∗ These bounds are implications of flow time results.
† Uses randomization. Besides the results of this section, the best known deterministic bound is
7.24 (cf. Theorem 4.5).
‡ The time complexity of PF depends on the encoding of the polytope.

of 25.74 [IKM18]. Related machine scheduling as well as multidimensional scheduling with
certain utility functions are known to be special cases of MonPSP [IKM18]. We further show
that the restricted assignment problem is also aMonPSP. Moreover, we argue that for restricted
assignment as well as related machine scheduling, PF runs in strongly polynomial time.

It seems tempting to hope that MonPSP captures also general unrelated machine scheduling.
However, as was suggested in [IKM15b], this is false; we give a counterexample in Section 5.4.3.

Results via Superadditivity. For our second group of results, we introduce a subclass of
PSP, which is, in contrast to PF-monotonicity, not defined in terms of PF. For a fixed instance,
the defining property makes assumptions on the optimal objective value when all jobs are
released simultaneously as a function of the processing requirements 𝑝 = (𝑝1, . . . , 𝑝𝑛), denoted
by OPT0(𝑝).

Definition 5.2 (𝛼-superadditive PSP). We say that a PSP is 𝛼-superadditive if for every partition
𝑝 =

∑︁𝐿
ℓ=1 𝑝

(ℓ ) it holds that
∑︁𝐿
ℓ=1 OPT0(𝑝 (ℓ ) ) ≤ 𝛼 · OPT0(𝑝).

Based on this definition, we introduce a new analysis framework that builds on a decomposi-
tion of PF’s schedule into structured instances on that we exploit 𝛼-superadditivity. We show
that PF has a competitive ratio of at most 2𝛼 + 1 for 𝛼-superadditive PSP. For uniform release
dates, this bound reduces to 2𝛼 .
We now outline important implications of this result. First, by showing that unrelated

machine scheduling is 1.81-superadditive, we conclude that PF is a 4.62-competitive algo-
rithm for 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 . This improves upon the best known competitive ratios for
clairvoyant polynomial-time algorithms, which are 7.24 (Theorem 4.5) for deterministic algo-
rithms and 5.78 [Cha+96] for randomized algorithms. Remarkably, this is not only the first
polynomial-time improvement within nearly thirty years, but it is even obtained by a deter-
ministic non-clairvoyant algorithm. Second, we show that minimizing the total completion
time is 1-superadditive both on related machines and for restricted assignment. This implies
that PF achieves the best-possible competitive ratio of 2 for these problems. To the best of our
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Table 5.2: Current bounds on the competitive ratio of non-clairvoyant min-sum scheduling
problems.

Problem old upper bound lower bound our upper bound

𝑅 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 32 [Im+14] 2 3.62
𝑅 | pmtn, 𝑠𝑖 𝑗 ∈ {0, 1} |

∑︁
𝐶 𝑗 25.74 [IKM18] 2 2

𝑄 | pmtn | ∑︁𝐶 𝑗 25.74 [IKM18] 2 2

𝑃 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 2 [Bea+12] 2 2
𝑃 | pmtn | ∑︁𝐶 𝑗 2 [MPT94] 2 2

1 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 2 [KC03] 2 2
1 | pmtn | ∑︁𝐶 𝑗 2 [MPT94] 2 [MPT94] 2

knowledge, this is the first tight analysis of a non-clairvoyant algorithm on heterogeneous
machines for this objective. There results are presented in Section 5.5.
We note that PF cannot be 2-competitive for non-uniform release dates. In Section 5.8, we

give an example showing that its competitive ratio is at least 2.19, even on a single machine.

Implications for Matching Markets. As a byproduct of our argumentation, we give new
insights on one-sided matching markets with dichotomous utilities. For an overview of Fisher
markets, matching markets, and related concepts of economics and algorithmic game theory,
we refer to [Nis+07; VY21]. Recently, it has been shown that market equilibria can be computed
in strongly polynomial time [GTV22; VY21] and, in the case of unit budgets, correspond to
optimal solutions of the Nash Social Welfare maximization problem [GTV22]. By noting that
the market can be formulated as a submodular utility allocation market, we show that both
results are also directly implied by the work of Jain and Vazirani [JV10], even for arbitrary
budgets (cf. Section 5.4.2).

5.1.2 Techniques and Intuition

The Proportional Fairness (PF) algorithm repeatedly solves a convex program, and we use its
Lagrange multipliers and its KKT conditions to characterize the optimal solutions. Further,
we use a dual fitting analysis (cf. Section 2.4) to compare PF to an optimal schedule. It is
straightforward to incorporate the instantaneous polyhedral constraints of PSP into a standard
time-indexed LP relaxation (similar to (LP𝑅)) that describes the scheduling problem with the
weighted mean busy time objective instead of the total weighted completion time [DW90;
IKM18; SS02b]. To prove a performance guarantee, we construct a feasible dual solution whose
objective value captures a fraction of the algorithm’s objective value.

Challenges in the Dual Fitting Approach. The dual of the standard LP of PSP has two
sets of variables: (𝑎 𝑗 ) 𝑗 that correspond to the primal constraints that each job has to be
completed, and (𝑏𝑑𝑡 )𝑑,𝑡 that correspond to the primal instantaneous polyhedral constraints (we
call them dual packing variables in the following). A natural interpretation in the case of a
single machine can be derived by wiggling the primal constraints [AGK12]: 𝑎 𝑗 is proportional
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to job 𝑗 ’s contribution to the total objective value, and the variable 𝑏𝑡 corresponding to the
only packing constraint is proportional to the total weight of available jobs at time 𝑡 . By setting
duals according to this interpretation based on PF’s schedule, one can easily prove that PF
is 4-competitive for single-machine scheduling.
Crafting duals for general PSP is substantially more complex, as pointed out by Im et al.

[IKM18], because, at each time 𝑡 , we must distribute the total weight of available jobs across
multiple variables corresponding to the 𝐷 packing constraints. A natural weight distribution
is given by the optimal Lagrange multipliers (𝜂𝑑𝑡 )𝑑 corresponding to the packing constraints
in the Eisenberg-Gale convex program [EG59], which PF uses to compute the Weighted Nash
Social Welfare at time 𝑡 . This natural dual setup, however, does not work in general because by
the dynamics of PF it can happen that a job 𝑗 needs more weight distributed to its relevant dual
packing variables at some time 𝑡 ′ > 𝑡 to compensate a smaller rate 𝑦 𝑗 (𝑡 ′) < 𝑦 𝑗 (𝑡); this seems
necessary for arguing dual feasibility. Indeed, there are examples where a job’s rate decreases
when another job completes in PF’s schedule (cf. Section 5.4.3). The analysis of Im et al. [IKM18]
handles this by carefully redistributing optimal Lagrange multipliers across different times
using more complex dual variable assignments; we present a simplified and improved variant
thereof in Section 5.3. Our main contribution are the subsequent new methods.

Monotonicity. Our key observation forMonPSP is that these dynamics have much more
structure. In particular, no job requires more weight to be assigned to its relevant dual packing
variables at a later time. We show this using the KKT conditions of the Eisenberg-Gale convex
program and the fact that a job’s rate cannot decrease if another job completes. While the latter
can happen when a new job 𝑗 ′ arrives, 𝑗 ′ then already contributes to the objective before its
arrival, and we again use monotonicity to show that no job running before 𝑗 ′’s arrival suffers
from 𝑗 ′’s absence. These observations admit the natural dual setup outlined above and prove
that PF is 4-competitive forMonPSP (cf. Section 5.4).

Tight Dual Fitting and Structured Instances. Breaching the factor of 4with either of these
dual setups seems difficult; this barrier can also be found in similar dual fitting analyses [AGK12;
Gar+19; Gup+21; IKM18; Im+14; Jäg23; Las+23; LM22]. To the best of our knowledge, better
guarantees for non-clairvoyant algorithms have only been achieved in settings where other
strong lower bounds are known [Bea+12; Den+00; JW24; KC03; MPT94], which appears
challenging forMonPSP as well as for the general PSP.

If we knew the structural properties of an optimal LP solution, we could potentially overcome
this barrier by tailoring the dual packing variables in a way that a job only contributes a fraction
of its weight to them that is proportional to its progress in an optimal LP solution. Indeed, in
Section 5.7, we give a tight dual fitting analysis for PF on a single machine, where we understand
the optimal LP solution [Goe96] (cf. Theorem 2.6). For PSP, however, it seems hard to get
sufficient insights on (near-)optimal LP solutions.
We instead pursue a different approach. Instead of analyzing the whole schedule with one

dual fitting argument, we split PF’s objective into several pieces and apply dual fitting to each
of them. Our first key insight to make this work is that a special case of PSP admits a tight
dual fitting. This comprises instances in which PF completes all jobs simultaneously; we call
those structured. We prove that for structured instances PF yields an optimal solution to the LP,
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minimizing the weighted mean busy time, and that this is 2-competitive for the total weighted
completion time.

Decomposition and Superadditivity. The second key observation is that we can decompose
PF’s objective by splitting the PF schedule at release dates and completion times into structured
instances. This does not work for any schedule and uses specific properties: (i) the PF schedule
after time 𝑡 corresponds to the PF schedule for the instance where the processing requirements
of all jobs are reduced by the processed amount before time 𝑡 in the original PF schedule, and
(ii) PF assigns an available job a positive rate, hence its flow time can be expressed as the sum
of its completion times in the structured subinstances in that it appears. Finally, we bound
the overall optimal objective value by the optimal objective values of the subinstances via
superadditivity.
The primary challenge in showing superadditivity for machine scheduling problems lies

in handling migrations. At first sight one may think that allowing job migrations makes a
problem easier, since an algorithm has more freedom to revert bad decisions, especially in
online settings. We even show that any non-migratory non-clairvoyant algorithm has an
unbounded competitive ratio (cf. Theorem 5.3). However, at the same time migrations allow
creating more complex optimal schedules, which makes analyses way more difficult. Indeed,
there are many indications in literature that scheduling unrelated machines with migrations
is much harder than without: (i) if migration is allowed, the unweighted offline problem is
APX-hard [Sit17], while otherwise it is polynomial-time solvable [BJS74; Hor73], (ii) strong
time-indexed LP relaxations no longer lower bound the optimal objective value if migration
is allowed (cf. Lemma 2.8), and (iii) best-known offline approximation ratios for the weighted
problem are stronger if migration is disallowed [Har24; IL16; IL23; Li25; SS02b; Sit17; Sku01].
Our key trick for unrelated machines is to evade migrations by showing 1-superadditivity

for non-preemptive schedules, which are more structured and thus easier to handle. To go back
to the optimal migratory objective value, we use the concept of the power of preemption, that
is, the factor between an optimal non-preemptive objective value and an optimal migratory
objective value. For unrelated machines, the currently best-known upper bound by Sitters
[Sit17] on this ratio is 1.81 (cf. Corollary 2.11).

The analysis via non-preemptive schedules always loses the power of preemption as a factor,
hence rules out tight competitiveness bounds of 2 whenever this factor is larger than 1 because
this ratio can already be tight when comparing to the optimal non-preemptive schedule. To
still achieve a competitive ratio of 2 for related machines, where the power of preemption is at
least 1.39 [Eps+17], we instead directly analyze the optimal migratory solution. This is possible
because on related machines an optimal solution has many nice structural properties [Gon77].

5.1.3 Further Related Work

A technique related to our analysis framework has been introduced by Deng et al. [Den+00],
and was also used later [Bea+12; JW24]. These works analyze non-clairvoyant algorithms with
an inductive argument on the number of jobs by showing that truncating the schedule at the
first completion time maintains the bound on the competitive ratio. Compared to our problem,
these works can use simpler combinatorial lower bounds on an optimal solution to make this
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approach work. Moreover, they assume that all jobs are available in the beginning, and it is not
clear how to integrate non-uniform release dates into the inductive argument.
Non-clairvoyant scheduling to minimize the total weighted completion time on parallel

identical machines is well-understood [Bea+12; Den+00; MV22b; MPT94]. While we show
that even on a single machine, PF cannot be 2-competitive in the presence of release dates, we
note that this bound is achieved by some other single-machine scheduling algorithm [Jäg+23].
For heterogeneous machines, besides the analysis by Im et al. [IKM18] for PF (and a slight
improvement [LMR23]), there are several analyses for the more general total flow time objective
with speed augmentation [Gup+12; GKP10; IKM18; Im+14], whose bounds can be translated to
the completion time objective. Furthermore, Gupta et al. [GKS21] presented a non-clairvoyant
algorithm for related machine scheduling with a special type of precedence constraints.

5.2 Preliminaries

PSP and Unrelated Machine Scheduling. In the polytope scheduling problem, jobs 𝑗 =
1, . . . , 𝑛 arrive online at their release dates 𝑟 𝑗 ≥ 0. When a job is released, its weight 𝑤 𝑗 > 0
as well as the column 𝐵 𝑗 from the matrix 𝐵 = (𝑏𝑑 𝑗 )𝑑,𝑗 ∈ ℚ𝐷×𝑛

≥0 become known. A schedule
assigns at every time 𝑡 ≥ 0 a processing rate 𝑦 𝑗 (𝑡) ≥ 0 to each job 𝑗 with 𝑟 𝑗 ≤ 𝑡 , while all
other jobs 𝑗 have 𝑦 𝑗 (𝑡) = 0. The resulting completion time 𝐶 𝑗 of a job 𝑗 is the first time 𝑡 ′ such
that

∫ 𝑡 ′
𝑟 𝑗
𝑦 𝑗 (𝑡) d𝑡 ≥ 𝑝 𝑗 , where 𝑝 𝑗 denotes the processing requirement of job 𝑗 . The processing

rate vector 𝑦 (𝑡) must satisfy, at any time 𝑡 , the constraints 𝐵 · 𝑦 (𝑡) ≤ 1, 𝑦 (𝑡) ≥ 0 defining the
polytope P. The objective is to minimize the sum of weighted completion times

∑︁
𝑗 𝑤 𝑗𝐶 𝑗 of all

jobs.
As mentioned before, unrelated machine scheduling with preemption and migration is a

special case of PSP. To see this, note that we can model any schedule for a fixed time unit 𝑡
using variables 𝑥𝑖 𝑗𝑡 ≥ 0 that indicate whether job 𝑗 runs on machine 𝑖 at time 𝑡 and constraints∑︁𝑛
𝑗=1 𝑥𝑖 𝑗𝑡 ≤ 1 for every machine 𝑖 and

∑︁𝑚
𝑖=1 𝑥𝑖 𝑗𝑡 ≤ 1 for every job 𝑗 . The rate of job 𝑗 at time 𝑡 is

thus equal to 𝑦 𝑗 (𝑡) =
∑︁𝑚
𝑖=1 𝑠𝑖 𝑗𝑥𝑖 𝑗𝑡 , and we can write the polytope Q of feasible rate-allocation

pairs as{︃
(𝑦, 𝑥) ∈ ℝ𝑛≥0 ×ℝ𝑚×𝑛≥0

|︁|︁|︁|︁ 𝑦 𝑗 = 𝑚∑︁
𝑖=1

𝑠𝑖 𝑗𝑥𝑖 𝑗 ∀𝑗 ∈ [𝑛],
𝑛∑︁
𝑗=1

𝑥𝑖 𝑗 ≤ 1∀𝑖 ∈ [𝑚],
𝑚∑︁
𝑖=1

𝑥𝑖 𝑗 ≤ 1∀𝑗 ∈ [𝑛]
}︃
.

Since Q is downward-closed and full-dimensional in 𝑦, we can obtain a matrix 𝐵 ∈ ℚ𝐷×𝑛
≥0 such

that the projection of Q to 𝑦 is equal to {𝑦 ∈ ℝ𝑛≥0
|︁|︁ 𝐵𝑦 ≤ 1} by applying Fourier-Motzkin

elimination to Q, showing that unrelated machine scheduling is indeed a special case of PSP.
Any fractional assignment 𝑥 can be efficiently decomposed into integral assignments, which

we can feasibly be scheduled with preemptions and migrations during a discrete time interval
around 𝑡 . We emphasize that migration is essential for non-clairvoyant algorithms to achieve a
constant competitive ratio for unrelated machine scheduling. We show that this is true even in
the special case of related machines.

Theorem 5.3. Any non-migratory non-clairvoyant algorithm for minimizing the total completion

time of 𝑛 jobs on related machines, 𝑄 | pmtn | ∑︁𝐶 𝑗 , has a competitive ratio of at least Ω(
√
𝑛).
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Proof. Consider 𝑛 jobs and 𝑛 machines, one with speed
√
𝑛, and all others with speed 1. If

the algorithm puts any job on a slow machine, then this job turns out to be very long, while
all other jobs are negligible small in comparison. Therefore, the competitive ratio of such an
algorithm would be at least

√
𝑛. If the algorithm puts all jobs on the first machine, then they

all have processing time 1, so that, even in an optimal schedule on that machine, the total
completion time would be 𝑛 (𝑛+1)

2
√
𝑛

. An alternative schedule for all machines would process each
job on a different machine, resulting in total completion time 1/

√
𝑛 + 𝑛 − 1. The ratio is thus at

least 𝑛 (𝑛+1)
2(1+
√
𝑛 (𝑛−1) ) ∈ Ω(

√
𝑛). □

Proportional Fairness. The Proportional Fairness strategy (PF), which has been analyzed
for PSP by Im et al. [IKM18], computes at every release time and completion time the processing
rates 𝑦 𝑗 (𝑡) of all jobs 𝑗 that have been released but not yet completed. These jobs are constantly
processed at the computed rates until a new job is released or completed. We denote by
𝐽 (𝑡) := { 𝑗 ∈ [𝑛] | 𝑟 𝑗 ≤ 𝑡 < 𝐶 𝑗 } the set of available jobs at time 𝑡 in PF’s schedule. Although the
completion times of the jobs 𝑗 with 𝐶 𝑗 > 𝑡 are still unknown at time 𝑡 , it is already known at
this point whether a job 𝑗 belongs to 𝐽 (𝑡), so that this set can be used by PF.

As mentioned in the introduction, at any instant 𝑡 , PF maximizes the Weighted Nash Social
Welfare, which is the weighted geometric mean of the allocated job rates among all feasible
rate vectors 𝑦 (𝑡) ∈ P supported on 𝐽 (𝑡). It is the solution to the following convex program
applied to 𝐽 := 𝐽 (𝑡):

max
∑︁
𝑗∈ 𝐽

𝑤 𝑗 · log(𝑦 𝑗 ) (CP(𝐽 ))

s.t.
∑︁
𝑗∈ 𝐽

𝑏𝑑 𝑗 · 𝑦 𝑗 ≤ 1 ∀𝑑 ∈ [𝐷]

𝑦 𝑗 ≥ 0 ∀𝑗 ∈ 𝐽

Note that the PF strategy may not be executed exactly algorithmically because for some rational
inputs the convex program may have only irrational solutions [JV10, Example 48]. While this
is no issue for many settings, in general (CP(𝐽 )) can be solved to arbitrary precision 𝛿 > 0 in
time polynomial in the encoding length of 𝐵 and𝑤 and polynomial in log 1

𝛿
using the ellipsoid

method [GLS88; Vis21]. As a consequence, we can algorithmically implement PF so that, for
every 𝜀 > 0, we can compute rates in polynomial time and only lose a factor of 1 + 𝜀 in the
competitive ratio for PSP. This is possible by approximately computing rates for a slower
machine and increase them by 𝛿 afterwards.
Since PF computes rates at most 2𝑛 times, we say that it runs in polynomial time. Note

that an actual schedule for these rates requires a pseudo-polynomial number of preemptions.
However, with an implementation in geometrically increasing time windows one can reduce
the number to a polynomial at the cost of an arbitrarily small constant in the competitive
ratio [MPT94].
We can assume without loss of generality that 𝑝 𝑗 > 0, because every reasonable algorithm

can complete a job 𝑗 with 𝑝 𝑗 = 0 at time 0. Similarly, if there is a job 𝑗 such that 𝑦 𝑗 = 0 for
all 𝑦 ∈ P, no solution can complete job 𝑗 . Thus, we assume that this is not the case. Then the
definition of (CP(𝐽 )) implies the following observation.
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Observation 5.4. Let 𝑦 be the solution to (CP(𝐽 )). Then, 𝑦 𝑗 > 0 for all 𝑗 ∈ 𝐽 .

As the analysis of Im et al. [IKM18], our analysis uses the optimal Lagrange multipliers (𝜂𝑑 )𝑑
of the packing constraints, which satisfy with the optimal solution 𝑦 the following KKT condi-
tions [BV14], assuming that we use the natural logarithm in (CP(𝐽 )):

𝑤 𝑗

𝑦 𝑗
−

𝐷∑︁
𝑑=1

𝑏𝑑 𝑗𝜂𝑑 = 0 ∀𝑗 ∈ 𝐽 (5.1)

𝜂𝑑 ·
(︃
1 −

∑︁
𝑗∈ 𝐽

𝑏𝑑 𝑗𝑦 𝑗

)︃
= 0 ∀𝑑 ∈ [𝐷] (5.2)

𝜂𝑑 ≥ 0 ∀𝑑 ∈ [𝐷] (5.3)

By Observation 5.4, the optimal solution of (CP(𝐽 )) assigns every job a positive rate, hence we
can omit the Lagrangian multipliers of the non-negativity constraints of (CP(𝐽 )) in the KKT
conditions.

Lemma 5.5 ([IKM18, Lemma 3.3]). Let 𝐽 be a set of jobs, and let 𝜂 be optimal Lagrange multipliers

for (CP(𝐽 )). Then, ∑︁𝐷
𝑑=1 𝜂𝑑 =

∑︁
𝑗∈ 𝐽 𝑤 𝑗 .

Proof. Let 𝑦 be an optimal solution to (CP(𝐽 )). Then,

𝐷∑︁
𝑑=1

𝜂𝑑 =

𝐷∑︁
𝑑=1

𝜂𝑑

∑︁
𝑗∈ 𝐽

𝑏𝑑 𝑗𝑦 𝑗 =
∑︁
𝑗∈ 𝐽

𝑦 𝑗

𝐷∑︁
𝑑=1

𝑏𝑑 𝑗𝜂𝑑 =
∑︁
𝑗∈ 𝐽

𝑦 𝑗
𝑤 𝑗

𝑦 𝑗
=

∑︁
𝑗∈ 𝐽

𝑤 𝑗

by using the KKT condition (5.2) in the first equality and (5.1) in the third equality. □

LP Relaxations and Dual Fitting. In the dual fitting analysis, PF is compared to the optimal
solution that runs at speed 1

𝜅
for some parameter 𝜅 ≥ 1. We assume that the time is scaled

in a way that all release dates and completion times in this schedule and in PF’s schedule are
integral (which is possible assuming rational input). In this case, the following linear program
is a relaxation of the speed-scaled PSP, where the variables 𝑦 𝑗𝑡 indicate the total amount of
processing that job 𝑗 receives in the interval [𝑡, 𝑡 + 1]. It uses the total weighted mean busy
time as an underestimation of the total weighted completion time [DW90; Goe96], and can be
seen as the straightforward generalization of (LP𝑅) to PSP.

min
∑︁
𝑗∈ 𝐽

𝑤 𝑗

∑︁
𝑡≥𝑟 𝑗

𝑦 𝑗𝑡

𝑝 𝑗

(︂
𝑡 + 1

2

)︂
(LP(𝜅))

s.t.
∑︁
𝑡≥𝑟 𝑗

𝑦 𝑗𝑡 ≥ 𝑝 𝑗 ∀𝑗 ∈ 𝐽∑︁
𝑗∈ 𝐽

𝑏𝑑 𝑗 · 𝑦 𝑗𝑡 ≤
1
𝜅

∀𝑑 ∈ [𝐷], ∀𝑡 ≥ 0

𝑦 𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝐽 , ∀𝑡 ≥ 𝑟 𝑗
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The scalability of completion times immediately implies that the optimal objective value of
(LP(𝜅)) lower bounds 𝜅 · OPT for every 𝜅 ≥ 1. The dual of (LP(𝜅)) can be written as follows.

max
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
𝐷∑︁
𝑑=1

∑︁
𝑡≥0

𝑏𝑑𝑡 (DLP(𝜅))

s.t.
𝑎 𝑗

𝑝 𝑗
−
𝑤 𝑗

𝑝 𝑗

(︂
𝑡 + 1

2

)︂
≤ 𝜅

𝐷∑︁
𝑑=1

𝑏𝑑 𝑗𝑏𝑑𝑡 ∀𝑗 ∈ 𝐽 , ∀𝑡 ≥ 𝑟 𝑗

𝑎 𝑗 , 𝑏𝑑𝑡 ≥ 0 ∀𝑗 ∈ 𝐽 , ∀𝑡 ≥ 0, ∀𝑑 ∈ [𝐷]

Offline Complexity. The offline PSP is APX-hard, even for uniform release dates. This
follows for example from the hardness of preemptive unrelated machine scheduling [Sit17].
On the positive side, constant-factor approximation algorithms can be obtained via standard
techniques [IKM18]. Specifically, randomized 𝛼-point rounding [QS02; SS97] applied to an
optimal solution of a variant of (LP(1)) yields a (2 + 𝜀)-approximation for PSP; for details we
refer to [JLM25]. The proof also implies that (LP(1)) lower bounds the optimal objective value
within a factor of 1

2 .

5.3 General PSP

We give a simplified and improved variant of the analysis of PF for PSP of Im et al. [IKM18].

Theorem 5.6. PF has a competitive ratio of at most 27 for minimizing the total weighted comple-

tion time of PSP.

The remaining section is devoted to the proof of this theorem. Fix an instance and PF’s
schedule. Let 𝜅 ≥ 1 and 0 < 𝜆 < 1 be constants, which we fix later. In the following, we assume
by scaling that all weights are integers.
For every time 𝑡 , let 𝜁 (𝑡) be the weighted 𝜆-quantile of the values 𝑦 𝑗 (𝑡)/𝑝 𝑗 , 𝑗 ∈ 𝑈 (𝑡), with

respect to the weights𝑤 𝑗 . More formally, if𝑍𝑡 denotes the sorted (ascending) list of length𝑊 (𝑡)
composed of𝑤 𝑗 copies of𝑦 𝑗 (𝑡)/𝑝 𝑗 for every 𝑗 ∈ 𝑈 (𝑡), then 𝜁 (𝑡) is the value at the index ⌈𝜆𝑊 (𝑡)⌉
in 𝑍𝑡 . Let 𝑎 𝑗𝑡 := 𝑤 𝑗 · 1

[︁
𝑦 𝑗 (𝑡)/𝑝 𝑗 ≤ 𝜁 (𝑡)

]︁
for 𝑡 ≥ 0 and 𝑗 ∈ 𝑈 (𝑡), where 1[𝜑] is the indicator

variable of the expression 𝜑 . Further, for 𝑡 ≥ 0 let 𝜂𝑑 (𝑡) be the optimal Lagrange multiplier
corresponding to the constraint 𝑑 ∈ [𝐷] of (CP(𝐽 (𝑡))). We consider the following dual solution:

• 𝑎 𝑗 :=
∑︁𝐶 𝑗

𝑡=0 𝑎 𝑗𝑡 for every job 𝑗 ∈ 𝐽 ,

• 𝑏𝑑𝑡 := 1
𝜅

∑︁
𝑡 ′≥𝑡 𝜁 (𝑡 ′) · 𝜂𝑑 (𝑡 ′) for every 𝑑 ∈ [𝐷] and time 𝑡 ≥ 0.

We first show in the following lemma that the objective value of (DLP(𝜅)) for this assignment
upper bounds a constant fraction of the algorithm’s objective value.

Lemma 5.7. It holds that

(︁
𝜆 − 1

(1−𝜆)𝜅
)︁
ALG ≤ ∑︁

𝑗∈ 𝐽 𝑎 𝑗 −
∑︁𝐷
𝑑=1

∑︁
𝑡≥0 𝑏𝑑𝑡 .

The lemma follows from the following two statements.

Lemma 5.8. It holds that

∑︁
𝑗∈ 𝐽 𝑎 𝑗 ≥ 𝜆 · ALG.
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Proof. Consider a time 𝑡 . Observe that
∑︁
𝑗∈𝑈 (𝑡 ) 𝑎 𝑗𝑡 contains the total weight of jobs 𝑗 that

satisfy 𝑦 𝑗 (𝑡)/𝑝 𝑗 ≤ 𝜁 (𝑡). By the definition of 𝜁 (𝑡), we conclude that this is at least 𝜆 ·𝑊 (𝑡), that
is,

∑︁
𝑗∈𝑈 (𝑡 ) 𝑎 𝑗𝑡 ≥ 𝜆 ·𝑊 (𝑡). The statement then follows by summation over time. □

Lemma 5.9. At any time 𝑡 , it holds that
∑︁𝐷
𝑑=1 𝑏𝑑𝑡 ≤

1
(1−𝜆)𝜅𝑊 (𝑡).

Proof. Fix a time 𝑡 . Observe that for every 𝑡 ′ ≥ 𝑡 , the definition of 𝜁 (𝑡 ′) implies that
∑︁
𝑗∈𝑈 (𝑡 ′ ) 𝑤 𝑗 ·

1
[︁
𝑦 𝑗 (𝑡 ′)/𝑝 𝑗 ≥ 𝜁 (𝑡 ′)

]︁
≥ (1 − 𝜆)𝑊 (𝑡 ′). Thus,

𝜁 (𝑡 ′) · (1 − 𝜆)𝑊 (𝑡 ′) ≤
∑︁

𝑗∈𝑈 (𝑡 ′ )
𝑤 𝑗 · 𝜁 (𝑡 ′) · 1

[︂𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≥ 𝜁 (𝑡 ′)
]︂
≤

∑︁
𝑗∈𝑈 (𝑡 ′ )

𝑤 𝑗 ·
𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

. (5.4)

The definition of 𝑏𝑖𝑡 and Lemma 5.5 imply

𝐷∑︁
𝑑=1

𝑏𝑑𝑡 =

𝐷∑︁
𝑑=1

1
𝜅

∑︁
𝑡 ′≥𝑡

𝜂𝑑 (𝑡 ′) · 𝜁 (𝑡 ′) =
1
𝜅

∑︁
𝑡 ′≥𝑡

𝜁 (𝑡 ′)
𝐷∑︁
𝑑=1

𝜂𝑑 (𝑡 ′) =
1
𝜅

∑︁
𝑡 ′≥𝑡

𝜁 (𝑡 ′)
∑︁
𝑗∈ 𝐽 (𝑡 ′ )

𝑤 𝑗

≤ 1
𝜅

∑︁
𝑡 ′≥𝑡

𝜁 (𝑡 ′) ·𝑊 (𝑡 ′) .

Using (5.4), we conclude that this is at most

1
𝜅

∑︁
𝑡 ′≥𝑡

𝜁 (𝑡 ′)𝑊 (𝑡 ′) ≤ 1
(1 − 𝜆)𝜅

∑︁
𝑡 ′≥𝑡

∑︁
𝑗∈𝑈 (𝑡 ′ )

𝑤 𝑗 ·
𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≤ 1
(1 − 𝜆)𝜅

∑︁
𝑗∈𝑈 (𝑡 )

𝑤 𝑗

∑︁
𝑡 ′≥𝑡

𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≤ 1
(1 − 𝜆)𝜅

∑︁
𝑗∈𝑈 (𝑡 )

𝑤 𝑗 .

The second inequality follows from𝑈 (𝑡 ′) ⊆ 𝑈 (𝑡) for 𝑡 ′ ≥ 𝑡 . The third inequality holds because∑︁
𝑡 ′≥𝑡 𝑦 𝑗 (𝑡 ′) ≤ 𝑝 𝑗 for every job 𝑗 . This concludes the proof of the lemma. □

Next, we show dual feasibility.

Lemma 5.10. The dual solution (𝑎 𝑗 ) 𝑗 and (𝑏𝑖𝑡 )𝑖,𝑡 is feasible for (DLP(𝜅)).

Proof. Fix a job 𝑗 , a machine 𝑖 and a time 𝑡 ≥ 𝑟 𝑗 . Then,

𝑎 𝑗

𝑝 𝑗
−
𝑤 𝑗

𝑝 𝑗

(︂
𝑡 + 1

2

)︂
≤

𝐶 𝑗∑︁
𝑡 ′=0

𝑤 𝑗

𝑝 𝑗
· 1

[︂𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≤ 𝜁 (𝑡 ′)
]︂
−
𝑤 𝑗

𝑝 𝑗
𝑡 ≤

𝐶 𝑗∑︁
𝑡 ′=𝑡

𝑤 𝑗

𝑝 𝑗
· 1

[︂𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≤ 𝜁 (𝑡 ′)
]︂

=

𝐶 𝑗∑︁
𝑡 ′=𝑡

𝑤 𝑗

𝑦 𝑗 (𝑡 ′)
·
𝑦 𝑗 (𝑡 ′)
𝑝 𝑗
· 1

[︂𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≤ 𝜁 (𝑡 ′)
]︂

=

𝐶 𝑗∑︁
𝑡 ′=𝑡

𝐷∑︁
𝑑=1

𝑏𝑑 𝑗 · 𝜂𝑑 (𝑡 ′) ·
𝑦 𝑗 (𝑡 ′)
𝑝 𝑗
· 1

[︂𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≤ 𝜁 (𝑡 ′)
]︂

≤
𝐶 𝑗∑︁
𝑡 ′=𝑡

𝐷∑︁
𝑑=1

𝑏𝑑 𝑗 · 𝜂𝑑 (𝑡 ′) · 𝜁 (𝑡 ′) ≤
𝐷∑︁
𝑑=1

𝑏𝑑 𝑗

∑︁
𝑡 ′≥𝑡

𝜂𝑑 (𝑡 ′) · 𝜁 (𝑡 ′) = 𝜅
𝐷∑︁
𝑑=1

𝑏𝑑 𝑗𝑏𝑑𝑡 .

The second equality uses (5.1). This concludes the proof of the lemma. □
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Finally, we prove Theorem 5.6. Weak duality, Lemma 5.7, and Lemma 5.10 imply

𝜅 · OPT ≥
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
𝐷∑︁
𝑑=1

∑︁
𝑡≥0

𝑏𝑑𝑡 ≥
(︂
𝜆 − 1
(1 − 𝜆)𝜅

)︂
· ALG .

Choosing 𝜅 = 9 and 𝜆 = 2
3 implies ALG ≤ 27 · OPT.

5.4 PF-Monotone PSP

In this section, we consider the class of PF-monotone PSP (MonPSP, cf. Definition 5.1) and
prove the following theorem.

Theorem 5.11. PF has a competitive ratio of at most 4 for minimizing the total weighted

completion time for MonPSP.

Further, we show implications of this result for specific machine scheduling problems in
MonPSP, namely, related machine scheduling and restricted assignment (Theorem 5.15). We
also point out the implications of our work for matching markets in this section (Corollaries 5.17
and 5.18). As mentioned before, unrelated machine scheduling is not PF-monotone. We give an
example in Section 5.4.3.

Recall that MonPSP consists of instances to PSP whose polytope P has the property that for
all possible sets 𝐽 ′ ⊆ 𝐽 of available jobs with corresponding rate vectors 𝑦′ and 𝑦 computed by
PF it holds that 𝑦′𝑗 ≥ 𝑦 𝑗 for all 𝑗 ∈ 𝐽 ′ (cf. Definition 5.1).

5.4.1 Competitive Analysis

To show the upper bound of 4 on the competitive ratio (Theorem 5.11), we fix an arbitrary
instance of MonPSP and the corresponding PF schedule. Let 𝐶 𝑗 denote the completion time of
job 𝑗 in that schedule, and let ALG :=

∑︁𝑛
𝑗=1𝑤 𝑗𝐶 𝑗 denote the objective function value of PF. For

each time 𝑡 , in addition to the actual rate vector 𝑦 (𝑡) of PF, we consider the rate vector 𝑦 (𝑡) ∈ P
that PF would choose if all jobs 𝑗 ∈ 𝑈 (𝑡) were available at time 𝑡 . In other words, 𝑦 (𝑡) is the
optimal solution to (CP(𝐽 (𝑡))) and 𝑦 (𝑡) is the optimal solution to (CP(𝑈 (𝑡))). Note that, while
we use these rates for the analysis, during the actual execution, PF cannot use them because it
has no access to unreleased jobs. Moreover, the set𝑈 (𝑡) always refers to the unfinished jobs
in the actual PF schedule and not in the schedule with rates 𝑦 (𝑡). Let 𝜂𝑑 (𝑡), 𝑑 ∈ [𝐷], be the
optimal Lagrange multipliers corresponding to (CP(𝑈 (𝑡))).

Using 𝐽 (𝑡) ⊆ 𝑈 (𝑡) for any time 𝑡 and monotonicity, we make the following observation.

Observation 5.12. At every time 𝑡 and for every 𝑗 ∈ 𝐽 (𝑡) it holds that 𝑦 𝑗 (𝑡) ≤ 𝑦 𝑗 (𝑡).

We now perform a dual fitting argument via (DLP(𝜅)) for arbitrary 𝜅 ≥ 1, which we later
set to 2. To this end, we consider the following assignment of dual variables:

• 𝑎 𝑗 := 𝑤 𝑗𝐶 𝑗 for every job 𝑗 ∈ 𝐽 ,

• 𝑏𝑑𝑡 := 1
𝜅
𝜂𝑑 (𝑡) for every 𝑑 ∈ [𝐷] and time 𝑡 ≥ 0.
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Lemma 5.13. It holds that

(︁
1 − 1

𝜅

)︁
ALG =

∑︁
𝑗∈ 𝐽 𝑎 𝑗 −

∑︁𝐷
𝑑=1

∑︁
𝑡≥0 𝑏𝑑𝑡 .

Proof. First, note that
∑︁
𝑗∈ 𝐽 𝑎 𝑗 = ALG. Moreover, the definition of 𝑏𝑑𝑡 and Lemma 5.5 imply

that
∑︁𝐷
𝑑=1 𝑏𝑑𝑡 = 1

𝜅
𝑊 (𝑡) at every time 𝑡 . Thus,

∑︁
𝑡≥0

∑︁𝐷
𝑑=1 𝑏𝑑𝑡 = 1

𝜅
ALG, which concludes the

proof. □

Lemma 5.14. The solution (𝑎 𝑗 ) 𝑗 and (𝑏𝑑𝑡 )𝑑,𝑡 is feasible for (DLP(𝜅)).

Proof. The dual variables as defined above are clearly non-negative. We now verify the dual
constraint. Fix a job 𝑗 and a time 𝑡 ≥ 𝑟 𝑗 . Then,

𝑎 𝑗

𝑝 𝑗
−

(︂
𝑡 + 1

2

)︂
·
𝑤 𝑗

𝑝 𝑗
≤ (𝐶 𝑗 − 𝑡) ·

𝑤 𝑗

𝑝 𝑗
≤
𝐶 𝑗−1∑︁
𝑡 ′=𝑡

𝑤 𝑗

𝑝 𝑗
=

𝐶 𝑗−1∑︁
𝑡 ′=𝑡

𝑦 𝑗 (𝑡 ′)
𝑝 𝑗
·
𝑤 𝑗

𝑦 𝑗 (𝑡 ′)
≤
𝐶 𝑗−1∑︁
𝑡 ′=𝑡

𝑦 𝑗 (𝑡 ′)
𝑝 𝑗
·
𝑤 𝑗

𝑦 𝑗 (𝑡 ′)
.

The last inequality uses Observation 5.12. Now observe that for every time 𝑡 ′ ≥ 𝑡 it holds that
𝑈 (𝑡 ′) ⊆ 𝑈 (𝑡), which implies 𝑦 𝑗 (𝑡 ′) ≥ 𝑦 𝑗 (𝑡) via monotonicity. Thus, the above is at most

𝑤 𝑗

𝑦 𝑗 (𝑡)

𝐶 𝑗−1∑︁
𝑡 ′=𝑡

𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

=

(︃ 𝐷∑︁
𝑑=1

𝑏𝑑 𝑗𝜂𝑑 (𝑡)
)︃ 𝐶 𝑗−1∑︁
𝑡 ′=𝑡

𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≤ 𝜅
𝐷∑︁
𝑑=1

𝑏𝑑 𝑗𝑏𝑑𝑡 ,

where the equality uses the KKT condition (5.1) for (CP(𝑈 (𝑡))), and the inequality holds
because 𝑗 receives at most as much processing rate as it requires. This concludes the proof. □

Proof of Theorem 5.11. Weak duality, Lemma 5.13, and Lemma 5.14 imply

𝜅 · OPT ≥
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
𝐷∑︁
𝑑=1

∑︁
𝑡≥0

𝑏𝑑𝑡 ≥
(︂
1 − 1

𝜅

)︂
· ALG .

Setting 𝜅 = 2 implies ALG ≤ 4 · OPT. □

5.4.2 Implications for Machine Scheduling and Matching Markets

In this section, we prove the following theorem and thereby present new insights for one-sided
matching markets. For an introduction into Fisher markets and matching markets, we refer
to [Nis+07; VY21].

Theorem 5.15. There is a strongly polynomial-time non-clairvoyant online algorithm for min-

imizing the total weighted completion time on related machines, 𝑄 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 , and for

restricted assignment, 𝑅 | 𝑟 𝑗 , pmtn, 𝑠𝑖 𝑗 ∈ {0, 1} |
∑︁
𝑤 𝑗𝐶 𝑗 , with a competitive ratio of at most 4.

We first note that both scheduling problems, on related machines and with restricted as-
signment, fall under MonPSP. Hence, PF is 4-competitive by Theorem 5.11. For scheduling
on related machines, this has been shown by Im et al. [IKM18] via a connection to abstract
markets, which we present in the following. Then, we prove that scheduling with restricted
assignment falls also under MonPSP. Finally, we argue that PF can be implemented in strongly
polynomial time for both problems.
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Monotonicity via Submodular Utility Allocation Markets. In uniform utility allocation

(UUA) markets, introduced by Jain and Vazirani [JV10], 𝑛 buyers 𝑗 with budgets 𝑤 𝑗 want to
maximize their own utility 𝑦 𝑗 , but there are constraints of the form

∑︁
𝑗∈𝑆 𝑦 𝑗 ≤ 𝑣 (𝑆) ∀𝑆 ⊆ [𝑛] for

some set function 𝑣 : 2[𝑛] → ℝ≥0, coupling the utilities of different buyers. Every constraint can
post a price 𝜂𝑆 that each buyer 𝑗 ∈ 𝑆 has to pay per unit of utility. That means, the total amount
to be paid by 𝑗 is the sum of prices of the constraints affecting 𝑗 . A market equilibrium consists
of a feasible utility allocation 𝑦 together with prices 𝜂 ≥ 0 such that only tight constraints have
a positive price and each buyer exactly uses up their budget, thus maximizing their own utility.
Jain and Vazirani [JV10] showed for UUA markets that optimal solutions to the Weighted

Nash Social Welfare problem correspond to market equilibria. This problem is exactly the
problem (CP( [𝑛])) for the polytope P = {𝑦 ∈ ℝ𝑛≥0 |

∑︁
𝑗∈𝑆 𝑦 𝑗 ≤ 𝑣 (𝑆) ∀𝑆 ⊆ [𝑛]}. Moreover,

they proved that if 𝑣 is monotone, submodular and 𝑣 (∅) = 0, that is, if P is a polymatroid,
then the market (termed submodular utility allocation (SUA) market) is competition-monotone,
meaning that if some budgets are reduced, the utilities of other buyers cannot decrease. By
taking buyers as jobs and utilities as processing rates, this implies that PSP is PF-monotone
on P because we can model the restriction to a subset of jobs by setting the weight of the other
jobs to 0. Consequently, it suffices to show that the polytopes associated to our scheduling
problems are polymatroids. Im et al. [IKM18] proved this for scheduling on related machines.
We now show this statement for scheduling with restricted assignment. This implies that
𝑅 | 𝑟 𝑗 , pmtn, 𝑠𝑖 𝑗 ∈ {0, 1} |

∑︁
𝑤 𝑗𝐶 𝑗 is PF-monotone.

Lemma 5.16. For any instance of preemptive scheduling with restricted assignment, the associated

polytope P is a polymatroid.

Proof. Consider the bipartite graph 𝐺 := (𝐽 ∪̇ [𝑚], 𝐸) with an edge { 𝑗, 𝑖} ∈ 𝐸 whenever job 𝑗
can be processed on machine 𝑖 . Then, letting 𝛿 denote the set of incident edges, we have

P =

{︃
𝑦 ∈ ℝ𝑛≥0

|︁|︁|︁|︁ ∃𝑥 ∈ ℝ𝐸≥0 : 𝑦 𝑗 = ∑︁
𝑒∈𝛿 ( 𝑗 )

𝑥𝑒 ∀𝑗 ∈ 𝐽 ,
∑︁
𝑒∈𝛿 (𝑖 )

𝑥𝑒 ≤ 1∀𝑖 ∈ [𝑚],
∑︁
𝑒∈𝛿 ( 𝑗 )

𝑥𝑒 ≤ 1∀𝑗 ∈ 𝐽
}︃
,

that is, P contains for every fractional matching of 𝐺 the vector 𝑦 of fractional covering rates
of all nodes 𝑗 on the left-hand side 𝐽 of 𝐺 . By the Birkhoff-von Neumann Theorem, every
fractional matching is a convex combination of integral matchings. Then the covering rates
of the nodes are also the corresponding convex combinations of the incidence vectors of the
subsets of nodes from 𝐽 covered by the integral matchings. Therefore, P is the convex hull of the
incidence vectors of subsets of 𝐽 covered by a matching in 𝐺 . This is exactly the independence
polytope associated with the transversal matroid of 𝐺 (cf. [Oxl11]), which is in particular a
polymatroid. □

For matching markets with dichotomous utilities, which correspond to scheduling with re-
stricted assignment, Garg et al. [GTV22] gave a direct proof that (in the unit budget case) optimal
solutions to the Nash Social Welfare problem (formulated in terms of the allocation 𝑥) corre-
spond to market equilibria, known as Hylland-Zeckhauser (HZ) equilibria [HZ79]. Lemma 5.16
implies that such a market can be modeled as a UUA market, and thus, even in the more general
case where buyers have different budgets, the work of Jain and Vazirani [JV10] also implies this
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equivalence between the HZ equilibria and the Weighted Nash Social Welfare solution. Hence,
we obtain the following slightly stronger result using an arguably simpler argumentation.

Corollary 5.17. For one-sided matching markets with dichotomous utilities and arbitrary budgets,

an HZ equilibrium is an optimal solution to (CP), and every optimal solution to (CP) can be

extended to an HZ equilibrium.

Strongly Polynomial Algorithms. Since the rate polytopes for both scheduling on related
machines and with restricted assignment are polymatroids, we can use the combinatorial
algorithm of Jain and Vazirani [JV10] for SUA markets, which is entirely stated in terms of
utilities and based on submodular function minimization, to compute a market equilibrium,
and thus, a rate allocation 𝑦 that is optimal for (CP). A corresponding machine allocation 𝑥
can be computed easily by finding a feasible fractional assignment. This completes the proof of
Theorem 5.15.

This algorithm is thus an alternative to the recently proposed strongly polynomial-time
algorithm for computing a market equilibrium in matching markets with dichotomous utilities
proposed by Vazirani and Yannakakis [VY21], which directly incorporates the allocation 𝑥 .
Since this problem exactly corresponds to PF’s allocation problem for scheduling with restricted
assignment, an extension of their algorithm to arbitrary budgets [GTV22] can also be used
in PF. While their algorithm is conceptually simpler than the algorithm by Jain and Vazirani
[JV10] for general SUA markets, the latter implies the following result via an arguably simpler
argumentation.

Corollary 5.18. An HZ equilibrium in one-sided matching markets with dichotomous utilities

can be computed in strongly polynomial time.

For scheduling on related machines, we demonstrate in Section 5.6, analogously to the
algorithms for scheduling with restricted assignment and one-sided matching markets with
dichotomous utilities [GTV22; VY21], that also for this problem there is a simpler and faster
algorithm that directly works with the allocation 𝑥 . Moreover, our combinatorial algorithm
reveals that the known 2-competitive non-clairvoyant algorithm for identical parallel ma-
chines [Bea+12] is a special case of PF.

5.4.3 Unrelated Machine Scheduling is not PF-Monotone

We have shown that PF-monotonicity is a powerful property that allows for the derivation
of very good bounds on the competitive ratio of PF (see Theorem 5.11). The fact that several
machine scheduling problems in this framework are PF-monotone, including scheduling on
related machines and restricted assignment (see Theorem 5.15), raises whether the general
unrelated machine scheduling problem also has this property. We answer this question to the
negative, even in the absence of weights and release times.

Lemma 5.19. The unrelated machine scheduling problem 𝑅 | pmtn | ∑︁𝐶 𝑗 is not PF-monotone.

Proof. The representation of unrelated machines scheduling as PSP uses the following polytope:{︄
𝑦 ∈ ℝ𝑛≥0

|︁|︁ ∃𝑥 ∈ ℝ𝑚×𝑛≥0 : 𝑦 𝑗 =
𝑚∑︁
𝑖=1

𝑠𝑖 𝑗𝑥𝑖 𝑗 ∀𝑗 ∈ [𝑛],
𝑛∑︁
𝑗=1

𝑥𝑖 𝑗 ≤ 1∀𝑖 ∈ [𝑚],
𝑚∑︁
𝑖=1

𝑥𝑖 𝑗 ≤ 1∀𝑗 ∈ [𝑛]
}︄
.
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Consider the following instance with three machines, unit-weight jobs 𝐽 = {1, 2, 3} and the
following speeds 𝑠𝑖 𝑗 for jobs 𝑗 on machines 𝑖:

𝑠11 = 1 , 𝑠21 = 0 , 𝑠31 = 0 ,
𝑠12 = 2 , 𝑠22 = 1 , 𝑠32 = 0 ,
𝑠13 = 0 , 𝑠23 = 2 , 𝑠33 = 1 .

Let 𝐽 ′ = {1, 2}. The optimal solution to (CP(𝐽 )) is 𝑦 = (2/3, 4/3, 4/3), and the optimal solution
to (CP(𝐽 ′)) is 𝑦′ = (1, 1). Observe that PF’s rate for job 2 decreases in the absence of job 3. □

5.5 Superadditive PSP

In this section, we consider an 𝛼-superadditive PSP instance for some 𝛼 ≥ 1. That means that
for an arbitrary partition of the processing requirements, the sum of the optimal objective
values of the subinstances is at most 𝛼 times the optimal objective value of the whole instance;
cf. Definition 5.2. We first present the analysis framework and prove the following theorem.

Theorem 5.20. PF has a competitive ratio of at most 2𝛼 + 1 for minimizing the total weighted

completion time for 𝛼-superadditive PSP. For uniform release dates, this bound reduces to 2𝛼 .

Subsequently, we apply this result and analysis framework to several machine scheduling
problems by proving bounds on the superadditivity.

5.5.1 Framework

The proof of Theorem 5.20 consists of three steps: first we decompose the instance into
structured subinstances according to the PF schedule. Second we show competitiveness bounds
for the resulting structured subinstances, and third we combine the obtained bounds using the
𝛼-superadditivity.

Decomposing the PF Schedule. Let 𝐶 𝑗 , 𝑗 ∈ [𝑛], denote the completion times of the jobs in
the PF schedule, and let 𝐸1 < . . . < 𝐸𝐿+1 be the times when jobs arrive or complete in the PF
schedule. We assume without loss of generality that 𝐸1 = 0. For every 1 ≤ ℓ ≤ 𝐿 and job 𝑗 we
denote by 𝑝 (ℓ )

𝑗
the amount of processing that 𝑗 receives during [𝐸ℓ , 𝐸ℓ+1]. Let ALG(𝑝) be the

objective value of the schedule constructed by PF, and let ALG0(𝑝 (ℓ ) ) be the objective value of
the PF schedule applied to jobs with processing requirements 𝑝 (ℓ ) = (𝑝 (ℓ )1 , . . . , 𝑝

(ℓ )
𝑛 ) available

at time 0. Note that 𝑝 =
∑︁𝐿
ℓ=1 𝑝

(ℓ ) , because PF computes a feasible schedule. We decompose
PF’s objective value according to the following lemma.

Lemma 5.21. It holds that

ALG(𝑝) =
𝐿∑︁
ℓ=1

(︃
ALG0(𝑝 (ℓ ) ) + (𝐸ℓ+1 − 𝐸ℓ ) ·

∑︁
𝑗∈𝑈 (𝐸ℓ )\𝐽 (𝐸ℓ )

𝑤 𝑗

)︃
.

Proof. Observation 5.4 implies that a job 𝑗 is available during an interval (𝐸ℓ , 𝐸ℓ+1] if and
only if 𝑝 (ℓ )

𝑗
> 0. Hence, the jobs available after time 0 in the subinstance with processing
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requirements 𝑝 (ℓ ) and uniform release dates, denoted by 𝐼 (ℓ ) , are exactly the jobs available in
the original instance during (𝐸ℓ , 𝐸ℓ+1]. Since PF takes an instantaneous resource allocation view,
the composed processing rates depend only on the weights of the currently available jobs, that
is, the rate that job 𝑗 receives in the original instance during (𝐸ℓ , 𝐸ℓ+1] is equal to the rate that 𝑗
receives in 𝐼 (ℓ ) . Moreover, the rates are constant during the considered interval, so that for every
available job 𝑗 it only happens at the end of the interval that its total processing rate received
within the interval reaches 𝑝 (ℓ )

𝑗
. For 𝐼 (ℓ ) this means that all jobs with a positive processing

requirement finish exactly at time 𝐸ℓ+1 − 𝐸ℓ and all jobs with a processing requirement equal
to zero finish at time 0. Thus, ALG0(𝑝 (ℓ ) ) =

∑︁
𝑗∈ 𝐽 (𝐸ℓ ) 𝑤 𝑗 · (𝐸ℓ+1 − 𝐸ℓ ). Therefore, we conclude

with

ALG(𝑝) =
𝑛∑︁
𝑗=1

𝑤 𝑗𝐶 𝑗 =

𝑛∑︁
𝑗=1

𝑤 𝑗

∑︁
ℓ :𝐸ℓ<𝐶 𝑗

(𝐸ℓ+1 − 𝐸ℓ ) =
𝐿∑︁
ℓ=1
(𝐸ℓ+1 − 𝐸ℓ )

∑︁
𝑗∈𝑈 (𝐸ℓ )

𝑤 𝑗

=

𝐿∑︁
ℓ=1

(︃
ALG0(𝑝 (ℓ ) ) + (𝐸ℓ+1 − 𝐸ℓ ) ·

∑︁
𝑗∈𝑈 (𝐸ℓ )\𝐽 (𝐸ℓ )

𝑤 𝑗

)︃
. □

Analyzing Structured Instances. We now show that PF is 2-competitive against (DLP(1))
for PSP instances where all jobs are available at time 0 and PF completes all jobs with positive
processing requirements at the same time. That is, the rate 𝑦 𝑗 (0) allocated to each job 𝑗 does
not change and is proportional to its processing requirement 𝑝 𝑗 . Any job with a processing
requirement equal to 0 completes at time 0, and thus, can without loss of generality be removed
from the instance.

We fix a PSP instance of jobs 𝐽 with these properties and assume that in the optimal schedule
all completion times are integral. Let 𝐶 be the common completion time in the PF schedule
and also assume by scaling that 𝐶 is an integer. Since the rates and Lagrange multipliers do
not change, we write 𝑦 𝑗 = 𝑦 𝑗 (𝑡), 𝑗 ∈ 𝐽 , and𝑊 = 𝑊 (𝑡) and 𝜂𝑑 for the Lagrange multipliers
corresponding to (CP(𝐽 (𝑡))) for all 𝑡 ∈ [0,𝐶). We perform a dual fitting argument using the
following assignment:

• 𝑎 𝑗 := 𝑤 𝑗𝐶 for every job 𝑗 ∈ 𝐽 ,

• 𝑏𝑑𝑡 :=
(︁
1 − 1

𝐶
(𝑡 + 1

2 )
)︁
· 𝜂𝑑 for every 𝑑 ∈ [𝐷] and time 𝑡 ∈ {0, . . . ,𝐶 − 1}.

Lemma 5.22. It holds that
1
2 · ALG =

∑︁
𝑗∈ 𝐽 𝑎 𝑗 −

∑︁𝐶−1
𝑡=0

∑︁𝐷
𝑑=1 𝑏𝑑𝑡 .

Proof. Clearly,
∑︁
𝑗∈ 𝐽 𝑎 𝑗 = ALG. Further, at every time 𝑡 it holds that

∑︁𝐷
𝑑=1 𝑏𝑑𝑡 = (1−

1
𝐶
(𝑡+ 1

2 )) ·𝑊
due to Lemma 5.5. Thus, we conclude the proof with

𝐶−1∑︁
𝑡=0

𝐷∑︁
𝑑=1

𝑏𝑑𝑡 =𝑊

𝐶−1∑︁
𝑡=0

(︃
1 − 1

𝐶

(︂
𝑡 + 1

2

)︂)︃
=
𝑊

𝐶

𝐶−1∑︁
𝑡=0

(︂
𝑡 + 1

2

)︂
=
1
2 ·𝑊 ·𝐶 =

1
2 · ALG . □

Lemma 5.23. The solution (𝑎 𝑗 ) 𝑗 and (𝑏𝑑𝑡 )𝑑,𝑡 is feasible for (DLP(1)).
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Proof. The solution is clearly non-negative. We now verify the dual constraint. Fix a job 𝑗 and
a time 𝑡 ∈ {0, . . . ,𝐶 − 1}. Then,

𝑎 𝑗

𝑝 𝑗
−

(︂
𝑡 + 1

2

)︂
·
𝑤 𝑗

𝑝 𝑗
=

(︃
𝐶 −

(︂
𝑡 + 1

2

)︂)︃
·
𝑤 𝑗

𝑝 𝑗
=

(︃
𝐶 −

(︂
𝑡 + 1

2

)︂)︃
·
𝑤 𝑗

𝑦 𝑗
·
𝑦 𝑗

𝑝 𝑗

=

(︃
𝐶 −

(︂
𝑡 + 1

2

)︂)︃
·
(︃ 𝐷∑︁
𝑑=1

𝑏𝑑 𝑗𝜂𝑑

)︃
·
𝑦 𝑗

𝑝 𝑗
=

(︃
1 − 1

𝐶

(︂
𝑡 + 1

2

)︂)︃
·
(︃ 𝐷∑︁
𝑑=1

𝑏𝑑 𝑗𝜂𝑑

)︃
=

𝐷∑︁
𝑑=1

𝑏𝑑 𝑗 ·
(︃
1 − 1

𝐶

(︂
𝑡 + 1

2

)︂)︃
· 𝜂𝑑 =

𝐷∑︁
𝑑=1

𝑏𝑑 𝑗𝑏𝑑𝑡 .

The third equality uses (5.1). To see the fourth equality, note that 𝐶 · 𝑦 𝑗 = 𝑝 𝑗 . This shows that
the dual assignment satisfies the constraint of (DLP(1)) with equality. □

Theorem 5.24. PF has a competitive ratio equal to 2 for minimizing the total weighted completion

time for PSP with uniform release dates whenever it completes all jobs at the same time.

Proof. Weak duality, Lemma 5.22, and Lemma 5.23 imply

OPT ≥
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
𝐶−1∑︁
𝑡=0

𝐷∑︁
𝑑=1

𝑏𝑑𝑡 =
1
2 · ALG ,

which proves the claimed upper bound on the competitive ratio. The lower bound follows
by noting that in the deterministic lower bound instance all jobs also complete at the same
time [MPT94]. □

Lemmas 5.22 and 5.23 provide the additional insight that PF’s schedule (𝑦 𝑗 (𝑡)) 𝑗,𝑡 for structured
instances is an optimal solution to (LP(1)). This follows from strong duality because (𝑦 𝑗 (𝑡)) 𝑗,𝑡
is feasible for (LP(1)) and its objective value is also equal to 1

2ALG as
∑︁𝐶−1
𝑡=0 (𝑡 + 1

2 )𝑦 𝑗 (𝑡)/𝑝 𝑗 =
1
2𝐶

for all 𝑗 .

Combining Optimal Schedules via Superadditivity. We consider the partition of the
processing requirements 𝑝 =

∑︁𝐿
ℓ=1 𝑝

(ℓ ) , which we initially defined within this framework. As
argued in the proof of Lemma 5.21, in the instances with processing requirements 𝑝 (ℓ ) and
uniform release dates, all jobs finish at the same time. Let OPT0(𝑝 (ℓ ) ) be the optimal objective
value for these instances. By combining Lemma 5.21 and Theorem 5.24, we obtain

ALG(𝑝) ≤
𝐿∑︁
ℓ=1

(︃
2 · OPT0(𝑝 (ℓ ) ) + (𝐸ℓ+1 − 𝐸ℓ ) ·

∑︁
𝑗∈𝑈 (𝐸ℓ )\𝐽 (𝐸ℓ )

𝑤 𝑗

)︃
.

The definition of 𝛼-superadditivity implies that this is at most

2𝛼 · OPT0(𝑝) +
𝑛∑︁
𝑗=1

𝑤 𝑗

∑︁
ℓ :𝐸ℓ<𝑟 𝑗

(𝐸ℓ+1 − 𝐸ℓ ) = 2𝛼 · OPT0(𝑝) +
𝑛∑︁
𝑗=1

𝑤 𝑗𝑟 𝑗 ≤ (2𝛼 + 1) · OPT(𝑝) ,
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where the final inequality uses the trivial bound 𝑟 𝑗 ≤ 𝐶OPT
𝑗 for all 𝑗 ∈ [𝑛] and that the problem

with uniform release dates is a relaxation of the general PSP. This proves the bound for the
general case. Note that for uniform release dates, we can assume that

∑︁𝑛
𝑗=1𝑤 𝑗𝑟 𝑗 = 0, so that we

can bound the objective of PF by 2𝛼 · OPT. This concludes the proof of Theorem 5.20.

5.5.2 Applications in Machine Scheduling

In this section, we apply the analysis framework from Section 5.5.1 to several important machine
scheduling environments.

Unrelated Machines. In order to show superadditivity for preemptive unrelated machine
scheduling, denoted as 𝑅 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 , we fall back on the non-preemptive (and hence
non-migratory) variant. In this problem, denoted as 𝑅 | | ∑︁𝑤 𝑗𝐶 𝑗 , every job must be processed
uninterruptedly on a complete machine, that is, it processes at a rate equal to the speed of
the machine for this job. For fixed weights and speeds, and for processing requirements 𝑝
let OPTnp

0 (𝑝) denote the optimal objective value of a non-preemptive schedule for release
dates 0. Note that this non-preemptive problem is not a special case of PSP. However, it is
straightforward to extend the definition of 𝛼-superadditivity to it.

Lemma 5.25. The problem 𝑅 | | ∑︁𝑤 𝑗𝐶 𝑗 is 1-superadditive.

Proof. We can model any schedule for the non-preemptive problem using binary variables 𝑥𝑖 𝑗𝑘
that indicate whether job 𝑗 is being scheduled in the 𝑘th last position on machine 𝑖 . The
objective value of this schedule for processing requirements 𝑝1, . . . , 𝑝𝑛 is then equal to

𝑚∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑝 𝑗

𝑠𝑖 𝑗
𝑥𝑖 𝑗𝑘

𝑛∑︁
𝑗 ′=1

𝑤 𝑗 ′

𝑘∑︁
𝑘 ′=1

𝑥𝑖 𝑗 ′𝑘 ′ ,

subject to the constraints that
∑︁𝑚
𝑖=1

∑︁𝑛
𝑘=1 𝑥𝑖 𝑗𝑘 = 1 for every job 𝑗 ∈ [𝑛] and ∑︁𝑛

𝑗=1 𝑥𝑖 𝑗𝑘 ≤ 1 for
every position 𝑘 ∈ [𝑛] and machine 𝑖 ∈ [𝑚].
We now prove that the problem is 1-superadditive. Let (𝑥𝑖 𝑗𝑘 )𝑖, 𝑗,𝑘 model an optimal schedule

for processing requirements 𝑝 , and let 𝑝 =
∑︁𝐿
ℓ=1 𝑝

(ℓ ) be an arbitrary partition of the processing
requirements. Thus,

OPTnp
0 (𝑝) =

𝑚∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑝 𝑗

𝑠𝑖 𝑗
𝑥𝑖 𝑗𝑘

𝑛∑︁
𝑗 ′=1

𝑤 𝑗 ′

𝑘∑︁
𝑘 ′=1

𝑥𝑖 𝑗 ′𝑘 ′

=

𝐿∑︁
ℓ=1

(︃ 𝑚∑︁
𝑖=1

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1

𝑝
(ℓ )
𝑗

𝑠𝑖 𝑗
𝑥𝑖 𝑗𝑘

𝑛∑︁
𝑗 ′=1

𝑤 𝑗 ′

𝑘∑︁
𝑘 ′=1

𝑥𝑖 𝑗 ′𝑘 ′

)︃
≥

𝐿∑︁
ℓ=1

OPTnp
0 (𝑝

(ℓ ) ) ,

where the inequality holds because for every 1 ≤ ℓ ≤ 𝐿, (𝑥𝑖 𝑗𝑘 )𝑖, 𝑗,𝑘 is a feasible solution to the
instance with processing requirements 𝑝 (ℓ ) . □

Lemma 5.26. The problem 𝑅 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 is 1.81-superadditive.

Proof. Clearly, the preemptive problem is a relaxation of the non-preemptive problem, that
is, OPT0(𝑝 (ℓ ) ) ≤ OPTnp

0 (𝑝 (ℓ ) ) for all ℓ ∈ [𝐿]. Further, we apply a known bound on the
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power of preemption in unrelated machine scheduling. Sitters [Sit17, Corollary 3] proved that
OPTnp

0 (𝑝) ≤ 1.81 · OPT0(𝑝) for any instance 𝑝 . By combining these bounds with Lemma 5.25,
we obtain

𝐿∑︁
ℓ=1

OPT0(𝑝 (ℓ ) ) ≤
𝐿∑︁
ℓ=1

OPTnp
0 (𝑝

(ℓ ) ) ≤ OPTnp
0 (𝑝) ≤ 1.81 · OPT0(𝑝) ,

showing that the preemptive problem is 1.81-superadditive. □

Theorem 5.20 implies our main result for unrelated machines.

Theorem 5.27. There is a polynomial-time non-clairvoyant online algorithm for minimizing the

total weighted completion time on unrelated machines, 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 , with a competitive

ratio of at most 4.62. For uniform release dates, this bound reduces to 3.62.

As discussed in Section 5.2, we loose a factor of 1 + 𝜀 in the competitive ratio when requiring
polynomial running time for PF. However, the precise constant proven by Sitters [Sit17] is
actually the root of 8𝑥3 − 11𝑥2 − 4𝑥 − 4, which is at most 1.806. Therefore, the stated bounds
still hold.

Restricted Assignment. Sitters [Sit05] showed that for every instance of 𝑅 | pmtn, 𝑠𝑖 𝑗 ∈
{0, 1} | ∑︁𝐶 𝑗 , there exists an optimal solution that is non-preemptive. Therefore, Lemma 5.25
implies that the problem is a 1-superadditive PSP. By Theorem 5.20, the PF algorithm is thus 2-
competitive for uniform release dates and 3-competitive in general. As discussed in Section 5.4.2,
PF can be executed in strongly polynomial time in this setting.

Theorem 5.28. There is a strongly polynomial-time non-clairvoyant algorithm for minimizing

the total completion time with a competitive ratio of 2 for restricted assignment, 𝑅 | pmtn, 𝑠𝑖 𝑗 ∈
{0, 1} | ∑︁𝐶 𝑗 . For non-uniform release dates, the competitive ratio is at most 3.

Related Machines. We now consider the special case of PSP where all jobs are available at
the beginning and have unit weight, and the speed of a machine 𝑖 when processing a job 𝑗 is
independent of the job, that is, 𝑠𝑖 𝑗 = 𝑠𝑖 for all 𝑗 ∈ [𝑛]. This is noted as 𝑄 | pmtn | ∑︁𝐶 𝑗 in the
3-field notation. We assume without loss of generality that 𝑠1 ≥ . . . ≥ 𝑠𝑚 , and𝑚 ≥ 𝑛. The latter
can be ensured by adding 𝑛 −𝑚 speed-zero machines.

Lemma 5.29. The problem 𝑄 | pmtn | ∑︁𝐶 𝑗 is 1-superadditive.

Proof. We first characterize the optimal objective value in terms of processing requirements
𝑝1 ≤ . . . ≤ 𝑝𝑛 . We use that the PreemptiveSPT algorithm computes an optimal solution for
this problem [Gon77; Lab+84a]. This algorithm runs at any time 𝑡 the 𝑘 shortest unfinished
jobs on the 𝑘 fastest machines, for any 1 ≤ 𝑘 ≤ |𝐽 (𝑡) |.
It is not hard to see that PreemptiveSPT finishes the jobs in the order of their indices.

Moreover, the resulting completion times 𝐶 𝑗 satisfy for every 1 ≤ 𝑘 ≤ 𝑛 that (using 𝐶0 ≔ 0)

𝑘∑︁
𝑗=1

𝑠𝑘− 𝑗+1 · (𝐶 𝑗 −𝐶 𝑗−1) = 𝑝𝑘 ,
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which yields by summation for every 1 ≤ 𝑘 ≤ 𝑛 that

𝑘∑︁
𝑗=1

𝑠𝑘− 𝑗+1 ·𝐶 𝑗 =
𝑘∑︁
𝑗=1

𝑝 𝑗 .

This equation can be written as

⎛⎜⎜⎜⎜⎜⎝
𝑠1 0
𝑠2 𝑠1
...

. . .

𝑠𝑛 𝑠𝑛−1 . . . 𝑠1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
𝐶1
𝐶2
...

𝐶𝑛

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
1 0
1 1
...

. . .

1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
𝑝1
𝑝2
...

𝑝𝑛

⎞⎟⎟⎟⎟⎟⎠
. (5.5)

Let 𝜆 be the solution to

1⊤ = 𝜆⊤

⎛⎜⎜⎜⎜⎜⎝
𝑠1 0
𝑠2 𝑠1
...

. . .

𝑠𝑛 𝑠𝑛−1 . . . 𝑠1

⎞⎟⎟⎟⎟⎟⎠
.

Then, for every 𝑖 = 𝑛, . . . , 1, we have 𝑠1𝜆𝑖 = 1 − ∑︁𝑛
𝑘=𝑖+1 𝑠𝑘−𝑖+1𝜆𝑘 ≥ 1 − ∑︁𝑛

𝑘=𝑖+1 𝑠𝑘−𝑖𝜆𝑘 = 0.
Therefore, 𝜇 defined by 𝜇𝑘 ≔

∑︁𝑛
𝑖=𝑘

𝜆𝑖 for every 𝑘 ∈ [𝑛] is ordered 𝜇1 ≥ . . . ≥ 𝜇𝑛 . Using this
notation, by multiplying (5.5) from the left with 𝜆⊤, we obtain

OPT(𝑝) =
𝑛∑︁
𝑘=1

𝐶𝑘 =

𝑛∑︁
𝑘=1

𝜇𝑘 · 𝑝𝑘 .

We now prove 1-superadditivity. Let 𝑝 =
∑︁𝐿
ℓ=1 𝑝

(ℓ ) be an arbitrary partition of the processing
requirements. For every ℓ ∈ [𝐿] let 𝜎ℓ : [𝑛] → [𝑛] be a permutation such that 𝑝 (ℓ )

𝜎ℓ (1) ≤ . . . ≤
𝑝
(ℓ )
𝜎ℓ (𝑛) . Since 𝜇1 ≥ . . . ≥ 𝜇𝑛 , we have that

OPT(𝑝 (ℓ ) ) =
𝑛∑︁
𝑘=1

𝜇𝑘 · 𝑝 (ℓ )𝜎ℓ (𝑘 ) ≤
𝑛∑︁
𝑘=1

𝜇𝑘 · 𝑝 (ℓ )𝑘 .

Therefore, we can conclude that the problem is 1-superadditive as follows:

𝐿∑︁
ℓ=1

OPT(𝑝 (ℓ ) ) ≤
𝐿∑︁
ℓ=1

𝑛∑︁
𝑘=1

𝜇𝑘 · 𝑝 (ℓ )𝑘 =

𝑛∑︁
𝑘=1

𝜇𝑘

𝐿∑︁
ℓ=1

𝑝
(ℓ )
𝑘

=

𝑛∑︁
𝑘=1

𝜇𝑘 · 𝑝𝑘 = OPT(𝑝) . □

Moreover, as discussed in Section 5.4.2, PF can be executed in strongly polynomial time for
this problem.

Theorem 5.30. There is a strongly polynomial-time non-clairvoyant algorithm for minimizing

the total completion time with a competitive ratio equal to 2 on related machines, 𝑄 | pmtn | ∑︁𝐶 𝑗 .

For non-uniform release dates, the competitive ratio is at most 3.

Parallel Identical Machines. For parallel identical machines, denoted by 𝑃 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 ,
we recover a result by Beaumont et al. [Bea+12], who prove that their algorithm WDEQ, which
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we show corresponds to PF in this setting (cf. Section 5.6), is 2-competitive. For completeness,
we argue that this also falls out of our analysis. This follows from a nowadays folkloric
result by McNaughton [McN59] who showed that for any instance of 𝑃 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 there
exists an optimal non-preemptive solution. Therefore, Lemma 5.25 implies that the problem is
1-superadditive, and thus, Theorem 5.20 gives that PF is 2-competitive.

Theorem 5.31. There is a strongly polynomial-time non-clairvoyant online algorithm for mini-

mizing the total weighted completion time with a competitive ratio equal to 2 on parallel identical

machines, 𝑃 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 . For non-uniform release dates, the competitive ratio is at most 3.

5.6 Combinatorial Implementation of PF for Related Machines

In this section, we present a combinatorial implementation of PF for the problem of minimizing
the total weighted completion time on uniformly related machines,𝑄 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 , which
runs in strongly polynomial time. For simplicity, we fix an arbitrary state at time 𝑡 and assume
that 𝐽 (𝑡) = {1, . . . , 𝑛} and 𝑚 = 𝑛. This can be achieved by adding speed-zero machines or
removing the𝑚 − 𝑛 slowest machines, as this does not weaken an optimal solution.

We note that combining the results of Im et al. [IKM18] and Jain and Vazirani [JV10] already
imply that PF can be implemented in strongly polynomial time (as it models a submodular utility
allocation market). Our contribution is to provide a simpler and faster algorithm. Moreover,
the description of our algorithm directly implies that, to the best of our knowledge, all known
2-competitive non-clairvoyant algorithms for uniform release dates are special cases of PF.

A Specialized Convex Program. Using the representation of the rate polytope for unrelated
machine scheduling given in Section 5.2, we can see that the convex program (CP(𝐽 (𝑡)))
for this problem is equal to the following convex program (where the 𝑦-variables have been
eliminated):

max
𝑛∑︁
𝑗=1

𝑤 𝑗 log
(︃ 𝑛∑︁
𝑖=1

𝑠𝑖𝑥𝑖 𝑗

)︃
(CP𝑄 )

s.t.
𝑛∑︁
𝑗=1

𝑥𝑖 𝑗 ≤ 1 ∀𝑖 ∈ [𝑛]

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 ≤ 1 ∀𝑗 ∈ [𝑛]

𝑥𝑖 𝑗 ≥ 0 ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑛]
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Algorithm 1: Solution algorithm for (CP𝑄 )
Input: Weights𝑤1 ≥ . . . ≥ 𝑤𝑛 , machine speeds 𝑠1 ≥ . . . ≥ 𝑠𝑛 .

1 𝑘 ← 1
2 while 𝑘 ≤ 𝑛 do

3 Find the (largest) index ℎ with 𝑘 ≤ ℎ ≤ 𝑛 that maximizes
∑︁ℎ

𝑗=𝑘
𝑤𝑗∑︁ℎ

𝑖=𝑘
𝑠𝑖
.

4 Compute an allocation of jobs 𝑘, . . . , ℎ to machines 𝑘, . . . , ℎ such that every such job
𝑗 receives a rate 𝑦 𝑗 =

𝑤𝑗∑︁ℎ
𝑗 ′=𝑘 𝑤𝑗 ′

·∑︁ℎ
𝑖=𝑘

𝑠𝑖 , as described in Lemma 5.33.

5 𝑘 ← ℎ + 1

The KKT conditions [BV14] of an optimal solution (𝑥𝑖 𝑗 )𝑖, 𝑗 of (CP𝑄 ) with Lagrange multipli-
ers (𝜂𝑖)𝑖 and (𝛿 𝑗 ) 𝑗 can be written as follows:

−
𝑠𝑖𝑤 𝑗∑︁
𝑖′ 𝑠𝑖′𝑥𝑖′ 𝑗

+ 𝜂𝑖 + 𝛿 𝑗 ≥ 0 ∀𝑖, 𝑗 ∈ [𝑛] (5.6)

𝜂𝑖 ·
(︃
1 −

𝑛∑︁
𝑗=1

𝑥𝑖 𝑗

)︃
= 0 ∀𝑖 ∈ [𝑛] (5.7)

𝛿 𝑗 ·
(︃
1 −

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗

)︃
= 0 ∀𝑗 ∈ [𝑛] (5.8)

𝑥𝑖 𝑗 ·
(︃
−

𝑠𝑖𝑤 𝑗∑︁
𝑖′ 𝑠𝑖′𝑥𝑖′ 𝑗

+ 𝜂𝑖 + 𝛿 𝑗
)︃
= 0 ∀𝑖, 𝑗 ∈ [𝑛] (5.9)

𝜂𝑖 , 𝛿 𝑗 ≥ 0 ∀𝑖, 𝑗 ∈ [𝑛] (5.10)

A Combinatorial Algorithm, Intuition, and Relation to Previous Results. We now
introduce Algorithm 1. We will show below that this algorithm computes an optimal solution of
(CP𝑄 ), and thus, determines the instantaneous resource allocation 𝑥 . We prove this by giving an
assignment of Lagrangian multipliers that, together with 𝑥 , satisfies the KKT conditions. This
is sufficient, because (CP𝑄 ) has a concave objective function and convex restrictions [BV14].
Executing this algorithm at every event time in the schedule leads to a combinatorial, strongly
polynomial implementation of PF.

The main idea of Algorithm 1 is the following. If there exists an allocation 𝑥𝑖 𝑗 and resulting
processing rates 𝑦 𝑗 , 𝑖, 𝑗 ∈ [𝑛], such that they fully utilize all machines, and all jobs 𝑗 have the
same ratio𝑤 𝑗/𝑦 𝑗 =: 𝜋 , then we can easily conclude via (5.6) that this allocation is optimal for
(CP𝑄 ) by setting 𝜂𝑖 ≔ 𝑠𝑖𝜋 for all 𝑖 ∈ [𝑛] and setting all other multipliers to 0. That means, it
is optimal to distribute the processing rates proportional to the weights. However, this is not
possible if the distribution of weights is very different to the distribution of speeds. In this case,
we search for the largest prefix of [ℎ] ⊆ [𝑛] (called level) such that a proportional allocation is
possible for jobs and machines in [ℎ] (cf. Line 3). Then, we remove these machines and jobs
from the instance (cf. Line 5) and repeat.
Consider, for example, identical machines: we would allocate job 1 entirely to machine 1 if

𝑤1/𝑊 > 1/𝑚, because its fraction of the total weight𝑊 is larger than the fraction of the speed
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of a single machine compared to the total speed𝑚. Note that is exactly how WDEQ handles
high-weight jobs on identical parallel machines [Bea+12]. In fact, the instantaneous resource
allocation computed by Algorithm 1 generalizes all known (to the best of our knowledge) non-
clairvoyant algorithms for the simpler parallel identical machine environments and uniform
release dates: WDEQ [Bea+12], WRR [KC03], and RR [MPT94].
We remark that Gupta et al. [Gup+12] mention another natural generalization of WRR to

related machines, which allocates a𝑤 𝑗/𝑊 fraction of each of the fastest ⌊𝑊 /𝑤 𝑗 ⌋ machines to
job 𝑗 . However, they show that this algorithm is at least Ω(

√︁
log𝑛)-competitive for the total

weighted completion time objective, whereas we prove that PF is 4-competitive in that case
(Theorem 5.15).

Feldman et al. [Fel+08] considered Algorithm 1 as a mechanism to fractionally allocate 𝑛 ad
slots 𝑖 with different click rates 𝑠𝑖 to 𝑛 advertisers 𝑗 . Each advertiser 𝑗 wishes to maximize their
received click rate 𝑦 𝑗 and has a budget𝑤 𝑗 they are willing to pay. To this end, they can bid an
amount𝑤 ′𝑗 . The authors showed that when the slots are allocated according to Algorithm 1
applied to the bids 𝑤 ′𝑗 and each advertiser is charged their own bid, then bidding the true
budget𝑤 𝑗 is a dominant strategy, that is, the mechanism is strategy-proof. Therefore, since all
bids are collected by the auctioneer, it maximizes the revenue of the auctioneer under strategic
behavior of the advertisers. Our result provides further insight about this setting. Since the
works of Im et al. [IKM18] and Jain and Vazirani [JV10] imply that a solution to (CP𝑄 ) is equal
to a market equilibrium, our result shows that the mechanism actually computes a market
equilibrium. That means that it does not have to enforce the allocation, but only needs to
set the prices for ad rate in the different slots. For these prices the allocation maximizes each
advertisers’ click rate subject to their budget constraint, so that it is expected to arise without
central coordination.

Proof of Equivalence. We finally prove the main theorem of this section.

Theorem 5.32. Algorithm 1 computes an optimal solution of (CP𝑄 ).

Note that this theorem also implies that the above-mentioned non-clairvoyant algorithms
are all special cases of PF.

The remaining section is dedicated to the proof of Theorem 5.32. Let 𝐿1, . . . , 𝐿𝑟 be the partition
of 1, . . . , 𝑛 produced by the iterations of Algorithm 1. We call each 1 ≤ ℓ ≤ 𝑟 a level and denote
by

𝜋 (𝐿ℓ ) =
∑︁
𝑗∈𝐿ℓ 𝑤 𝑗∑︁
𝑖∈𝐿ℓ 𝑠𝑖

the price of level ℓ . Further, we write 𝜋 𝑗 = 𝜋 (𝐿ℓ ) for every 𝑗 ∈ 𝐿ℓ . Note that for every job 𝑗 it
holds that 𝜋 𝑗 = 𝑤 𝑗/𝑦 𝑗 .

Lemma 5.33 ([Fel+08]). The allocation in Line 4 always exists, and can be computed efficiently.
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Proof. Consider a level 𝐿 = {𝑘, . . . , ℎ} with price 𝜋 := 𝜋 (𝐿) computed in Line 3. Thus, for every
𝑘 ≤ ℎ′ ≤ ℎ it holds that 𝜋

∑︁ℎ′

𝑖=𝑘
𝑠𝑖 ≥

∑︁ℎ′

𝑗=𝑘
𝑤 𝑗 . Since 𝜋 = 𝑤 𝑗/𝑦 𝑗 for every 𝑗 ∈ 𝐿, we conclude

that for every 𝑘 ≤ ℎ′ ≤ ℎ we have

ℎ′∑︁
𝑖=𝑘

𝑠𝑖 ≥
ℎ′∑︁
𝑗=𝑘

𝑤 𝑗

𝜋
=

ℎ′∑︁
𝑗=𝑘

𝑦 𝑗 .

Horvath et al. [HLS77] show that these conditions suffice to ensure that jobs of length𝑦𝑘 , . . . , 𝑦ℎ
can be preemptively scheduling on machines with speeds 𝑠𝑘 , . . . , 𝑠ℎ within a makespan of 1.
Moreover, such a schedule can be computed efficiently using the level algorithm. This concludes
the proof of the lemma. □

Gonzalez and Sahni [GS78] give an even faster algorithm to compute the allocations in Line 4.
We can derive two immediate observations from the description of Algorithm 1.

Observation 5.34. If 𝑗 ∈ 𝐿ℓ , then 𝑥𝑖 𝑗 = 0 for all 𝑖 ∈ [𝑛] \ 𝐿ℓ .

Observation 5.35. It holds that 𝜋1 ≥ . . . ≥ 𝜋𝑛 .

Finally, we prove Theorem 5.32.

Proof. Let 𝑥𝑖 𝑗 , 𝑖, 𝑗 ∈ [𝑛], be the allocation computed by Algorithm 1. Since (CP𝑄 ) has a concave
objective function and convex restrictions, we show via the sufficient KKT condition for convex
programs that this allocation is an optimal solution to (CP𝑄 ) [BV14]. To this end, we present
Lagrange multipliers such that the KKT conditions are satisfied: for every machine 𝑖 ∈ [𝑛] we
define

𝜂𝑖 := 𝜋𝑛𝑠𝑛 +
𝑛−1∑︁
𝑘=𝑖

𝜋𝑘 (𝑠𝑘 − 𝑠𝑘+1) ,

and for every job 𝑗 ∈ [𝑛] we define

𝛿 𝑗 := 𝜋 𝑗𝑠 𝑗 − 𝜂 𝑗 .

We first verify (5.6). Fix a job 𝑗 ∈ [𝑛] and a machine 𝑖 ∈ [𝑛]. We distinguish two cases.

Case 𝑖 ≤ 𝑗 . Using Observation 5.35, we have

𝑤 𝑗 · 𝑠𝑖
𝑦 𝑗

= 𝜋 𝑗𝑠𝑖 = 𝜋 𝑗

(︃
𝑠 𝑗 +

𝑗−1∑︁
𝑘=𝑖

(𝑠𝑘 − 𝑠𝑘+1)
)︃
≤ 𝜋 𝑗𝑠 𝑗 +

𝑗−1∑︁
𝑘=𝑖

𝜋𝑘 (𝑠𝑘 − 𝑠𝑘+1) (5.11)

= 𝜋 𝑗𝑠 𝑗 + 𝜂𝑖 − 𝜂 𝑗 = 𝜂𝑖 + 𝛿 𝑗 .

Case 𝑖 > 𝑗 . Using Observation 5.35, we have

𝑤 𝑗 · 𝑠𝑖
𝑦 𝑗

= 𝜋 𝑗𝑠𝑖 = 𝜋 𝑗

(︃
𝑠 𝑗 +

𝑖−1∑︁
𝑘=𝑗

(𝑠𝑘+1 − 𝑠𝑘 )
)︃
≤ 𝜋 𝑗𝑠 𝑗 +

𝑖−1∑︁
𝑘=𝑗

𝜋𝑘 (𝑠𝑘+1 − 𝑠𝑘 )

= 𝜋 𝑗𝑠 𝑗 − (𝜂 𝑗 − 𝜂𝑖) = 𝜂𝑖 + 𝛿 𝑗 .
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Next, we verify (5.7) to (5.9). Since 𝑛 =𝑚 and by the definition of the algorithm, it is clear
that every job and every machine is fully allocated, hence (5.7) and (5.8) follow. For (5.9), note
that this follows from Observation 5.34 whenever 𝑖 and 𝑗 are in different levels. Otherwise, if
𝑖, 𝑗 ∈ 𝐿ℓ , the inequality in (5.11) holds with equation because in that case 𝜋 𝑗 = 𝜋 (𝐿ℓ ) = 𝜋𝑘 for
𝑘 = 𝑖, . . . , 𝑗 .

We finally check the non-negativity (5.10). Note that it suffices to show that 0 ≤ 𝜂𝑖 ≤ 𝜋𝑖𝑠𝑖 .
To see this, observe that for every machine 𝑖 we have

𝜂𝑖 = 𝜋𝑛𝑠𝑛 +
𝑛−1∑︁
𝑘=𝑖

𝜋𝑘 (𝑠𝑘 − 𝑠𝑘+1)⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
≥0

≥ 0 ,

and, by using Observation 5.35, we have

𝜂𝑖 = 𝜋𝑛𝑠𝑛 +
𝑛−1∑︁
𝑘=𝑖

𝜋𝑘 (𝑠𝑘 − 𝑠𝑘+1) = 𝜋𝑖𝑠𝑖 +
𝑛∑︁

𝑘=𝑖+1
𝑠𝑘 (𝜋𝑘 − 𝜋𝑘−1)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

≤0

≤ 𝜋𝑖𝑠𝑖 .

This completes the proof. □

Algorithm 1 can be executed in time𝑂 (𝑛2). Since we do this at every release and completion
time, the total running time is in 𝑂 (𝑛3).

5.7 Tight Dual Fitting for Weighted-Round-Robin

In this section we present a tight analysis of the Weighted-Round-Robin algorithm (WRR)
for 1 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 via dual fitting. Let [𝑛] be the set of jobs. We assume that 𝑤1/𝑝1 ≥
. . . ≥ 𝑤𝑛/𝑝𝑛 . Then, WRR processes at any time 𝑡 every unfinished job 𝑗 ∈ 𝑈 (𝑡) at rate
𝑦 𝑗 (𝑡) = 𝑤 𝑗/

∑︁
𝑗 ′∈𝑈 (𝑡 ) 𝑤 𝑗 ′ . Observe that in WRR’s schedule, job 1 completes at time 𝐶1 =

𝑝1/𝑦1(0) = (
∑︁𝑛
𝑘=1𝑤𝑘 ) · 𝑝1/𝑤1, job 2 completes at time

𝐶2 = 𝐶1 +
𝑝2 −𝐶1 · 𝑦2(0)

𝑦2(𝐶1)
=
𝑝1
𝑤1

(︃ 𝑛∑︁
𝑘=1

𝑤𝑘

)︃ (︃
1 −

∑︁𝑛
𝑘=2𝑤𝑘∑︁𝑛
𝑘=1𝑤𝑘

)︃
+ 𝑝2
𝑤2

𝑛∑︁
𝑘=2

𝑤𝑘 = 𝑝1 +
𝑝2
𝑤2

𝑛∑︁
𝑘=2

𝑤𝑘 ,

and so on. In general, the completion time of job 𝑗 in WRR’s schedule is equal to

𝐶 𝑗 =

𝑗−1∑︁
𝑘=1

𝑝𝑘 +
𝑝 𝑗

𝑤 𝑗

𝑛∑︁
𝑘=𝑗

𝑤𝑘 .

We prove the following theorem.

Theorem 5.36. The total weighted completion time of Weighted Round-Robin is equal to twice

the optimal objective value of (LP(1)) for uniform release dates.

It is known that the total weighted completion time of a schedule produced by WRR is equal
to twice the optimal total weighted mean busy time [Jäg+23; KC03]. Since the objective function
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of (LP(1)) corresponds to the total weighted mean busy time, the statement of Theorem 5.36
already follows.

Our contribution is to show how an optimal solution to (DLP(1)) can be expressed in terms of
WRR’s schedule. This suggests that we probably need a substantially more complex dual setup
and sufficient knowledge on optimal LP solutions to improve over the factor of 4, which can be
achieved by the simple dual setup (cf. Section 5.4). Specifically, in order to craft an optimal dual
solution, it is necessary (due to complementary slackness) to respect that scheduling jobs in
WSPT order minimizes the total weighted mean busy time on a single machine [Goe96], and
thus, optimally solves (LP(1)).
Let 𝑇 =

∑︁𝑛
𝑗=1 𝑝 𝑗 be the makespan of any non-idling schedule. For convenience, we restate

(DLP(1)) for the special case of single-machine scheduling:

max
𝑛∑︁
𝑗=1

𝑎 𝑗 −
𝑇−1∑︁
𝑡=0

𝑏𝑡 (DLP(1))

s.t.
𝑎 𝑗

𝑝 𝑗
−
𝑤 𝑗

𝑝 𝑗

(︂
𝑡 + 1

2

)︂
≤ 𝑏𝑡 ∀𝑗 ∈ [𝑛], ∀𝑡 ∈ {0, . . . ,𝑇 − 1}

𝑎 𝑗 , 𝑏𝑡 ≥ 0 ∀𝑗 ∈ [𝑛], ∀𝑡 ∈ {0, . . . ,𝑇 − 1}

For the analysis we assume by scaling that all processing requirements and weights are
integers. Define 𝑞 𝑗 ≔

∑︁𝑗

𝑘=1 𝑝𝑘 for every job 𝑗 and set 𝑞0 ≔ 0. Note that 𝑞 𝑗 − 𝑞 𝑗−1 = 𝑝 𝑗 . We
define the following dual assignment:

• 𝑎 𝑗 ≔ 𝑤 𝑗𝐶 𝑗 for every job 𝑗 ∈ [𝑛], and

• for every 𝑡 ∈ {0, . . . ,𝑇 − 1} we set 𝑏𝑡 ≔ 𝑤𝑖

𝑝𝑖
(𝐶𝑖 − (𝑡 + 1

2 )) where 𝑞𝑖−1 ≤ 𝑡 < 𝑞𝑖 .

Clearly,
∑︁
𝑗 𝑎 𝑗 = ALG. Combined with the following lemma, we conclude that the dual

objective value of our dual assignment is equal to 1
2 · ALG.

Lemma 5.37. It holds that

∑︁𝑇−1
𝑡=0 𝑏𝑡 =

1
2 · ALG.

Proof. Using the above formula for a job’s completion time in WRR’s schedule, we have

𝑇−1∑︁
𝑡=0

𝑏𝑡 =

𝑛∑︁
𝑗=1

𝑞 𝑗−1∑︁
𝑡=𝑞 𝑗−1

𝑤𝑖

𝑝𝑖

(︃
𝐶𝑖 −

(︂
𝑡 + 1

2

)︂)︃
=

𝑛∑︁
𝑗=1

𝑞 𝑗−1∑︁
𝑡=𝑞 𝑗−1

𝑛∑︁
𝑘=𝑗

𝑤𝑘 −
𝑤 𝑗

𝑝 𝑗

(︃
𝑡 + 1

2 −
𝑗−1∑︁
𝑘=1

𝑝𝑘

)︃
=

𝑛∑︁
𝑗=1

(︃
𝑝 𝑗

𝑛∑︁
𝑘=𝑗

𝑤𝑘

)︃
−
𝑤 𝑗

𝑝 𝑗

𝑝 𝑗−1∑︁
𝑡=0

(︃
𝑡 + 1

2

)︃
=

𝑛∑︁
𝑗=1

(︃
𝑝 𝑗

𝑛∑︁
𝑘=𝑗

𝑤𝑘

)︃
−
𝑤 𝑗

𝑝 𝑗
·
(︃
𝑝 𝑗 (𝑝 𝑗 − 1)

2 +
𝑝 𝑗

2

)︃
=

𝑛∑︁
𝑗=1

𝑝 𝑗

(︃
𝑤 𝑗

2 +
𝑛∑︁

𝑘=𝑗+1
𝑤𝑘

)︃
=
1
2

𝑛∑︁
𝑗=1

𝑝 𝑗

(︃ 𝑛∑︁
𝑘=𝑗

𝑤𝑘 +
𝑛∑︁

𝑘=𝑗+1
𝑤𝑘

)︃
=
1
2

𝑛∑︁
𝑗=1

𝑝 𝑗

(︃ 𝑛∑︁
𝑘=𝑗

𝑤𝑘

)︃
+𝑤 𝑗

𝑗−1∑︁
𝑘=1

𝑝𝑘 =
1
2

𝑛∑︁
𝑗=1

𝑤 𝑗

(︃ 𝑗−1∑︁
𝑘=1

𝑝𝑘 +
𝑝 𝑗

𝑤 𝑗

𝑛∑︁
𝑘=𝑗

𝑤𝑘

)︃
=
1
2ALG .

This completes the proof. □

Lemma 5.38. The dual solution (𝑎 𝑗 ) 𝑗 and (𝑏𝑡 )𝑡 is feasible for (DLP(1)).

91



Chapter 5 Non-Clairvoyant Online Scheduling

Proof. First observe that we can rewrite

𝑏𝑡 =
𝑤𝑖

𝑝𝑖

(︃
𝐶𝑖 −

(︂
𝑡 + 1

2

)︂)︃
=

𝑛∑︁
𝑘=𝑖

𝑤𝑘 −
𝑤𝑖

𝑝𝑖

(︃
𝑡 + 1

2 −
𝑖−1∑︁
𝑘=1

𝑝𝑘

)︃
.

Clearly, 𝑎 𝑗 ≥ 0 for every 𝑗 ∈ [𝑛]. To see that 𝑏𝑡 ≥ 0, note that in WRR’s schedule the jobs
complete in order of their index, and thus, job 𝑗 cannot complete earlier than 𝑞 𝑗 =

∑︁𝑗

𝑘=1 𝑝𝑘 .
It remains to prove that for every 𝑗 ∈ [𝑛] and 𝑞𝑖−1 ≤ 𝑡 ≤ 𝑞𝑖 − 1 that the first constraint of
(DLP(1)) is satisfied. Let 𝜏 ∈ [0, 1) such that 𝑡 + 1

2 = 𝑞𝑖−1 + 𝜏 · 𝑝𝑖 . We distinguish two cases.

If 𝑗 ≤ 𝑖 , the left side of the dual constraint is equal to

𝑎 𝑗 −𝑤 𝑗

(︂
𝑡 + 1

2

)︂
= 𝑤 𝑗

𝑗−1∑︁
𝑘=1

𝑝𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑗

𝑤𝑘 −𝑤 𝑗

(︂
𝑡 + 1

2

)︂
= 𝑤 𝑗

𝑗−1∑︁
𝑘=1

𝑝𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑗

𝑤𝑘 −𝑤 𝑗

𝑖−1∑︁
𝑘=1

𝑝𝑘 − 𝜏 ·𝑤 𝑗 · 𝑝𝑖

= −𝑤 𝑗

𝑖−1∑︁
𝑘=𝑗

𝑝𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑗

𝑤𝑘 − 𝜏 ·𝑤 𝑗 · 𝑝𝑖

= −𝑤 𝑗

𝑖−1∑︁
𝑘=𝑗

𝑝𝑘 + 𝑝 𝑗
𝑖−1∑︁
𝑘=𝑗

𝑤𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑖

𝑤𝑘 − 𝜏 ·𝑤 𝑗 · 𝑝𝑖 .

Using the fact that𝑤 𝑗𝑝𝑘 ≥ 𝑤𝑘𝑝 𝑗 for every 𝑘 ≥ 𝑗 , we can bound this expression from above by

−𝑤 𝑗

𝑖−1∑︁
𝑘=𝑗

𝑝𝑘 +𝑤 𝑗

𝑖−1∑︁
𝑘=𝑗

𝑝𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑖

𝑤𝑘 − 𝜏 ·𝑤𝑖 · 𝑝 𝑗 =
(︃ 𝑛∑︁
𝑘=𝑖

𝑤𝑘 − 𝜏 ·𝑤𝑖
)︃
· 𝑝 𝑗

=

(︃ 𝑛∑︁
𝑘=𝑖

𝑤𝑘 −
𝑤𝑖

𝑝𝑖
(𝜏 · 𝑝𝑖)

)︃
· 𝑝 𝑗 =

(︃ 𝑛∑︁
𝑘=𝑖

𝑤𝑘 −
𝑤𝑖

𝑝𝑖

(︂
𝑡 + 1

2 −
𝑖−1∑︁
𝑘=1

𝑝𝑘

)︂)︃
· 𝑝 𝑗 = 𝑏𝑡 · 𝑝 𝑗 ,

giving the right side of the constraint.

Similarly, we have for the case 𝑗 > 𝑖 that

𝑎 𝑗 −𝑤 𝑗

(︂
𝑡 + 1

2

)︂
= 𝑤 𝑗

𝑗−1∑︁
𝑘=1

𝑝𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑗

𝑤𝑘 −𝑤 𝑗

(︂
𝑡 + 1

2

)︂
= 𝑤 𝑗

𝑗−1∑︁
𝑘=1

𝑝𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑗

𝑤𝑘 −𝑤 𝑗

𝑖−1∑︁
𝑘=1

𝑝𝑘 − 𝜏 ·𝑤 𝑗 · 𝑝𝑖

= 𝑤 𝑗

𝑗−1∑︁
𝑘=𝑖

𝑝𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑗

𝑤𝑘 − 𝜏 ·𝑤 𝑗 · 𝑝𝑖

= 𝑤 𝑗

𝑗−1∑︁
𝑘=𝑖+1

𝑝𝑘 − 𝑝 𝑗
𝑗−1∑︁
𝑘=𝑖

𝑤𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑖

𝑤𝑘 + (1 − 𝜏) ·𝑤 𝑗 · 𝑝𝑖 .
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Using the fact that𝑤𝑘𝑝 𝑗 ≥ 𝑤 𝑗𝑝𝑘 for every 𝑘 < 𝑗 , we can bound this expression from above by

𝑝 𝑗

𝑗−1∑︁
𝑘=𝑖+1

𝑤𝑘 − 𝑝 𝑗
𝑗−1∑︁
𝑘=𝑖

𝑤𝑘 + 𝑝 𝑗
𝑛∑︁
𝑘=𝑖

𝑤𝑘 + (1 − 𝜏) ·𝑤𝑖 · 𝑝 𝑗 = 𝑝 𝑗
𝑛∑︁
𝑘=𝑖

𝑤𝑘 − 𝜏 ·𝑤𝑖 · 𝑝 𝑗

=

(︃ 𝑛∑︁
𝑘=𝑖

𝑤𝑘 −
𝑤𝑖

𝑝𝑖
(𝜏 · 𝑝𝑖)

)︃
· 𝑝 𝑗 =

(︃ 𝑛∑︁
𝑘=𝑖

𝑤𝑘 −
𝑤𝑖

𝑝𝑖

(︂
𝑡 + 1

2 −
𝑖−1∑︁
𝑘=1

𝑝𝑘

)︂)︃
· 𝑝 𝑗 = 𝑏𝑡 · 𝑝 𝑗 ,

which concludes that our dual solution is feasible. This finishes the proof. □

Proof of Theorem 5.36. Let LP∗ denote the optimal objective value of (LP(1)). Then, weak
duality, Lemma 5.37, and Lemma 5.38 imply

LP∗ ≥
𝑛∑︁
𝑗=1

𝑎 𝑗 −
𝑇−1∑︁
𝑡=0

𝑏𝑡 =
1
2 · ALG .

Moreover, the proof of Lemma 5.38 reveals via complementary slackness and strong duality
that our dual solution is even optimal for (DLP(1)), and thus, LP∗ =

∑︁𝑛
𝑗=1 𝑎 𝑗 −

∑︁𝑇−1
𝑡=0 𝑏𝑡 . This is

because the scheduling the jobs in the order of their index is optimal for (LP(1)) [Goe96]. □

5.8 Lower Bound for PF with Non-Uniform Release Dates

In this section, we present a lower bound on the competitive ratio of PF for PSP with non-
uniform release dates that is strictly larger than 2. We prove it for the special case of scheduling
on a single machine, where PF reduces to RR (cf. Section 5.6). RR processes at any time 𝑡 every
available job 𝑗 ∈ 𝐽 (𝑡) at rate 1/|𝐽 (𝑡) |. To prove a lower bound on RR’s competitive ratio, we
compare RR to the optimal solution, which is computed by the Shortest Remaining Processing
Time rule (SRPT) [Sch68]. This strategy processes at any time the available job of shortest
remaining processing time. We first present a weaker but simpler lower bound, and then give
an improved lower bound of at least 2.19.

Theorem 5.39. The competitive ratio of RR (resp. PF) is at least 2.074 for 1 | 𝑟 𝑗 , pmtn | ∑︁𝐶 𝑗 .

Proof. Consider the following instance. There are 𝑛 jobs 𝐽1 released at time 0 with processing
time 1 and 𝑛 jobs 𝐽2 released at time 𝑟 = (2−

√
3)𝑛 with processing time

√
3− 1. The number of

jobs in 𝐽1 and 𝐽2 is equal to 𝑛 each, and since we assume that 𝑛 →∞, we can without loss of
generality scale 𝑛 to 1, that is, the jobs are sand. Note that, in RR, the jobs in 𝐽1 have at time 𝑟
the same remaining processing time as the jobs in 𝐽2. Thus, all jobs complete at time

√
3, and

the total completion time of RR is equal to 2
√
3. SRPT first sequentially schedules an 𝑟 fraction

of the jobs in 𝐽1 until time 𝑟 , then sequentially completes all jobs in 𝐽2 and finally completes the
remaining 1 − 𝑟 volume of 𝐽1. In this schedule, the total completion time of the jobs completed
until time 𝑟 is equal to 1

2𝑟
2, the total completion time of jobs in 𝐽2 equal to 𝑟 + 1

2 (
√
3 − 1), and

the total completion time of the remaining jobs of 𝐽1 equal to (1 − 𝑟 ) (𝑟 +
√
3 − 1) + 1

2 (1 − 𝑟 )
2.

Hence,

OPT ≤ 1
2𝑟

2 + 𝑟 + 1
2 (
√
3 − 1) + (1 − 𝑟 ) (𝑟 +

√
3 − 1) + 1

2 (1 − 𝑟 )
2 = 6 − 5

2
√
3 .
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Figure 5.1: The total completion time of both schedules used in Theorem 5.39. The solid lines
indicate the completion of jobs in the SRPT schedule; the area below is equal to the
total completion time of the SRPT schedule. The colors of the solid line indicate
which jobs are processed at which time. The total area below the dotted line is equal
to half of the total completion time of RR. Observe that the area under the solid line
is (slightly) less than the area under the dotted line.

Therefore, the competitive ratio of RR is at least 2
√
3

6− 5
2
√
3 = 4

23 (5 + 4
√
3) > 2.074. □

We strengthen this example by adding more release dates, which improves the lower bound
on the competitive ratio. We consider an instance with 𝑘 release dates, and at every release
date (including 𝑟1 = 0) the same number of jobs are released. We again assume that the jobs are
sand, hence scale their number to 1. Let 𝐽1, . . . , 𝐽𝑘 be those sets, and let 𝑝1 > · · · > 𝑝𝑘 be their
processing times. Our goal is to construct an instance in which all jobs complete at the same
time in the schedule of RR with a total completion time equal to 𝑘

∑︁𝑘
𝑖=1 𝑝𝑖 . Thus, given values

for 𝑝1, . . . , 𝑝𝑘 , we can observe that the release dates 𝑟2, . . . , 𝑟𝑘 must satisfy that at every time 𝑟𝑖
all jobs of 𝐽1, . . . , 𝐽𝑖 have the same remaining processing time. This requires that

𝑟𝑖 = 𝑟𝑖−1 + 𝑝𝑖−1 − 𝑝𝑖

for all 𝑖 = 2, . . . , 𝑘 .
We now consider the solution of SRPT for this instance. Let 𝑉𝑗 be the fraction of jobs 𝐽 𝑗 that

is being processed before the release of the jobs 𝐽 𝑗+1 in the SRPT schedule, and let 𝑉𝑘 = 1. Note
that 𝑉𝑗 = (𝑟 𝑗+1 − 𝑟 𝑗 )/𝑝 𝑗 for all 𝑗 = 1, . . . , 𝑘 − 1. Thus, the total completion time of SRPT can be
expressed as follows (using 𝑟𝑘+1 = 𝑟𝑘 + 𝑝𝑘 ):

𝑘∑︁
𝑗=1
(𝑟 𝑗+1 − 𝑟 𝑗 )

(︃
𝑘 − 1

2𝑉𝑗 −
𝑗−1∑︁
𝑖=1

𝑉𝑖

)︃
+
𝑘−1∑︁
𝑗=1
(𝑝 𝑗 − (𝑟 𝑗+1 − 𝑟 𝑗 ))

(︃
1
2 (1 −𝑉𝑗 ) +

𝑗−1∑︁
𝑖=1
(1 −𝑉𝑖)

)︃
.

We numerically maximize the ratio between RR’s objective and this expression over all
1 = 𝑝1 > . . . > 𝑝𝑘 for 𝑘 = 30 and derive the following improved lower bound. The processing
times are presented in Table 5.3.

Theorem 5.40. The competitive ratio of RR (resp. PF) is at least 2.1906 for 1 | 𝑟 𝑗 , pmtn | ∑︁𝐶 𝑗 .
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Table 5.3: The (approximate) processing times used for the proof of Theorem 5.40.
𝑗 𝑝 𝑗

1 1
2 0.95160
3 0.90702
4 0.86581
5 0.82759
6 0.79203

𝑗 𝑝 𝑗

7 0.75885
8 0.72782
9 0.69872
10 0.67137
11 0.64561
12 0.62131

𝑗 𝑝 𝑗

13 0.59832
14 0.57656
15 0.55590
16 0.53628
17 0.51760
18 0.49980

𝑗 𝑝 𝑗

19 0.48282
20 0.46659
21 0.45106
22 0.43619
23 0.42194
24 0.40825

𝑗 𝑝 𝑗

25 0.39510
26 0.38245
27 0.37027
28 0.35854
29 0.34722
30 0.33630

𝑟2 𝑟3 𝑟4 𝑟4 + 𝑝4 𝑟2 +
∑︁4
𝑖=2 𝑝𝑖

∑︁4
𝑖=1 𝑝𝑖

1 −𝑉1

2 −∑︁2
𝑖=1𝑉𝑖

4 −∑︁4
𝑖=1𝑉𝑖

4 −∑︁3
𝑖=1𝑉𝑖

4 −∑︁2
𝑖=1𝑉𝑖

4
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Figure 5.2: The total completion time of both schedules in the improved construction with
𝑘 = 4. Observe that ratio between the area under the solid line and the area under
the dotted line is smaller than the corresponding ratio in Figure 5.1. Here, 𝑝1 = 1,
𝑝2 ≈ 0.80632, 𝑝3 ≈ 0.65835, and 𝑝4 ≈ 0.54231.

5.9 Concluding Remarks

For weighted jobs and unrelated machines, there remains the gap between 3.62 (Theorem 5.27)
and the lower bound of 2. We remark that improving the bound on the power of preemption
of 1.81 [Sit17] directly implies an improved bound on the competitive ratio by Lemma 5.26
and Theorem 5.20. This cannot, however, completely close the gap to 2, as there is a known
lower bound of 1.39 on the power of preemption [Eps+17]. In contrast, our analysis established
a tight competitive ratio for related machines, despite the fact that an optimal solution migrates
jobs. We conjecture that the competitive ratio of PF is exactly 2 on unrelated machines.

Another well-studied objective is to minimize the total weighted flow time. Im et al. [IKM18]
showed that PF is 𝑂 (1/𝜀2)-competitive for MonPSP if the given resource capacity per time
unit is increased by a factor (𝑒 + 𝜀), for any 𝜀 ∈ (0, 1/2). This is called speed augmentation.
For the special case of related machines and equal weights, Gupta et al. [GKP10] showed that
PF is (2 + 𝜀)-speed 𝑂 (1)-competitive, which is tight for PF even on a single machine [KP00].
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Our improved understanding of PF (cf. Algorithm 1) might help to close this gap also for
the weighted setting. We note that a different and arguably less natural generalization of RR
to (un-)related machines achieves this tight result [Im+14]. Moreover, it is open whether a
combination between PF and a technique for scalable algorithms ((1+𝜀)-speed𝑂 (1)-competitive
algorithms), such as LAPS [EP12] or its smoothed variant [Im+14], yields a scalable algorithm
for unrelated machines orMonPSP. While for unrelated machines a tailored and rather complex
algorithm achieves this [Im+14], it is known that for the general PSP no algorithm can be
constant competitive with constant speed augmentation [IKM18].
An intermediate model between clairvoyant and non-clairvoyant scheduling is stochastic

scheduling, where job size distributions become known upon job release. Our bounds for
the non-clairvoyant PF achieve the best known performance guarantees for polynomial-time
preemptive stochastic scheduling policies. This raises the question of whether policies could
benefit from stochastic information, as it is on a single machine 1 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 [Sev74].

Bibliographic Note

This chapter is based on joint work with Sven Jäger and Nicole Megow [JLM25]. Thus, some
parts of this chapter are identical with [JLM25].
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Part III

Learning-Augmented Scheduling
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Chapter 6

Introduction to Learning-Augmented

Algorithms

6.1 Motivation and Introduction

A cornerstone in the theoretical study of algorithms is the analysis of performance charac-
teristics such as running time, approximation ratios, or competitive ratios in the worst case.
This approach has been very successful, as it provides a simple and clear basis for evaluating
algorithms, as we have seen in the previous two parts of this thesis. Moreover, in many safety-
critical applications, a good understanding of worst-case behavior is unavoidable. Worst-case
analysis also has obvious issues: if an algorithm performs badly only on a unique worst-case
instance, but optimally on all others, worst-case guarantees would rank this algorithm below a
medium-performing algorithm. In practice, where such a worst-case instance is very unlikely
to occur, one clearly wants to favor the algorithm that performs better in practice, although it
might have a poorer worst-case guarantee.
To address this issue, various techniques were proposed to analyze algorithms beyond the

worst case [Rou20]. Learning-augmentation is such an approach, which is motivated by the
recent success of machine learning. The key idea is that a machine-learned model (or any
predictor) can predict characteristics of an upcoming instance, which, if somewhat precise, may
help an algorithm to improve its worst-case behavior. The challenging aspect of this approach
is the “somewhat precise” part, namely the big issue that a machine-learned model cannot
guarantee for sure that the prediction is accurate. Indeed, precisely predicting the future seems
to be a utopia.
The learning-augmented framework (also called algorithms with predictions) combines the

best parts of worst-case analysis and machine-learned predictions by seeking for the following
properties:

Consistency: When the prediction is accurate, we want to achieve the same performance as
an algorithm that has access to the ground truth.

Robustness: When the predictions are bad, we want to achieve a goodworst-case performance.

Smoothness: The performance of the algorithm should degrade gracefully between the con-
sistent and the robust case depending on the quality of the prediction.

The quality of a prediction is measured by some prediction error, which is a real-valued function
that takes as input the problem instance and the prediction. It describes how well the prediction
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prediction error
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Performance of prediction (smoothness)
Traditional worst-case guarantee (robustness)
Learning-augmented algorithm

Figure 6.1: Visualization of the main concepts of learning-augmented algorithms. The perfor-
mance of a learning-augmented algorithm is consistent with the performance of
an algorithm given the ground truth when the prediction error is 0, it degrades
smoothly with respect to the quality of the prediction, and it is robust against arbi-
trarily bad predictions.

matches the ground truth. We usually assume that a learning-augmented algorithm does not
know the prediction error upfront. Therefore, blindly following the prediction can result in an
arbitrarily bad performance from which an algorithm cannot recover after potentially noticing
that the prediction error was large. Thus, one difficulty in learning-augmented algorithm design
is to find the level of trust into the predictions that guarantees consistency, smoothness, and
robustness. An illustration of these ideas is given in Figure 6.1. For introductory examples
of this framework, we refer the reader to articles by Mitzenmacher and Vassilvitskii [MV20;
MV22a].

In this final part of the thesis, we apply this framework to online scheduling problems. Online
problems are a very natural application of the learning-augmented framework, as algorithms
have to cope against any eventuality of the uncertain future. Fixing a prediction and a value of
the prediction error upfront, intuitively restricts the future to instances that are close to the
prediction with respect to the prediction error. Thus, we can potentially avoid arbitrarily bad
worst-case instances.

We say that an online algorithm is 𝛼-consistent if it is 𝛼-competitive whenever it receives
correct predictions, and 𝛼-robust if it is 𝛼-competitive for any prediction. The consistency ratio
(robustness ratio) is the smallest 𝛼 such that the algorithm is 𝛼-consistent (𝛼-robust).

6.2 Classification of Prediction Models for Online Problems

When applying the learning-augmented framework to a problem, an important decision is to
choose a specific prediction model, that is, which information an algorithm should additionally
receive. Most of the prediction models used so far for online problems can be classified into
two categories: input predictions and action predictions. Input predictions give information
about the uncertain online input. An important and commonly used subclass are full input
predictions, which predict the whole instance. Action predictions are independent of the online
input and rather give suggestions on algorithmic actions, that is, which action to execute next.
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6.3 Related Work

Depending on the problem, action predictions can also be adaptive, that is, they arrive online
with the input at the time when the algorithm has to make a decision.

Examples for works using full input predictions for online problems are [AJS22; ALT21;
ALT22; Ber+22a; Erl+22; Im+23; PSK18]. Action predictions are used in, for example, [Ana+22;
Ant+20; BMS20; Ebe+22; JM22; LM22; LMS22].

6.3 Related Work

General Overview. The concepts of consistency, smoothness, and robustness were first
formalized by Lykouris and Vassilvitskii [LV18; LV21] for the online caching problem. The
competitive ratio for the online caching problem is Θ(log𝑘) for a cache of size 𝑘 , while it can be
solved optimally if the sequence of cache requests is known upfront. Lykouris and Vassilvitskii
presented an algorithm that achieves at the same time a competitive ratio of at most 𝑂 (log𝑘),
giving robustness, and of at most 𝑂 (

√︁
𝜂/OPT), giving consistency and smoothness, where 𝜂

denotes the prediction error. There are some prior works that used predictions to improve
the performance of algorithms [Kra+18; MNS12; MV17; RS13]. Their models, however, do
not completely fit into the above framework, usually because they miss either robustness or
smoothness. We refer to [LV21] to a comprehensive overview of prior related work.
Subsequently, over 200 works using this framework have been published until mid of 2024,

establishing learning-augmented algorithms as an important subarea of algorithm design and
beyond worst-case analysis. We refer to the online repository for a nearly complete list of
papers [LM24] in this area.

Some arguably early important results besides [LV18; LV21] are by Purohit et al. [PSK18] on
online ski-rental and non-clairvoyant scheduling, Lattanzi et al. [Lat+20] on online makespan
minimization, Antoniadis et al. [Ant+23b] on online metrical task systems, Bamas et al. [BMS20]
on online primal-dual algorithms, or Dinitz et al. [Din+21] on warm-starting matching algo-
rithms with predictions.

While the majority of works consider online problems, predictions have also been successful
for improving running times (for example, [BC23; Che+22; Dav+23; Din+21]), data structures
and dynamic algorithms (for example, [Bra+24; Hen+24; LLW22; McC+23]), approximation
algorithms ([Coh+24]), or performance indicators of mechanisms (for example, [Agr+22; BGT23;
Gka+22; XL22]).

Learning-Augmented Scheduling. We give more details on related work on scheduling
problems in the learning-augmented framework.
Many learning-augmented results on scheduling address non-clairvoyance. Purohit et al.

[PSK18] initially studied this problem on a single machine to minimize the total completion
time by predicting unknown job lengths. They showed that having access to sufficiently
good predictions bypasses the classic lower bound on the competitive ratio. Several works
subsequently studied this problem with full input prediction, also in variations [Bam+22;
BP23; BP24; Eli+24; Im+23; WZ20]. The author of this thesis and Megow [LM22] proposed a
different prediction model using action predictions for this problem (see Chapter 7), which
has also been picked up in subsequent works [Din+22; Eli+24; Kho+22]. Moreover, non-
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clairvoyant scheduling with input predictions on parallel machines to minimize the makespan
was considered [Bam+23c; ZLZ22b]. Finally, non-clairvoyant scheduling to minimize the total
(weighted) flow time with input predictions was studied on a single machine [ALT21; ALT22;
ZLZ22a] and on multiple machines [APT22b].

Predictions were also used to improve the competitive ratio of online problems with known
processing times. Lattanzi et al. [Lat+20] started this line of research by presenting a learning-
augmented algorithm for the online makespan minimization problem for restricted assignment.
Later, Lavastida et al. [Lav+21] extended their result, and Li and Xian [LX21] improved and
generalized it to unrelated machines. Cohen and Panigrahi [CP23] then further improved these
results in a more general online allocation framework.

Other scheduling problem that have been studied are online speed scaling [AJS22; Bal+23c;
Bam+20], speed-robust scheduling [Bal+23b], or interval scheduling [Boy+23].
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Chapter 7

Permutation Predictions for Unknown

Processing Requirements

7.1 Introduction

In this chapter, we study non-clairvoyant scheduling in a learning-augmented setting. More
specifically, we consider the problem of scheduling jobs on a single or parallel identical machines
to minimize the total weighted completion time. As already mentioned in Chapter 5, no non-
clairvoyant algorithm can have a competitive ratio better than 2 for this problem [MPT94].
Moreover, this optimal competitive ratio is achieved by Proportional Fairness (cf. Chapter 5) on
parallel identical machines with uniform release dates [Bea+12; KC03; MPT94].

Purohit et al. [PSK18] initiated the study of learning-augmented algorithms for this problem
on a single machine, and gave the first results of competitive ratios better than 2. They assume
that for every job 𝑗 there is given a prediction 𝑝 𝑗 on its actual unknown length 𝑝 𝑗 . We call
this model in this context length predictions, and note that it belongs to the class of full input
predictions. This prediction model has been picked up in later works on non-clairvoyant
scheduling, also for other objectives [ALT21; ALT22; APT22b; Bam+22; Bam+23c; Im+23;
WZ20].

7.1.1 Our Results

We introduce a new prediction model for scheduling to minimize the total weighted completion
time. Our prediction model is heavily inspired by the relevance of the WSPT order (cf. The-
orem 2.1), the order of non-increasing weight to processing time ratios, for this problem on
a single machine. For a scheduling instance with job set 𝐽 = [𝑛], weights 𝑤 = (𝑤 𝑗 ) 𝑗 and
processing times 𝑝 = (𝑝 𝑗 ) 𝑗 , our prediction is a permutation 𝜎 : [𝑛] → [𝑛] of all jobs. We call a
WSPT order 𝜎 on the same job set a perfect prediction. Thus, permutation predictions extract
the essential information required to schedule jobs (near) optimally.

In the permutation prediction model, jobs may arrive online at release dates and, at any time,
an algorithm has access only to a permutation on jobs that have been released already. At any
release date, the permutation is updated consistently with the previous permutation. That is,
the prediction model is not allowed to change the relative order of previously known jobs.

We show the following results for scheduling with permutation predictions:

• We define an error measure 𝜂𝑝 for permutation predictions and prove desired properties
for it, such as PAC-learnability in the agnostic setting (see Section 7.2).
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• We give a non-clairvoyant algorithm for the problem 1 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 with a competitive
ratio of at most

min
{︃

1
1 − 𝜆

(︃
1 + 𝜂𝑝

OPT

)︃
,
2
𝜆

}︃
for any 𝜆 ∈ (0, 1) (see Section 7.4.1).

• We give a non-clairvoyant online algorithm for the problem 𝑃 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 with a
competitive ratio of at most

min
{︃

1
1 − 𝜆

(︃
2 + 𝜂𝑝

𝑚 · OPT

)︃
,
3
𝜆

}︃
for any 𝜆 ∈ (0, 1), where𝑚 is the number of machines (see Section 7.4.2).

Further, we revisit in Section 7.3 the Preferential Time Sharing framework introduced by
Purohit et al. [PSK18], which we slightly modify and improve.

7.2 Prediction Error for Permutation Predictions

7.2.1 Intuition and Definition

Intuitively, an error measure shall quantify the impact that an erroneous prediction has on an
(optimal) scheduling algorithm. It is not unnatural to express the error as |OPT(𝜎) − OPT(𝜎) |,
as has been done in [BMS20; Ebe+22; LMS22], but for more complex scheduling environments
such as parallel identical machines or scheduling with release dates, the optimal solution is
hard to compute and, more importantly, this error could be even negligible whereas the impact
of running an optimal algorithm with the wrong prediction could be significant. The latter is
what we want to quantify.

In more detail, our error measure shall capture the change in the cost that an optimal schedule
must face when two jobs 𝑗 and 𝑗 ′ are inverted in a prediction 𝜎 with respect to 𝜎 . For example,
on a single machine without release dates, if 𝑗 and its successor 𝑗 ′ in 𝜎 are swapped in 𝜎 ,
the schedule that follows 𝜎 pays an additional cost of𝑤 𝑗 ′𝑝 𝑗 but saves𝑤 𝑗𝑝 𝑗 ′ compared to the
schedule that follows 𝜎 . However, in presence of release dates and on multiple machines, just
knowing the orders may not allow us to express the change in the exact optimal cost. Therefore,
we rely on an approximation as a surrogate for the optimal cost, namely, the change in the sum

of weighted completion times when preemptively scheduling jobs in the given priority order, 𝜎 and
𝜎 .

Formally, for a scheduling instance with permutation prediction 𝜎 consisting of a single
permutation, and WSPT order 𝜎 , let I(𝐽 , 𝜎) ≔ {( 𝑗 ′, 𝑗) ∈ 𝐽 2 | 𝜎 ( 𝑗 ′) < 𝜎 ( 𝑗) ∧ 𝜎 ( 𝑗 ′) > 𝜎 ( 𝑗)} be
the set of inverted job pairs. The prediction error of 𝜎 is defined as

𝜂𝑝 (𝐽 , 𝜎) ≔
∑︁

( 𝑗 ′, 𝑗 ) ∈I( 𝐽 ,𝜎 )
𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′ .

This error measures the exact change in the objective value, in the absence of release dates.

104



7.2 Prediction Error for Permutation Predictions

7.2.2 Properties and Comparison to Other Error Measures

Our new error measure satisfies several desired properties such as (𝑖) monotonicity, (𝑖𝑖) Lips-
chitzness, and (𝑖𝑖𝑖) theoretical learnability.

Im et al. [Im+23] advocate particularly the first two properties. Monotonicity requires, in the
length prediction model, that the error grows as more length predictions become incorrect.
In our setting, we have 𝜂 (𝜎) = 0 if 𝜎 = 𝜎 , and for any inversion added to 𝜎 , the error grows.
This is because an inversion ( 𝑗 ′, 𝑗) ∈ I increases the error by𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′ , since 𝜎 ( 𝑗 ′) < 𝜎 ( 𝑗)
implies𝑤 𝑗 ′/𝑝 𝑗 ′ ≥ 𝑤 𝑗/𝑝 𝑗 . Thus, our definition satisfies monotonicity.

Lipschitzness requires the error to bound the absolute difference of the optimal objective
values for the actual and predicted instance from above. Our error definition preciselymeasures
the cost between a solution that follows 𝜎 and one that follows 𝜎 , when scheduling the actual
instance preemptively according to the given order. Hence, our error measures immediately
satisfy Lipschitzness for our prediction setup.

Our prediction model is theoretically learnable in the framework of PAC-learnability [SB14].
We show that permutations are efficiently PAC-learnable in the agnostic sense with respect to
our error definition in Section 7.2.3.

In general, it is difficult to compare different prediction and error models. However, we
can convert a given length prediction 𝑝 = (𝑝 𝑗 ) 𝑗 into a permutation prediction by simply
computing the WSPT order based on the predicted processing requirements. Let OPT(𝑞)
denote the optimal objective value for the instance 𝑞 = (𝑞 𝑗 ) 𝑗 of the problem 1 | 𝑝𝑚𝑡𝑛 | ∑︁𝐶 𝑗 .
This conversion allows us to compare our error to the previously proposed measures 𝜈 =

OPT(max{𝑝, 𝑝}) − OPT(min{𝑝, 𝑝}) [Im+23] and ℓ1 =
∑︁
𝑗∈[𝑛] |𝑝 𝑗 − 𝑝 𝑗 | [PSK18] for the case of

1 | 𝑝𝑚𝑡𝑛 | ∑︁𝐶 𝑗 .

Firstly, we note that our error 𝜂𝑝 is less vulnerable than 𝜈 and ℓ1 to changes in the predicted
instance that do not affect the structure of an optimal solution. Indeed, the optimal solution of an
instance with 𝑝 𝑗 = 𝑗 for all 𝑗 ∈ [𝑛] has the same structure as the optimal solution of a predicted
instance with 𝑝 𝑗 = 𝑗 − 1 for all 𝑗 ∈ [𝑛]. One would expect a small error, and indeed 𝜂𝑝 = 0.
In contrast, previously defined errors are large: 𝜈 = OPT(max{𝑝, 𝑝}) − OPT(min{𝑝, 𝑝}) =
1
2𝑛(𝑛 + 1) −

1
2 (𝑛 − 1)𝑛 = 𝑛 and ℓ1 =

∑︁
𝑗∈ 𝐽 |𝑝 𝑗 − 𝑝 𝑗 | = 𝑛. This shows that our prediction and error

seem to capture well the relevant characteristics of an input-prediction in terms of derived
actions, while 𝜈 and ℓ1 also track insignificant numerical differences between the actual and
predicted instances.

In contrast to this example, there are other instances where 𝜈 and ℓ1 underestimate the actual
difficulty that is caused by the inaccuracy of the prediction given to an (optimal) algorithm.
Im et al. [Im+23] give such an example with 𝑝1 = 𝑝1 = . . . = 𝑝𝑛−1 = 𝑝𝑛−1 = 1 and 𝑝𝑛 = 𝑛2

but 𝑝𝑛 = 0. While the structural difference of the optimal solutions for predicted and true
values is large (𝜂𝑝 = Ω(𝑛3)) the other error definitions only measure 𝜈 = 𝑛2 + 𝑛 and ℓ1 = 𝑛2.

Finally, is not difficult to see that our prediction error never exceeds 𝑛ℓ1.

Proposition 7.1. For any instance of 1 | 𝑝𝑚𝑡𝑛 | ∑︁𝐶 𝑗 and length prediction, 𝜂𝑝 ≤ 𝑛 · ℓ1.
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Proof. Consider an instance 𝐽 and length prediction 𝑝 . Let 𝜎 be the corresponding predicted
permutation. Since ( 𝑗 ′, 𝑗) ∈ I(𝐽 , 𝜎) implies 𝜎 ( 𝑗 ′) > 𝜎 ( 𝑗), which must be due to 𝑝 𝑗 ≤ 𝑝 𝑗 ′ , we
conclude

𝜂𝑝 (𝐽 , 𝜎) =
∑︁

( 𝑗 ′, 𝑗 ) ∈I( 𝐽 ,𝜎 )
𝑝 𝑗 − 𝑝 𝑗 + 𝑝 𝑗 − 𝑝 𝑗 ′ + 𝑝 𝑗 ′ − 𝑝 𝑗 ′ ≤

∑︁
( 𝑗 ′, 𝑗 ) ∈I( 𝐽 ,𝜎 )

|𝑝 𝑗 − 𝑝 𝑗 | + |𝑝 𝑗 ′ − 𝑝 𝑗 ′ | ≤ 𝑛ℓ1 .

□

Our results for non-uniform job weights on a single and identical machines translate to the
length prediction model, as one can similarly show that 𝜂𝑝 is bounded by the natural weighted
generalization of 𝑛 · ℓ1, that is

∑︁
𝑗 ′∈ 𝐽 𝑤 𝑗 ′

∑︁
𝑗∈ 𝐽 |𝑝 𝑗 − 𝑝 𝑗 |.

7.2.3 Learnability

We show that permutation predictions for identical machines are PAC-learnable in the agnostic
sense with respect to 𝜂𝑝 .

Theorem 7.2. For any 𝜀, 𝛿 ∈ (0, 1) and any distribution D over the instances with 𝑛 jobs, there

exists a learning algorithm that, given an i.i.d. sample ofD of size 𝑧 ∈ 𝑂
(︂
1
𝜀2 · (𝑛 log𝑛 − log𝛿)𝑛

2
)︂
,

returns in polynomial time depending on 𝑛 and 𝑧 a prediction 𝜎𝑝 ∈ H from the set of all possible

permutations of the set {1, . . . , 𝑛}, such that with probability of at least (1 − 𝛿) it holds

𝔼𝐽 ∼D [𝜂𝑝 (𝐽 , 𝜎𝑝)] ≤ 𝔼𝐽 ∼D [𝜂𝑝 (𝐽 , 𝜎)] + 𝜀 ,

where 𝜂𝑝 (𝐽 , 𝜎) denotes the error of 𝜎 for instance 𝐽 , and 𝜎 = argmin𝜎∈H 𝔼𝐽 ∼D [𝜂𝑝 (𝐽 , 𝜎)].

Proof. Let 𝜀, 𝛿 ∈ (0, 1). We prove that we can use the classic Empirical Risk Minimization (ERM)
learning method to find such a prediction. Let S = {𝐽1, . . . , 𝐽𝑧} be a set of i.i.d. samples from D.
The ERM method then determines the prediction that minimizes the empirical error 𝜂𝑝

S
(𝜎) =

1
𝑧

∑︁𝑧
𝑠=1 𝜂

𝑝 (𝐽𝑠 , 𝜎). Since there are 𝑛! possible permutations of the set {1, . . . , 𝑛}, we conclude
thatH is finite, and we can assume by scaling processing requirements and weights to [0, 1]
that our error function is bounded by 𝑛. Classic results [SB14] imply for this case that H is
agnostically PAC learnable using the ERM method with sample complexity

𝑧 ≤
⌈︃
2 log(2|H|/𝛿)𝑛2

𝜀2

⌉︃
∈ 𝑂

(︃
(𝑛 log𝑛 − log𝛿)𝑛2

𝜀2

)︃
,

which is polynomial in the number of jobs, 𝑛, as log𝑛! ∈ 𝑂 (𝑛 log𝑛).
It remains to prove that the ERM algorithm can be implemented efficiently in our setting, that

is, given a sample set of size 𝑧, determine in time polynomial in 𝑛, a prediction that minimizes
the empirical error. Rewriting the empirical error gives

𝜂
𝑝

S
(𝜎) = 1

𝑧

𝑧∑︁
𝑠=1

𝜂𝑝 (𝐽𝑠 , 𝜎) =
1
𝑧

𝑧∑︁
𝑠=1

𝑛∑︁
𝑗=1

(︁
𝑊𝑗 (𝐽𝑠 , 𝜎) −𝑊𝑗 (𝐽𝑠 , 𝜎)

)︁
.
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Since the values𝑊𝑗 (𝐽𝑠 , 𝜎) are independent of 𝜎 , it suffices to find a prediction 𝜎 that mini-
mizes 1

𝑧

∑︁𝑧
𝑠=1

∑︁𝑛
𝑗=1𝑊𝑗 (𝐽𝑠 , 𝜎). For the special error 𝜂𝑝 , by denoting for a job 𝑗 ∈ 𝐽𝑠 its weight by

𝑤
(𝑠 )
𝑗

and its processing requirement by 𝑝 (𝑠 )
𝑗

, this is equal to

1
𝑧

𝑧∑︁
𝑠=1

𝑛∑︁
𝑗=1
𝑊𝑗 (𝐽𝑠 , 𝜎) =

1
𝑧

𝑧∑︁
𝑠=1

𝑛∑︁
𝑗=1

𝑤
(𝑠 )
𝜎 ( 𝑗 )

𝑗∑︁
ℓ=1

𝑝
(𝑠 )
𝜎 (ℓ ) =

𝑛∑︁
𝑗=1

(︄
1
𝑧

𝑧∑︁
𝑠=1

𝑤
(𝑠 )
𝜎 ( 𝑗 )

)︄
𝑗∑︁
ℓ=1

(︄
1
𝑧

𝑧∑︁
𝑠=1

𝑝
(𝑠 )
𝜎 (ℓ )

)︄
.

By defining the average weight𝑤𝜎 ( 𝑗 ) = 1
𝑧

∑︁𝑧
𝑠=1𝑤

(𝑠 )
𝜎 ( 𝑗 ) and average processing requirement

𝑝𝜎 ( 𝑗 ) =
1
𝑧

∑︁𝑧
𝑠=1 𝑝

(𝑠 )
𝜎 ( 𝑗 ) over S for all 𝑗 ∈ [𝑛], this is equal to minimizing

𝑛∑︁
𝑗=1

𝑤𝜎 ( 𝑗 )

𝑗∑︁
ℓ=1

𝑝𝜎 (ℓ ) .

Consider the average instance of S, that is, the scheduling instance of 𝑛 jobs with weights
(𝑤 𝑗 ) 𝑗 and processing requirements (𝑝 𝑗 ) 𝑗 . Since the above expression is equal to the objective
value of this instance when scheduling jobs in order 𝜎 (1), . . . , 𝜎 (𝑛), we can minimize it by
ordering the jobs according to WSPT in polynomial time in 𝑧 and 𝑛 [Smi56]. □

7.3 Preferential Time Sharing

In this section, we revisit the Preferential Time Sharing method introduced by Purohit et al.
[PSK18] for combining two scheduling algorithms, A and B. This method produces a new
algorithm with a competitive ratio that is a function of the competitive ratios of the individual
algorithms A and B. We generalize this idea into a powerful framework that is applicable in
substantially more complex scheduling settings and remove a previously required monotonicity
assumption.

The idea by Purohit et al. [PSK18] is to execute two algorithms somewhat simultaneously by
alternating between them very frequently. They crucially exploit the fact that job preemption
does not incur any extra cost or delay. A parameter 𝜆 ∈ (0, 1) is used to control the balancing of
the execution rates. More precisely, we fix a time discretization into infinitesimal time intervals
and execute both algorithms in each time interval. Algorithm A runs in the first 1 − 𝜆-fraction
of the interval, then the currently processing jobs are preempted, and algorithm B runs in the
remaining 𝜆-fraction of the interval. Purohit et al. [PSK18] prove the following result for the
single-machine environment, which can be easily extended to more complex heterogeneous
machine settings, but restricted to algorithms A and B that are both monotone. An algorithm is
monotone if increasing the processing requirement of a job in any instance does not decrease
the overall objective value.

Theorem 7.3 (Corollary of [PSK18]). Given any two deterministic monotone algorithmsA andB

for a preemptive scheduling problem with competitive ratios 𝜌A and 𝜌B for minimizing the total

weighted completion time and a constant 𝜆 ∈ (0, 1), there exists an algorithm for the same problem

with a competitive ratio of at most min{ 𝜌A1−𝜆 ,
𝜌B
𝜆
}.
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This bound follows because the completion times scale with the execution rate, and whenever
B reduces the remaining processing time of a job the completion time in A’s schedule does not
decrease due to the assumed monotonicity. Notice that in this algorithm, both subroutines A
and B can be applied at any time as black-box algorithms to the remaining scheduling instance.
We give an alternative formulation of the method, which does not require monotonicity of

the involved algorithms. Instead, we require that the algorithms are progress-aware, meaning
that they can track the exact progress (amount of processing) that jobs have received so far at
any point in time. This allows us to simulate both algorithms on the original instance while
ignoring the progress made by the other algorithm. While this algorithm formulation may
seem less relevant in practice, it is interesting from a theoretical perspective as it removes the
monotonicity requirement and the ignored progress does not lead to degraded performance in
terms of competitive ratio.

Formally, we consider the algorithm that simulates each of both algorithms A and B with a
rate equal to 1 − 𝜆 and 𝜆 on the same set of jobs. That is, in every time instance it executes
algorithm A in the first 1 − 𝜆 fraction of the instant, and algorithm B in the remaining part.
Additionally, it keeps track of how much each algorithm advances every job. For every job 𝑗 ,
both algorithms ignore the progress in the processing of 𝑗 made by the other algorithm. In
particular, if A finishes job 𝑗 , then our algorithm still simulates the processing of 𝑗 until the
total time spend by B on the (partially simulated) processing of 𝑗 equals 𝑝 𝑗 (and vice versa if B
finishes a job beforeA). This is possible because the algorithms are progress-aware. We remark
that this requires that the main algorithm is able to manipulate the input for the sub-algorithms
A and B.

Theorem 7.4. Given any two deterministic progress-aware algorithms A and B for a preemptive

scheduling problemwith competitive ratios 𝜌A and 𝜌B for minimizing the total weighted completion

time and a constant 𝜆 ∈ (0, 1), there exists an algorithm for the same problem with a competitive

ratio of at most min{ 𝜌A1−𝜆 ,
𝜌B
𝜆
}.

Proof. We consider the algorithm described above. Let𝐶A
𝑗 and𝐶B

𝑗 be the completion time of 𝑗 in
the simulated combined schedule, and𝐶A

𝑗 and𝐶B
𝑗 be the completion time of 𝑗 in the independent

schedule of the algorithm A and B, respectively. Since both algorithms are deterministic, 𝐶A
𝑗

and 𝐶B
𝑗 are exactly scaled by factors 1

1−𝜆 and 1
𝜆
compared to 𝐶A

𝑗 and 𝐶B
𝑗 . Thus, job 𝑗 completes

no later than min{𝐶A
𝑗 ,𝐶

B
𝑗 } = min{ 1

1−𝜆𝐶
A
𝑗 ,

1
𝜆
𝐶B
𝑗 } in the combined schedule, which implies the

stated bound on the algorithm’s competitive ratio. □

7.4 Learning-Augmented Algorithms

7.4.1 Single Machine

Consider the problem 1 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 . Given a permutation prediction 𝜎 , consider the algo-
rithm that schedules the jobs in the predicted order. Clearly, if the prediction is accurate, this
algorithm computes the optimal solution. Otherwise, the following lemma bounds competitive
ratio in terms of the prediction error 𝜂𝑝 .

Lemma 7.5. For every instance 𝐽 and permutation prediction 𝜎 , ALG ≤ OPT + 𝜂𝑝 (𝐽 , 𝜎).
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Proof. Consider an instance 𝐽 with jobs being indexed by 𝜎 , a prediction 𝜎 , and the schedule
obtained by the algorithm. In this schedule, let 𝑑 ( 𝑗 ′, 𝑗) denote the amount of job 𝑗 ′ that has
been processed before job 𝑗 completed. Thus, 𝑑 ( 𝑗 ′, 𝑗) = 𝑝 𝑗 ′ if and only if 𝜎 ( 𝑗 ′) < 𝜎 ( 𝑗). This
implies

ALG =

𝑛∑︁
𝑗=1

𝑤 𝑗𝑝 𝑗 +
𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

(︁
𝑤 𝑗 · 𝑑 ( 𝑗 ′, 𝑗) +𝑤 𝑗 ′ · 𝑑 ( 𝑗, 𝑗 ′)

)︁
=

𝑛∑︁
𝑗=1

𝑤 𝑗𝑝 𝑗 +
𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

𝜎 ( 𝑗 ′ )<𝜎 ( 𝑗 )

𝑤 𝑗𝑝 𝑗 ′ +
𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

𝜎 ( 𝑗 ′ )>𝜎 ( 𝑗 )

𝑤 𝑗 ′𝑝 𝑗

=

𝑛∑︁
𝑗=1

𝑤 𝑗

𝑗∑︁
𝑗 ′=1

𝑝 𝑗 ′ +
𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

𝜎 ( 𝑗 ′ )>𝜎 ( 𝑗 )

(𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′) = OPT + 𝜂𝑝 (𝐽 , 𝜎) .

The last equation holds since the first sum equals the optimal objective value, that is, a
schedule according to 𝜎 , and the second sum equals 𝜂𝑝 (𝐽 , 𝜎), since we assumed the jobs to be
indexed according to 𝜎 . □

So far, this algorithm has no robustness guarantee. To this end, we combine it with the
Weighted-Round-Robin algorithm (respectively, Proportional Fairness; see Chapter 5), which is
a non-clairvoyant 2-competitive for our problem [KC03]. Both algorithms are progress-aware.
Thus, Theorem 7.4 gives the following result.

Theorem 7.6. For every 𝜆 ∈ (0, 1), there is a non-clairvoyant algorithm augmented with permu-

tation predictions that has a competitive ratio of at most

min
{︃

1
1 − 𝜆

(︃
1 + 𝜂𝑝

OPT

)︃
,
2
𝜆

}︃
for minimizing the total weighted completion time on a single machine, 1 | pmtn | ∑︁𝑤 𝑗𝐶 𝑗 .

Finally, we note that the consistency-robustness tradeoff between 1
1−𝜆 and 2

𝜆
of our algorithm

is asymptotically almost optimal with respect to 𝜆. This follows from a result by Wei and Zhang
[WZ20], who showed that for any 𝛿 ≥ 0, any (1 + 𝛿)-consistent algorithm for 1 | pmtn | ∑︁𝐶 𝑗

has a robustness ratio of at least Ω((𝑛 + 𝛿𝑛2)/(𝛿𝑛2)) for 𝑛 jobs. Since this result was proven
for length predictions, it also holds for permutation predictions. Choosing 𝛿 ≔ 1

1−𝜆 − 1 and
𝑛 ≔

√︁
1/𝛿 implies that any 1

1−𝜆 -consistent algorithm for 1 | pmtn | ∑︁𝐶 𝑗 with permutation
predictions has a robustness ratio of at least

Ω

(︃
𝑛 + 𝛿𝑛2
𝛿𝑛2

)︃
= Ω

(︃√︂
1
𝛿

)︃
= Ω

(︃√︂
1 − 𝜆
𝜆

)︃
= Ω

(︃√︂
1
𝜆

)︃
.

7.4.2 Parallel Identical Machines

Next, consider the more general problem of scheduling jobs with non-uniform release dates on
𝑚 parallel identical machines, 𝑃 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 .
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We assume that we are given a single permutation 𝜎 over all jobs. First consider the algorithm
that schedules, at any moment in time, the𝑚 available jobs with the highest priority in the
predicted order 𝜎 . If 𝜎 is accurate, this algorithm corresponds to PreemptiveWSPT on parallel
identical machines, which is 2-competitive [MS04].

Lemma 7.7. For every instance 𝐽 and permutation prediction 𝜎 , ALG ≤ 2 · OPT + 1
𝑚
𝜂𝑝 (𝐽 , 𝜎).

Proof. Consider an instance 𝐽 with jobs being indexed by 𝜎 , a prediction 𝜎 , and the schedule
obtained by the algorithm. After job 𝑗 has been released, it is either being processed on a
machine or it is delayed by another job. Let 𝑑 ( 𝑗 ′, 𝑗) denote the total amount of job 𝑗 ′ that delays
the completion of 𝑗 . Note that 𝑑 ( 𝑗 ′, 𝑗) ≤ 𝑝 𝑗 ′ . Such a delay can only occur if there are at least𝑚
alive jobs before 𝑗 in 𝜎 , and these jobs will be distributed over all𝑚 machines. Since 𝑗 has
received 𝑝 𝑗 units of processing by its completion time, we conclude

ALG ≤
𝑛∑︁
𝑗=1

𝑤 𝑗 (𝑟 𝑗 + 𝑝 𝑗 ) +
1
𝑚

𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

(︁
𝑤 𝑗 · 𝑑 ( 𝑗 ′, 𝑗) +𝑤 𝑗 ′ · 𝑑 ( 𝑗, 𝑗 ′)

)︁
≤ OPT + 1

𝑚

𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

𝜎 ( 𝑗 ′ )<𝜎 ( 𝑗 )

𝑤 𝑗𝑝 𝑗 ′ +
1
𝑚

𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

𝜎 ( 𝑗 ′ )>𝜎 ( 𝑗 )

𝑤 𝑗 ′𝑝 𝑗

= OPT + 1
𝑚

𝑛∑︁
𝑗=1

𝑤 𝑗

𝑗−1∑︁
𝑗 ′=1

𝑝 𝑗 ′ +
1
𝑚

𝑛∑︁
𝑗=1

𝑗−1∑︁
𝑗 ′=1

𝜎 ( 𝑗 ′ )>𝜎 ( 𝑗 )

𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′ ≤ 2 · OPT + 1
𝑚
· 𝜂𝑝 (𝐽 , 𝜎) .

The second and third inequality hold due to two classical lower bounds on an optimal solution:
Every job has to be processed by at least its 𝑝 𝑗 after its release in any solution. Further,
1
𝑚

∑︁𝑛
𝑗=1𝑤 𝑗

∑︁𝑗−1
𝑗 ′=1 𝑝 𝑗 ′ equals the objective value of the WSPT schedule on a single machine with

speed𝑚 without release dates, which is a known relaxation of our problem and therefore also
a lower bound on OPT [EEI64]. Since we assumed that the jobs are indexed according to 𝜎 , the
sum of inversions is equal to 𝜂𝑝 (𝐽 , 𝜎). □

We combine this algorithmwith Proportional Fairness (cf. Chapter 5), which has a competitive
ratio of at most 3 for this problem (cf. Theorem 5.31). Both algorithms are progress-aware.
Therefore, we conclude the following theorem via Theorem 7.4.

Theorem 7.8. For every 𝜆 ∈ (0, 1), there is a non-clairvoyant algorithm augmented with permu-

tation predictions that has a competitive ratio of at most

min
{︃

1
1 − 𝜆

(︃
2 + 𝜂𝑝

𝑚 · OPT

)︃
,
3
𝜆

}︃
for minimizing the total weighted completion time on𝑚 parallel identical machines with release

dates, 𝑃 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 .
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7.5 Concluding Remarks

We proposed a new compact prediction model and error measure that fulfill desired properties
in theory and practice. Further, we revisited a learning-augmented time sharing framework
and generalized and improved it.

Subsequently, to the conference version on which this chapter is based on [LM22], our new
permutation prediction has also been successfully applied to other problems and models in the
area of algorithms with predictions [Din+22; Eli+24; Kho+22; Las+23], demonstrating its power
and applicability.

Our model is an early example for the theoretical study of parsimonious or succinct prediction
models that aim to use less or even as little predictive information as possible. Further works
dealing with such considerations include [Ant+23a; BP23; DNS23; Im+23; Las+23; SE24]. It is an
interesting question whether one can formalize what constitutes a “minimalistic” information
in some way, such as the number of bits in advice complexity [Boy+17], which assumes precise
additional information.

Bibliographic Note

This chapter is mainly based on joint work with Nicole Megow [LM22]. Section 7.3 is based on
joint work with Nicole Megow and Martin Rapp [LMR23]. Thus, some parts of this chapter are
identical with [LM22; LMR23]
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Chapter 8

Predictions for Unknown Precedence

Constraints

8.1 Introduction

Cloud computing is a popular approach to outsource heavy computational tasks to specialized
providers [Hay08]. Concepts like Function-as-a-Service (FaaS) offer users on demand the
execution of complex computations in a specific domain [Lyn+17; SBW19]. Such tasks are
often decomposed into smaller jobs, which then depend on each other by passing intermediate
results. The structure of such tasks heavily relies on the users input and internal dependencies
within the user’s system. It might require diverse jobs to solve different problems with distinct
inputs. From the provider’s perspective, the goal is to schedule jobs with different priorities
and interdependencies that become known only when certain jobs are completed and their
results can be evaluated.

From a more abstract perspective, we face online precedence constraint scheduling: new jobs
arrive only if certain other jobs have been completed but the set of jobs and their dependencies
are unknown to the scheduler in advance. As tasks might have different priorities, it is a natural
objective to minimize the total (average) weighted completion time of the jobs. We focus on
non-clairvoyant schedulers, and we allow preemptive schedules.
It is not hard to see that for this online problem, we cannot hope for good worst-case

guarantees: consider an instance of 𝑛 − 1 initially visible jobs with zero weight such that
exactly one of these jobs triggers at its completion the arrival of a job with positive weight.
Since the initial jobs are indistinguishable, in the worst case, any algorithm completes the
positive-weight job last. An offline optimal solution can distinguish the initially visible jobs
and immediately processes the one that triggers the positive-weight job. This already shows
that no deterministic algorithm can have a better competitive ratio than Ω(𝑛) for 𝑛 jobs. Notice
that this strong impossibility result holds even for (seemingly) simple precedence graphs that
consist of a collection of chains. In practice, such a topology is highly relevant as, for example,
a sequential computer program executes a path (chain) of instructions that upon execution
depends on the evaluation of control flow structures [All70].

To overcome such daunting worst-case lower bounds, we study this problem in the learning-
augmented setting. The intuition is that in many applications, we can learn certain aspects of
the uncertainty by considering historical data such as dependencies between jobs for certain
computations and inputs.
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Despite the immense research interest in learning-augmented algorithms, the particular
choice of prediction models remains often undiscussed. In this chapter, we discuss various
models and analyze their strengths and weaknesses. The question driving our research is:

Which particular minimal information is required to achieve reasonable performance

guarantees for scheduling with online precedence constraints?

We refer with reasonable performance guarantees to competitive ratios in 𝑜 (𝑛), that is,
bounds that improve upon the pessimistic lower bound of Ω(𝑛) from the setting without
additional information.

Our starting point is the analysis of the two most common models, full input predictions and
action predictions. Our main focus is a hierarchy of refined prediction models based on their
entropy. That is, one can compute a prediction for a weaker model using a prediction from a
stronger one, but not vice versa. We predict quantities related to the weight of unknown jobs,
which is in contrast to previous work that assumes predictions on the jobs’ processing times or
machine speeds.
For each prediction model, we analyze its power and limitations by providing efficient

algorithms and lower bounds on the best-possible performance guarantees with respect to
these models and the topological properties of the precedence constraints.

8.1.1 Problem Definition

An instance of our problem is composed of a set 𝐽 of 𝑛 jobs and a precedence graph 𝐺 = (𝐽 , 𝐸),
which is a directed acyclic graph (DAG). Every job 𝑗 ∈ 𝐽 has a processing requirement 𝑝 𝑗 > 0
and a weight 𝑤 𝑗 ≥ 0. An edge ( 𝑗 ′, 𝑗) ∈ 𝐸 indicates that 𝑗 can only be started if 𝑗 ′ has been
completed. If there is a directed path from 𝑗 ′ to 𝑗 in 𝐺 , then we say that 𝑗 is a successor of 𝑗 ′
and that 𝑗 ′ is a predecessor of 𝑗 . If that path consists of a single edge, we call 𝑗 and 𝑗 ′ a direct
successor and predecessor, respectively. For a fixed precedence graph 𝐺 , we denote by 𝜔 the
width of 𝐺 , which is the length of the longest anti-chain in 𝐺 .
We consider rate-based schedules for this problem, as introduced in Section 2.2.1. An

algorithm can process a job 𝑗 at a time 𝑡 ≥ 0 with a rate 𝑦 𝑗 (𝑡) ≥ 0, which describes the amount
of processing the job receives at time 𝑡 . The completion time𝐶 𝑗 of a job 𝑗 is the first time 𝑡 that
satisfies

∫ 𝑡
0 𝑦 𝑗 (𝑡

′) d𝑡 ′ ≥ 𝑝 𝑗 . On a single machine a total rate of 1 can be processed at any time 𝑡 ,
and thus, we require

∑︁
𝑗∈ 𝐽 𝑦 𝑗 (𝑡) ≤ 1. At any time 𝑡 in a schedule, let

𝐹 (𝑡) ≔
{︁
𝑗 | 𝐶 𝑗 > 𝑡 and ∀𝑗 ′ s.t. ( 𝑗 ′, 𝑗) ∈ 𝐸 : 𝐶 𝑗 ′ < 𝑡

}︁
denote the set of unfinished jobs without unfinished predecessors in 𝐺 . We refer to such jobs
as front jobs. In the online setting, a job is revealed to the algorithm once all predecessors have
been completed. The algorithm is completely oblivious to 𝐺 and, specifically, it does not know
whether a front job has successors. Thus, at any time 𝑡 , an algorithm only sees jobs 𝑗 ∈ 𝐹 (𝑡)
with weights𝑤 𝑗 but not their processing times 𝑝 𝑗 . Note that the sets 𝐹 (𝑡) heavily depend on an
algorithm’s actions. At the start time 𝑡 = 0, an algorithm sees 𝐹 (0), and until the completion of
the last job, it does not know the total number of jobs. An algorithm can at any time 𝑡 only
process front jobs, hence we further require that 𝑦 𝑗 (𝑡) = 0 for all 𝑗 ∈ 𝐽 \ 𝐹 (𝑡). The objective of
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our problem is to minimize
∑︁
𝑗∈ 𝐽 𝑤 𝑗𝐶 𝑗 . For a fixed instance, we denote the optimal objective

value by OPT and for a fixed algorithm, we denote its objective value by ALG.
We study different topologies of precedence graphs. In addition to general DAGs, we

consider in-forests and out-forests, where every node has at most one outgoing and incoming
edge, respectively. Further, we study chains, which is a precedence graph that is an in-forest
and an out-forest simultaneously. If an in- or out-forest has only one connected component,
we refer to it as in- and out-tree, respectively.

8.1.2 Prediction Models

As we have discussed in Chapter 6, two of the most studied prediction models are the following:

Full input predictions: Predictions on the set of jobs with processing times and weights, and
the complete precedence graph.

Action predictions: Predictions on a full priority order over all jobs predicted to be part of
the instance (static) or a prediction on which job to schedule next whenever a machine
idles (adaptive).

Full input predictions, however, require a significant amount of information on the input.
The same holds for provably optimal action predictions that go beyond simple heuristics, which
can be computed based on limited information. This might be unrealistic or costly to obtain
and/or not necessary. We aim for minimalistic extra information and quantify its power.
The set of front jobs 𝐹 (0) does not give sufficient information for obtaining a competitive

ratio better than Ω(𝑛), as shown above. For a job 𝑣 ∈ 𝐹 (0), we define the set 𝑆 (𝑣) consisting of
𝑣 and its successors, and we let𝑤 (𝑆 (𝑣)) := ∑︁

𝑢∈𝑆 (𝑣) 𝑤𝑢 . We consider various predictions on the
set 𝑆 (𝑣):

Weight predictions: Predictions𝑊𝑣 on the total weight𝑤 (𝑆 (𝑣)) of each front job 𝑣 ∈ 𝐹 (0).

Weight order predictions: The weight order ⪯0 over 𝐹 (0) sorts the jobs 𝑣 ∈ 𝐹 (0) in order of
non-increasing 𝑤 (𝑆 (𝑣)), that is, 𝑣 ⪯0 𝑢 implies 𝑤 (𝑆 (𝑣)) ≥ 𝑤 (𝑆 (𝑢)). We assume access
to a prediction ⪯̂0 on ⪯0.

Average predictions: Predictions �̂�𝑣 on the average weight 𝑎(𝑆 (𝑣)) =
∑︁
𝑢∈𝑆 (𝑣) 𝑤𝑢∑︁
𝑢∈𝑆 (𝑣) 𝑝𝑢

of each front
job 𝑣 ∈ 𝐹 (0).

For each of these three models, we distinguish static and adaptive predictions. Static predictions
refer to predictions only on the initial front jobs 𝐹 (0), and adaptive predictions refer to a setting
where we receive access to a new prediction whenever a job becomes visible.

8.1.3 Our Results

Our results can be separated into two categories. First, we consider the problem of scheduling
with online precedence constraints with access to additional reliable information. In particular,
we consider all the aforementioned prediction models and design upper and lower bounds for
the online problem enhanced with access to the respective additional information. We classify
the power of the different models when solving the problem on different topologies.
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Chapter 8 Predictions for Unknown Precedence Constraints

Table 8.1: Summary of bounds in this chapter on the competitive ratio given reliable information.
We denote by 𝑃 the total processing time and by 𝐻𝑘 the 𝑘th harmonic number.

Prediction Model Topology Competitive Ratio

Actions DAG Θ(1)
Input DAG Θ(1)
Adaptive weights Out-Forests Θ(1)
Adaptive weights In-Trees Ω(

√
𝑛)

Static weights Out-Trees Ω(𝑛)
Static weights Chains Θ(1)
Adaptive weight order Out-Forests 𝑂 (𝐻𝜔 )
Static weight order Chains 𝑂 (𝐻 2

𝜔

√
𝑃)

Adaptive averages Chains Ω(
√
𝑛)

No prediction Chains Ω(𝑛)

For the second type of results, we drop the assumption that the additional information is
accurate and turn our pure online results into learning-augmented algorithms. We define
suitable error measures for the different prediction models to capture the accuracy of the
predictions, and give more fine-grained competitive ratios depending on these measures. We
also extend our algorithms to achieve robustness.

Next, we give an overview of our results for these categories.

Reliable additional information. Table 8.1 summarizes our results for the pure online
setting enhanced with reliable additional information. Our main results are a 4-competitive
algorithms for chains and out-forests with weight predictions, and a 𝐻𝜔 -competitive algorithm
for out-forests with adaptive weight order predictions, where 𝐻𝑘 is the 𝑘th harmonic number.
The results show that additional information significantly improves the (worst-case) ratio
compared to the setting with no predictions.
Our main non-clairvoyant algorithm, given correct weight predictions, has a competitive

ratio of at most 4 for online out-forest precedence constraints on a single machine. This
improves even for offline precedence constraints upon previous best-known bounds of 8 [Jäg21]
and 10 [Gar+19] for this problem, although these bounds also hold in more general settings1. To
achieve this small constant, we generalize the Weighted-Round-Robin (WRR) algorithm [KC03;
MPT94] for non-clairvoyant scheduling without precedence constraints, which advances jobs
proportional to their weight, to our setting. We handle each out-tree as a super-job and update
its remaining weight when a sub-job completes. If the out-tree is a chain, this can be done
even if only static weight predictions are given. Otherwise, when an out-tree gets divided into
multiple remaining out-trees, the distribution of the remaining weight is unknown. Thus, we
have to rely on adaptive predictions. Due to the increased dynamics of gaining partial weight of

1After the conference version of this chapter [Las+23] has been published, Jäger and Warode [JW24] presented a
2-competitive non-clairvoyant algorithm for minimizing the total weighted completion time on a single machine
with offline precedence constraints, which is best-possible [MPT94].
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these super-jobs, the original analysis of WRR is not applicable. Instead, we use the dual fitting
technique, which has been previously used for offline precedence constraints [Gar+19]. While
their analysis builds on offline information and is infeasible in our model, we prove necessary
conditions on an algorithm to enable the dual fitting, which are fulfilled even in our limited
information setting. Surprisingly, we also show that a more compact LP relaxation, which does
not consider transitive precedences, is sufficient for our result. In particular, compared to the
LP used in [Gar+19], it allows us to craft simple duals that do not involve gradient-type values
of the algorithm’s rates.
In the more restricted model of weight order predictions, WRR cannot directly be applied,

as even the initial rate computation of the algorithm crucially relies on precise weight values
(cf. Section 8.3.1). We observe, however, that WRR’s rates at the start of an instance have the
same ordering as the known chain order. We show that guessing rates for chains in a way that
respects the ordering compromises only a factor of at most 𝐻𝜔 in the competitive ratio. If the
weight order is adaptive, we show a competitive ratio of 4 · 𝐻𝜔 . Otherwise, we give a worse
upper bound and evidence that this might be best-possible for this algorithm.

Learning-augmentation. We extend our algorithmic results by designing suitable error
measures for the different prediction models and proving error-dependent competitive ratios.
Finally, we show how existing techniques can be used to give these algorithms a robustness
of O(𝜔) at the loss of only a constant factor in the error-dependent guarantee. Note that a
robustness O(𝜔) matches the lower bound for the online problem without access to additional
information.

8.1.4 Further Related Work

Scheduling jobs with precedence constraints to minimize the sum of (weighted) completion
times is a well-studied scheduling problem. The offline problem is known to be NP-hard,
even for a single machine [Law78; LK78], and on two machines, even when precedence con-
straints form chains [DLY91; Tim03]. Several polynomial-time algorithms based on different
linear programming formulations achieve an approximation ratio of 2 on a single machine,
whereas special cases are even solvable optimally; we refer to [AM09; CS05] for comprehensive
overviews. For scheduling on𝑚 parallel identical machines, the best known approximation
factor is 3 − 1/𝑚 [Hal+97].
For scheduling with online precedence constraints, strong and immediate lower bounds

rule out a competitive ratio better than Ω(𝑛) for the min-sum objective. Therefore, online
scheduling has been mainly studied in a setting where jobs arrive online, and once a job arrives
its processing time, weight, and relation to other (already arrived) jobs is revealed [BKL21;
Cha+96; Hal+97].

8.2 Robustness via Preferential Time Sharing

We show that any 𝜌-competitive algorithm for scheduling with online precedence constraints of
width 𝜔 can be extended to a 𝑂 (min{𝜌,𝜔})-competitive algorithm. In particular, if 𝜌 depends
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Chapter 8 Predictions for Unknown Precedence Constraints

on a prediction’s quality, this ensures that this algorithm is robust against arbitrarily bad
predictions.
To this end, consider the algorithm that at any time 𝑡 shares the machine equally among

all front jobs 𝐹 (𝑡), that is, gives every job 𝑗 ∈ 𝐹 (𝑡) rate 𝑦 𝑗 (𝑡) = 1
|𝐹 (𝑡 ) | ≥

1
𝜔
. For a fixed

job 𝑗 , compared to its completion time in a fixed optimal schedule, the completion time in the
algorithm’s schedule can be delayed by at most a factor of 𝜔 .

Proposition 8.1. There is an 𝜔-competitive non-clairvoyant single-machine algorithm for mini-

mizing the total weighted completion time of jobs with online precedence constraints.

We can now use Preferential Time Sharing from Chapter 7 (cf. Theorem 7.4) to combine this
𝜔-competitive algorithm with any other algorithm for scheduling online precedence constraints
while maintaining the better competitive ratio of both up to a factor of 2.

8.3 Weight Value Predictions

We begin with problem-specific prediction models, starting with weight value predictions. We
first prove strong lower bounds for algorithms with access to static weight predictions on
out-trees and adaptive predictions on in-trees. Then, we give 4-competitive algorithms for
accurate static predictions on chains, and adaptive weight predictions on out-forest precedence
constraints, and finally extend these results to obtain robust algorithms with error dependency.

The lower bound for out-trees adds a dummy root 𝑟 to the pure online lower bound composed
of Ω(𝑛) zero weight jobs, where exactly one hides a valuable job. In the static prediction setting,
we thus only receive a prediction for 𝑟 , which does not help any algorithm to improve.

Observation 8.2. Any algorithm that has only access to static weight predictions has a competitive

ratio of at least Ω(𝑛), even if the precedence constraint graph is an out-tree.

For in-trees and adaptive weight predictions, we prove the following lower bound.

Lemma 8.3. Any algorithm that has only access to adaptive weight predictions has a competitive

ratio of at least Ω(
√
𝑛), even for in-tree precedence constraints.

Proof. Consider an in-tree instance with unit-size jobs and root 𝑟 of weight 0. There are
√
𝑛

chains of length 2with leaf weights 0 and inner weights 1 that are connected to 𝑟 . Further, there
are𝑛−2

√
𝑛−1 leaves with weight 0, which are connected to a node 𝑣 withweight 1, which itself is

a child of 𝑟 . Note that the weight prediction for all potential front jobs except 𝑟 is always 1. Thus,
even the adaptive predictions do not help, and we can assume that the algorithm first processes
the children of 𝑣 , giving a total objective of at least Ω((𝑛−2

√
𝑛−1)2+(𝑛−2

√
𝑛−1)

√
𝑛) = Ω(𝑛

√
𝑛),

while processing the other leaves first yields a value of at most𝑂 ((2
√
𝑛)2 + (2

√
𝑛 +𝑛 − 2

√
𝑛)) =

𝑂 (𝑛). □

8.3.1 Algorithms for Reliable Information

We present algorithms assuming access to correct static or adaptive weight predictions and
prove their competitiveness on online chain and out-forest precedence constraints using a
unified analysis framework. This uses a dual fitting argumentation inspired by an analysis
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of an algorithm for known precedence constraints [Gar+19]. The framework only requires
a condition on the rates at which an algorithm processes front jobs, hence it is independent
of the considered prediction model. Let 𝑈 (𝑡) be the set of unfinished jobs at time 𝑡 , that
is, 𝑈 (𝑡) = ⋃︁

𝑣∈𝐹 (𝑡 ) 𝑆 (𝑣). Denote by 𝑤 (𝐽 ′) the total weight of jobs in a set 𝐽 ′. We write𝑊 (𝑡)
for𝑤 (𝑈 (𝑡)).

Theorem 8.4. If an algorithm for online out-forest precedence constraints satisfies at every time 𝑡

and for each 𝑗 ∈ 𝐹 (𝑡) that𝑤 (𝑆 ( 𝑗)) ≤ 𝜌 · 𝑦 𝑗 (𝑡) ·𝑊 (𝑡), where 𝑦 𝑗 (𝑡) is the processing rate of 𝑗 at
time 𝑡 , it is at most 4𝜌-competitive for minimizing the total weighted completion time on a single

machine.

We first present algorithms for weight predictions and derive results using Theorem 8.4, and
finally prove the theorem.

StaticWeight Values for Chains. We give an algorithm for correct static weight predictions.
As Observation 8.2 rules out well-performing algorithms for out-tree precedence constraints
with static weight predictions, we focus on chains. Correct static weight predictions mean
access to the total weight𝑊𝑐 of every chain 𝑐 in the set of chains C.

Algorithm 2:Weighted-Round-Robin on Chains
Input: Chains C, initial total weight𝑊𝑐 for each 𝑐 ∈ C.

1 𝑡 ← 0 and𝑊𝑐 (𝑡) ←𝑊𝑐 for every 𝑐 ∈ C.
2 while there are unfinished jobs do

3 Process the front job 𝑗𝑐 of every 𝑐 ∈ C at rate 𝑦 𝑗𝑐 (𝑡) =𝑊𝑐 (𝑡)/
∑︁
𝑐∈C𝑊𝑐 (𝑡).

4 If 𝑗𝑐 completes, update𝑊𝑐 (𝑡+) ←𝑊𝑐 (𝑡) −𝑤 𝑗𝑐 , else𝑊𝑐 (𝑡+) ←𝑊𝑐 (𝑡).
5 𝑡 ← 𝑡+.

Algorithm 2 executes a classical Weighted-Round-Robin strategy where the rate at which the
front job of a chain 𝑐 is executed at time 𝑡 is proportional to the total weight of unfinished jobs
in that chain,𝑊𝑐 (𝑡). As this definition is infeasible for unfinished chains with𝑊𝑐 (𝑡) = 0, we
process these in an arbitrary order in the end. As they have no weight, this does not negatively
affect the objective. We denote by 𝑡+ the immediate time instant after time 𝑡 .
Despite initially only having access to the weights 𝑊𝑐 (𝑡) for 𝑡 = 0, the algorithm can

compute𝑊𝑐 (𝑡) for any 𝑡 > 0 by subtracting the weight of finished jobs of 𝑐 from the initial𝑊𝑐 .
Thus,𝑊𝑐 (𝑡) = 𝑤 (𝑆 ( 𝑗)) holds for any time 𝑡 and every 𝑗 ∈ 𝐹 (𝑡), where 𝑐 is the corresponding
chain of job 𝑗 . Further, 𝑊 (𝑡) =

∑︁
𝑐𝑊𝑐 (𝑡). We conclude that, for any 𝑡 and 𝑗 ∈ 𝐹 (𝑡), it

holds 𝑦 𝑗 (𝑡) = 𝑤 (𝑆 ( 𝑗))/𝑊 (𝑡). Using Theorem 8.4 with 𝜌 = 1, we can immediately derive the
following result:

Theorem 8.5. Given correct weight predictions, Algorithm 2 is a non-clairvoyant 4-competitive

algorithm for minimizing the total weighted completion time of jobs with online chain precedence

constraints on a single machine.

We remark that Algorithm 2 crucially relies on access to the precise weight values. Even if
all chain weights were just overpredicted by the same constant factor 𝛼 > 1, the algorithm
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would not be constant competitive anymore. While the algorithm would compute the same
initial rates as it does with access to the correct weights, it cannot precisely recompute the
rates in Line 3. Instead, it slightly overestimates the remaining weight of a large number of
chains, which can slow down important chains that contribute a lot to the objective value by a
large factor. We use this intuition to prove the following lemma.

Lemma 8.6. Given wrong weight predictions with𝑊𝑐 = 𝛼 ·𝑊𝑐 for all chains 𝑐 ∈ C and a constant

factor 𝛼 > 1, Algorithm 2 has a competitive ratio of at least Ω( 𝛼−1
𝛼
𝑛1/3) for minimizing the total

weighted completion time of jobs with online out-forest precedence constraints on a single machine.

Proof. Consider an instance consisting of 𝑘 = 𝑛1/3 chains with only unit jobs, that is, all jobs
have processing times of 1. Each chain 𝑐 has a predicted weight of𝑊𝑐 = 𝛼 and an actual weight
of𝑊𝑐 = 1. The first chain consists of ℓ = 𝑛2/3 jobs and has its total weight of 1 on the last job in
the chain and all previous jobs have a weight of zero. The remaining 𝑘 − 1 chains each consist
of at least 𝑛1/3 jobs with the total weight of 1 being on the very first job of the respective chain
and all other jobs having a weight of zero.
The optimal solution for this instance is to first process the front jobs with weight 1 in an

arbitrary order, then process the ℓ jobs of the first chain and finally process all remaining jobs
in an arbitrary order. This leads to an objective value of OPT =

𝑘 · (𝑘−1)
2 + 𝑘 + ℓ ∈ O(𝑛2/3).

Algorithm 2 starts to process each chain with a rate of 1
𝑘
until the first jobs of each chain is

completed after 𝑘 time units. Afterwards, the first chain is processed with rate 𝛼
(𝛼−1) · (𝑘−1)+𝛼 ≤

𝛼
(𝛼−1) ·𝑘 , as the algorithm thinks that the other chains still have a remaining weight of 𝛼 − 1.
The algorithm processes the first chain at this rate until it completes. This leads to an objective
value of ALG ≥ 𝑘 · (𝑘 − 1) + (𝛼−1) ·𝑘

𝛼
· ℓ ≥ 𝑘 · (𝑘 − 1) + 𝛼−1

𝛼
· 𝑛 ∈ Ω( 𝛼−1

𝛼
· 𝑛).

Putting the bounds together, we get a competitive ratio of ALG
OPT ∈ Ω(

𝛼−1
𝛼
· 𝑛1/3). □

Adaptive Weight Values for Out-Forests. Observation 8.2 states that static weight predic-
tions are not sufficient to obtain O(1)-competitive algorithms for out-forests. The reason is
that we, in contrast to chains, cannot recompute𝑊𝑗 whenever a new front job 𝑗 appears. For
adaptive predictions, however, we do not need to recompute𝑊𝑗 , as we simply receive a new
prediction. Thus, we can process every front job 𝑗 ∈ 𝐹 (𝑡) with rate 𝑦 𝑗 (𝑡) =𝑊𝑗/

∑︁
𝑗 ′∈𝐹 (𝑡 )𝑊𝑗 ′ .

For correct predictions, Theorem 8.4 directly implies the following.

Theorem 8.7. Given correct adaptive weight predictions, there exists a non-clairvoyant algorithm

for minimizing the total weighted completion time of jobs with online out-forest precedence

constraints on a single machine with a competitive ratio of at most 4.

Full Proof of Theorem 8.4. Fix an algorithm satisfying the conditions of Theorem 8.4. Let
ALG be the objective value of the algorithm’s schedule for a fixed instance. We introduce a
mean busy time linear programming relaxation similar to the one in [Gar+19; SS97] and (LP𝑀1 )
for our problem on a machine running at lower speed 1

𝜅
, for some 𝜅 ≥ 1. As the completion

time of every job is linear in the machine speed, the optimal objective value of this LP is at
most 𝜅 · OPT. The variable 𝑥 𝑗𝑡 denotes the fractional assignment of job 𝑗 at time 𝑡 . The first
constraint ensures that every job receives enough amount of processing to complete, the second
constraint restricts the available rate per time to 1

𝜅
, and the final constraint asserts that no
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job can be completed before its predecessors. It is not hard to see that every integral feasible
schedule satisfies these constraints, hence (LP𝑐1(𝜅)) is a relaxation.

min
∑︁
𝑗∈ 𝐽

∑︁
𝑡≥0

𝑤 𝑗 · 𝑡 ·
𝑥 𝑗𝑡

𝑝 𝑗
(LP𝑐1(𝜅))

s.t.
∑︁
𝑡≥0

𝑥 𝑗𝑡

𝑝 𝑗
≥ 1 ∀𝑗 ∈ 𝐽∑︁

𝑗∈ 𝐽
𝜅 · 𝑥 𝑗𝑡 ≤ 1 ∀𝑡 ≥ 0

𝑡∑︁
𝑠=0

𝑥 𝑗𝑠

𝑝 𝑗
≥

𝑡∑︁
𝑠=0

𝑥 𝑗 ′𝑠

𝑝 𝑗 ′
∀𝑡 ≥ 0,∀( 𝑗, 𝑗 ′) ∈ 𝐸

𝑥 𝑗𝑡 ≥ 0 ∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 0

The dual of (LP𝑐1(𝜅)) can be written as follows.

max
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
∑︁
𝑡≥0

𝑏𝑡 (DLP𝑐1(𝜅))

s.t.
∑︁
𝑠≥𝑡

⎛⎜⎝
∑︁

𝑗 ′∈ 𝐽 :( 𝑗, 𝑗 ′ ) ∈𝐸
𝑐𝑠,𝑗→𝑗 ′ −

∑︁
𝑗 ′∈ 𝐽 :( 𝑗 ′, 𝑗 ) ∈𝐸

𝑐𝑠,𝑗 ′→𝑗
⎞⎟⎠ ≤ 𝜅𝑏𝑡𝑝 𝑗 − 𝑎 𝑗 +𝑤 𝑗𝑡 ∀𝑗 ∈ 𝐽 ,∀𝑡 ≥ 0 (8.1)

𝑎 𝑗 , 𝑏𝑡 , 𝑐𝑡, 𝑗→𝑗 ′ ≥ 0 ∀𝑡 ≥ 0,∀( 𝑗, 𝑗 ′) ∈ 𝐸

We prove Theorem 8.4 via dual fitting (DLP𝑐1(𝜅)). We define an assignment for (DLP𝑐1(𝜅)) as
follows:

• 𝑎 𝑗 ≔
∑︁
𝑠≥0 𝑎 𝑗,𝑠 for every job 𝑗 , where 𝑎 𝑗,𝑠 ≔ 𝑤 𝑗 if 𝑠 ≤ 𝐶 𝑗 and 𝑎 𝑗,𝑠 = 0 otherwise.

• 𝑏𝑡 ≔ 1
2 ·𝑊 (𝑡) for every time 𝑡 .

• 𝑐𝑡, 𝑗 ′→𝑗 ≔ 𝑤 (𝑆 ( 𝑗)) if 𝑗, 𝑗 ′ ∈ 𝑈 (𝑡), and 𝑐𝑡, 𝑗 ′→𝑗 ≔ 0 otherwise, for every time 𝑡 and ( 𝑗 ′, 𝑗) ∈
𝐸.

The following two lemmas show that this assignment is feasible subject to the conditions
stated in Theorem 8.4, and that its dual objective value captures a fraction of the algorithm’s
objective value.
Lemma 8.8. It holds that

∑︁
𝑗∈ 𝐽 𝑎 𝑗 −

∑︁
𝑡≥0 𝑏𝑡 =

1
2ALG.

Proof. Note that 𝑎 𝑗 = 𝑤 𝑗𝐶 𝑗 , and thus,
∑︁
𝑗∈ 𝐽 𝑎 𝑗 = ALG. Also, since the weight 𝑤 𝑗 of a job 𝑗 is

contained in𝑊 (𝑡) if 𝑡 ≤ 𝐶 𝑗 , we conclude
∑︁
𝑡≥0 𝑏𝑡 =

1
2ALG. □

Lemma 8.9. The assignment (𝑎 𝑗 ) 𝑗 , (𝑏𝑡 )𝑡 and (𝑐𝑡, 𝑗→𝑗 ′)𝑡, 𝑗→𝑗 ′ is feasible for (DLP𝑐1(𝜅)) if 𝜅 = 2𝜌
and𝑤 (𝑆 ( 𝑗))/𝑊 (𝑡) ≤ 𝜌 · 𝑦 𝑗 (𝑡) for all times 𝑡 and for all 𝑗 ∈ 𝐹 (𝑡).
Proof. Since the assignment is non-negative by definition, it suffices to show that it satisfies (8.1).
Fix a job 𝑗 and a time 𝑡 ≥ 0. By observing that 𝑎 𝑗 − 𝑡 ·𝑤 𝑗 ≤

∑︁
𝑠≥𝑡 𝑎 𝑗,𝑠 , it suffices to verify

∑︁
𝑠≥𝑡

⎛⎜⎝𝑎 𝑗,𝑠 +
∑︁
( 𝑗, 𝑗 ′ ) ∈𝐸

𝑐𝑠,𝑗→𝑗 ′ −
∑︁
( 𝑗 ′, 𝑗 ) ∈𝐸

𝑐𝑠,𝑗 ′→𝑗
⎞⎟⎠ ≤ 𝜅𝑏𝑡𝑝 𝑗 . (8.2)
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To this end, we consider the terms on the left side for all times 𝑠 ≥ 𝑡 separately. For any 𝑠
with 𝑠 > 𝐶 𝑗 , the left side of (8.2) is zero, because 𝑎 𝑗,𝑠 = 0 and 𝑗 ∉ 𝑈 (𝑠).

Otherwise, if 𝑠 ≤ 𝐶 𝑗 , let 𝑡∗𝑗 be the first point in time after 𝑡 when 𝑗 is available, and let 𝑠 ∈ [0, 𝑡∗𝑗 ).
Then, 𝑗 ∈ 𝑈 (𝑠), and since each vertex in an out-forest has at most one direct predecessor, there
must be a unique job 𝑗1 ∈ 𝑈 (𝑠) with ( 𝑗1, 𝑗) ∈ 𝐸. Thus, 𝑐𝑠,𝑗1→𝑗 = 𝑤 (𝑆 ( 𝑗)) and 𝑐𝑠,𝑗→𝑗 ′ = 𝑤 (𝑆 ( 𝑗 ′))
for all ( 𝑗, 𝑗 ′) ∈ 𝐸. Observe that in out-forests, we have 𝑆 ( 𝑗 ′) ∩ 𝑆 ( 𝑗 ′′) = ∅ for all 𝑗 ′ ≠ 𝑗 ′′

with ( 𝑗, 𝑗 ′), ( 𝑗, 𝑗 ′′) ∈ 𝐸. This implies
∑︁
( 𝑗, 𝑗 ′ ) ∈𝐸 𝑐𝑠,𝑗→𝑗 ′ = 𝑤 (𝑆 ( 𝑗)) − 𝑤 𝑗 and

∑︁
( 𝑗, 𝑗 ′ ) ∈𝐸 𝑐𝑠,𝑗→𝑗 ′ −∑︁

( 𝑗1, 𝑗 ) ∈𝐸 𝑐𝑠,𝑗1→𝑗 = −𝑤 𝑗 . Hence,

𝑎 𝑗,𝑠 +
∑︁
( 𝑗, 𝑗 ′ ) ∈𝐸

𝑐𝑠,𝑗→𝑗 ′ −
∑︁
( 𝑗 ′, 𝑗 ) ∈𝐸

𝑐𝑠,𝑗 ′→𝑗 ≤ 𝑤 𝑗 −𝑤 𝑗 = 0 .

Therefore, proving (8.2) reduces to proving

𝐶 𝑗∑︁
𝑠=𝑡∗

𝑗

⎛⎜⎝𝑤 𝑗 +
∑︁
( 𝑗, 𝑗 ′ ) ∈𝐸

𝑐𝑠,𝑗→𝑗 ′ −
∑︁
( 𝑗 ′, 𝑗 ) ∈𝐸

𝑐𝑠,𝑗 ′→𝑗
⎞⎟⎠ ≤ 𝜅𝑏𝑡𝑝 𝑗 . (8.3)

Let 𝑠 ∈ [𝑡∗𝑗 ,𝐶 𝑗 ). There cannot be an unfinished job preceding 𝑗 , hence
∑︁
( 𝑗 ′, 𝑗 ) ∈𝐸 𝑐𝑠,𝑗 ′→𝑗 = 0.

Observe that if there is a job 𝑗 ′ ∈ 𝑈 (𝑠) with ( 𝑗, 𝑗 ′) ∈ 𝐸, then 𝑗 ∈ 𝑈 (𝑠) implies 𝑗 ′ ∈ 𝑈 (𝑠) and,
thus 𝑐𝑠,𝑗→𝑗 ′ = 𝑤 (𝑆 ( 𝑗 ′)) by definition. Using again that 𝑆 ( 𝑗 ′) are pairwise disjoint for all direct
successors 𝑗 ′ of 𝑗 , that is, for all ( 𝑗, 𝑗 ′) ∈ 𝐸, this yields ∑︁

( 𝑗, 𝑗 ′ ) ∈𝐸 𝑐𝑠,𝑗→𝑗 ′ = 𝑤 (𝑆 ( 𝑗)) −𝑤 𝑗 , and
further gives

𝑤 𝑗 +
∑︁
( 𝑗, 𝑗 ′ ) ∈𝐸

𝑐𝑠,𝑗→𝑗 ′ −
∑︁
( 𝑗 ′, 𝑗 ) ∈𝐸

𝑐𝑠,𝑗 ′→𝑗 = 𝑤 (𝑆 ( 𝑗)) .

Thus, the left side of (8.3) is equal to
∑︁𝐶 𝑗

𝑠=𝑡∗
𝑗

𝑤 (𝑆 ( 𝑗)). Furthermore,𝑊 (𝑡1) ≥𝑊 (𝑡2) for all 𝑡1 ≤ 𝑡2
and that 𝑗 is processed by 𝑦 𝑗 (𝑡 ′) units at any time 𝑡 ′ ∈ [𝑡∗𝑗 ,𝐶 𝑗 ] combined with the assumption
𝑤 (𝑆 ( 𝑗))/𝑊 (𝑡) ≤ 𝜌 · 𝑦 𝑗 (𝑡) imply the following:

𝐶 𝑗∑︁
𝑠=𝑡∗

𝑗

𝑤 (𝑆 ( 𝑗))
𝑊 (𝑡) ≤

𝐶 𝑗∑︁
𝑠=𝑡∗

𝑗

𝑤 (𝑆 ( 𝑗))
𝑊 (𝑠) ≤

𝐶 𝑗∑︁
𝑠=𝑡∗

𝑗

𝜌 · 𝑦 𝑗 (𝑠) ≤ 𝜌 · 𝑝 𝑗 .

Rearranging it, using the definition of 𝑏𝑡 and 𝜅 = 2𝜌 gives

𝐶 𝑗∑︁
𝑠=𝑡∗

𝑗

𝑤 (𝑆 ( 𝑗)) ≤ 𝜌 · 𝑝 𝑗 ·𝑊 (𝑡) = 2𝜌 · 𝑝 𝑗 · 𝑏𝑡 = 𝜅 · 𝑝 𝑗 · 𝑏𝑡 ,

which implies (8.3), and thus proves the statement. □

Proof of Theorem 8.4. We set 𝜅 = 2𝜌 . Weak duality, Lemma 8.9, and Lemma 8.8 imply

2𝜌 · OPT ≥
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
∑︁
𝑡≥0

𝑏𝑡 =
1
2 · ALG ,

which concludes that ALG ≤ 4𝜌 · OPT. □
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8.3 Weight Value Predictions

8.3.2 Learning-Augmented Algorithms

In this section, we extend the algorithms presented in Section 8.3.1 to achieve a smooth
error-dependency in the case of inaccurate predictions, while preserving constant consistency.
Further, we use Preferential Time Sharing (cf. Section 8.2) to ensure a robustness of 𝑂 (𝜔).

Static Weight Predictions for Chains. Here, the main challenges are as follows: we only
have access to the potentially wrong predictions𝑊𝑐 on the total chain weight for all 𝑐 ∈ C and,
therefore, we execute Algorithm 2 using𝑊𝑐 instead of𝑊𝑐 . In particular, the weight of a chain 𝑐
might be underpredicted,𝑊𝑐 <𝑊𝑐 , or overpredicted,𝑊𝑐 >𝑊𝑐 . This means that

∑︁
𝑐𝑊𝑐 may not

be the accurate total weight of the instance and that the recomputation of𝑊𝑐 (𝑡) in Line 4 may
be inaccurate. We show how to encode the error due to underpredicted chains in an instance C𝑢
and the error due to overpredicted chains in an instance C𝑜 , similar to an error-dependency
proposed for online set cover [BMS20]. In particular, we prove the following result.

Theorem 8.10. For minimizing the total weighted completion time of jobs with online chain

precedence constraints on a single machine, there is a non-clairvoyant algorithm with predicted

chain weights with a competitive ratio of at most

O(1) ·min
{︃
1 + OPT(C𝑜 ) + 𝜔 · OPT(C𝑢)

OPT , 𝜔

}︃
.

In order to give the proof, we formally define the predicted instance (including C𝑜 and C𝑢 ).

Definition 8.11 (predicted instances). The predicted instance Ĉ, underpredicted subinstance C𝑢 ,
and overpredicted subinstance C𝑜 are constructed by considering for every 𝑐 = [ 𝑗1, . . . , 𝑗ℓ ] ∈ C
the following cases:

(i) If𝑊𝑐 =𝑊𝑐 , then the chain 𝑐 = 𝑐 with job weights𝑤 𝑗 = 𝑤 𝑗 for all 𝑗 ∈ 𝑐 is added to Ĉ.

(ii) If𝑊𝑐 <𝑊𝑐 , then the chain 𝑐 = [ 𝑗1, . . . , 𝑗𝑘 ], where 𝑘 is the smallest index s.t.𝑊𝑐 ≤
∑︁𝑘
𝑖=1𝑤𝑖 ,

with weights 𝑤 𝑗𝑖 = 𝑤 𝑗𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 − 1 and 𝑤 𝑗𝑘 = 𝑊𝑐 −
∑︁𝑘−1
𝑖=1 𝑤𝑖 is added to Ĉ.

Additionally, a chain 𝑐𝑢 = [⊥, 𝑗𝑘+1, . . . , 𝑗ℓ ] with weights 𝑤 𝑗𝑖 = 𝑤 𝑗𝑖 for all 𝑘 + 1 ≤ 𝑖 ≤ ℓ
and𝑤⊥ =

∑︁𝑘
𝑖=1𝑤𝑖 −𝑊𝑐 is added to C𝑢 , where the processing requirement of ⊥ is equal

to the total processing requirement of 𝑐 .

(iii) If𝑊𝑐 >𝑊𝑐 , then chain 𝑐 = [ 𝑗1, . . . , 𝑗ℓ ] with weights 𝑤 𝑗𝑖 = 𝑤 𝑗𝑖 for all 1 ≤ 𝑖 ≤ ℓ − 1 and
𝑤 𝑗ℓ =𝑊𝑐 −

∑︁ℓ−1
𝑖=1 𝑤𝑖 is added to Ĉ. Additionally, a chain 𝑐𝑜 = [⊤] is added to C𝑜 , where

the weight of ⊤ is equal to𝑊𝑐 −
∑︁ℓ
𝑖=1𝑤𝑖 and its processing requirement is equal to the

total processing requirement of 𝑐 .

Finally, C𝑝 is a copy of Ĉ where for every overpredicted chain 𝑐 = [ 𝑗1, . . . , 𝑗ℓ ] ∈ Ĉ the weight
of its last job 𝑗ℓ is set to𝑤 𝑗ℓ , the weight of the job in the actual instance. This weight is strictly
smaller than the weight𝑤 𝑗ℓ =𝑊𝑐 −

∑︁ℓ−1
𝑖=1 𝑤𝑖 of the job in instance Ĉ.

Note that for every 𝑐 ∈ Ĉ, we have ∑︁
𝑗∈𝑐 𝑤 𝑗 =𝑊𝑐 , that is, the predicted weights are correct

for Ĉ. In the following, we nevertheless call a chain 𝑐 ∈ Ĉ overpredicted and underpredicted if
that is true for its corresponding chain in C, respectively. Since every job 𝑗 of C𝑝 is also part
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of C with the same processing requirement and a weight of at most𝑤 𝑗 and the chains in C𝑝 are
prefixes of the chains in C, we conclude the following bound.

Proposition 8.12. OPT(C𝑝) ≤ OPT(C).

We use the algorithm of Proposition 8.1 in combination with Preferential Time Sharing
of Theorem 7.4 to define Algorithm 3.

Algorithm 3: Preferential Time Sharing on Chains
1 Execute Algorithm 2 with rate 1

2 using the predicted chain weights.
2 Execute the algorithm of Proposition 8.1 with rate 1

2 .

Lemma 8.13. Algorithm 3 with predicted chain weights achieves an objective value of at most

O(1) · OPT(C𝑝) + O(1) · (OPT(C𝑜 ) + 𝜔 · OPT(C𝑢)) .

Proof. We first argue that OPT(Ĉ) ≤ O(1) · OPT(C𝑝) + O(1) · OPT(C𝑜 ). To this end, consider
the instance C𝑝 ∪ C𝑜 . Every correctly predicted or underpredicted chain in Ĉ is contained as an
identical copy in C𝑝 . For every overpredicted chain 𝑐 ∈ Ĉ with weight𝑊𝑐 in Ĉ, all jobs of 𝑐 are
contained with a total weight of𝑊𝑐 in C𝑝 and the remaining weight of𝑊𝑐 −𝑊𝑐 is contained
in C𝑜 . Additionally, it is ensured by the processing requirement of the jobs in C𝑜 that their
weight can only be gained when processing at least the total processing requirement of 𝑐 . This
implies that the time to gain weight𝑊𝑐 −𝑊𝑐 of every overpredicted chain 𝑐 ∈ Ĉ in C𝑝 ∪ C𝑜

takes as least as long as in Ĉ, and thus, OPT(Ĉ) ≤ OPT(C𝑝 ∪ C𝑜 ). Finally, it is not hard to see
that OPT(C𝑝 ∪ C𝑜 ) ≤ 2 · OPT(C𝑝) + 2 · OPT(C𝑜 ) as OPT(C𝑝) and OPT(C𝑜 ) can be executed in
parallel by preemptively sharing the machine, yielding the claimed bound.
We now show that ALG ≤ O(1) · (OPT(Ĉ) +𝜔 ·OPT(C𝑢)) for Algorithm 3, which implies the

statement. First consider the execution of Algorithm 2 in the first line. We may assume that the
algorithm processes the artificial job added to each overpredicted chain in Ĉ, as it only increases
its objective. Further, Algorithm 2 stops processing an underpredicted chain 𝑐 ∈ C when a total
weight of𝑊𝑐 has been completed on 𝑐 and finishes them at the very end of the schedule. This
concludes that the total objective of Algorithm 2 without the weighted completion times of the
jobs that are processed at the very end in arbitrary order is at most O(1) · OPT(Ĉ). But, due to
Proposition 8.1 and line two of Algorithm 3, we conclude that Algorithm 3 always processes
such chains that are completed at the very end of Algorithm 2 with a rate of at least 1

2𝜔 , and
thus delays the completion the jobs in these chains by a factor of at most 2𝜔 compared to an
optimal solution. By observing that the total weight of such jobs is exactly equal to the total
weight of chains in C𝑢 and that the jobs in a chain 𝑐 ∈ C𝑢 can only be processed after time
equal to the total processing requirement of the corresponding chain in Ĉ, we conclude the
stated bound. □

Adaptive Weight Predictions for Out-Forests. To capture the quality of an adaptive
prediction, we intuitively need to measure its quality over the whole execution. To this end, we
use the maximal distortion factor of the weight predictions of every possible front job, which,
in fact, can be any job in 𝐽 .
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Algorithm 4:Weighted-Round-Robin on out-forests
Input: Out-forest and adaptive weight predictions.

1 while there are unfinished jobs do

2 Process every 𝑗 ∈ 𝐹 (𝑡) with rate 𝑦 𝑗 (𝑡) =𝑊𝑗/
∑︁
𝑖∈𝐹 (𝑡 )𝑊𝑖 .

3 𝑡 ← 𝑡+.

Theorem 8.14. For minimizing the total weighted completion time on a single machine with

online out-forest precedence constraint and adaptive weight predictions, there is a non-clairvoyant

algorithm with a competitive ratio of at most

O(1) ·min
{︃
max
𝑣∈ 𝐽

𝑊𝑣

𝑤 (𝑆 (𝑣)) ·max
𝑣∈ 𝐽

𝑤 (𝑆 (𝑣))
𝑊𝑣

, 𝜔

}︃
.

Proof. To prove the theorem, we show that Algorithm 4 is O(𝜂)-competitive for

𝜂 ≔ max
𝑣∈ 𝐽

𝑊𝑣

𝑊𝑣

·max
𝑣∈ 𝐽

𝑊𝑣

𝑊𝑣

.

Then, Proposition 8.1 and Theorem 7.4 imply the theorem.
By Theorem 8.4, it suffices to show that 𝑤 (𝑆 ( 𝑗))/𝑊 (𝑡) ≤ 𝜂 · 𝑦 𝑗 (𝑡) holds for any point in

time 𝑡 during the execution of Algorithm 4 and any 𝑗 ∈ 𝐹 (𝑡), where 𝑦 𝑗 (𝑡) is the rate with which
the algorithm processes 𝑗 at point in time 𝑡 . Consider a fixed point in time 𝑡 and an arbitrary
𝑗 ∈ 𝐹 (𝑡). Then, the algorithm processes 𝑗 with rate 𝑦 𝑗 (𝑡) =𝑊𝑗/

∑︁
𝑖∈𝐹 (𝑡 )𝑊𝑖 by definition. We

can conclude

𝑤 (𝑆 ( 𝑗))
𝑊 (𝑡) =

𝑤 (𝑆 ( 𝑗))∑︁
𝑖∈𝐹 (𝑡 ) 𝑤 (𝑆 (𝑖))

=

𝑊𝑗 · 𝑤 (𝑆 ( 𝑗 ) )
𝑊𝑗∑︁

𝑖∈𝐹 (𝑡 )𝑊𝑖 · 𝑤 (𝑆 (𝑖 ) )
𝑊𝑖

≤

(︂
max𝑣∈ 𝐽 𝑤 (𝑆 (𝑣) )

𝑊𝑣

)︂
·𝑊𝑗(︂

min𝑣∈ 𝐽 𝑤 (𝑆 (𝑣) )
𝑊𝑣

)︂
·∑︁𝑖∈𝐹 (𝑡 )𝑊𝑖

= max
𝑣∈ 𝐽

𝑊𝑣

𝑤 (𝑆 (𝑣)) ·max
𝑣∈ 𝐽

𝑤 (𝑆 (𝑣))
𝑊𝑣

·
𝑊𝑗∑︁

𝑖∈𝐹 (𝑡 )𝑊𝑖

= 𝜂 · 𝑦 𝑗 (𝑡) .

This concludes the proof of the theorem. □

8.4 Weight Order Predictions

Next we consider static and adaptive weight order predictions. As strong lower bounds hold
for in-trees, even for the more powerful adaptive weight predictions (cf. Lemma 8.3), we focus
on chains and out-forest precedence constraints.

Further, we introduce an error measure for wrongly predicted orders. A natural function on
orders is the largest inversion, that is, the maximum distance between the position of a front
job in an order prediction ⪯̂𝑡 and the true order ⪯𝑡 . However, if all out-trees have almost the
same weight, just perturbed by some small constant, this function indicates a large error for the
reverse order, although it will arguably perform nearly as good as the true order. To mitigate
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Chapter 8 Predictions for Unknown Precedence Constraints

this overestimation, we first introduce 𝜀-approximate inversions. Formally, for every precision
constant 𝜀 > 0, we define

L(𝜀) ≔ max
𝑡, 𝑗∈𝐹 (𝑡 )

|︁|︁|︁|︁{︃𝑖 ∈ 𝐹 (𝑡) |︁|︁|︁|︁ 𝑤 (𝑆 ( 𝑗))1 + 𝜀 ≥ 𝑤 (𝑆 (𝑖)) ∧ 𝑖 ⪯̂𝑡 𝑗
}︃|︁|︁|︁|︁ .

Note that L(𝜀) ≥ 1 for every 𝜀 > 0, because ⪯̂𝑡 is reflexive. We define the 𝜀-approximate

largest inversion error as max{1 + 𝜀,L(𝜀)}.We show performance guarantees depending on
this error, which hold for any 𝜀 > 0. Therefore, we intuitively get a Pareto frontier between the
precision 1 + 𝜀 and L(𝜀), the largest distance of inversions that are worse than the precision.
A configurable error with such properties has been applied to other learning-augmented
algorithms, for example, in [APT22a] or in Chapter 10.

8.4.1 Adaptive Weight Order

We introduce Algorithm 5, which exploits access to the adaptive order ⪯̂𝑡 . In a sense, the idea
of the algorithm is to emulate Algorithm 2 for weight predictions. Instead of having access
to the total remaining weight of every out-tree to computing rates, Algorithm 5 uses ⪯̂𝑡 to
approximate the rates. For every front job 𝑗 ∈ 𝐹 (𝑡), let 𝑖 𝑗 be the position of 𝑗 in ⪯̂𝑡 . Recall
that 𝐻𝑘 denotes the 𝑘th harmonic number.

Algorithm 5: Adaptive weight order algorithm
Input: Adaptive weight order ⪯̂.

1 𝑡 ← 0
2 while there are unfinished jobs do

3 Process every 𝑗 ∈ 𝐹 (𝑡) with rate 𝑦 𝑗 (𝑡) = 1/(𝐻 |𝐹 (𝑡 ) | · 𝑖 𝑗 ), where 𝑖 𝑗 is the position of 𝑗
in ⪯̂𝑡 .

4 𝑡 ← 𝑡+

Theorem8.15. For any 𝜀 > 0, Algorithm 5 has a competitive ratio of at most 4𝐻𝜔 ·max{1+𝜀,L(𝜀)}
for minimizing the total weighted completion time on a single machine with online out-forest

precedence constraints.

Proof. First note that the rates are feasible, because
∑︁
𝑗∈𝐹 (𝑡 )

1
𝐻 |𝐹 (𝑡 ) | ·𝑖 𝑗 =

𝐻 |𝐹 (𝑡 ) |
𝐻 |𝐹 (𝑡 ) |

= 1.
Fix a time 𝑡 and an 𝜀 > 0. Assume that 𝑗1⪯̂𝑡 . . . ⪯̂𝑡 𝑗 |𝐹 (𝑡 ) | , and fix a front job 𝑗𝑖 ∈ 𝐹 (𝑡).

The algorithm processes 𝑗𝑖 at time 𝑡 with rate 𝑞 𝑗𝑖𝑡 = 1/(𝐻 |𝐹 (𝑡 ) | · 𝑖) ≥ 1/(𝐻𝜔 · 𝑖) . Note that
showing𝑤 (𝑆 ( 𝑗𝑖))/𝑊 (𝑡) ≤ 𝐻𝜔 ·max{1 + 𝜀,L(𝜀)} · 𝑦 𝑗𝑖 (𝑡) implies the theorem via Theorem 8.4.
Assume otherwise, that is,𝑤 (𝑆 ( 𝑗𝑖))/𝑊 (𝑡) > 1

𝑖
·max{1 + 𝜀,L(𝜀)}. For the sake of readability,

we define 𝐾> = {𝑘 ∈ [𝑖 − 1] | 𝑤 (𝑆 (𝑖𝑘 )) > 𝑤 (𝑆 ( 𝑗𝑖 ) )
1+𝜀 } and 𝐾≤ = {𝑘 ∈ [𝑖] | 𝑤 (𝑆 (𝑖𝑘 )) ≤ 𝑤 (𝑆 ( 𝑗𝑖 ) )

1+𝜀 }.
Since in an out-forest the sets 𝑆 ( 𝑗) are pairwise disjoint for all front jobs 𝑗 ∈ 𝐹 (𝑡),

1 ≥
∑︁
𝑘∈[𝑖 ]

𝑤 (𝑆 (𝑖𝑘 ))
𝑊 (𝑡) ≥

∑︁
𝑘∈𝐾>

𝑤 (𝑆 (𝑖𝑘 ))
𝑊 (𝑡) +

∑︁
𝑘∈𝐾≤

𝑤 (𝑆 (𝑖𝑘 ))
𝑊 (𝑡) .

Consider the second sum. First, observe that this sum has at most L(𝜀) many terms, including
the one for 𝑗𝑖 , and that each such term is at most 𝑤 (𝑆 ( 𝑗𝑖))/𝑊 (𝑡). Then, observe that every
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term in the first sum is at least𝑤 (𝑆 ( 𝑗𝑖))/((1 + 𝜀)𝑊 (𝑡)). Thus, we can further lower bound the
sum of the two sums by

1
1 + 𝜀

∑︁
𝑘∈𝐾>

𝑤 (𝑆 ( 𝑗𝑖))
𝑊 (𝑡) +

1
L(𝜀)

∑︁
𝑘∈𝐾≤

𝑤 (𝑆 ( 𝑗𝑖))
𝑊 (𝑡)

≥ 1
max{1 + 𝜀,L(𝜀)}

∑︁
𝑘∈[𝑖 ]

𝑤 (𝑆 ( 𝑗𝑖))
𝑊 (𝑡) >

𝑖∑︁
𝑘=1

1
𝑖
= 1 .

This is a contradiction. □

Since 𝜔 ≤ 𝑛, we conclude the following corollary.

Corollary 8.16. There exists a non-clairvoyant weight-oblivious algorithm for the problem of

minimizing the total weighted completion time of 𝑛 jobs on a single machine with a competitive

ratio of at most 𝑂 (log𝑛) when given access to the order of the jobs weights.

8.4.2 Static Weight Order

If we only have access to ⪯̂0, a natural approach would be to compute the initial rates as
used in Algorithm 5 and just not update them. As Observation 8.2 rules out well-performing
algorithms for out-trees, we focus on chains. Even for chains, we show that this algorithm has
a competitive ratio of at least Ω(𝜔 · 𝐻𝜔 ).

Lemma 8.17. The variant of Algorithm 5 that computes the rates using ⪯̂0 instead of ⪯̂𝑡 is at
least Ω(𝜔 · 𝐻𝜔 )-competitive, even if ⪯̂0 equals ⪯0.

Proof. Consider an instance with 𝜔 chains, each with a total weight of one. Then, ⪯0 is just
an arbitrary order of the chains. Recall that the algorithm starts processing the chains 𝑐 with
rate 1/(𝐻𝜔 · 𝑖𝑐), where 𝑖𝑐 is the position of 𝑐 in the order. We define the first𝜔 −1 chains to have
their total weight of one at the very first job and afterwards only jobs of weight zero. Chain 𝜔 ,
the slowest chain, has its total weight on the last job. We define the chains 𝑐 to contain a total
of 𝑑 · 𝐻𝜔 · 𝑖𝑐 jobs with unit processing times, for some common integer 𝑑 . This means that the
algorithm finishes all chains at the same time. The optimal solution value for this instance
is 𝜔 · (𝜔 + 1) + 𝜔 − 1 + 𝑑 · 𝐻𝜔 · 𝜔 , where 𝜔 · (𝜔 + 1) is the optimal sum of completion times
for the first 𝜔 − 1 chains, 𝑑 · 𝐻𝜔 · 𝜔 is the cost for processing the last chain, and 𝜔 − 1 is the
cost for delaying the last chains by the 𝜔 − 1 time units needed to process the first jobs of the
first 𝜔 − 1 chains. The solution value of the algorithm is at least 𝑑 · 𝐻 2

𝜔 · 𝜔2 as this is the cost
for just processing the last chain. Thus, for large 𝑑 , the competitive ratio tends to 𝐻𝜔 · 𝜔 . □

However, the lower bound instance of the lemma requires 𝜔 to be “small” compared to the
number of jobs, in case of unit jobs, or to 𝑃 :=

∑︁
𝑗∈ 𝐽 𝑝 𝑗 , otherwise. We exploit this to prove the

following theorem.

Theorem 8.18. For any 𝜀 > 0, Algorithm 5 has a competitive ratio of at most O(𝐻 2
𝜔

√
𝑃 ·

max{1 + 𝜀,L(𝜀)}) when computing rates with ⪯̂0 instead of ⪯̂𝑡 at any time 𝑡 . For unit size jobs, it

is O(𝐻 2
𝜔

√
𝑛 ·max{1 + 𝜀,L(𝜀)})-competitive.

127



Chapter 8 Predictions for Unknown Precedence Constraints

Proof. Recall that 𝑃 denotes the sum over all job processing times in the instance. For a subset
of chains 𝑆 , let OPT(𝑆) denote the optimal objective value for the subinstance induced by 𝑆 . For
a single chain 𝑐 , OPT(𝑐) is just the cost for processing chain 𝑐 with rate 1 on a single machine.
Clearly, OPT(𝑆) ≥ ∑︁

𝑐∈𝑆 OPT(𝑐). Let ALG(𝑆) denote the sum of weighted completion times of
the jobs that belong to chains in 𝑆 in the schedule computed by the algorithm.
In the first part of the proof, we assume that all chains 𝑐𝑖 have a total processing time of

at most
√
𝑃 . This only decreases the objective value of OPT. For ALG, we will analyze the

additional cost caused by longer chains afterwards. In a sense, we assume that ALG, for each
chain 𝑐 , has to pay all weight that appears after

√
𝑃 processing times units of the chain two times:

Once artificially after exactly
√
𝑃 time units of the chain have been processed and once at the

point during the processing where the weight actually appears. This assumption clearly only
increases ALG. In the first part of the proof, we analyze only the artificial cost for such weights
and ignore the actual cost. In the context of our algorithm, this is equivalent to assuming the
chains have total processing times of at most

√
𝑃 . In the second part of the proof, we will

analyze the actual cost for the jobs that appear after
√
𝑃 time units in their chain.

First Part. Assume 𝑐1⪯̂0𝑐2⪯̂0 . . . ⪯̂0𝑐𝜔 . Therefore, the algorithm processes chain 𝑐𝑖 with rate
1/(𝐻𝜔 · 𝑖). This directly implies ALG(𝑐𝑖) = 𝐻𝜔 · 𝑖 · OPT(𝑐𝑖), and thus,

ALG =

𝜔∑︁
𝑖=1

𝐻𝜔 · 𝑖 · OPT(𝑐𝑖) .

Let C𝑘 = {𝑐1, . . . , 𝑐𝑘 } for every 𝑘 ∈ [𝜔]. We first analyze ALG(C3·L(𝜀 ) ). For the chains
in C3·L(𝜀 ) , we get

ALG(C3·L(𝜀 ) ) =
3·L(𝜀 )∑︁
𝑖=1

𝐻𝜔 · 𝑖 · OPT(𝑐𝑖) ≤ 𝐻𝜔 · 3 · L(𝜀)
3·L(𝜀 )∑︁
𝑖=1

OPT(𝑐𝑖) ≤ 3𝐻𝜔L(𝜀)OPT ,

meaning that, for C3·L(𝜀 ) , we achieve the desired competitive ratio.
Next, consider the chains in C \C3·L(𝜀 ) , that is, the chains 𝑐𝑖 with 𝑖 > 3 ·L(𝜀). To analyze the

cost for these chains𝐶𝑖 , we continue by lower boundingOPT(𝑐𝑖). To that end, considerOPT(C𝑖).
The definition of L(𝜀) implies that there are at most L(𝜀) chains 𝑐 𝑗 ∈ C𝑖 with𝑊𝑐𝑖 ≥ (1 + 𝜀)𝑊𝑐 𝑗 .
For all other chains 𝑐 𝑗 in C𝑖 , we have

𝑊𝑐𝑖

1+𝜀 <𝑊𝑐 𝑗 . Thus, there are 𝑖 − L(𝜀) chains in C𝑖 with a
weight of at least 𝑊𝑐𝑖

1+𝜀 . Since we consider chains with 𝑖 > 3 · L(𝜀), it holds 𝑖 − L(𝜀) ≥ 1. We
can lower bound OPT(C𝑖) by assuming that all such chains consist only of a single job with
weight 𝑊𝑐𝑖

1+𝜀 and ignoring the up-toL(𝜀) other chains. These assumptions only decreaseOPT(C𝑖).
Since in this relaxation all jobs have an equal weight and length, an optimal solution for it
processes the jobs in an arbitrary order, giving

OPT(C𝑖) ≥
𝑖−L(𝜀 )∑︁
𝑗=1

𝑗 ·
𝑊𝑐𝑖

1 + 𝜀 =
(𝑖 − L(𝜀) + 1) · (𝑖 − L(𝜀)) ·𝑊𝑐𝑖

2 · (1 + 𝜀)

=
((𝑖 + 1) · 𝑖 + L(𝜀)2 − 2 · 𝑖 · L(𝜀) − L(𝜀)) ·𝑊𝑐𝑖

2 · (1 + 𝜀) ≥ (𝑖 + 1) · 𝑖 − 3 · 𝑖 · L(𝜀)2 · (1 + 𝜀) ·𝑊𝑐𝑖 .
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Since we still assume that each chain has a total processing time of at most
√
𝑃 , we can

observe OPT(𝑐𝑖) ≤
√
𝑃 ·𝑊𝑐𝑖 . This yields:

2 · (1 + 𝜀)
(𝑖 + 1) · 𝑖 − 3 · 𝑖 · L(𝜀) ·

√
𝑃 · OPT(C𝑖) ≥ OPT(𝑐𝑖) .

We can therefore conclude that

ALG(C \ C3·L(𝜀 ) ) =
𝜔∑︁

𝑖=3·L(𝜀 )+1
𝐻𝜔 · 𝑖 · OPT(𝑐𝑖)

≤
𝜔∑︁

𝑖=3·L(𝜀 )+1
𝐻𝜔 ·

2 · (1 + 𝜀)
(𝑖 + 1) − 3 · L(𝜀) ·

√
𝑃 · OPT(C𝑖)

≤ 2 · (1 + 𝜀) · 𝐻𝜔 ·
√
𝑃 · OPT

𝜔∑︁
𝑖=3·L(𝜀 )+1

1
(𝑖 + 1) − 3 · L(𝜀)

≤ 2 · (1 + 𝜀) · 𝐻𝜔 · 𝐻𝜔−3L(𝜀 )+1 ·
√
𝑃 · OPT ≤ 2 · (1 + 𝜀) · 𝐻 2

𝜔 ·
√
𝑃 · OPT .

We finish the first part by combining the bounds on ALG(C \ C3·L(𝜀 ) ) and ALG(C3·L(𝜀 ) ):

ALG(C) = ALG(C \ C3·L(𝜀 ) ) + ALG(C3·L(𝜀 ) )
≤ 5 · 𝐻 2

𝜔 ·
√
𝑃 ·max{1 + 𝜀,L(𝜀)} · OPT .

Second Part. It remains to analyze the additional cost incurred by chains with a total pro-
cessing time of more than

√
𝑃 . To that end, consider the set 𝐽𝐿 of jobs that, in any schedule,

cannot be started before
√
𝑃 time units have past. For a job 𝑗 ∈ 𝐽𝐿 , the predecessors of 𝑗 in the

chain of 𝑗 must have a total processing time of at least
√
𝑃 .

Let ALG(𝐽𝐿) and OPT(𝐽𝐿) denote the weighted completion times of the jobs in 𝐽𝐿 in the
optimal solution and the schedule computed by ALG, respectively. Then,

ALG(𝐽𝐿)
OPT(𝐽𝐿)

≤
∑︁
𝑗∈ 𝐽𝐿 𝑃 ·𝑤 𝑗∑︁
𝑗∈ 𝐽𝐿
√
𝑃 ·𝑤 𝑗

=
√
𝑃 .

Thus, the additional cost of the jobs in 𝐽𝐿 asymptotically does not worsen the competitive ratio.
This concludes the proof of the theorem. □

8.5 Average Predictions

Recall that average predictions give access to predicted values �̂�𝑣 on

𝑎(𝑆 (𝑣)) =
∑︁
𝑢∈𝑆 (𝑣) 𝑤𝑢∑︁
𝑢∈𝑆 (𝑣) 𝑝𝑢

for each 𝑣 ∈ 𝐹 (𝑡). We prove the following lower bound for chains with unit jobs, where average
predictions coincide with the average weight of the jobs in the respective chain. The lower
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bound exploits that we can append jobs of weight zero to a chain in order to manipulate the
average weight of the chain until all chains have the same average.

Lemma 8.19. Any algorithm that has only access to correct adaptive average predictions is at

least Ω(
√
𝑛)-competitive, even for chain precedence constraints with unit-sized jobs.

Proof. Consider an instance composed of
√
𝑛 ∈ ℕ chains of unit jobs, where the first two jobs of

the first chain have weights 1 and 𝑛 −
√
𝑛, respectively, followed by 𝑛 −

√
𝑛 − 1 zero weight jobs.

The other
√
𝑛−1 chains are single jobs with weight 1. For an algorithm, all chains look identical

since the first jobs have weight 1 and the average of every chain is equal to 1. Therefore, an
adversary can ensure that the algorithm processes the first chain last, giving an objective value
of

∑︁√𝑛
𝑖=1 𝑖 + (

√
𝑛 + 1) (𝑛 −

√
𝑛) = Ω(𝑛

√
𝑛), while a solution that schedules the heavy weight

job initially achieves an objective value of at most 1 + 2(𝑛 −
√
𝑛) +∑︁√𝑛−1

𝑖=1 (3 + 𝑖) = 𝑂 (𝑛). The
adaptivity of the predictions does not help for this lower bound as the algorithm would only
receive meaningful updates once it finishes the first job of the first chain, which is too late. □

8.6 Action Predictions

We now turn our focus to general prediction models, which are not specifically tailored for
our concrete problem. Action predictions induce an optimal algorithm. Hence, following
accurate predictions clearly results in an optimal solution. To define an error measure for
erroneous static and adaptive action predictions, let �̂� : 𝐽 → [𝑛] be the order in which a
fixed static or adaptive action prediction suggests to process jobs. In case of static action
predictions, we receive the predicted order initially, meaning that it might predict a set of jobs 𝐽
different to the actual 𝐽 . During the analysis, we can simply remove the jobs 𝐽 \ 𝐽 from �̂� as
they do not have any effect on the schedule for the actual instance. For the jobs in 𝐽 \ 𝐽 , we
define the static action prediction algorithm to just append them to the end of the order �̂�
once they are revealed. Thus, we can still treat �̂� as a function from 𝐽 to [𝑛]. We analyze an
algorithm that follows a static or adaptive action prediction using the permutation error from
Chapter 7. To this end, let 𝜎 : 𝐽 → [𝑛] be the order of a fixed optimal solution for instance 𝐽 ,
and I(𝐽 , �̂�) = {( 𝑗 ′, 𝑗) ∈ 𝐽 2 | 𝜎 ( 𝑗 ′) < 𝜎 ( 𝑗) ∧ �̂� ( 𝑗 ′) > �̂� ( 𝑗)} be the set of inversions between
the permutations 𝜎 and �̂� . Now using the same arguments as in the proof of Lemma 7.5 and
applying Theorem 7.4 implies the following theorem.

Theorem 8.20. Given static or adaptive action predictions, there exists an 𝑂 (min
{︁
1 + 𝜂

OPT , 𝜔
}︁
)-

competitive non-clairvoyant algorithm for minimizing the total weighted completion time on a

single machine with online precedence constraints, where 𝜂 =
∑︁
( 𝑗 ′, 𝑗 ) ∈I( 𝐽 ,�̂� ) (𝑤 𝑗 ′𝑝 𝑗 −𝑤 𝑗𝑝 𝑗 ′).

8.7 Full Input Predictions

We can use full input predictions to compute static action predictions �̂� . In general, computing �̂�
requires exponential running time as the problem is NP-hard. For special cases, for example,
chains, there are efficient algorithms [Law78].
While following �̂� allows us to achieve the guarantee of Theorem 8.20, the error 𝜂 does

not directly depend on the predicted input, but on an algorithm that computes actions for
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that input. Thus, we aim at designing error measures depending directly on the “similarity”
between the predicted and actual instance. As describing the similarity between two graphs is
a notoriously difficult problem on its own, we leave open whether there is a meaningful error
for general topologies. However, we give an error measure for chains. The key idea of this
error is to capture additional cost that any algorithm pays due to both, absent predicted weights
and unexpected actual weights. Assuming that the predicted and actual instance only differ
in the weights, our error Λ = Γ𝑢 + Γ𝑎 considers the optimal objective values Γ𝑢 and Γ𝑎 for the
problem instances that use ((𝑤 𝑗 −𝑤 𝑗 )+) 𝑗 and ((𝑤 𝑗 −𝑤 𝑗 )+) 𝑗 as weights, respectively. Then, Γ𝑢
and Γ𝑎 measure the cost for unexpected and absent weights. We generalize this idea to also
capture other differences of the predicted and actual chains and have the following theorem.

Theorem 8.21. Given access to an input prediction, there exists an efficient algorithm for mini-

mizing the total weighted completion time of unit-size jobs on a single machine with online chain

precedence constraints with a competitive ratio of at most 𝑂 (min {1 + Λ, 𝜔}), where Λ = Γ𝑢 + Γ𝑎 .

The remaining section is devoted to the proof of this theorem. We first formally define the
error measure.

Let Ĉ denote the set of predicted chains, and let𝑤 𝑗 denote the predicted weight of a job 𝑗 of
the instance. All processing requirements are equal to 1, and the algorithm is aware of this. We
assume without loss of generality that |Ĉ| = |C| by adding chains with zero (predicted) weight,
and that predicted and actual chains have the same identities. That is, there exists exactly one
predicted chain 𝑐𝑖 ∈ Ĉ for each actual chain 𝑐𝑖 ∈ C, which an algorithm can match to each
other. Our error measure further requires that there exists for every actual job a predicted
counterpart, and vice versa. For a chain 𝑐 let |𝑐 | denote the number of jobs of chain 𝑐 . We define
augmentations of C and Ĉ as follows. Let C′ be composed of all jobs of C, and additionally, for
every paired chains 𝑐𝑖 ∈ C and 𝑐𝑖 ∈ Ĉ:

• if |𝑐𝑖 | > |𝑐𝑖 |, we add |𝑐𝑖 | − |𝑐𝑖 | jobs 𝐽𝑢 with weight 0 at the end of 𝑐𝑖 in C′. Note
that OPT(C) = OPT(C′).

• if |𝑐𝑖 | > |𝑐𝑖 |, we add |𝑐𝑖 | − |𝑐𝑖 | jobs 𝐽𝑎 with predicted weight 0 at the end of 𝑐𝑖 in Ĉ′.

Note that this construction ensures OPT(Ĉ) = OPT(Ĉ′).
For the sake of analysis, assume without loss of generality that both C′ and Ĉ′ share the

same set of jobs 𝐽 ′. Let 𝑛′ = |𝐽 ′ |. We define OPT((𝑤 ′𝑗 ) 𝑗 ) as the objective of an optimal solution
for 𝐽 ′ where a job 𝑗 has weight𝑤 ′𝑗 . We further define

OPT((𝑤 ′𝑗 ) 𝑗 , (𝑤 𝑗 ) 𝑗 ) ≔ max
{︄∑︁
𝑗∈ 𝐽 ′

𝑤 ′𝑗𝐶
∗
𝑗

|︁|︁|︁|︁ (𝐶∗𝑗 ) 𝑗 is an optimal schedule for (𝑤 𝑗 ) 𝑗

}︄
.

Given two fixed augmented instances C′ and Ĉ′, we define the input prediction error Λ = Γ𝑢 +Γ𝑎 :

• a job 𝑗 ∈ 𝐽 ′ has unexpected actual weight if 𝑤 𝑗 > 𝑤 𝑗 . The prediction error due to all
unexpected weights can be expressed as Γ𝑢 = OPT((max{𝑤 𝑗 ,𝑤 𝑗 } −𝑤 𝑗 ) 𝑗 , (𝑤 𝑗 ) 𝑗 ).

• a job 𝑗 ∈ 𝐽 ′ has absent predicted weight if𝑤 𝑗 > 𝑤 𝑗 . The prediction error due to all absent
weights can be expressed as Γ𝑎 = OPT((max{𝑤 𝑗 ,𝑤 𝑗 } −𝑤 𝑗 ) 𝑗 , (𝑤 𝑗 ) 𝑗 ).
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We are now ready to prove the main theorem of this section.

Proof of Theorem 8.21. Recall that 𝑂 (𝜔)-robustness is achieved via Proposition 8.1 and Theo-
rem 7.4. For the other stated bound, we analyze the following algorithm:

1) Efficiently compute an optimal solution based on Ĉ [Law78]. This is a non-preemptive
schedule for the predicted instance, that is, an order of the jobs.

2) Follow the computed solution. The following situations might occur:

a) A chain finishes earlier than expected. In this case, discard the remaining predicted
jobs of this chain in the precomputed schedule.

b) A chain continues, although there are no more jobs in this chain in the algorithms
schedule. In this case, schedule the remaining jobs in an arbitrary order at the end
of the precomputed schedule.

Let ALG denote the objective value of this algorithm. We first show that

ALG ≤ OPT((𝑤 𝑗 ) 𝑗 , (𝑤 𝑗 ) 𝑗 ) .

To see this, recall that the algorithm first follows an optimal schedule for jobs 𝐽 ′ \ 𝐽𝑢 and then
schedules all unexpected jobs 𝐽𝑢 at the end due to case b). Since jobs 𝐽𝑢 have predicted weight 0
in Ĉ′, we can assume that an optimal solution for Ĉ′ first schedules jobs 𝐽 ′ \ 𝐽𝑢 as our algorithm
with the same objective value and makespan as our algorithm, and then schedules jobs 𝐽𝑢 in
any order. Since OPT((𝑤 𝑗 ) 𝑗 , (𝑤 𝑗 ) 𝑗 ) is an upper bound on the actual objective for any such
order, the inequality follows. It further holds that (we drop all indices for readability)

OPT(𝑤,𝑤) ≤ OPT(max{𝑤,𝑤},𝑤)
= OPT(𝑤) + OPT(max{𝑤,𝑤} −𝑤,𝑤)
≤ OPT(𝑤,𝑤) + OPT(max{𝑤,𝑤} −𝑤,𝑤)
≤ OPT(max{𝑤,𝑤},𝑤) + OPT(max{𝑤,𝑤} −𝑤,𝑤)
≤ OPT(𝑤) + OPT(max{𝑤,𝑤} −𝑤,𝑤) + OPT(max{𝑤,𝑤} −𝑤,𝑤)
= OPT(𝑤) + Λ .

We finally observe that OPT((𝑤 𝑗 ) 𝑗 ) = OPT(C), as jobs 𝐽𝑎 do not influence the objective value
of an optimal solution. This completes the proof of the theorem. □

8.8 Concluding Remarks

We initiated the study of learning-augmented algorithms for scheduling with online precedence
constraints by considering a hierarchy of prediction models based on their entropy. For several
models of the hierarchy, we were able to show that the predicted information is sufficient to
break lower bounds for algorithms without predictions. We hope that our approach leads to
more discussions on the identification of the “right” prediction model in learning-augmented
algorithm design. As a next research step, we suggest investigating the missing bounds for our
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prediction models, for example, an upper bound for average predictions, and exploring error
measures for full input predictions based on more fine-grained graph distance metrics.

Bibliographic Note

This chapter is based on joint work with Alexandra Lassota, Nicole Megow, and Jens Schlöter
[Las+23]. Thus, some parts of this chapter are identical with [Las+23].
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Chapter 9

Predictions for Unknown Processing Speeds

9.1 Introduction

In this chapter, we study online scheduling problems on unrelated machines that more properly
align with assumptions made in practice. More specifically, we focus on the job-dependent
machine speeds 𝑠𝑖 𝑗 . Despite their relevance for high-performance scheduling, there is a big
discrepancy between how theory and practice handle them: while scheduling theory most
commonly assumes that speeds are known to an algorithm (cf. [AGK12; Gup+21; IKM18;
Im+14]), this is typically not the case in practice (cf. [FR98; Khd+15; The19]). Hence, algorithms
that perform well in theory are often not applicable in practice.
We propose new models and algorithms to bridge this gap. In particular, we introduce

speed-oblivious algorithms, which do not rely on knowing (precise) processing speeds. Thereby,
we focus on (non-)clairvoyant scheduling subject to minimizing the total weighted completion
time.

State-of-the-Art in Theory. To the best of our knowledge, unrelated machine scheduling
has been studied only in a speed-aware setting, where an algorithm knows the speeds 𝑠𝑖 𝑗 for
every available jobs 𝑗 on every machine 𝑖 [AGK12; Gup+21; Hal+97; IKM18; Im+14]. It is
not difficult to see that there are prohibitive lower bounds for speed-oblivious scheduling on
unrelated machines: consider an instance with a single job 𝑗 that makes substantial progress
only on the machine that a speed-oblivious algorithm uses last to process 𝑗 ; this immediately
implies a competitive ratio of at least Ω(𝑚) for𝑚 machines.

State-of-the-Art in Practice. Practical scheduling algorithms commonly operate in open
systems [FR98], where jobs arrive online, are non-clairvoyant, and, in contrast to the assumption
in theory, their exact processing speeds on every core are unknown upfront. Therefore, state-of-
the-practice schedulers usually ignore heterogeneity between jobs, for example, Linux Energy-
Aware Scheduling [The19]. State-of-the-art schedulers rely on prior knowledge about jobs
[Khd+15], which is not always available, or rely on predictions of job characteristics to leverage
this information gap. Such predictions could be based on prior executions of repeating jobs or on
machine-learning-based techniques [Gup+18; Rap+21]. They are often quite precise, but can be
highly inaccurate due to varying and unpredictable input data. Figure 9.1 shows job-dependent
speed varieties in common benchmark suites (PARSEC-3.0, SPLASH-3, Polybench) running on
big and LITTLE cores of a Kirin 970 smartphone SoC with Arm big.LITTLE architecture. To
the best of our knowledge, all these approaches are evaluated only empirically. In particular,
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Figure 9.1: The execution time and speedup of the big over LITTLE cores on an Arm big. Each
point represents the execution of a job with a distinct input. LITTLE heterogeneous
processor varies strongly between jobs and different input data. Variations of the
speedup with respect to the input data are large for some jobs (for example, water-
nsquared) but small for others (for example, fmm).

there are no theoretical guarantees on the performance in worst-case scenarios or with respect
to a prediction’s quality.

9.1.1 Our Results

We initiate the theoretical study of speed-oblivious algorithms. Since strong lower bounds
rule out good worst-case guarantees for unrelated machines without further assumptions, we
propose two (new) models, which are motivated by data-driven machine-learned models and
modern heterogeneous hardware architectures:

• Speed predictions give algorithms access to values 𝑠𝑖 𝑗 for every machine 𝑖 at the release
date of every job 𝑗 . We measure the accuracy of such a prediction by the distortion error 𝜇,
where 𝜇 = 𝜇1 · 𝜇2 with

𝜇1 = max
𝑖∈𝐼 , 𝑗∈ 𝐽

𝑠𝑖 𝑗

𝑠𝑖 𝑗
and 𝜇2 = max

𝑖∈𝐼 , 𝑗∈ 𝐽

𝑠𝑖 𝑗

𝑠𝑖 𝑗
.

• Speed-ordered machines assume an order ≤ on the machines such that for all ma-
chines 𝑖, 𝑖 and jobs 𝑗 ∈ 𝐽 it holds 𝑠𝑖 𝑗 ≥ 𝑠𝑖′ 𝑗 if and only if 𝑖 ≤ 𝑖′. Algorithms are aware of
this order.

For both models, we present competitive algorithms, which also can handle both, online job
arrival and non-clairvoyance. We start with our results on speed predictions in Section 9.2 and
then present our results on speed-ordered machines in Section 9.3.

9.1.2 Further Related Work

Uncertainty about machine speeds or, generally, the machine environment, have hardly been
studied in scheduling theory. Some works consider scheduling with unknown non-availability
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periods, that is, periods with speed 0 [AS01; Die+09], permanent break-downs of a subset of
machines [SZ20], or more generally arbitrarily changing machine speed for a single machine
[MM16], but not on heterogeneous machines. In scheduling with testing, unknown processing
requirements of a job (and thus its machine-dependent speed) can be explored by making
queries, for example, [AE20; Ara+18; Dür+20], but also here heterogeneous processors are not
considered.
In the area of learning-augmented algorithms, Balkanski et al. [Bal+23b] consider a robust

scheduling problem where machine speeds are only predicted and jobs have to be grouped
to be scheduled together before knowing the true machine speeds; such problems without
predictions were introduced in [Ebe+21; SZ20]. In contrast, in our model an algorithm will
never learn about a job’s true speed(s) before its completion and, further, the speeds might be
job-dependent.

9.2 Algorithms for Speed Predictions

We start with a lower bound for speed-oblivious algorithms with speed predictions, which is
linear in the distortion error.

Theorem 9.1. Any speed-oblivious algorithm with speed predictions has a competitive ratio of at

least Ω(min{𝜇,𝑚}) for 𝑄 | pmtn | ∑︁𝐶 𝑗 .

Proof. Let 𝜇1, 𝜇2 ≥ 1 and 𝜇 = 𝜇1 · 𝜇2. Consider an instance 𝐽 = { 𝑗} with 𝑝 𝑗 = 2𝜇 and𝑚 ≥ 2𝜇
machines such that 𝑠𝑖 = 𝜇1 for all 1 ≤ 𝑖 ≤ 𝑚. The algorithm cannot distinguish the machines.
For the first 2𝜇 − 1 machines 𝑖 on which the algorithm processes 𝑗 , the adversary fixes 𝑠𝑖 = 1.
Thus, at time 2𝜇 − 1, the remaining processing requirement of 𝑗 is at least 2𝜇 − (2𝜇 − 1) = 1,
and there exists a machine 𝑖′ on which 𝑗 has not been processed yet. Thus, the adversary
can set 𝑠𝑖′ = 𝜇 and complete 𝑗 on 𝑖′ within two time units, implying a competitive ratio of at
least Ω(min{𝜇,𝑚}). □

Observe that this construction already works for two machines when migration is forbidden.
For the upper bound, we can achieve a tight competitive ratio of Θ(𝜇) when executing

Proportional Fairness (cf. Chapter 5) with speed predictions. That is, at any time instant, we
compute the rates for available jobs based on the vector of predicted speeds 𝑠 . Then, it is
straightforward to adopt the analysis given in Section 5.3 to obtain a proof for the following
theorem.

Theorem 9.2. There exists a non-clairvoyant speed-oblivious algorithm with speed predictions

with a competitive ratio in 𝑂 (𝜇) for 𝑅 | 𝑟 𝑗 , pmtn | ∑︁𝑤 𝑗𝐶 𝑗 .

9.3 Algorithms for Speed-Ordered Machines

This section contains our results on speed-ordered machines. In the first subsection, we present
a clairvoyant algorithm, and in the second subsection a non-clairvoyant algorithm. But first,
we observe that in this model migration is necessary for speed-oblivious algorithms.
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Algorithm 6: PreemptiveWSPT on speed-ordered related machines
Input: speed-ordered machines 𝑠1 ≥ . . . ≥ 𝑠𝑚 , time 𝑡 .

1 𝜎𝑡 ← order of 𝐽 (𝑡) with non-increasing𝑤 𝑗/𝑝 𝑗 ;
2 𝐴𝑡 = {(𝑘, 𝜎𝑡 (𝑘))}𝑘∈[ℓ ] where ℓ = min{𝑚, |𝐽 (𝑡) |} ;
3 Schedule jobs to machines according to 𝐴𝑡 at time 𝑡 ;

Algorithm 7: Equal sharing on speed-ordered unrelated machines
Input: speed-ordered machines 1, . . . ,𝑚, time 𝑡 .

1 Allocate every job 𝑗 ∈ 𝐽 (𝑡) to every machine 𝑖 ∈ [min{|𝐽 (𝑡) |,𝑚}] by 𝑥𝑖 𝑗𝑡 = 1
| 𝐽 (𝑡 ) | .

Theorem 9.3. Any non-migratory speed-oblivious algorithm has a competitive ratio of at

least Ω(𝑚) for minimizing the total completion time on𝑚 speed-ordered machines, even if it is

clairvoyant and the machines are related.

Proof. Consider the execution of some algorithm on an instance of 𝑛 jobs with unit-weights
and with processing requirements equal to 𝑛2𝑚 and 𝑠1 = 𝑛2𝑚. If at some point in time, the
algorithm starts a job on machines 2, . . . ,𝑚, the adversary sets 𝑠2 = . . . = 𝑠𝑚 = 1 to enforce
an objective value of at least Ω(𝑛2𝑚), while scheduling all jobs on the first machine gives an
objective value of at most 𝑂 (𝑛2). If this does not happen, the algorithm must have scheduled
all jobs on the first machine. But then the adversary sets 𝑠2 = . . . = 𝑠𝑚 = 𝑛2𝑚 and achieves an
objective value of 𝑂 (𝑛2

𝑚
) by distributing the jobs evenly to all machines, while the algorithm

has an objective value of Ω(𝑛2). □

9.3.1 Clairvoyant Algorithm

We first present a clairvoyant algorithm for speed-ordered related machines with a constant
competitive ratio. In fact, we show that we can emulate the PreemptiveWSPT algorithm from
Section 4.4 in this setting. To see this, note that if the machines are related and speed-ordered,
PreemptiveWSPT assigns jobs by non-increasing order of𝑤 𝑗/𝑝 𝑗 to machines in speed order,
because this clearly maximizes the total scheduled density, that is, sum of assigned 𝑤 𝑗𝑠𝑖/𝑝 𝑗 .
Therefore, we can compute this assignment at any time 𝑡 without computing a maximum
weighted matching, and thus, do not require precise speed values. A simplified description of
PreemptiveWSPT in the speed-ordered setting is given in Algorithm 6.

Therefore, the following theorem is a corollary of Theorem 4.5.

Theorem 9.4. Algorithm 6 has a competitive ratio of at most 7.24 for minimizing the total

weighted completion time on speed-ordered related machines with release dates, preemption, and

migration.

9.3.2 Non-Clairvoyant Algorithm

In this section, we present a non-clairvoyant algorithm for speed-ordered machines. Intuitively,
this algorithm (Algorithm 7) behaves like PF for unit weight jobs on related machines. This can
be seen via the combinatorial implementation of PF in Section 5.6.

Thus, the following theorem is a direct implication of Theorem 5.30.
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Theorem 9.5. Algorithm 7 has a competitive ratio of at most 3 for minimizing the total completion

time on speed-ordered related machines with non-uniform release dates. For uniform release dates,

the competitive ratio is equal to 2.

For speed-ordered unrelated machines, Algorithm 7 is not necessarily equal to PF. However,
we can still analyze Algorithm 7 for this more general setting and prove a non-trivial bound on
its competitive ratio.

Theorem 9.6. Algorithm 7 has a competitive ratio of at most𝑂 (log(min{𝑛,𝑚})) for minimizing

the total completion time on speed-ordered unrelated machines.

For every time 𝑡 , we write𝑚(𝑡) ≔ min{𝑚, |𝐽 (𝑡) |}. The definition of Algorithm 7 implies
that, at every time 𝑡 , a job 𝑗 ∈ 𝐽 (𝑡) receives a processing rate equal to 𝑦 𝑗 (𝑡) =

∑︁𝑚 (𝑡 )
𝑖=1 𝑠𝑖 𝑗/|𝐽 (𝑡) |.

We prove Theorem 9.6 via dual-fitting. To this end, we again state the dual of the speed
scaled variant of (LP𝑅) below.

max
𝑛∑︁
𝑗=1

𝑎 𝑗 −
𝑚∑︁
𝑖=1

∑︁
𝑡≥0

𝑏𝑖𝑡 −
𝑛∑︁
𝑗=1

∑︁
𝑡≥𝑟 𝑗

𝑐 𝑗𝑡 (DLP𝑅 (𝜅))

s.t.
𝑎 𝑗𝑠𝑖 𝑗

𝑝 𝑗
−
𝑠𝑖 𝑗

𝑝 𝑗
𝑡 ≤ 𝜅 · 𝑏𝑖𝑡 + 𝜅 · 𝑐 𝑗𝑡 ∀𝑖 ∈ [𝑚],∀𝑗 ∈ [𝑛],∀𝑡 ≥ 𝑟 𝑗

𝑎 𝑗 , 𝑏𝑖𝑡 , 𝑐 𝑗𝑡 ≥ 0 ∀𝑖 ∈ [𝑚],∀𝑗 ∈ [𝑛],∀𝑡 ≥ 0

Fix an instance and the algorithm’s schedule. We define

• 𝛽𝑖𝑡 ≔ 1
𝑖
· |𝐽 (𝑡) | · 1 [𝑖 ≤ |𝐽 (𝑡) |] for every machine 𝑖 and every time 𝑡 , and

• 𝛾 𝑗𝑡 ≔ 1 [ 𝑗 ∈ 𝐽 (𝑡)] for every job 𝑗 and every time 𝑡 .

We set 𝜅 ≔ 2 · log(min{𝑛,𝑚}). Note that 𝜅 is an upper bound of
∑︁𝑚 (𝑡 )
𝑖=1

1
𝑖
, which we use in

the following observations.

Lemma 9.7. At any time 𝑡 ,
∑︁𝑚
𝑖=1 𝛽𝑖𝑡 ≤ 𝜅 · |𝑈 (𝑡) |.

Proof. At any time 𝑡 ,

𝑚∑︁
𝑖=1

𝛽𝑖𝑡 =

𝑚 (𝑡 )∑︁
𝑖=1

1
𝑖
· |𝐽 (𝑡) | ≤ |𝑈 (𝑡) |

𝑚 (𝑡 )∑︁
𝑖=1

1
𝑖
≤ 𝜅 · |𝑈 (𝑡) | ,

where in the last inequality we use that𝑚(𝑡) = min{𝑚, |𝐽 (𝑡) |} ≤ min{𝑚,𝑛}. □

Similarly, we can show the following bound.

Proposition 9.8. At any time 𝑡 ,
∑︁
𝑗∈ 𝐽 :𝑟 𝑗 ≥𝑡 𝛾 𝑗𝑡 ≤ |𝑈 (𝑡) |.

For every time 𝑡 , let 𝜁 (𝑡) be the median of the values 𝑦 𝑗 (𝑡)/𝑝 𝑗 , 𝑗 ∈ 𝑈 (𝑡). More formally, if 𝑍𝑡
denotes the sorted (ascending) list of length |𝑈 (𝑡) | composed of 𝑦 𝑗 (𝑡)/𝑝 𝑗 for every 𝑗 ∈ 𝑈 (𝑡),
then 𝜁 (𝑡) is the value at the index ⌈ 12 |𝑈 (𝑡) |⌉ in 𝑍𝑡 .

We define the following dual assignment:
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• 𝑎 𝑗 ≔
∑︁𝐶 𝑗

𝑡 ′=0 𝑎 𝑗𝑡 ′ for every job 𝑗 , where 𝑎 𝑗𝑡 ′ ≔ 1
[︂
𝑦 𝑗 (𝑡 ′ )
𝑝 𝑗
≤ 𝜁 (𝑡 ′)

]︂
,

• 𝑏𝑖𝑡 ≔ 1
16𝜅

∑︁
𝑡 ′≥𝑡 𝛽𝑖𝑡 ′𝜁 (𝑡 ′) for every machine 𝑖 and every time 𝑡 , and

• 𝑐 𝑗𝑡 ≔ 1
16

∑︁
𝑡 ′≥𝑡 𝛾 𝑗𝑡 ′𝜁 (𝑡 ′) for every job 𝑗 and every time 𝑡 ≥ 𝑟 𝑗 .

The following two lemmas show that this assignment is feasible and that its dual objective
value captures a fraction of the algorithm’s objective value.

Lemma 9.9. It holds that
1
4ALG ≤

∑︁𝑛
𝑗=1 𝑎 𝑗 −

∑︁𝑚
𝑖=1

∑︁
𝑡≥0 𝑏𝑖𝑡 −

∑︁𝑛
𝑗=1

∑︁
𝑡≥𝑟 𝑗 𝑐 𝑗𝑡 .

Proof. We first prove that
∑︁𝑛
𝑗=1 𝑎 𝑗 ≥ 1

2ALG. Consider a time 𝑡 . Observe that
∑︁
𝑗∈𝑈 (𝑡 ) 𝑎 𝑗𝑡

contains the total number of jobs 𝑗 that satisfy 𝑦 𝑗 (𝑡)/𝑝 𝑗 ≤ 𝜁 (𝑡). By the definition of 𝜁 (𝑡), we
conclude that this is at least 1

2 · |𝑈 (𝑡) |, that is,
∑︁
𝑗∈𝑈 (𝑡 ) 𝑎 𝑗𝑡 ≥ 1

2 · |𝑈 (𝑡) |. The bound then follows
by summation over time.
Second, we show that

∑︁
𝑡≥0

∑︁𝑚
𝑖=1 𝑏𝑖𝑡 ≤ 1

8 · ALG. Fix a time 𝑡 . Observe that, for every 𝑡 ′ ≥ 𝑡 ,
the definition of 𝜁 (𝑡 ′) implies that

∑︁
𝑗∈𝑈 (𝑡 ′ ) 1

[︁
𝑦 𝑗 (𝑡 ′)/𝑝 𝑗 ≥ 𝜁 (𝑡 ′)

]︁
≥ 1

2 |𝑈 (𝑡
′) |. Thus,

𝜁 (𝑡 ′) · 12 |𝑈 (𝑡
′) | ≤

∑︁
𝑗∈𝑈 (𝑡 ′ )

𝜁 (𝑡 ′) · 1
[︂𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≥ 𝜁 (𝑡 ′)
]︂
≤

∑︁
𝑗∈𝑈 (𝑡 ′ )

𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

. (9.1)

The definition of 𝑏𝑖𝑡 and Lemma 9.7 imply

𝑚∑︁
𝑖=1

𝑏𝑖𝑡 =

𝑚∑︁
𝑖=1

1
16𝜅

∑︁
𝑡 ′≥𝑡

𝛽𝑖𝑡 ′ · 𝜁 (𝑡 ′) =
1
16𝜅

∑︁
𝑡 ′≥𝑡

𝜁 (𝑡 ′)
𝑚∑︁
𝑖=1

𝛽𝑖𝑡 ′ ≤
1
16

∑︁
𝑡 ′≥𝑡

𝜁 (𝑡 ′) · |𝑈 (𝑡 ′) | .

Using (9.1), we conclude that this is at most

1
8

∑︁
𝑡 ′≥𝑡

∑︁
𝑗∈𝑈 (𝑡 ′ )

𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≤ 1
8

∑︁
𝑗∈𝑈 (𝑡 )

∑︁
𝑡 ′≥𝑡

𝑦 𝑗 (𝑡 ′)
𝑝 𝑗

≤ 1
8 |𝑈 (𝑡) | .

The second inequality follows from𝑈 (𝑡 ′) ⊆ 𝑈 (𝑡) for 𝑡 ′ ≥ 𝑡 . The third inequality holds because∑︁
𝑡 ′≥𝑡 𝑦 𝑗 (𝑡 ′) ≤ 𝑝 𝑗 for every job 𝑗 . Summing over time implies the stated bound.
Analogously, we can show via Proposition 9.8 that

∑︁𝑛
𝑗=1

∑︁
𝑡≥𝑟 𝑗 𝑐 𝑗𝑡 ≤

1
8ALG. This concludes

the proof of the lemma. □

Lemma 9.10. The dual solution (𝑎 𝑗 ) 𝑗 , (𝑏𝑖𝑡 )𝑖,𝑡 , and (𝑐𝑖𝑡 ) 𝑗,𝑡 is feasible for (DLP𝑅 (𝜅)).

Proof. First observe that the assignment is non-negative. Let 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽 and 𝑡 ≥ 𝑟 𝑗 . We have

𝑎 𝑗𝑠𝑖 𝑗

𝑝 𝑗
−
𝑠𝑖 𝑗 · 𝑡
𝑝 𝑗
≤

𝐶 𝑗∑︁
𝑡 ′=𝑡

𝑠𝑖 𝑗

𝑝 𝑗
· 1

[︃
𝑦 𝑗 (𝑡)
𝑝 𝑗
≤ 𝜁 (𝑡 ′)

]︃
=

𝐶 𝑗∑︁
𝑡 ′=𝑡

𝑠𝑖 𝑗

𝑦 𝑗 (𝑡)
·
𝑦 𝑗 (𝑡)
𝑝 𝑗
· 1

[︃
𝑦 𝑗 (𝑡)
𝑝 𝑗
≤ 𝜁 (𝑡 ′)

]︃
≤

𝐶 𝑗∑︁
𝑡 ′=𝑡

𝑠𝑖 𝑗∑︁𝑚 (𝑡 ′ )
ℓ=1 𝑠ℓ 𝑗/|𝐽 (𝑡 ′) |

· 𝜁 (𝑡 ′) . (9.2)
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Consider any time 𝑡 ′ with 𝑡 ≤ 𝑡 ′ ≤ 𝐶 𝑗 . If 𝑖 ≤ |𝐽 (𝑡 ′) |, by the speed order,
∑︁𝑚 (𝑡 ′ )
ℓ=1 𝑠ℓ 𝑗 ≥∑︁𝑖

ℓ=1 𝑠ℓ 𝑗 ≥ 𝑖 · 𝑠𝑖 𝑗 , and thus,

𝑠𝑖 𝑗∑︁𝑚 (𝑡 ′ )
ℓ=1 𝑠ℓ 𝑗

· |𝐽 (𝑡 ′) | · 𝜁 (𝑡 ′) ≤ 1
𝑖
· |𝐽 (𝑡 ′) | · 𝜁 (𝑡 ′) = 𝛽𝑖𝑡 ′ · 𝜁 (𝑡 ′) .

Otherwise, that is, 𝑖 > |𝐽 (𝑡 ′) |, it holds that 𝑠𝑖 𝑗 ≤ 𝑠ℓ 𝑗 for all 1 ≤ ℓ ≤ |𝐽 (𝑡 ′) |, and thus,∑︁𝑚 (𝑡 ′ )
ℓ=1 𝑠ℓ 𝑗 ≥

∑︁ | 𝐽 (𝑡 ′ ) |
ℓ=1 𝑠ℓ 𝑗 ≥ |𝐽 (𝑡 ′) | · 𝑠𝑖 𝑗 . Therefore,

𝑠𝑖 𝑗∑︁𝑚 (𝑡 ′ )
ℓ=1 𝑠ℓ 𝑗

· |𝐽 (𝑡 ′) | · 𝜁 (𝑡 ′) ≤ |𝐽 (𝑡
′) |

|𝐽 (𝑡 ′) | · 𝜁 (𝑡
′) = 𝛾 𝑗𝑡 ′ · 𝜁 (𝑡 ′) ,

because 𝑡 ′ ≤ 𝐶 𝑗 . Put together, (9.2) is at most

𝐶 𝑗∑︁
𝑡 ′=𝑡

𝛽𝑖𝑡 ′𝜁 (𝑡 ′) +
𝐶 𝑗∑︁
𝑡 ′=𝑡

𝛾 𝑗𝑡 ′𝜁 (𝑡 ′) ≤ 𝜅 (𝑏𝑖𝑡 + 𝑐 𝑗𝑡 ) ,

which verifies the dual constraint. □

We now prove Theorem 9.6. Lemmas 9.9 and 9.10 and weak LP duality imply

𝜅 · OPT ≥
∑︁
𝑗∈ 𝐽

𝑎 𝑗 −
𝑚∑︁
𝑖=1

∑︁
𝑡≥0

𝑏𝑖𝑡 −
𝑛∑︁
𝑗=1

∑︁
𝑡≥𝑟 𝑗

𝑐 𝑗𝑡 ≥
1
4 · ALG ,

which concludes that Algorithm 7 has a competitive ratio of at most 𝑂 (𝜅).
Finally, we show that the analysis is asymptotically tight.

Lemma 9.11. Algorithm 7 has a competitive ratio of at least Ω(log(min{𝑛,𝑚})) for minimizing

the total completion time on speed-ordered unrelated machines, even if all 𝑠𝑖 𝑗 ∈ {0, 1}.

Proof. Consider an instance of𝑚 unit-sized jobs [𝑚] and𝑚 machines [𝑚]. Every job 𝑗 ∈ [𝑚]
has on machine 𝑖 ∈ [𝑚] a processing speed equal to 𝑠𝑖 𝑗 = 1 [𝑖 ≤ 𝑚 − 𝑗 + 1]. First, observe
that OPT ≤ 𝑚, because we can process and complete every job 𝑗 ∈ [𝑚] exclusively on
machine 𝑚 − 𝑗 + 1 at time 1. We now calculate the algorithm’s objective value. To this
end, we argue that in the algorithm’s schedule holds 𝐶 𝑗 = 1 + ∑︁𝑗−1

𝑖=1
1

𝑚−𝑖+1 for every job 𝑗 .
Then, ALG =

∑︁𝑚
𝑗=1𝐶 𝑗 = Ω(𝑚 log𝑚) concludes the statement.

We first observe that 𝐶1 = 1, because job 1 receives in interval 𝐼1 = [0,𝐶1) on every machine
a rate equal to 1

𝑚
. We now argue iteratively for 𝑗 = 2, . . . ,𝑚 that 𝐶 𝑗 = 1 + ∑︁𝑗−1

𝑖=1
1

𝑚−𝑖+1 .
Consequently, in interval 𝐼 𝑗 = [𝐶 𝑗−1,𝐶 𝑗 ) must be exactly jobs 𝑗, . . . ,𝑚 alive. Fix a job 𝑗

with 2 ≤ 𝑗 ≤ 𝑚 and let 2 ≤ 𝑖 ≤ 𝑗 . Since 𝑗 receives progress on exactly𝑚 − 𝑗 + 1 machines,
there are 𝑚 − 𝑖 + 1 alive jobs in 𝐼𝑖 , and 𝐼𝑖 has length 1

𝑚−𝑖+2 , its total progress in 𝐼𝑖 is equal
to 𝑚− 𝑗+1
(𝑚−𝑖+1) (𝑚−𝑖+2) . Further, 𝑗 ’s progress is equal to

𝑚− 𝑗+1
𝑚

in 𝐼1. Summing over all intervals 𝐼𝑖
with 1 ≤ 𝑖 ≤ 𝑗 concludes that 𝑗 ’s progress until the end of 𝐼 𝑗 is equal to

𝑚 − 𝑗 + 1
𝑚

+
𝑗∑︁
𝑖=2

𝑚 − 𝑗 + 1
(𝑚 − 𝑖 + 1) (𝑚 − 𝑖 + 2) = 1 ,
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asserting that 1 +∑︁𝑗−1
𝑖=1

1
𝑚−𝑖+1 is indeed 𝑗 ’s completion time in the algorithm’s schedule. □

9.4 Concluding Remarks

We initiated the study of speed-oblivious algorithm, and presented two models that mitigate
the pessimistic Ω(𝑚) lower bound using certain additional information. As a future direction,
it would be interesting whether a constant competitive algorithm for speed-ordered unrelated
machines is possible for the clairvoyant or even non-clairvoyant setting. Moreover, one could
consider the more general total weighted flow time objective for speed-ordered machines, with
or without speed augmentation.

Bibliographic Note

This chapter is based on joint work with Nicole Megow and Martin Rapp [LMR23]. Specifically,
a detailed proof of Theorem 9.2 can be found there. Some parts of this chapter are identical
with [LMR23].
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Chapter 10

Predictions for Uncertain Jobs in Online TSP

10.1 Introduction

Imagine that you are a self-employed chimney sweep in a large city and perform annual
inspections of heating systems. Every day customers call you with service requests. Since you
want good reviews and a happy customer base, your goal is to serve all requests on the same
day. You also want to be as early as possible at home in the evening. To achieve these goals,
you often have to decide which customer to serve next and which route to take. This clearly
affects your evening plans: you may drive from one end of the city to the other end several
times because you cannot anticipate upcoming service requests. One day you realize that many
of your regular customers call you on the exact same date every year because their validations
run out. How can you integrate such estimates in planning your tours?

Now, imagine that you are an independent city courier and have to transport packages from
one place to another. Your customers call you during the day with transportation requests, and
again, you want to fulfill all requests by the end of the day so you can get home as early as
possible. Your main decision is the order in which you serve these requests. After building a
customer base, you find that some customers call you in the morning, and others rather in the
evening. How can you integrate such estimates in planning your tours?

In this chapter, we introduce and analyze strategies that will help both the chimney sweep and
the city courier to optimize their tours and reduce their overtime given that their estimations
roughly match the reality. To this end, we first study the online Traveling Salesperson problem

(OlTSP), which is an abstraction of the chimney sweep’s daily situation. Later, we consider the
online Dial-a-Ride problem (OlDARP), which corresponds to the day in a life of our city courier,
and we will see that the courier can adopt the strategies developed by the chimney sweep. We
start by formally defining both problems.

Online TSP and Online Dial-a-Ride. In the online Traveling Salesperson Problem (OlTSP),
we are given a metric space𝑀 = (𝑋,𝑑) with an origin 𝑜 ∈ 𝑋 , and a set of requests 𝑅 that are
released online over time. A request (𝑥, 𝑟 ) ∈ 𝑅 is composed of a point 𝑥 ∈ 𝑋 and a release date
𝑟 ∈ ℝ≥0, at which time it becomes known and can be served. The task of an algorithm is to route
a server, which is initially located at the origin and moves at unit speed, to serve all requests.
A request (𝑥, 𝑟 ) ∈ 𝑅 is served if the server is located at 𝑥 at any time 𝑡 ≥ 𝑟 . Moreover, after
serving all requests, the server has to be moved back to the origin. The objective is to minimize
the makespan, that is, the total time required to serve the instance and return the server to
the origin. For general metric spaces, there are deterministic 2-competitive algorithms for
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OlTSP [AKR00; Aus+01], which is best-possible [Aus+01]. If 𝑋 = ℝ≥0, there is a best-possible
3
2 -competitive algorithm [Blo+01].
The online Dial-a-Ride problem (OlDARP) is a generalization of OlTSP where each request
(𝑥𝑠 , 𝑥𝑑 , 𝑟 ) consists of a starting location 𝑥𝑠 , a destination 𝑥𝑑 and a release time 𝑟 . To serve a
request (𝑥𝑠 , 𝑥𝑑 , 𝑟 ), the server must first visit 𝑥𝑠 at some time not earlier than 𝑟 , and then 𝑥𝑑 .
We assume here that the server can carry at most one request at a time and a move from 𝑥𝑠

to 𝑥𝑑 cannot be interrupted, that is, there is no storage possible. There exist best-possible
2-competitive algorithms for OlDARP [AKR00; FS01].

Online Routing with Predictions. In OlTSP with predictions, we are additionally given an
input-prediction 𝑅 on the set of requests 𝑅. That is, 𝑅 is composed of predicted requests (𝑥, 𝑟 )
with a predicted location 𝑥 and a predicted release date 𝑟 . Similarly, inOlDARPwith predictions,
we are given additionally a set 𝑅 of predicted requests (𝑥𝑠 , 𝑥𝑑 , 𝑟 ). We emphasize that 𝑅 can
be substantially larger or smaller than 𝑅. Additionally, in the learning-augmented setting,
algorithms receive a signal indicating the no more requests will be revealed if the server is at
the origin and there are no unserved requests.

Before presenting our contribution, we emphasize that in the design of online algorithms
for OlTSP, we usually assume that computing a shortest tour through a set of points can be
done optimally. This task is APX-hard [KLS15], but there exists a classic 3

2 -approximation algo-
rithm [Chr76; Chr22; Ser78] as well as recent slightly-better-than- 32 approximations [KKG21;
KKG23]. All relevant online algorithms, such as the already mentioned ones, can also be
adopted to use approximation algorithms for this task. These variants have slightly worse
competitive ratios, which depend on the approximation ratio of the used subroutine.

10.1.1 Our Results

We develop and analyze learning-augmented algorithms for OlTSP and OlDARP that are
consistent, smooth, and robust, and prove impossibility results on the consistency-robustness
tradeoff. Furthermore, we design a novel error framework that is applicable to OlTSP but also
to other graph and metric problems. We now give a detailed overview of our results and the
structure of this chapter.

In Section 10.2, we prove a lower bound on the optimal consistency-robustness tradeoff for
OlTSP. We show that for any 𝛼 ∈ (0, 12 ), any deterministic (1 + 𝛼)-consistent algorithm has
a robustness ratio of at least 1−𝛼

𝛼
, which already holds when 𝑋 = ℝ≥0. We present for this

special metric space, the half-line, an (1 + 𝛼)-consistent, smooth and 3
2𝛼 -robust algorithm (see

Section 10.3). Here, 𝛼 ∈ (0, 12 ] is a tunable hyperparameter with which we can control the
level of trust in the given prediction. To achieve this result, we integrate the best-possible
online algorithm Move-Right-If-Necessary (Mrin) by Blom et al. [Blo+01] into a three-stage
robustness framework.
Then, in Section 10.4, we extend this framework to general metrics and integrate the best-

possible SmartStart algorithm by Ascheuer et al. [AKR00]. By further adopting the character-
istics of SmartStart, we give an (1+𝛼)-consistent, smooth, and (2+2/𝛼)-robust algorithm, for
any 𝛼 ∈ (0, 1]. While these bounds hold for an implementation that does not run in polynomial
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time unless P = NP, we present in Section 10.5 a polynomial-time variant with slightly worse
guarantees. To complete the results on online routing problems, we show that our approach
can be generalized to the more general OlDARP (see Section 10.6).
To achieve these results, we introduce a novel error framework, which we call the cover

error Λ (see Section 10.1.2). On a high level, it constructs, for any input 𝑅 and input-prediction 𝑅,
a bipartite hypergraph and computes two hyperedge covers, one for each side, which minimum
total costs yield the error value Λ. We highlight two useful properties of this framework, and
defer more discussions of our error to later sections. First, the only requirement to apply the
cover error to a problem is to specify the cost of a hyperedge. Thus, it is very general and
can easily be applied to different types of online problems, such as online-list and online-time
problems. Second, by further restricting the hyperedge used in a minimum-cost cover by some
parameter 𝑘 , we obtain a family of errors {Λ𝑘 }∞𝑘=1, where large values of 𝑘 correspond to a
more precise and sensitive error measure. Specifically, we show that algorithms can be smooth
for all errors of this family at the same time.

We demonstrate these and more advantages of the cover error by applying it to two classic
online-list network design problems: online Steiner tree and online Steiner forest. For both
problems, previous learning-augmented algorithms with specific error measures are known
[APT22a; XM22]. In Section 10.7, we analyze the algorithm by Azar et al. [APT22a] with respect
to the cover error, and thereby overcome shortcomings in which the previous error measures
greatly underestimate the quality of a prediction.

10.1.2 The Cover Error

Next, we motivate and introduce the cover error. It is an error framework and can be applied to
any problem where a certain (part of the) input set 𝑅 is predicted by some set 𝑅. Throughout
this section, we use OlTSP as sample application, and 𝑅 as the set of requests and 𝑅 as the set
of predicted requests.

The framework distinguishes between two types of errors: unexpected actual requests 𝑅 \ 𝑅
and absent predicted requests 𝑅 \ 𝑅. Both potentially endanger an algorithm that trust 𝑅 to a
certain degree, that is, when an unexpected request appears far up from the predicted route, or
when routing the server unnecessarily to a single isolated absent prediction. We cover potential
extra costs that an algorithm incurs by computing a certain minimum-cost hyperedge cover for
each type. To make this idea more precise, think of the situation where an algorithm follows
a predicted tour for 𝑅. After serving some predicted request (𝑥, 𝑟 ), it may also serve some
unexpected actual requests 𝑅′ ⊆ 𝑅 \𝑅 that have already been released and are relatively close to
(𝑥, 𝑟 ) (both time- and location-wise). In our terminology, think of (𝑥, 𝑟 ) covering 𝑅′, and observe
that the cost for this cover shall naturally be equal to the optimal cost for serving 𝑅′ when
starting in 𝑥 at time 𝑟 . Conversely, the absent predicted requests, 𝑅 \ 𝑅, that are nevertheless
visited by an algorithm that follows a predicted tour should be covered by close actual requests,
to make up for the extra cost incurred by these superfluous visits.
We now embed this intuition into a precise definition. Let 𝐴 and 𝐵 be two sets of possibly

different size and let 𝑘 ≥ 1. We define a bipartite hypergraph 𝐺𝑘 = (𝐴 ∪ 𝐵,H) where H is
the set of all hyperedges that have exactly one endpoint in 𝐵 and at most 𝑘 endpoints in 𝐴. A
𝑘-hyperedge cover of 𝐴 by 𝐵 is a set of hyperedges H′ ⊆ H in 𝐺𝑘 such that every vertex in 𝐴 is
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(c) Γ𝑘 (𝑅, 𝑅) = Γ𝑘 (𝑅 \ 𝑅, 𝑅)

Figure 10.1: Example for a metric instance and input prediction with a min-cost 𝑘-hyperedge
cover of the set of unexpected requests 𝑅 \ 𝑅. The actual requests are filled green
and the predicted requests are encircled red. The labels show which points in the
metric space correspond to which nodes in the bipartite graphs.

incident to at least one hyperedge inH′. If every hyperedge ℎ ∈ H of𝐺𝑘 has an associated cost
𝛾 (ℎ), aminimum-cost 𝑘-hyperedge coverH′ is a 𝑘-hyperedge cover that minimizes

∑︁
ℎ′∈H′ 𝛾 (ℎ′).

We denote the cost of a min-cost 𝑘-hyperedge cover of 𝐴 by 𝐵 by Γ𝑘 (𝐴, 𝐵). The cover error,
denoted by Λ𝑘 (𝑅, 𝑅), is defined as

Λ𝑘 (𝑅, 𝑅) ≔ Γ∞(𝑅, 𝑅) + Γ𝑘 (𝑅, 𝑅) .

Notice that we allow arbitrary large hyperedges (𝑘 = ∞) to cover predicted requests 𝑅 in
the above definition. We emphasize that all results also hold for a symmetric error definition
Γ𝑘 (𝑅, 𝑅)+Γ𝑘 (𝑅, 𝑅), because Γ𝑖 (𝐴, 𝐵) ≥ Γ𝑖+1(𝐴, 𝐵), for any 𝑖 . Nevertheless we use this asymmetric
definition to obtain a stronger bound when covering 𝑅. Intuitively, this is possible because
all predicted requests are known in advance (as opposed to the actual requests, which arrive
online). We simply write Λ𝑘 if 𝑅 and 𝑅 are clear from the context. Moreover, observe that the
framework yields a hierarchical family {Λ𝑘 }∞𝑘=1 of errors, where errors with a larger 𝑘 allow
more flexible covers, and thus reflect more precisely the cost due to trusting wrong predictions.

To apply the cover error framework to a specific problem, it suffices to specify the cost
𝛾 (𝐴′, 𝑏) of a hyperedge 𝐴′ ∪ {𝑏}. Since our error measure shall give value zero if 𝑅 = 𝑅, we
require that the cost of every hyperedge {𝑎} ∪ {𝑏} for some 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 is equal to
zero if 𝑎 = 𝑏. Then, all vertices in 𝐴 ∩ 𝐵 can be covered trivially by 𝐵, and we conclude that
Γ𝑘 (𝐴 \ 𝐵, 𝐵) = Γ𝑘 (𝐴, 𝐵). Although we give precise definitions of 𝛾 separately for every concrete
problem, all definitions follow a certain paradigm. That is, the cost 𝛾 (𝐴′, 𝑏) shall be equal
to the value of an optimal solution for the subinstance induced by 𝐴′ with respect to 𝑏. This
anchoring requirement is the single detail that has to be specified for a concrete problem. Note
that this matches our intuition discussed above for OlTSP. Figure 10.1 depicts an example of a
𝑘-hyperedge cover.
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10.1.3 Preliminaries and Classical Algorithms for OlTSP

For a fixed instance, we denote the makespan of an optimal solution by OPT, and for a fixed
algorithm, we denote the server’s location at time 𝑡 by 𝑝 (𝑡).

We now present known algorithmic and impossibility results for OlTSP, which are relevant
in later sections. We start with results on the half-line metric, where the following lower bound
on the competitive ratio of deterministic algorithms holds.

Theorem 10.1 (Blom et al. [Blo+01]). The competitive ratio of any deterministic online algorithm

for OlTSP is at least
3
2 , even on the half-line metric.

Proof. Fix any deterministic online algorithm and consider an instance with the initial request
(1, 0). Let 𝑇 ≥ 1 be the time when the algorithm served it and returned to the origin. If
𝑇 ≥ 3, an optimal solution could have completed the instance at time 2, asserting the statement.
Otherwise, that is 𝑇 < 3, there is a second request (𝑇,𝑇 ), for which the algorithm requires at
least 2𝑇 additional time. Since an optimal solution can serve both requests in time 2𝑇 , we also
conclude in this case that the algorithm’s competitive ratio is at least 3

2 . □

We can precisely characterize an optimal solution for the half-line metric. This is because no
request (𝑥, 𝑟 ) can be served before time max{𝑥, 𝑟 }; and once it has been served, at least 𝑥 more
time units are required for returning to the origin. Hence, for a given set of requests 𝑅, any
algorithm has a makespan of at leastmax(𝑥,𝑟 ) ∈𝑅{𝑟 +𝑥, 2𝑥}. Further, an optimal offline algorithm
can find a tour of this makespan by initially moving to the point 1

2 ·max(𝑥,𝑟 ) ∈𝑅{𝑟 + 𝑥, 2𝑥} and
then back to the origin. It is not hard to verify that this tour serves all requests of 𝑅.

Proposition 10.2. On the half-line, it holds that OPT = max(𝑥,𝑟 ) ∈𝑅{2𝑥, 𝑥 + 𝑟 }.

Blom et al. also presented an algorithm that matches their lower bound (Theorem 10.1). Since
we will use this algorithm in Section 10.3, we introduce it now, and present the analysis of
Blom et al. In summary, their algorithm simply moves towards the right, that is, the positive
part of the real line, of its current position if there is some unserved request, and otherwise
returns to the origin. The formal description is given in Algorithm 8.

Algorithm 8:Move-Right-If-Necessary (Mrin) [Blo+01]
1 At any time 𝑡 :
2 if there is an unserved requests to the right of 𝑝 (𝑡) then move towards the right,
3 else move towards the origin.

Theorem 10.3 (Blom et al. [Blo+01]). Move-Right-If-Necessary (Mrin) has a competitive ratio of

at most
3
2 for the OlTSP problem on the half-line.

Proof. We prove the theorem by induction on the number of requests of the instance. If there is
only a single request, the algorithm is clearly optimal. Now let (𝑥, 𝑟 ) be the last request, and 𝑓
be the largest position of an unserved request at time 𝑡 , excluding (𝑥, 𝑟 ) (otherwise 𝑓 = 0).
If 𝑥 ≤ 𝑓 or 𝑝 (𝑟 ) ≥ 𝑥 , the algorithm’s makespan for serving this instance is equal to the

makespan of serving all requests excluding (𝑥, 𝑟 ). Since this additional request also cannot
lower the optimal makespan, we are done by the induction hypothesis.
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Otherwise, that is, 𝑥 > 𝑓 and 𝑝 (𝑟 ) < 𝑥 , the algorithm’s makespan is at most 𝑟 + 2𝑥 . By
Proposition 10.2, we conclude that the competitive ratio is at most 2𝑥+𝑟

OPT ≤
𝑥+𝑟
𝑥+𝑟 +

𝑥
2𝑥 = 3

2 . □

Ausiello et al. [Aus+01] presented an improved lower bound of 2 on the competitive ratio of
deterministic algorithms. Their proof uses the boundary of the unit square as metric space.

Theorem 10.4 (Ausiello et al. [Aus+01]). There exists a metric space for which the competitive

ratio of any deterministic online algorithm for OlTSP is at least 2.

There are algorithms for general metric spaces that match this lower bound. In the following,
we introduce the SmartStart algorithm by Ascheuer et al. [AKR00], which is 2-competitive
and which we will use in Section 10.4. We note that Ausiello et al. [Aus+01] also presented a
different 2-competitive online algorithm.

Algorithm 9: SmartStart [AKR00]
1 Whenever the server is at the origin at some time 𝑡 , compute an optimal tour 𝑆 of

length ℓ (𝑆) serving all released but unserved requests at time 𝑡 .
2 if ℓ (𝑆) ≤ 𝑡 then follow 𝑆

3 else restart the algorithm at time ℓ (𝑆).

The SmartStart algorithm (cf. Algorithm 9) is a tuned variant of the so-called Ignore
strategy: whenever the server is at the origin, compute and serve a shortest tour through
all currently known request. Its name comes from ignoring all incoming request while it is
serving a tour. Ignore has a competitive ratio equal to 5

2 [AKR00]. The SmartStart algorithm
additionally makes sure that the next tour is not too long with respect to the current time, and
otherwise waits. Intuitively, this fixes the worst-case instance of Ignore where, immediately
after the server started a tour, requests arrive that could have been easily integrated into the
current tour.

Theorem 10.5 (Ascheuer et al. [AKR00]). SmartStart has a competitive ratio of at most 2 for
the OlDARP problem.

10.1.4 Further Related Work

Variants of OlTSP. For OlTSP as defined here, there are the mentioned best-possible 2-
competitive algorithms [AKR00; Aus+01]. In our variant, the server has to return to the origin,
which is in the literature also called closed OlTSP. In the open variant, the server does not have
to return to the origin after serving the final request. For this variant, Bjelde et al. [Bje+21]
prove a lower bound of ≈ 2.04 on the competitive ratio of deterministic algorithms, which
already holds on the real line, and thereby improve an earlier lower bound of 2 [Aus+01]. For
open OlTSP on general metrics, there is a 5

2 -competitive algorithm [Aus+01] and a recent
2.457-competitive algorithm by Baligács et al. [Bal+23a]. Jaillet and Wagner [JW08] presented
2-competitive algorithms for the closedOlTSP in a setting with multiple servers and precedence
constraints between the requests. On the real line, there is a lower bound of ≈ 1.64 for open
OlTSP [Aus+01]. Bjelde et al. [Bje+21] closed the gap for both variants on the line. They give a
tight competitive ratio of ≈ 2.04 for the open variant and of ≈ 1.64 for the closed variant.
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For closedOlDARP, the lower bound of 2 [Aus+01] translates toOlDARP [Aus+01; FS01]. On
the positive side, SmartStart is 2-competitive also for closed OlDARP [AKR00] for any finite
server capacity, and Feuerstein and Stougie [FS01] present an adaptation of the 2-competitive
algorithm when the server has infinite capacity. For open OlDARP, there is a stronger lower
bound of ≈ 2.05 [BDS23], which separates open OlDARP from open OlTSP. The best-known
upper bound for open OlDARP on general metric is ≈ 2.457 [Bal+23a]. On special metric
spaces, there are tighter results known, also for different variants [AKR00; Aus+01; Bal+23a;
BD20; BDS23; Bje+21; Lip+04].
For both OlTSP and OlDARP, one can also minimize the average completion time of the

requests instead of the makespan. This variant is also known as the traveling repairperson

problem, and has been well-studied in different variants and environments [BKL21; BL19; BS09;
FS01; HJ18; Kru+03].

Bampis et al. [Bam+23b] study OlTSP in the setting where the set of exact request locations
are known in advance, but the requests still arrive online. They show that the competitive ratio
for both open and closed OlTSP is equal to 3

2 .

Learning-augmented algorithms for OlTSP. After announcing our results [Ber+22b],
independently of our work, two other papers [GLS22; Hu+22] were released that also study
OlTSP in the learning-augmented setting. Hu et al. [Hu+22] consider OlTSP with different
prediction models in general metric spaces. For arbitrary input predictions, their result has no
error-dependency and a weaker consistency-robustness tradeoff compared to our main result
for metric OlTSP. Gouleakis et al. [GLS22; GLS23] exclusively study OlTSP on the real line.
Assuming that the correct number of requests is known in advance, they study the power of
predictions only on the locations; their results are incomparable to ours.
Later, Chawla and Christou [CC24] consider OlTSP with time windows, where the goal

is to serve as many requests as possible before their deadline. For this variant, no constant
competitive algorithm is possible in the traditional online setting [AV16]. They use input pre-
dictions and present consistent, smooth and robust learning-augmented algorithms. Although
we also use input predictions, their results are incomparable to ours because the problem itself
is fundamentally different to ours.
Finally, Bampis et al. [Bam+23a] study both closed and open OlTSP in the same prediction

model as Gouleakis et al. [GLS23], where only the locations of the requests are predicted. They
present results for both general metric as well as various special cases. We achieve stronger
bounds for general metrics as our prediction model is stronger than theirs.

10.2 A Tradeoff Lower Bound

Our first result is a lower bound of the consistency-robustness tradeoff of deterministic algo-
rithms, which even holds on the half-line.

Theorem 10.6. Let 𝛼 ∈ (0, 12 ) and letA be a (1+𝛼)-consistent deterministic learning-augmented

algorithm for OlTSP. Then, A can be 𝛽-robust only for 𝛽 ≥ 1
𝛼
− 1. This holds even on the half-line.

Proof. Fix the half-line as metric space. Let 𝜀 > 0 be a small constant such that 𝜀 ≤ 1 − 2𝛼 . In
the following, we consider two instances. The first instance consists of the two requests 𝜎1 =
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(0, 2𝛼 + 𝜀) and 𝜎2 = (1, 1). Since 𝛼 ≤ 1
2 (1 − 𝜀), in the optimal solution the server immediately

moves to 1, serving 𝜎2 at time 1, and is back at the origin at time 2, serving 𝜎1. Suppose
that algorithm A has access to a perfect prediction. Thus, it has to finish the instance within
time 2(1 + 𝛼) due to its consistency. We can make two observations on the behavior of
algorithm A. Firstly, A must serve 𝜎2 before 𝜎1, as otherwise, its server must be at the origin
at time 2𝛼 + 𝜀 and can finish the instance at the earliest at time 2(1 + 𝛼) + 𝜀, a contradiction.
Secondly, at time 1, A’s server cannot be strictly to the left of the point 1 − 2𝛼 , otherwise again
its consistency would be contradicted.

Now consider a second instance, consisting of the single request 𝜎 = (0, 2𝛼 + 𝜀). Clearly, an
optimal solution finishes at time 2𝛼 + 𝜀. Suppose that algorithm A gets the same prediction as
in the first instance. Since A is deterministic and the two instances are the same until time 1, it
will behave the same as in the first instance until time 1. By our observations from the first
instance, we conclude that at time 1,A’s server is at least at distance 1− 2𝛼 from the origin, and
it has not yet served 𝜎1. Thus, A can finish the second instance at the earliest at time 1 + 1− 2𝛼 ,
which yields a robustness factor of at least 2−2𝛼

2𝛼+𝜀 . This concludes the proof. □

10.3 Online TSP on the Half-Line

We start with presenting our algorithmic results for the half-line metric space 𝑋 = ℝ≥0.
We first introduce a more compact prediction model than a prediction 𝑅 on the set of

requests 𝑅. That is, a single value PRD that predicts the makespan of an optimal tour OPT.
The reason for this simplification is that we can compute for a given value PRD a optimal tour
(assuming that the prediction is correct) by moving at time 0 to 1

2PRD and then returning to the
origin, as we have seen for Proposition 10.2. In particular, we could reduce any predicted input
𝑅 via Proposition 10.2 to the single predicted request {( 12 max(𝑥,𝑟 ) ∈𝑅{2𝑥, 𝑥 + 𝑟 }, 0)} without
changing an predicted optimal solution. Conversely, we can turn PRD into the input prediction
{( 12PRD, 0)}.
This insight also shows us that we can still apply the cover error in this model. The bipartite

graph that we consider for the cover error has only a single vertex on each side, where the
predicted instance is represented by {( 12PRD, 0)}, and the actual instance is represented by
{( 12OPT, 0)}. Since the cost of a hyperedge 𝑅

′ ∪ {𝑥 ′} should intuitively capture the optimal
solution for instance 𝑅′ with respect to 𝑥 ′, we define the cost of the hyperedge {(𝑥1, 𝑟1)} ∪
{(𝑥2, 𝑟2)} to be equal to the additional cost of an optimal solution to serve (𝑥1, 𝑟1) if it can
optimally serve (𝑥2, 𝑟2) for free. This concludes that we can express the value of a min-cost
1-hyperedge cover in this graph as follows.

Proposition 10.7. Λ1 = |PRD − OPT|.

Proof.

Λ1 = Γ1(𝑅, 𝑅) + Γ1(𝑅, 𝑅)

= 2 ·max
{︃
0, OPT2 − PRD

2

}︃
+ 2 ·max

{︃
0, PRD2 − OPT

2

}︃
= |PRD − OPT| .

□
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Wenow introduce our algorithm, which combines the best-possible online algorithmMrin (cf.
Algorithm 8) with predictions in a three-stage framework. We call this algorithm MrinTrust
and parameterize it with 𝛼 ∈ (0, 12 ], which controls our trust into the prediction. In the first
phase, we execute for a time depending on PRD the classic Mrin strategy to ensure robustness
in case that the prediction greatly overestimates the optimal cost. Then, we partially, depending
on 𝛼 , follow the optimal predicted strategy in Phase 2, and finish the instance again usingMrin
in Phase 3. We note that a similar waiting strategy is also used in [GLS23] and [Bam+23b].

Algorithm 10:MrinTrust
1 ExecuteMrin until time 𝛼 · PRD. Let 𝑝2 ≔ 𝑝 (𝛼 · PRD) be the final position of the server.
2 Move the server to the point 𝑝3 ≔ 1

2 ((1 − 𝛼) · PRD + 𝑝2).
3 ExecuteMrin again (starting from 𝑝3).

We now prove the following main result of this section.

Theorem 10.8. For any 𝛼 ∈ (0, 12 ], MrinTrust has a competitive ratio of at most

min
{︃
(1 + 𝛼)

(︃
1 + Λ1

OPT

)︃
,
3
2𝛼

}︃
for the OlTSP problem on the half-line.

Before proving both bounds separately in Lemmas 10.10 and 10.11, we observe that 𝑝2 ≤
𝛼 · PRD and 𝛼 ∈ (0, 12 ] imply

𝑝3 =
1
2 ((1 − 𝛼) · PRD + 𝑝2) ≥

1
2𝛼 · PRD +

1
2𝑝2 ≥ 𝑝2 ,

which gives us the following observation.

Observation 10.9. The servers position 𝑝3 at the start of Phase 3 is not to the left of the server’s

position 𝑝2 at the start of Phase 2, that is, 𝑝3 ≥ 𝑝2.

We next prove a bound on the robustness ratio of MrinTrust.

Lemma 10.10. For any 𝛼 ∈ (0, 12 ], MrinTrust is
3
2𝛼 -competitive.

Proof. Let ALG be the makespan of a tour determined by MrinTrust. If the algorithm ter-
minates in Phase 1, then ALG ≤ 3

2 · OPT, because Mrin is 3
2 -competitive (Theorem 10.3).

Otherwise, Phase 1 requires 𝛼 · PRD time and Phase 2 requires 𝑝3 − 𝑝2 time. By denoting the
time used in Phase 3 by 𝐶3, it follows

ALG = 𝛼 · PRD + (𝑝3 − 𝑝2) +𝐶3 . (10.1)

Recall that in Phases 1 and 3 the algorithm follows the Mrin. Consider the execution of Mrin
on the same instance. Due to Phase 2, in Phase 3 MrinTrust does not have to serve more
requests than the ones served byMrin after time 𝛼 · PRD. But, sinceMrinTrust starts Phase 3
at point 𝑝3 and Mrin is at point 𝑝2 ≤ 𝑝3 at time 𝛼 · PRD, Phase 3 may take additional time
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equal to 𝑝3 − 𝑝2 compared to Mrin to move back if there are no requests to the right of 𝑝2. As
Mrin takes at most 3

2OPT time for the instance, we conclude that

𝛼 · PRD +𝐶3 ≤
3
2OPT + (𝑝3 − 𝑝2) .

By Equation (10.1) and by the definition of 𝑝3, we obtain

ALG ≤ 2(𝑝3 − 𝑝2) +
3
2OPT ≤ (1 − 𝛼)PRD +

3
2OPT . (10.2)

Since we assumed thatMrinTrust does not terminate in Phase 1, the time required byMrin
for the same instance is at least 𝛼 · PRD. Thus, 𝛼 · PRD ≤ 3

2OPT, and together with (10.2), we
have

ALG ≤ 3(1 − 𝛼)
2𝛼 OPT + 3

2OPT =
3
2𝛼OPT ,

which concludes the proof. □

Lemma 10.11. For any 𝛼 ∈ (0, 12 ], MrinTrust is (1 + 𝛼) ·
(︂
1 + Λ1

OPT

)︂
-competitive.

Proof. We can assume that the instance consists of at least one request, as otherwise, we would
immediately receive an end-signal in the origin and clearly achieve the stated competitive ratio.
For the case whereMrinTrust reaches Phase 3, let 𝑡3 denote the point in time when Phase 3
begins, that is, by the definition of 𝑝2 and 𝑝3,

𝑡3 = 𝛼 · PRD + (𝑝3 − 𝑝2) =
1
2 ((1 + 𝛼)PRD − 𝑝2) .

We denote again by ALG the cost given by MrinTrust. We distinguish two cases. In each case
we prove that ALG ≤ (1 + 𝛼) (OPT + |PRD − OPT|), which concludes the proof via Proposi-
tion 10.7.

Case OPT ≤ PRD. We first show ALG ≤ (1 + 𝛼)PRD. If the algorithm does not reach Phase 2,
clearly ALG ≤ 𝛼 · PRD. Now suppose that the algorithm reaches Phase 2 (and therefore
Phase 3) and the server is at position 𝑝3 at time 𝑡3. Observe that, in this case, every
request released at time 𝑡3 + 𝛿 cannot be to the right of 𝑝3 − 𝛿 for any 0 ≤ 𝛿 ≤ 𝑝3. Indeed,
the existence of such a request (𝑥, 𝑡3 + 𝛿) with 𝑥 > 𝑝3 − 𝛿 would imply

OPT ≥ 𝑥 + 𝑡3 + 𝛿 > 𝑝3 − 𝛿 + 𝑡3 + 𝛿

= 𝑝3 + 𝑡3 =
1
2 ((1 − 𝛼)PRD + 𝑝2) +

1
2 ((1 + 𝛼)PRD − 𝑝2) = PRD ,

a contradiction. Therefore, the algorithm starts Phase 3 by serving all requests to the
right of 𝑝3 that were released before time 𝑡3 (if there are any). Then, the server goes
straight back to the origin while serving all remaining requests. Since all requests are in
the interval [0, 12OPT] ⊆ [0,

1
2PRD], the algorithm needs at most PRD time for Phases 2

and 3, giving a makespan of at most (1 + 𝛼) · PRD. This gives us the desired bound:

ALG ≤ (1 + 𝛼)PRD = (1 + 𝛼)OPT + (1 + 𝛼) (PRD − OPT) .
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Case OPT > PRD. In this case, the algorithmmust enter Phase 2, as otherwiseALG ≤ 𝛼 ·PRD <

𝛼 · OPT ≤ OPT contradicts that OPT is the optimal makespan. Thus, the server reaches
position 𝑝3 at time 𝑡3, at the start of Phase 3. We claim that MrinTrust spends at
most 𝐵 := max{OPT − PRD, 12OPT − 𝑝3} time for moving rightwards or for waiting at

the origin after time 𝑡3. This allows us to bound the algorithm’s makespan, given by the
time 𝑡3 spent on Phases 1 and 2, plus the time 𝑝3 needed to go back to the origin from
the point reached at the start of Phase 3, plus twice the time spent going to the right or
sitting at the origin waiting in Phase 3, as follows:

ALG ≤ 𝑡3 + 𝑝3 + 2𝐵 =
1
2 ((1 + 𝛼)PRD − 𝑝2) +

1
2 ((1 − 𝛼) · PRD + 𝑝2) + 2𝐵

= PRD +max {2OPT − 2PRD,OPT − (1 − 𝛼) · PRD − 𝑝2}
≤ max {2OPT − PRD,OPT + 𝛼 · PRD}
≤ (1 + 𝛼)OPT + (OPT − PRD) ,

which proves the desired bound.

We prove the claim by contradiction, for which we assume that the algorithm exceeds
the bound of 𝐵 when serving a request (𝑥, 𝑟 ). This request must exist, as otherwise the
server would not move rightwards or wait at the origin. If 𝑟 ≤ 𝑡3, the server directly
moves from 𝑝3 to 𝑥 at the beginning of Phase 3. Our assumption implies 𝑥 − 𝑝3 > 𝐵, and
thus,

OPT ≥ 2𝑥 > 2𝐵 + 2𝑝3 ≥ 2
(︃
OPT
2 − 𝑝3

)︃
+ 2𝑝3 = OPT ,

a contradiction. If 𝑟 > 𝑡3, denote by 𝐿 the total time spent by the server moving leftwards
between time 𝑡3 and 𝑟 . Thus, 𝑟 − 𝑡3 − 𝐿 is equal to the time the server spent moving
rightwards or waiting in the origin between time 𝑡3 and 𝑟 . Let 𝑝 (𝑟 ) be the position of the
server at time 𝑟 . Note that 𝑝 (𝑟 ) ≤ 𝑥 . Due to our assumption, 𝑥 − 𝑝 (𝑟 ) + (𝑟 − 𝑡3 − 𝐿) > 𝐵.
Since the server moved 𝐿 units to the left after time 𝑡3, it cannot be to the left of point
𝑝3 − 𝐿 at time 𝑟 , that is, 𝑝 (𝑟 ) ≥ 𝑝3 − 𝐿. We conclude

OPT ≥ 𝑥 + 𝑟 > 𝐵 − (𝑟 − 𝑡3 − 𝐿) + 𝑝 (𝑟 ) + 𝑟
≥ (OPT − PRD) − (𝑟 − 𝑡3 − 𝐿) + (𝑝3 − 𝐿) + 𝑟
= OPT − PRD + 𝑡3 + 𝑝3 = OPT ,

again a contradiction. □

We conclude this section by showing that the robustness factor 3
2𝛼 is tight for our algorithm.

Lemma 10.12. For any 𝛼 ∈ (0, 12 ], MrinTrust has a robustness factor at least
3
2𝛼 .

Proof. Consider an instance consisting of a single request 𝜎 = ( 13𝛼,
1
3𝛼 + 𝜀) for a small 𝜀 > 0,

and suppose that we give MrinTrust the prediction PRD = 1. The algorithm serves 𝜎 at
time 2

3𝛼 + 𝜀 and the server is at position 𝜀 at the start of Phase 2, that is, at time 𝛼 . Thus, it does
not receive an end-signal but the server reaches point 𝑝3 = 1

2 (1− 𝛼 + 𝜀) at time 1
2 (1 + 𝛼 − 𝜀). As

there are no further requests, it moves back to the origin. Since an optimal solution serves 𝜎

153



Chapter 10 Predictions for Uncertain Jobs in Online TSP

at time 1
3𝛼 + 𝜀 and is back at the origin at time 2

3𝛼 + 𝜀, we conclude that the prediction is not
perfect, and that the robustness ratio of the algorithm is at least

1
2 (1 + 𝛼 − 𝜀) +

1
2 (1 − 𝛼 + 𝜀)

2
3𝛼 + 𝜀

=
1

2
3𝛼 + 𝜀

,

which tends to 3
2𝛼 as 𝜀 goes to 0. □

10.4 Online Metric TSP

Wemove to theOlTSP problem for general metric spaces. Our strategy is similar to the half-line
case. We use an initial delay phase in which we follow a specific online algorithm up to some
predetermined time depending on the cost PRD of an optimal tour 𝑇 of the prediction 𝑅. After
that, we start following𝑇 , adjusting it whenever the actual requests deviate from the predictions.
We call this greedy strategy PredictReplan (PredReplan for short), due to the analogy with
the classic Replan heuristic (see, for example, [AKR00]). While this algorithm might move
towards predicted requests that are known to be absent to make the analysis clearer, a practical
implementation ignores those and thereby only improves its performance.

Algorithm 11: PredReplan
1 Follow the optimal predicted tour 𝑇 .
2 Whenever an unexpected request (𝑥, 𝑟 ) is released, recompute and follow a fastest tour

from 𝑝 (𝑟 ) (the current location of the server) to the origin serving all unserved
predicted requests and all the unserved unexpected requests.

3 If the server receives an end signal in the origin, terminate.

We can now define our final algorithm SmartTrust. It is composed of three phases and uses
both PredReplan and SmartStart (cf. Algorithm 9) as subroutines.

Algorithm 12: SmartTrust
1 Execute SmartStart with the following stopping criteria. If SmartStart decides to

follow a tour 𝑆 of length ℓ (𝑆) at time 𝑡 such that 𝑡 + ℓ (𝑆) > 𝛼 · PRD, go to Phase 2. If
SmartStart sleeps or idles at time 𝛼 · PRD, go to Phase 3.

2 Wait until time at least 𝛼2 · PRD, then go to Phase 3.
3 Follow the PredReplan strategy until the end.

In the remaining section, we analyze SmartTrust with respect to Λ1. To this end, we
define the cost 𝛾TSP(𝑅′, (𝑥 ′, 𝑟 ′)) of a hyperedge 𝑅′ ∪ {(𝑥 ′, 𝑟 ′)} in the cover error as the optimal
makespan for serving instance 𝑅′ from origin 𝑥 ′ and initial time 𝑟 ′. We prove the following
theorem.

Theorem 10.13. For any 𝛼 > 0, SmartTrust has a competitive ratio of at most

min
{︃
(1 + 𝛼)

(︃
1 + 2 · Λ1

OPT

)︃
, 2 + 2

𝛼

}︃
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for the OlTSP problem.

We separately prove both bounds of Theorem 10.13 in Lemmas 10.14 and 10.15.

Lemma 10.14. For any 𝛼 ≥ 0, SmartTrust is (1 + 𝛼)
(︂
1 + 2 · Λ1

OPT

)︂
-competitive.

Proof. We first bound PRD. Fix a min-cost∞-hyperedge cover of 𝑅 by 𝑅 and an optimal tour𝑇 ∗
for 𝑅. For every hyperedge 𝑅′∪ {(𝑥, 𝑟 )} in the cover, we extend𝑇 ∗ by adding the optimal offline
OlTSP tour for 𝑅′ that starts at 𝑥 at the time 𝑡 at which 𝑇 ∗ serves 𝑥 . Note that, since 𝑟 ≤ 𝑡 ,
the makespan of this subtour is bounded by the cost of 𝑅′ ∪ {(𝑥, 𝑟 )}. Since every predicted
request is covered by at least one hyperedge, the constructed tour serves 𝑅 and we conclude
that PRD ≤ OPT + Γ∞(𝑅, 𝑅) .
We now bound the algorithm’s makespan. If the algorithm terminates in Phases 1 or 2, its

makespan is at most 𝛼 · PRD ≤ 𝛼 · (OPT + Γ∞(𝑅, 𝑅)) ≤ (1 + 𝛼) · (OPT + Λ1) .
Otherwise, the algorithm reaches Phase 3. There, it first computes an optimal tour 𝑇 of

length at most PRD serving all unserved predicted requests. The makespan only increases
when unexpected requests arrive. To this end, fix a min-cost 1-hyperedge cover of 𝑅 by 𝑅 and a
hyperedge {(𝑥 ′, 𝑟 ′)} ∪ {(𝑥, 𝑟 )} of this cover. We upper bound the additional cost due to (𝑥 ′, 𝑟 ′)
by the cost of an excursion that serves (𝑥 ′, 𝑟 ′) from the algorithm’s current tour. The algorithm
might find a faster tour to serve all unserved requests and henceforth uses that. We distinguish
two cases depending on the algorithm’s remaining tour when request (𝑥 ′, 𝑟 ′) arrives, and show
that the total time for this excursion is bounded by 2 · 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )).

The algorithm served (𝑥, 𝑟 ) at time 𝑡 with 𝑟 ≤ 𝑡 < 𝑟 ′. We consider an excursion that imme-
diately deviates from 𝑝 (𝑟 ′) to serve (𝑥 ′, 𝑟 ′) and then returns to 𝑝 (𝑟 ′). By the triangle
inequality, the length of this excursion is bounded by twice the distance between 𝑝 (𝑟 ′)
and 𝑥 , plus twice the distance between 𝑥 ′ and 𝑥 . Due to our assumption, the algorithm’s
server is at most 𝑟 ′ − 𝑟 units away from 𝑥 at time 𝑟 ′. Therefore, the total time incurred
for this excursion is bounded by 2 · (𝑟 ′ − 𝑟 ) + 2 · 𝑑 (𝑥 ′, 𝑥) .
We now bound this value by 2 · 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )). To this end, we again distinguish
two cases. If 𝑟 ′ − 𝑟 ≤ 𝑑 (𝑥 ′, 𝑥), the optimal solution considered in the fixed hyperedge has
no waiting time, that is,𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )) = 2 ·𝑑 (𝑥 ′, 𝑥). Hence, 2(𝑟 ′−𝑟 )+2 ·𝑑 (𝑥 ′, 𝑥) ≤
4 · 𝑑 (𝑥 ′, 𝑥) = 2𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )). In the other case, that is, when 𝑟 ′ − 𝑟 > 𝑑 (𝑥 ′, 𝑥),
the optimal solution considered in the fixed hyperedge has to wait at some point for
the release time 𝑟 ′ of 𝑥 ′, that is, 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )) = (𝑟 ′ − 𝑟 ) + 𝑑 (𝑥 ′, 𝑥), yielding
2(𝑟 ′ − 𝑟 ) + 2 · 𝑑 (𝑥 ′, 𝑥) = 2 · 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )).

The algorithm plans to serve (𝑥, 𝑟 ) at or after time 𝑟 ′. In this case, we wait with the ex-
cursion until the algorithm reaches 𝑥 at some time 𝑡 ≥ 𝑟 , and then serve (𝑥 ′, 𝑟 ′) using at
most 2 · 𝑑 (𝑥 ′, 𝑥) ≤ 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )) additional time.

Figure 10.2 illustrates both cases.
Since every actual request is covered by one hyperedge, we conclude that Phase 3 takes time

at most PRD + 2 · Γ1(𝑅, 𝑅). Adding the time for Phases 1 and 2 gives a makespan of at most

(1 + 𝛼)PRD + 2 · Γ1(𝑅, 𝑅) ≤ (1 + 𝛼)
(︂
OPT + Γ∞(𝑅, 𝑅) + 2 · Γ1(𝑅, 𝑅)

)︂
≤ (1 + 𝛼) (OPT + 2 · Λ1) ,
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(a) The server (square) plans (dashed) and follows (solid) the
predicted tour. Two hyperedges are completely released: {7}
is covered by 3, which is already served, and {6} is covered
by 1, which will be served in the future. Note that neither 1,
8 nor 9 have been released yet. Also notice that PredReplan
might find a faster tour.
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(b) Min-cost 1-hyperedge cover of 𝑅

Figure 10.2: Illustration of the proof of Lemma 10.14.

which concludes the proof. □

Lemma 10.15. For any 𝛼 > 0, SmartTrust is (2 + 2
𝛼
)-competitive.

Proof. Let ALG denote the makespan of SmartTrust’s tour. If the algorithm terminates during
Phase 1, then the competitive ratio is at most 2 [AKR00]. Suppose the algorithm enters Phases 2
and 3. Let 𝐶𝑆 be the cost of SmartStart when serving the whole actual online instance.
Since SmartStart is 2-competitive, it holds 𝐶𝑆 ≤ 2OPT, and, moreover, because SmartTrust
reaches Phase 3, is must be that 𝛼 · PRD < 𝐶𝑆 . Thus, 𝛼 · PRD < 2OPT.

Let 𝑡3 be the time at which Phase 3 starts, 𝑡abort be the time at which Phase 2 begins (that is,
SmartStart is aborted at time 𝑡abort), and 𝑟last be the latest actual release date. We distinguish
two cases.

Case 𝑟last < 𝑡3. Since SmartTrust reaches Phase 3, it also entered Phase 2 at time 𝑡abort. Let
𝐶abort be the length of an optimal tour serving all actual requests that are unserved at
time 𝑡abort. Note that 𝑡abort +𝐶abort > 𝛼 · PRD, as otherwise this tour would have been
started in Phase 1. We further distinguish two subcases.

If 𝑡abort ≥ 𝛼
2 · PRD, SmartTrust does not have to wait in Phase 2, and thus we have

𝑡abort = 𝑡3. Observe that 𝑡abort +𝐶abort ≤ 𝐶𝑆 ≤ 2 · OPT. Since 𝑟last < 𝑡3 = 𝑡abort, the length
of Phase 3 is at most PRD +𝐶abort, and we conclude

ALG ≤ 𝑡abort +𝐶abort + PRD ≤ 2 · OPT + PRD ≤
(︃
2 + 2

𝛼

)︃
OPT .

Otherwise, it holds that 𝑡abort < 𝛼
2 · PRD. Let 𝐶3 be the length of an optimal tour of all

unserved actual requests at time 𝑡3. Since we assume 𝑟last < 𝑡3, Phase 3 takes at most
𝐶3 + PRD time. Using that Phase 3 starts at time 𝛼

2 · PRD, we obtain

ALG ≤ 𝛼2 PRD +𝐶3 + PRD = 𝐶3 +
(︂
1 + 𝛼2

)︂
PRD

≤ OPT +
(︂
1 + 𝛼2

)︂ 2
𝛼
OPT =

(︃
2 + 2

𝛼

)︃
OPT .
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Case 𝑟last ≥ 𝑡3. Once the last request has arrived in Phase 3 at time 𝑟last, our tour stays fixed.
The cost of the algorithm after 𝑟last is the cost of following the predicted tour, adapted
for incorporating the unexpected, yet unserved, requests. This is bounded from above by
the cost of returning to the origin, following the predicted tour, and finally following the
optimal tour. Note that the cost for returning to the origin is at most 𝑟last − 𝑡3. Further,
𝑟last ≤ OPT and Phase 2 ensures that 𝑡3 ≥ 𝛼

2 · PRD. Hence,

ALG ≤ 𝑟last + (𝑟last − 𝑡3) + PRD + OPT ≤ 𝑟last +
(︂
𝑟last −

𝛼

2 PRD
)︂
+ PRD + OPT

≤ 2𝑟last +
(︂
1 − 𝛼2

)︂ 2
𝛼
OPT + OPT ≤

(︃
3 +

(︂
1 − 𝛼2

)︂ 2
𝛼

)︃
OPT =

(︃
2 + 2

𝛼

)︃
OPT .

This concludes the proof of the lemma. □

Finally, we show that the robustness bound of SmartTrust given in Lemma 10.15 is tight.

Lemma 10.16. For any 𝛼 > 0, SmartTrust has a robustness factor of at least 2 + 2
𝛼
.

Proof. Consider the metric space 𝑋 = ℝ. Let 𝜎 = (− 1
2 ,

1
2 ) be the only predicted request,

while the only actual request is 𝜎 = ( 𝛼4 + 𝜀,
𝛼
4 ). Clearly, OPT = 𝛼

2 + 2𝜀 and PRD = 1. In
Phase 1, SmartTrust executes SmartStart until time 𝛼 · PRD = 𝛼 . Since the length of the
tour that serves 𝜎 is equal to 𝛼

2 + 2𝜀, when 𝜎 is released SmartStart decides to sleep until
time 𝛼

2 + 2𝜀. When SmartStart wakes up, the condition of Phase 1 forbids to execute the tour,
and SmartTrust immediately goes to Phase 3. We conclude that at time 𝛼

2 + 2𝜀, SmartTrust
is at the origin and 𝜎 is still unserved. Then, the algorithm needs at least 1 + 𝛼

2 + 2𝜀 time to
serve 𝜎 and follow the predicted tour. This gives a robustness factor of at least

𝛼/2 + 2𝜀 + 1 + 𝛼/2 + 2𝜀
𝛼/2 + 2𝜀 =

2𝛼 + 2 + 8𝜀
𝛼 + 4𝜀 ,

which tends to 2 + 2
𝛼
for arbitrarily small values of 𝜀. □

10.5 Online Metric TSP with Polynomial Running Time

In this section, we introduce a variant of SmartTrust that runs in polynomial time. The only
component in SmartTrust for which no polynomial-time algorithm is possible unless P = NP
is finding optimal metric TSP tours. To this end, we instead use any 𝜈-approximation algorithm
for metric TSP and metric path TSP. The classic approximation algorithms by Christofides and
Serdyukov [Chr76; Chr22; Ser78] for metric TSP have an approximate factor of 3

2 . We note that
recent breakthroughs provide approximation factors slightly below 3

2 [KKG21; KKG23]. Metric
path TSP can be reduced to metric TSP at a loss of (1 + 𝜀) for any 𝜀 > 0 [TVZ22]. Thus, we can
assume that there exists a better-than- 32 -approximation algorithm for metric path TSP.

Using such an 𝜈-approximation algorithm for metric (path) TSP, it is known that SmartStart
can be implemented to run in polynomial time, and has a competitive ratio of at most 1

4 (4𝜈 +
1 +
√
1 + 8𝜈) = 1

4 (7 +
√
13) ≈ 2.6514 [AKR00]. In our polynomial-time variant of SmartTrust,

we therefore also use this polynomial-time variant of SmartStart in Phase 1.
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Further, we have to adapt PredReplan to run in polynomial time. Since PredReplan relies
on computing a solution to path TSP with release dates, we now use an 𝜈-approximation
algorithm for offline metric path TSP on the set of remaining requests (both predicted and
unexpected) disregarding the release times. We then visit these requests and wait, in case of
predicted requests, until the predicted release time, if required. We have the following simple
proposition.

Proposition 10.17. Given a polynomial time 𝜈-approximation algorithm for offline metric path

TSP without release times, we obtain a polynomial time (1 + 𝜈)-approximation algorithm for

offline metric path TSP with release times by following a 𝜈-approximate path and wait whenever

we arrive at a request early.

Proof. The given algorithm returns a path of length at most 𝜈 · OPT in polynomial time. The
total time spent waiting for the visited request to arrive is at mostOPT, because no new requests
arrive after time OPT. Therefore the algorithm has a makespan of at most 𝜈 · OPT + OPT. □

Using (1 + 𝜈)-approximate paths instead of optimal paths whenever an unexpected request
arrives can, however, break our argumentation for the error-dependency, because planned
excursions might be changed. Therefore, we actively also compute the fastest excursion to an
unexpected request from any predicted request in the current path. Finding such a predicted
request (𝑥, 𝑟 ) for every unexpected request (𝑥, 𝑟 ) can be done efficiently in time𝑂 ( |𝑅 \ 𝑅 | · |𝑅 |).
This ensures that we achieve an error-dependency with respect to Λ1. However, it is not hard
to see that this greedy approach does not offer robustness. To fix this, we additionally always
recompute an (1 + 𝜈)-approximate through all remaining actual and predicted requests, and
follow the faster one of both paths.

Algorithm 13: Polynomial-time PredReplan
1 Initially, use Proposition 10.17 to compute and follow a tour on the predicted requests 𝑅

of length PRD∗.
2 Whenever an unexpected request (𝑥, 𝑟 ) ∈ 𝑅 \ 𝑅 appears, find the predicted request
(𝑥, 𝑟 ) ∈ 𝑅 that minimizes 𝛾TSP({(𝑥, 𝑟 )}, (𝑥, 𝑟 )). Modify the current remaining tour to
the origin as follows. If 𝑥 is part of the current remaining tour, add an excursion that
starts at 𝑥 at some time 𝑡 ≥ 𝑟 , serves (𝑥, 𝑟 ) and finally returns to 𝑥 . Otherwise, add an
immediate deviation from 𝑝 (𝑟 ) to (𝑥, 𝑟 ) and back to 𝑝 (𝑟 ) on the current tour. Let 𝑇1 be
the computed tour. Additionally, compute a new (1 + 𝜈)-approximate path 𝑇2 from 𝑝 (𝑟 )
to the origin through all unserved requests (including (𝑥, 𝑟 )) using Proposition 10.17.
Follow the shorter tour in {𝑇1,𝑇2}.

3 If the server receives a signal in the origin, terminate.

For Phase 1 of polynomial-time SmartTrust, we first compute via Proposition 10.17 an
(1 + 𝜈)-approximate tour for 𝑅, and denote its makespan by PRD∗.
Using these adaptations, we prove the following main theorem of this section.

Theorem 10.18. For any 𝛼 > 0, the polynomial-time SmartTrust algorithm has a competitive

ratio of at most

min
{︃
(1 + 𝜈) (1 + 𝛼)

(︃
1 + Λ1

OPT

)︃
,max{𝜌, 1 + 𝜈} + 𝜌

𝛼

}︃
,
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Algorithm 14: Polynomial-time SmartTrust
1 Execute SmartStart with the following stopping criteria. If SmartStart decides to

follow a tour 𝑆 of length ℓ (𝑆) at time 𝑡 such that 𝑡 + ℓ (𝑆) > 𝛼 · PRD∗, go to Phase 2. If
SmartStart sleeps or idles at time 𝛼 · PRD∗, go to Phase 3.

2 Wait until time at least 𝛼
𝜌
· PRD∗, then go to Phase 3.

3 Follow the polynomial-time PredReplan strategy until the end.

where 𝜌 = 𝜌 (𝜈) is the competitive ratio of the polynomial-time variant of SmartStart, and 𝜈 the

approximation factor of a polynomial-time approximation algorithm for metric path TSP.

Using 𝜈 = 3
2 , this bound is at most

min
{︃
5
2 (1 + 𝛼)

(︃
1 + Λ1

OPT

)︃
, 2.6514 ·

(︃
1 + 1

𝛼

)︃}︃
.

In the following, we prove Theorem 10.18 by separately proving the error-dependent bound
in Lemma 10.19 and the robustness bound in Lemma 10.20. We use PRD to denote the length
of an optimal tour on the predicted requests.

Lemma 10.19. For any 𝛼 ≥ 0, the polynomial-time SmartTrust algorithm has a competitive

ratio of at most (1 + 𝜈) (1 + 𝛼)
(︂
1 + Λ1

OPT

)︂
.

Proof. We first bound PRD. Fix a min-cost∞-hyperedge cover of 𝑅 by 𝑅 and an optimal tour𝑇 ∗
for 𝑅. For every hyperedge 𝑅′∪ {(𝑥, 𝑟 )} in the cover, we extend𝑇 ∗ by adding the optimal offline
OlTSP tour for 𝑅′ that starts at 𝑥 at the time 𝑡 at which 𝑇 ∗ serves 𝑥 . Note that, since 𝑟 ≤ 𝑡 ,
the makespan of this subtour is bounded by the cost of 𝑅′ ∪ {(𝑥, 𝑟 )}. Since every predicted
request is covered by at least one hyperedge, the constructed tour serves 𝑅, and we conclude
that PRD ≤ OPT+Γ∞(𝑅, 𝑅) . Hence, for the length of the fixed approximate tour on all predicted
requests holds PRD∗ ≤ (1 + 𝜈)PRD ≤ (1 + 𝜈) (OPT + Γ∞(𝑅, 𝑅)).
We now bound the makespan of the tour of the algorithm. If the algorithm terminates

in Phases 1 or 2, its makespan is at most (1 + 𝜈)𝛼 · PRD ≤ (1 + 𝜈)𝛼 (OPT + Γ∞(𝑅, 𝑅)) ≤
(1 + 𝜈) (1 + 𝛼) (OPT + Λ∞) .
Otherwise, the algorithm reaches Phase 3. There, it first computes a tour that serves all

predicted requests of length PRD∗. Whenever an unexpected request (𝑥 ′, 𝑟 ′) appears, the tour
selection policy of the polynomial-time PredReplan algorithm ensures that the makespan of
the remaining tour increases at most by the length of the computed excursion to serve (𝑥 ′, 𝑟 ′).
Let (𝑥, 𝑟 ) be the predicted request that the algorithm computes and uses for the excursion.
We distinguish two cases depending on the algorithm’s remaining tour when request (𝑥 ′, 𝑟 ′)
arrives, and show that the total time for this excursion is bounded by 2 · 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )).

The algorithm served (𝑥, 𝑟 ) at time 𝑡 with 𝑟 ≤ 𝑡 < 𝑟 ′. In this case, the algorithm immedi-
ately deviates from 𝑝 (𝑟 ′) to serve (𝑥 ′, 𝑟 ′) and then returns to 𝑝 (𝑟 ′). By the triangle
inequality, the length of this excursion is bounded by twice the distance between 𝑝 (𝑟 ′)
and 𝑥 , plus twice the distance between 𝑥 ′ and 𝑥 . Since the algorithm’s server is at most
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𝑟 ′ − 𝑟 units away from 𝑥 at time 𝑟 ′, the total time incurred for this excursion is bounded
by 2 · (𝑟 ′ − 𝑟 ) + 2 · 𝑑 (𝑥 ′, 𝑥).

We now bound this value by 2 · 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )). To this end, we again distinguish
two cases. If 𝑟 ′ − 𝑟 ≤ 𝑑 (𝑥 ′, 𝑥), the optimal solution considered in the fixed hyperedge has
no waiting time, that is,𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )) = 2 ·𝑑 (𝑥 ′, 𝑥). Hence, 2(𝑟 ′−𝑟 )+2 ·𝑑 (𝑥 ′, 𝑥) ≤
4 · 𝑑 (𝑥 ′, 𝑥) = 2𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )). In the other case, that is, when 𝑟 ′ − 𝑟 > 𝑑 (𝑥 ′, 𝑥),
the optimal solution considered in the fixed hyperedge has to wait at some point for
the release time 𝑟 ′ of 𝑥 ′, that is, 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )) = (𝑟 ′ − 𝑟 ) + 𝑑 (𝑥 ′, 𝑥), yielding
2(𝑟 ′ − 𝑟 ) + 2 · 𝑑 (𝑥 ′, 𝑥) = 2 · 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 )).

The algorithm plans to serve (𝑥, 𝑟 ) at or after time 𝑟 ′. Here, the algorithm serves (𝑥 ′, 𝑟 ′)
via an excursion from 𝑥 at some time 𝑡 ≥ 𝑟 . This takes at most 𝛾TSP({(𝑥 ′, 𝑟 ′)}, (𝑥, 𝑟 ))
additional time.

By adding up the additional costs for all unexpected requests, we conclude that Phase 3
takes at most PRD∗ + 2 · Γ1(𝑅, 𝑅) time. Adding the time for Phases 1 and 2 and using that 𝜈 ≥ 1
implies that the algorithm’s makespan is at most

(1 + 𝛼)PRD∗ + 2 · Γ1(𝑅, 𝑅) ≤ (1 + 𝜈) (1 + 𝛼)PRD + 2 · Γ1(𝑅, 𝑅)

≤ (1 + 𝜈) (1 + 𝛼)
(︂
OPT + Γ∞(𝑅, 𝑅)

)︂
+ 2 · Γ1(𝑅, 𝑅)

≤ (1 + 𝜈) (1 + 𝛼) (OPT + Λ1) .

This concludes the proof of the lemma. □

Lemma 10.20. For any 𝛼 > 0, the polynomial-time SmartTrust algorithm has a competitive

ratio of at most max{𝜌, 1 + 𝜈} + 𝜌

𝛼
.

Proof. Let ALG denote the makespan of SmartTrust’s tour. Suppose the algorithm enters
Phases 2 and 3. Let 𝐶𝑆 be the cost of SmartStart when serving the whole actual online
instance: as SmartStart is 𝜌-competitive, it holds 𝐶𝑆 ≤ 𝜌OPT. Moreover, since SmartTrust
reaches Phase 3, is must be that 𝛼 · PRD∗ < 𝐶𝑆 . Thus, 𝛼 · PRD∗ < 𝜌 · OPT.

Let 𝑡3 be the time at which Phase 3 starts, 𝑡abort be the time at which Phase 2 begins (that is,
SmartStart is aborted at time 𝑡abort), and 𝑟last be the latest actual release date. We distinguish
two cases.

Case 𝑟last < 𝑡3. Since SmartTrust reaches Phase 3, it also entered Phase 2 at time 𝑡abort. Let
𝐶abort be the length of an 𝜈-approximate tour serving all actual requests that are unserved
at time 𝑡abort. Note that 𝑡abort +𝐶abort > 𝛼 · PRD∗, as otherwise this tour would have been
started in Phase 1. We further distinguish two subcases.

If 𝑡abort ≥ 𝛼
𝜌
· PRD∗, SmartTrust does not have to wait in Phase 2, and thus, we have

𝑡abort = 𝑡3. Observe that 𝑡abort +𝐶abort ≤ 𝐶𝑆 ≤ 𝜌 · OPT. Since 𝑟last < 𝑡3 = 𝑡abort, the length
of Phase 3 is at most PRD∗ +𝐶abort, and we conclude

ALG ≤ 𝑡abort +𝐶abort + PRD∗ ≤ 𝜌 · OPT + PRD∗ ≤
(︂
𝜌 + 𝜌

𝛼

)︂
OPT .
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Otherwise, it holds that 𝑡abort < 𝛼
𝜌
· PRD. Let 𝐶3 be the length of an 𝜈-approximate tour

of all released but unserved actual requests at time 𝑡3. Since we assume 𝑟last < 𝑡3, Phase 3
takes at most 𝐶3 + PRD∗ time. Using that Phase 3 starts at time 𝛼

𝜌
· PRD∗, we obtain

ALG ≤ 𝛼2 PRD
∗ +𝐶3 + PRD∗ = 𝐶3 +

(︂
1 + 𝛼2

)︂
PRD∗ ≤ 𝜈 · OPT +

(︃
1 + 𝛼

𝜌

)︃
𝜌

𝛼
OPT

=

(︂
1 + 𝜈 + 𝜌

𝛼

)︂
· OPT .

Case 𝑟last ≥ 𝑡3. Once the last request has arrived in Phase 3 at time 𝑟last, our tour stays fixed.
The algorithm’s cost after 𝑟last is the cost of following the predicted (1 + 𝜈)-approximate
tour, adapted for incorporating the unexpected, yet unserved, requests. We can bound
this by the cost of returning to the origin, following the predicted (1 + 𝜈)-approximate
tour and finally following an 𝜈-approximate optimal tour through all actual released
requests. Note that the cost for returning to the origin is at most 𝑟last − 𝑡3. Further,
𝑟last ≤ OPT and Phase 2 ensures that 𝑡3 ≥ 𝛼

𝜌
· PRD∗. Hence,

ALG ≤ 𝑟last + (𝑟last − 𝑡3) + PRD∗ + 𝜈 · OPT

≤ 𝑟last +
(︃
𝑟last −

𝛼

𝜌
PRD∗

)︃
+ PRD∗ + 𝜈 · OPT

≤ 2𝑟last +
(︃
1 − 𝛼

𝜌

)︃
𝜌

𝛼
OPT + 𝜈 · OPT ≤

(︂
1 + 𝜈 + 𝜌

𝛼

)︂
OPT .

This concludes the proof of the lemma. □

10.6 Online Metric Dial-a-Ride

In this section, we show that the techniques we have developed for OlTSP in Section 10.4 can
also be used for the more general OlDARP. We consider a slight modification of SmartTrust
from Section 10.4 that enables it for OlDARP. That is, we recompute tours in PredReplan only
if the server is currently not carrying a request.
In the remaining part of this section, we explain how to adapt the proofs for Lemma 10.14

and Lemma 10.15 from OlTSP to OlDARP. But first we define the cost of a hyperedge for the
cover error for OlDARP. By lifting the cost computed by 𝛾TSP to subinstances of OlDARP (that
is, for transportation requests), we define the cost of a hyperedge 𝑅′ ∪ {(𝑥𝑠 , 𝑥𝑑 , 𝑟 )} as

𝛾DaRP(𝑅′, (𝑥𝑠 , 𝑥𝑑 , 𝑟 )) ≔ min
{︁
𝛾TSP(𝑅′, (𝑥𝑠 , 𝑟 )), 𝛾TSP(𝑅′, (𝑥𝑑 , 𝑟 + 𝑑 (𝑥𝑠 , 𝑥𝑑 )))

}︁
+ 𝐷 ,

where 𝐷 ≔ max(𝑥𝑠 ,𝑥𝑑 ,𝑟 ) ∈𝑅∩𝑅 𝑑 (𝑥𝑠 , 𝑥𝑑 ). Further, for any correctly predicted request (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) ∈
𝑅 ∩ 𝑅, we set 𝛾DaRP({(𝑥𝑠 , 𝑥𝑑 , 𝑟 )}, (𝑥𝑠 , 𝑥𝑑 , 𝑟 )) = 0.

We prove the following main theorem for OlDARP.

Theorem 10.21. For any 𝛼 > 0, the (modified) SmartTrust algorithm has a competitive ratio of

at most

min
{︃
(1 + 𝛼)

(︃
1 + 3 · Λ1

OPT

)︃
, 2 + 2

𝛼

}︃
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for the OlDARP problem.

We first prove an error-dependent competitive ratio for our variant of SmartTrust.

Lemma 10.22. For any 𝛼 ≥ 0, SmartTrust is (1 + 𝛼)
(︂
1 + 3 · Λ1

OPT

)︂
-competitive for OlDARP.

Proof. We first bound PRD. Fix a min-cost∞-hyperedge cover of 𝑅 by 𝑅 and an optimal tour𝑇 ∗
for 𝑅. For every hyperedge 𝑅′ ∪ {(𝑥𝑠 , 𝑥𝑑 , 𝑟 )} in the cover, we extend 𝑇 ∗ by adding the optimal
offline OlDARP tour for 𝑅′ that is considered in 𝛾DaRP(𝑅′, (𝑥𝑠 , 𝑥𝑑 , 𝑟 )). Since every predicted
request is covered by at least one hyperedge, the constructed tour serves 𝑅, and we conclude
that PRD ≤ OPT + Γ∞(𝑅, 𝑅).
We now bound the makespan of the tour of the algorithm. If the algorithm terminates in

Phases 1 or 2, its makespan is at most 𝛼 · PRD ≤ 𝛼 · (OPT + Γ∞(𝑅, 𝑅)) ≤ (1 + 𝛼) · (OPT + Λ1).
Otherwise, the algorithm reaches Phase 3. There, it first computes an optimal tour 𝑇 serving

all predicted requests of length PRD. The makespan only increases when unexpected requests
arrive. To this end, fix a min-cost 1-hyperedge cover of 𝑅 by 𝑅 and a hyperedge {(𝑥𝑠 , 𝑥𝑑 , 𝑟 )} ∪
{(𝑥𝑠 , 𝑥𝑑 , 𝑟 )} of this cover. We upper bound the additional cost due to (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) by the cost of
an excursion that serves (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) from the algorithm’s current tour. The algorithm might
find a faster tour to serve all remaining requests and henceforth uses that. We assume that the
minimum in 𝛾DaRP({(𝑥𝑠 , 𝑥𝑑 , 𝑟 )}, (𝑥𝑠 , 𝑥𝑑 , 𝑟 )) is attained by 𝛾TSP({(𝑥𝑠 , 𝑥𝑑 , 𝑟 )}, (𝑥𝑠 , 𝑟 )), and only
note differences for the other case. We distinguish two cases depending on the algorithm’s
remaining tour before request (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) arrived.

The algorithm served (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) at time 𝑡 , 𝑟 ≥ 𝑡 ≥ 𝑟 (𝑟 ≥ 𝑡 ≥ 𝑟 + 𝑑 (𝑥𝑠 , 𝑥𝑑 )). Consider an
excursion that starts at the next point in time when the server reaches a point 𝑥 of
a predicted request, serves (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) and returns to 𝑥 . We now bound the additional
cost for this excursion. If the server follows another excursion at time 𝑟 , it must have
visited point 𝑥 before this excursion, so especially before time 𝑟 , but after time 𝑟 (re-
spectively, 𝑟 + 𝑑 (𝑥𝑠 , 𝑥𝑑 )). If the server serves a correctly predicted request at time 𝑟 , it
will reach 𝑥 (which is in this case the destination point of the currently served request)
latest at time 𝑟 + 𝐷 . In both cases, the distance between 𝑥𝑠 (respectively, 𝑥𝑑 ) and 𝑥 is at
most 𝐷 +𝑟 −𝑟 (respectively, 𝐷 +𝑟 − (𝑟 +𝑑 (𝑥𝑠 , 𝑥𝑑 ))). By the triangle inequality we observe
that the length of the excursion for (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) is bounded by twice the distance from 𝑥

to 𝑥𝑠 (respectively, 𝑥𝑑 ) and the cost for serving (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) from 𝑥𝑠 at time 𝑟 (respectively,
𝑟 + 𝑑 (𝑥𝑠 , 𝑥𝑑 )), that is

2 · (𝐷 + 𝑟 − 𝑟 ) + 𝛾TSP({(𝑥𝑠 , 𝑥𝑑 , 𝑟 )}, (𝑥𝑠 , 𝑟 )) ≤ 3 · 𝛾DaRP({(𝑥𝑠 , 𝑥𝑑 , 𝑟 )}, (𝑥𝑠 , 𝑥𝑑 , 𝑟 )) .

Note that the inequality holds, because (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) can only be served after its release
date, that is, 𝑟 − 𝑟 ≤ 𝛾TSP({(𝑥𝑠 , 𝑥𝑑 , 𝑟 )}, (𝑥𝑠 , 𝑟 )) − 𝐷 (respectively, 𝑟 − (𝑟 + 𝑑 (𝑥𝑠 , 𝑥𝑑 )) ≤
𝛾TSP({(𝑥𝑠 , 𝑥𝑑 , 𝑟 )}, (𝑥𝑑 , 𝑟 + 𝑑 (𝑥𝑠 , 𝑥𝑑 ))) − 𝐷).

The algorithm plans to visit 𝑥𝑠 (𝑥𝑑 ) at or after time 𝑟 ′. In this case, we wait until the al-
gorithm reaches 𝑥𝑠 (respectively, 𝑥𝑑 ) at some time 𝑡 ≥ 𝑟 (respectively, 𝑡 ≥ 𝑟 + 𝑑 (𝑥𝑠 , 𝑥𝑑 )),
and then serve (𝑥𝑠 , 𝑥𝑑 , 𝑟 ) using at most 𝛾DaRP({(𝑥𝑠 , 𝑥𝑑 , 𝑟 )}, (𝑥𝑠 , 𝑥𝑑 , 𝑟 )) additional time.
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Since every actual request is covered by one hyperedge, we conclude that Phase 3 takes time
at most PRD + 3 · Γ1(𝑅, 𝑅). Adding the time for Phases 1 and 2 gives a makespan of at most

(1 + 𝛼)PRD + 3 · Γ1(𝑅, 𝑅) ≤ (1 + 𝛼)
(︂
OPT + Γ∞(𝑅, 𝑅) + 3 · Γ1(𝑅, 𝑅)

)︂
≤ (1 + 𝛼) (OPT + 3 · Λ1) .

This concludes the proof of the lemma. □

For the robustness bound of SmartTrust, note that at time 𝑟last when the last request arrives
the server might be in the process of serving a ride, which has remaining cost 𝐶ride at time 𝑟last.
While we have to add this value to the time until the algorithm computes its final tour𝑇final due
to our modifications, we can also subtract it from the length of𝑇final, because this particular ride
is already served when computing𝑇final. Using the other arguments of the proof of Lemma 10.15,
we conclude the following bound.

Lemma 10.23. For any 𝛼 > 0, SmartTrust has a competitive ratio of at most 2 + 2
𝛼
for OlDARP.

10.7 Application of the Cover Error to Online Network Design

In this final section of the chapter, we apply the cover error Λ𝑘 to other problems and show
that it improves guarantees of existing learning-augmented algorithms. More specifically, we
consider two online network design problems, which are, compared to the online-time problem
OlTSP and OlDARP, online-list problems. That is, the instance contains a list of requests, which
are presented to the algorithm one-by-one. An algorithm has to serve the current request
by executing a certain irrevocable action before the next request is revealed. Moreover, an
online algorithm has no knowledge about future requests. We refer to the book of Borodin and
El-Yaniv [BE98] for more details on online-list problems. We first define the problems that we
consider in this section.

Online Steiner Tree Problem. In the Online Steiner Tree Problem, a sequence of vertices
𝑅 ⊆ 𝑉 (called terminals) of a weighted graph 𝐺 = (𝑉 , 𝐸, 𝑐) with a distinct root 𝜌 is revealed
one-by-one. An algorithm maintains a solution 𝑆 of selected edges and adds edges to 𝑆 such
that every arriving terminal is connected to 𝜌 via edges in 𝑆 . The objective is to minimize the
total cost of selected edges 𝑐 (𝑆) = ∑︁

𝑒∈𝑆 𝑐 (𝑒).

Online Steiner Forest Problem. In the Online Steiner Forest Problem, a sequence of vertex
pairs 𝑅 ⊆ 𝑉 ×𝑉 (called terminal pairs) of a weighted graph𝐺 = (𝑉 , 𝐸, 𝑐) is revealed one-by-one.
An algorithm maintains a solution 𝑆 of selected edges and adds edges to 𝑆 such that for every
arriving terminal pair (𝑠, 𝑡) the vertices 𝑠 and 𝑡 are connected via edges in 𝑆 . The objective is to
minimize the total cost of selected edges 𝑐 (𝑆) = ∑︁

𝑒∈𝑆 𝑐 (𝑒). Note that this problem generalizes
the online Steiner tree problem.

For the online Steiner tree problem and thus for the online Steiner forest problem, every
deterministic online algorithm has a competitive ratio of at least Ω(log |𝑅 |) [IW91]. For on-
line Steiner tree, this competitive ratio is matched by the straightforward greedy algorithm,
which adds the currently cheapest set of edges to connect the arriving request [IW91]. For
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online Steiner forest, an online primal-dual algorithm also achieves a tight competitive ratio of
𝑂 (log |𝑅 |) [BC97]. The greedy algorithm for online Steiner forest has a competitive ratio of
at most 𝑂 (log2 |𝑅 |) [AAB04], and there has been recent progress on an improved analysis for
special instances [BDM22].

In the context of learning-augmented algorithms, both problems have been studied by Azar
et al. [APT22a] and Xu and Moseley [XM22]. Both works consider the input prediction model,
where a set of predicted terminals (respectively, terminal pairs) 𝑅 is given in advance, and give
the following results.

Theorem 10.24 (Xu and Moseley [XM22]). There exists a learning-augmented algorithm for

the online Steiner tree problem with a competitive ratio of at most 𝑂 (log(min{|𝑅 |, 𝜂})), where
𝜂 = max{|𝑅 |, |𝑅 |} − |𝑅 ∩ 𝑅 |.

Their algorithm achieves a best-possible robustness and is 𝑂 (1)-consistent if 𝑅 = 𝑅.

Theorem 10.25 (Azar et al. [APT22a]). There exists a learning-augmented algorithm for the

online Steiner tree and online Steiner forest problem that has, for any 𝑇 ⊆ 𝑅 and 𝑇 ⊆ 𝑅 with

|𝑇 | = |𝑇 |, a competitive ratio of at most 𝑂 (log(min{|𝑅 |,Δ})) + 𝐷
OPT , where 𝐷 is the value of a

min-cost perfect matching between 𝑇 and 𝑇 with respect to the shortest path metric of 𝐺 , and

Δ = |𝑅 \𝑇 | + |𝑅 \𝑇 |.

The interesting detail about this latter result is that it actually provides a family of perfor-
mance guarantees, for every possible choice of 𝑇 and 𝑇 . The intuition of this controllable
error measure is that all (predicted) requests that are not in 𝑇 or 𝑇 are outliers that allow us to
potentially match 𝑇 with 𝑇 in a very cheap way, hence giving a good performance guarantee.
This algorithm also matches the best-possible robustness of 𝑂 (log |𝑅 |) and is 𝑂 (1)-consistent
if 𝑅 = 𝑅.
The goal of this section is to analyze the learning-augmented algorithm of Azar et al. with

respect to our cover error Λ𝑘 . This shows that the cover error can also be applied to online-list
problem. To this end, we use the following natural cost functions for hyperedges:

Steiner tree: 𝛾ST(𝑅′, 𝑥 ′) ≔ cost of an optimal Steiner tree for terminals 𝑅′ with root 𝑥 ′.

Steiner forest: 𝛾SF(𝑅′, 𝑥 ′) ≔ cost of an optimal Steiner forest for terminal pairs 𝑅′ when
connecting via 𝑥 ′ = (𝑠′, 𝑡 ′) is free, that is, there is an edge (𝑠′, 𝑡 ′) in 𝐺 with cost 0.

Then, we have the following theorem.

Theorem 10.26. There exist learning-augmented algorithms that have, for every 𝑘 ≥ 1, a total
cost of at most

• 𝑂 (1) · OPT +𝑂 (log𝑘) · Λ𝑘 for the online Steiner tree problem, and

• 𝑂 (1) · OPT +𝑂 (𝑘) · Λ𝑘 for the online Steiner forest problem.

Further, they have a robustness ratio of at most 𝑂 (log |𝑅 |).
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Algorithm 15: The Algorithm of Azar et al. [APT22a]
1 𝐵 ← 0, 𝐵 ← 0 and 𝑆 ← ∅
2 Procedure UponRequest(𝑟 )
3 Send 𝑟 to ON and augment 𝑆 . Increase 𝐵 by the cost incurred by ON for 𝑟 .
4 if 𝐵 ≥ 2𝐵 then

5 𝐵 ← 𝐵

6 Compute the smallest 𝑢 such that 0 ≤ 𝑢 ≤ |𝑅 | and 𝑐 (Partial(𝑅,𝑢)) ≤ 3𝜈𝐵.
7 Augment 𝑆 with the elements of Partial(𝑅,𝑢)
8 Start a new instance of the online algorithm ON where all edges in 𝑆 have cost 0.

We emphasize that these bounds hold simultaneously for any 𝑘 ≥ 1. Before proving this
theorem, we show the benefit of the cover error compared to the previous results.

We give a family of instances of the online Steiner tree problem with 𝑛 actual requests and an
input prediction for which the algorithms of Azar et al. [APT22a] and Xu and Moseley [XM22]
perform arguably well, but their error measures and analyses yield a bound of𝑂 (log𝑛) ·OPT +
𝑂 (𝜀), which could be guaranteed even without predictions. For some 𝜀 > 0, the instance is
composed of one terminal request at 𝑥1 and 𝑛 − 1 requests in an 𝜀-ball around the Steiner
point 𝑥2, but no request is exactly on 𝑥2. Both 𝑥1 and 𝑥2 are predicted, that is, 𝑅 = {𝑥1, 𝑥2}. We
can immediately observe that the error measure of Xu and Moseley evaluates in this case to
𝜂 = 𝑛 − 1. For the error of Azar et al., note that any perfect matching is composed of at most
two matches, therefore Δ ≥ 𝑛 − 2 and 𝐷 = 𝑂 (𝜀). On the other hand, our cover error is bounded
by Λ𝑘 ≤ Λ1 = 𝑂 (𝑛 · 𝜀) for any 𝑘 , because 𝑥2 covers all requests in the 𝜀-ball around it. Then,
Theorem 10.26 implies that the algorithm of Azar et al. is indeed constant competitive for this
instance when 𝜀 → 0.

10.7.1 The Algorithm of Azar, Panigrahi, and Touitou

In this section, we introduce the algorithmic framework of Azar et al. [APT22a] and finally
prove an auxiliary lemma that helps to abstract parts of the connection between their algorithm
and our cover error. Then, we prove Theorem 10.26 separately for each problem.
Let 𝐺 = (𝑉 , 𝐸, 𝑐) be a weighted graph, 𝑅 ⊆ 𝑉 be the actual input sequence, and 𝑅 ⊆ 𝑉 a

predicted input. The framework (Algorithm 15) is the same for both, Steiner tree and Steiner
forest. It combines in an iterative manner the execution of a plain online algorithm ON for the
problem on the actual request set 𝑅 with partial solutions for 𝑅, which are computed using
an 𝜈-approximation algorithm PC for the price-collecting variant of the corresponding offline
problem. In these variants, every request 𝑟 ∈ 𝑅 has an associated penalty 𝜋 (𝑟 ), and the goal
is compute a solution 𝑆 ⊆ 𝐸 that serves requests 𝑅𝑆 ⊆ 𝑅 and minimizes 𝑐 (𝑆) +∑︁

𝑟 ∈𝑅\𝑅𝑆 𝜋 (𝑟 ).
For a set of requests 𝑄 and a penalty function 𝜋 , we denote the solution of PC for 𝑄 and 𝜋 by
PC(𝑄, 𝜋).
The execution of the framework for the 𝑖th request is called the 𝑖th iteration. Whenever

in an iteration the total cost paid by the online algorithm so far doubles with respect to the
last iteration it doubled (cf. Line 4), an offline solution for some part of 𝑅 is added using the
subroutine Partial (cf. Algorithm 16). Such an iteration is called major iteration, and we call
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Algorithm 16: The Partial Subroutine [APT22a]
1 Subroutine Partial(𝑅,𝑢)
2 if 𝜈 · 𝑢 ≥ |𝑅 | then return ∅
3 For every integer 𝑥 , let 𝜋𝑥 be the penalty function such that ∀𝑟 ∈ 𝑅 : 𝜋𝑥 (𝑟 ) = 𝑥 .
4 Let 𝑖 be the minimum integer s.t. PC(𝑅, 𝜋2𝑖 ) does not satisfy at most 𝜈 · 𝑢 requests.
5 Let 𝑆1 = PC(𝑅, 𝜋2𝑖−1) and 𝑆2 = PC(𝑅, 𝜋2𝑖 ), and 𝑢1, 𝑢2 be the corresponding number of

request from 𝑅 that are not satisfied by 𝑆1, 𝑆2, respectively.
6 if 𝜈 · 𝑢 ≥ 1

2 (𝑢1 + 𝑢2) then return 𝑆1 else return 𝑆2

the sequence of the following iterations until the next major iteration (including this next one)
a phase. Let𝑚 be the total number of phases. We denote by 𝑄 𝑗 the set of requests served by
the online algorithm in phase 𝑗 , and for any 𝑄 ′𝑗 ⊆ 𝑄 𝑗 , ON𝑗 (𝑄 ′𝑗 ) is the total cost of the online
algorithm incurred to serve the requests in 𝑄 ′𝑗 in phase 𝑗 . We write ON𝑗 for ON𝑗 (𝑄 𝑗 ). Note
that the online algorithm is always allowed to use the augmented solutions by the prediction
with zero cost. Further, 𝐵𝑖 denotes the total cost of the online algorithm until the latest previous
major iteration before iteration 𝑖 .
We now state two auxiliary results of Azar et al. for their framework. The first lemma

characterized solutions returned by Partial.

Lemma 10.27 ([APT22a]). The solution 𝑆 returned by Partial(𝑅,𝑢) has the following properties:

(1) 𝑆 satisfies at least |𝑅 | − 2𝜈 · 𝑢 requests of 𝑅, and

(2) 𝑐 (𝑆) ≤ 3𝜈 · 𝑐 (𝑆∗), where 𝑆∗ is the minimum cost solution satisfying at least |𝑅 | −𝑢 requests

from 𝑅.

The next lemma allows us to bound the total cost of the framework by bounding two separate
parts, which are defined by splitting the execution at any major iteration.

Lemma 10.28 ([APT22a]). Fix any major iteration 𝑖 . Then,

(1) the total cost for iterations 1, . . . , 𝑖 is at most 𝑂 (1) · OPT +𝑂 (1) · 𝐵𝑖−1, and

(2) the total cost for iterations 𝑖 + 1, . . . , |𝑅 | is at most 𝑂 (1) ·max{ON𝑗−1,ON𝑗 }.

Our goal is to apply Lemma 10.28 to the major iteration 𝑖 in which all predicted requests
become satisfied by our solution 𝑆 (if such an iteration exists). Then, we can use a∞-hyperedge
cover of 𝑅 by 𝑅 to bound to the total cost of the first 𝑖 iterations, and a 𝑘-hyperedge cover of 𝑅
by 𝑅 to bound the total cost of the remaining iterations. Since this idea depends on ON and the
definition of the hyperedge costs, we formulate it in the following conditional lemma, which
we later apply for each concrete problem.

Lemma 10.29. Suppose that for some function 𝜇 : ℕ→ ℝ+ and some integer 𝑘 ≥ 1 it holds that

(a) OPT(𝑅) ≤ OPT + Γ∞(𝑅, 𝑅), and

(b) if there is a major iteration 𝑖 in which all predicted requests become served, then we require

ON𝑗 (𝐻 ) ≤ 𝑂 (𝜇 (𝑘)) · 𝛾 (𝐻, 𝑥) for any 𝐻 ⊆ 𝑄 𝑗 with |𝐻 | ≤ 𝑘 , 𝑗 ∈ {𝑚 − 1,𝑚} and 𝑥 ∈ 𝑅.
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Then, the total cost of Algorithm 15 is at most 𝑂 (1) · OPT +𝑂 (𝜇 (𝑘)) · Λ𝑘 .

Proof. If there exists a major iteration in which all predicted requests become satisfied, let
this be the 𝑖th iteration. Otherwise, let 𝑖 be the last iteration. By Lemma 10.28, it suffices to
bound 𝐵𝑖−1 and max{ON𝑗−1,ON𝑗 } to get an overall bound on the algorithm’s total cost.
We start with 𝐵𝑖−1. Let 𝑖′ < 𝑖 be the iteration in which 𝐵𝑖−1 was set in Line 5. Thus,

some predicted requests were not satisfied by Partial in iteration 𝑖′. By the definition of the
algorithm, we conclude that the total cost Partialmust pay for satisfying all predicted requests
in iteration 𝑖′, 𝑐 (Partial(𝑅, 0)), is strictly larger than 3𝜈 · 𝐵𝑖′ = 3𝜈 · 𝐵𝑖−1. By Lemma 10.27,
Partial(𝑅, 0) approximates the cheapest solution that satisfies all predicted requests within a
factor of 3𝜈 . This implies that the optimal solution for 𝑅, which is such a solution, has cost of
at least 𝐵𝑖−1, that is, OPT(𝑅) ≥ 𝐵𝑖−1. Condition (a) therefore implies

𝐵𝑖−1 ≤ OPT(𝑅) ≤ OPT + Γ∞(𝑅, 𝑅) . (10.3)

Second, we bound max{ON𝑚−1,ON𝑚}, and assume that all predicted requests 𝑅 are satisfied
in iteration 𝑖 . Let 𝑗 ∈ {𝑚−1,𝑚}. Fix amin-cost𝑘-hyperedge cover of𝑅 by𝑅, a hyperedge𝑅′∪{𝑥}
of the cover, and let 𝐻 𝑗 = 𝑄 𝑗 ∩ 𝑅′ be the subset of requests of the hyperedge that ON𝑗 serves in
phase 𝑗 . Since |𝑅′ | ≤ 𝑘 , we have |𝐻 𝑗 | ≤ 𝑘 , and thus, Condition (b) implies

ON𝑗 (𝐻 𝑗 ) ≤ 𝑂 (𝜇 (𝑘)) · 𝛾 (𝐻 𝑗 , 𝑥) .

By the choice of the hyperedge cover, every request in𝑄 𝑗 is in at least one hyperedge. Therefore,
summing over all hyperedges of the cover yields

ON𝑗 (𝑄 𝑗 ) ≤ 𝑂 (𝜇 (𝑘)) · Γ𝑘 (𝑅, 𝑅) ,

and thus,
max{ON𝑚−1,ON𝑚} ≤ 𝑂 (𝜇 (𝑘)) · Γ𝑘 (𝑅, 𝑅) . (10.4)

Combining (10.3) and (10.4) with Lemma 10.28 implies that the total cost is at most

𝑂 (1) · OPT +𝑂 (Γ∞(𝑅, 𝑅)) +𝑂 (𝜇 (𝑘)) · Γ𝑘 (𝑅, 𝑅) ≤ 𝑂 (1) · OPT +𝑂 (𝜇 (𝑘)) · Λ𝑘 ,

which concludes the proof of the lemma. □

10.7.2 Online Steiner Tree

The goal of this section is to configure Algorithm 15 for the online Steiner tree problem, and
prove Lemma 10.29 with 𝜇 (𝑘) = log𝑘 , which implies the first bound of Theorem 10.26.

As baseline online algorithmwe use the Greedy algorithm [IW91], which connects an arriving
terminal to the root using the shortest path to the current solution. We denote it by ONST. As
approximation algorithm for the price-collecting Steiner tree problem, we use the algorithm by
Goemans and Williamson [GW95]. These algorithms are also used in [APT22a]. For the cover
error, we define the cost 𝛾ST(𝑅′, 𝑥 ′) of a hyperedge 𝑅′ ∪ {𝑥 ′} as the cost of an optimal offline
Steiner Tree for terminals 𝑅′ with root 𝑥 ′.
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Figure 10.3: Augmentation of an optimal Steiner tree for 𝑅 to a Steiner tree that serves 𝑅 using
solutions of subinstances (solid) induced by hyperedges of a min-cost 𝑘-hyperedge
cover of 𝑅.

Then, we verify the conditions of Lemma 10.29 in the following two lemmas, which implies
that the total cost of the algorithm is, for any integer 𝑘 ≥ 1, at most𝑂 (1) ·OPT +𝑂 (log𝑘) ·Λ𝑘 .

Lemma 10.30. OPT(𝑅) ≤ OPT + Γ∞(𝑅, 𝑅).

Proof. Consider a min-cost∞-hyperedge cover of 𝑅 by 𝑅. For every hyperedge 𝑅′ ∪ {𝑥} in the
cover, we connect 𝑥 ∈ 𝑅 with all predicted requests in 𝑅′ using the Steiner tree considered
in 𝛾ST(𝑅′, 𝑥). Adding an optimal Steiner Tree for the terminal set 𝑅 thus also satisfies all
requests in 𝑅 (cf. Figure 10.3), and since the augmentation cost are at most the hyperedge cost,
we conclude that OPT(𝑅) ≤ OPT + Γ∞(𝑅, 𝑅) . □

Lemma 10.31. If there is a major iteration 𝑖 in which all predicted requests become served, then it

holds that ON𝑗 (𝐻 ) ≤ 𝑂 (log𝑘) ·𝛾 (𝐻, 𝑥) for any 𝐻 ⊆ 𝑄 𝑗 with |𝐻 | ≤ 𝑘 , 𝑗 ∈ {𝑚 − 1,𝑚} and 𝑥 ∈ 𝑅.

Proof. Assume that there is such a major iteration 𝑖 , and let 𝑗 ∈ {𝑚 − 1,𝑚}, 𝐻 𝑗 ⊆ 𝑄 𝑗 such
that |𝐻 𝑗 | ≤ 𝑘 and 𝑥 ∈ 𝑅. We first argue thatONST

𝑗 (𝐻 𝑗 ) ≤ 𝑂 (log𝑘) ·OPT𝑗 (𝐻 𝑗 ),whereOPT𝑗 (𝐻 𝑗 )
is the value of the optimal Steiner Tree for 𝐻 𝑗 in which edges that were bought before phase 𝑗
have zero cost. This is because for each terminal 𝑟 ∈ 𝐻 𝑗 , the cheapest path to a previous terminal
in an instance with terminals 𝑅 is at most as expensive as the cheapest path to a previous
terminal in an instance with terminals 𝐻 𝑗 , and the greedy algorithm is 𝑂 (log|𝐻 𝑗 |) ≤ 𝑂 (log𝑘)
competitive in an instance with terminal 𝐻 𝑗 . This argumentation has also been used by Azar
et al. [APT22a, Proof of Lemma 3.2].
Since we assume that 𝑥 has already been served in or before iteration 𝑖 , a feasible solution

for 𝐻 𝑗 in phase 𝑗 is given by connecting 𝐻 𝑗 optimally to 𝑥 . Therefore, OPT𝑗 (𝐻 𝑗 ) ≤ 𝛾ST(𝐻 𝑗 , 𝑥),
and thus,

ONST
𝑗 (𝐻 𝑗 ) ≤ 𝑂 (log𝑘) · OPT𝑗 (𝐻 𝑗 ) ≤ 𝑂 (log𝑘) · 𝛾ST(𝐻 𝑗 , 𝑥) ,

which concludes the proof of the lemma. □
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10.7.3 Online Steiner Forest

The goal of this section is to configure Algorithm 15 for the online Steiner forest problem, and
prove Lemma 10.29 with 𝜇 (𝑘) = 𝑘 , which implies the second bound of Theorem 10.26.
As baseline online algorithm, Azar et al. [APT22a] introduces a variant of the 𝑂 (log |𝑅 |)-

competitive online algorithm of Berman and Coulston [BC97], which we denote by ONSF. As
approximation algorithm for the price-collecting Steiner tree problem, we use the algorithm
by Hajiaghayi and Jain [HJ06]. For the cover error, we define the cost 𝛾SF(𝑅′, (𝑠′, 𝑡 ′)) of a
hyperedge 𝑅′ ∪ {(𝑠′, 𝑡 ′)} as the value of the optimal offline Steiner forest for terminal pairs 𝑅′
where the distance between 𝑠′ and 𝑡 ′ has zero cost.

We verify the conditions of Lemma 10.29 in the following two lemmas, which implies that
the total cost of the algorithm is, for any integer 𝑘 ≥ 1, at most 𝑂 (1) · OPT +𝑂 (𝑘) · Λ𝑘 .

Lemma 10.32. OPT(𝑅) ≤ OPT + Γ∞(𝑅, 𝑅).

Proof. Fix an optimal solution OPT(𝑅) for 𝑅 and fix a min-cost∞-hyperedge cover of 𝑅 by 𝑅.
For every hyperedge 𝑅′ ∪ {(𝑠, 𝑡)} in the cover, we augment OPT(𝑅) with the solution of the
subinstance that is considered in 𝛾SF(𝑅′, (𝑠, 𝑡)). Note that any terminal pair (𝑠, �̂�) ∈ 𝑅 that is
connected via connecting to 𝑠 and 𝑡 in this solution, remains connected, because 𝑠 and 𝑡 are
connected in the solution of 𝑅. Since every client in 𝑅 is contained in at least one hyperedge,
the final solution satisfies 𝑅, and we conclude OPT(𝑅) ≤ OPT + Γ∞(𝑅, 𝑅). □

Lemma 10.33. If there is a major iteration 𝑖 in which all predicted requests become served, then

it holds ON𝑗 (𝐻 ) ≤ 𝑂 (log𝑘) · 𝛾 (𝐻, 𝑥) for any 𝐻 ⊆ 𝑄 𝑗 with |𝐻 | ≤ 𝑘 , 𝑗 ∈ {𝑚 − 1,𝑚} and 𝑥 ∈ 𝑅.

Proof. Assume that there is such a major iteration 𝑖 , and let 𝑗 ∈ {𝑚 − 1,𝑚}, 𝐻 𝑗 ⊆ 𝑄 𝑗 such
that |𝐻 𝑗 | ≤ 𝑘 and 𝑥 ∈ 𝑅. For every (𝑠, 𝑡) ∈ 𝐻 𝑗 , ONSF pays at most twice the distance to
any previous request [APT22a, Proof of Lemma 4.3]. Since we are assuming that (𝑠, �̂�) has
already been connected before Phase 𝑗 , we conclude that ONSF

𝑗 ({(𝑠, 𝑡)}) ≤ 2 ·𝛾SF({(𝑠, 𝑡)}, (𝑠, �̂�)).
Summing over all requests in 𝐻 𝑗 gives

ONSF
𝑗 (𝐻 𝑗 ) ≤ 2𝑘 · max

(𝑠,𝑡 ) ∈𝐻 𝑗

𝛾SF({(𝑠, 𝑡)}, (𝑠, �̂�)) ≤ 2𝑘 · 𝛾SF(𝐻 𝑗 , (𝑠, �̂�)) = 𝑂 (𝑘) · 𝛾SF(𝐻 𝑗 , (𝑠, �̂�)) ,

which concludes the proof of the lemma. □

10.8 Concluding Remarks

In this chapter, we showed that additional information on the input can drastically improve the
performance of an online algorithm for OlTSP. Moreover, our algorithms achieve robustness
using a delay strategy. Further, we extended these results to OlDARP and polynomial-time
algorithms, and showed improved bounds for the half-line metric.

We introduced the cover error, a universal error measure for input predictions. We showed
that the cover error can be applied to both, online-time routing problems and online-list
network design problems. For the latter, the cover error was able to give tighter bounds for
some instances and predictions compared to previous prediction errors. It would be interesting
to see whether the cover error can also successfully be applied to other problems.
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Bibliographic Note

This chapter is based on joint work with Giulia Bernardini, Alberto Marchetti-Spaccamela,
Nicole Megow, Leen Stougie, and Michelle Sweering [Ber+22a]. Thus, some parts of this chapter
are identical with [Ber+22a]. Some parts of [Ber+22a] also appear in the Ph.D. thesis of Michelle
Sweering.
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Zusammenfassung

Schedulingprobleme sind grundlegende kombinatorische Optimierungsprobleme und allge-
genwärtig in unserem Alltag. Beispielsweise liegt ein Schedulingproblem vor, wenn in einem
Unternehmen Aufgaben auf Beschäftigte verteilt und deren Bearbeitung zeitlich geplant wer-
den müssen. Jede Aufgabe ist unterschiedlich komplex und jeder Beschäftigte kann aufgrund
seiner Spezialisierung und seiner individuellen Berufserfahrung jede Aufgabe unterschiedlich
schnell bearbeiten. Da die Aufgaben möglichst schnell erledigt werden sollen, stellt sich die
Frage, wann welcher Beschäftigte an welcher Aufgabe arbeiten soll. Bei wenigen Aufgaben und
Beschäftigten kann ein guter Ablaufplan möglicherweise noch leicht gefunden werden. Bei
vielen Beschäftigten und Aufgaben werden allerdings Algorithmen benötigt, um gute Lösungen
zu finden, da es deutlich mehr mögliche Alternativen gibt und das Problem somit viel komplexer
ist.

Diese Arbeit betrachtet dieses und ähnliche Schedulingprobleme in einem abstrakten Modell
und stellt Lösungsalgorithmen mit beweisbaren Gütegarantien vor. In diesem abstrakten Modell
besteht die Aufgabe darin, Jobs zeitlich auf Maschinen so einzuplanen, dass zu jedem Zeitpunkt
auf jeder Maschine höchstens ein Job bearbeitet wird und zu jedem Zeitpunkt jeder Job auf
höchstens einer Maschine bearbeitet wird. Manchmal werden auch weitere Einschränkungen
betrachtet, wie zum Beispiel, dass sich ein Job über die gesamte Zeit auf höchstens einer be-
stimmten Maschine befinden darf. Jeder Job hat ein erforderliches Bearbeitungsvolumen und
wird auf jeder Maschine mit einer bestimmten Geschwindigkeit bearbeitet. Diese Geschwindig-
keiten können für jedes Job-Maschinen-Paar unterschiedlich sein; in diesem Fall nennt man
die Maschinen unverwandt (engl. unrelated). In dieser Arbeit werden auch Spezialfälle von
unverwandten Maschinen untersucht, die diese Geschwindigkeiten einschränken. Ein Job ist
fertiggestellt, wenn sein benötigtes Bearbeitungsvolumen erreicht wurde. Der Zeitpunkt, zu
dem ein Job fertiggestellt wird, wird sein Fertigstellungszeitpunkt genannt. Ein Ablaufplan ist
zulässig, wenn er alle Jobs fertigstellt und gegebenenfalls noch weitere Eigenschaften erfüllt.
In vielen Anwendungsszenarien wird ein zulässiger Ablaufplan gesucht, der eine bestimmte
Zielfunktion optimiert. In dieser Arbeit werden hauptsächlich die folgenden zwei Zielfunk-
tionen betrachtet, die minimiert werden sollen: der späteste Fertigstellungszeitpunkt und der
durchschnittliche Fertigstellungszeitpunkt.

In dieser Arbeit werden Schedulingprobleme und zugehörige Algorithmen in verschiedenen
Informationsmodellen betrachtet. Ein Informationsmodell beschreibt, welche Informationen
einer Instanz eines Problems zu welchem Zeitpunkt einem Algorithmus zur Verfügung gestellt
werden. Die in dieser Arbeit betrachteten Modelle lassen sich in drei große Kategorien einteilen:
das Offline-Modell, das Online-Modell und das Learning-Augmented-Modell.
Im Offline-Modell stehen einem Algorithmus alle Informationen der Schedulinginstanz

zur Verfügung. In diesem Modell werden Lösungsalgorithmen unter Laufzeitbeschränkungen
untersucht. Das bedeutet, dass ein Algorithmus nur eine bestimmte Anzahl an elementaren
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Operationen ausführen darf, um eine Lösung für eine Instanz zu berechnen, wobei diese Ein-
schränkung von der Größe der Instanz abhängt, also zum Beispiel der Anzahl an Maschinen
und Jobs. Unter dieser Restriktion können für viele Schedulingprobleme Algorithmen keine
optimalen Lösungen für bestimmte Instanzen berechnen. Deshalb werden Approximationsalgo-
rithmen betrachtet, die unter der Laufzeitbeschränkung Lösungen berechnen, die höchstens um
einen bestimmten beweisbaren Faktor von einer optimalen Lösung abweichen. Im ersten Teil
der Arbeit werden Schedulingprobleme und Approximationsalgorithmen im Offline-Modell
behandelt.
Im Online-Modell werden einem Algorithmus die Informationen der Schedulinginstanz

über die Zeit mitgeteilt und ein Algorithmus kann einen in der Vergangenheit liegenden
Ablaufplan nicht mehr ändern. In dieser Arbeit werden zwei Online-Modelle betrachtet, die auch
gemeinsam auftreten können. Im ersten Modell werden Jobs erst zu bestimmten Zeitpunkten
verfügbar, von denen ein Algorithmus vorher nichts weiß. Im zweitenModell sind die benötigten
Bearbeitungsvolumina der Jobs unbekannt und ein Algorithmus kennt das genaue benötigte
Bearbeitungsvolumen eines Jobs erst dann, wenn dieser fertiggestellt wird. Solche Algorithmen
werden als nicht-hellseherisch bezeichnet. In Online-Modellen ist es für Algorithmen oft
nicht möglich optimale Lösungen zu finden, da dazu bereits zu Beginn eines Ablaufplans
Entscheidungen getroffen werden müssten, die aber erst nach Bekanntwerden der gesamten
Instanz Teil einer optimalen Lösung werden. Daher wird versucht, kompetitive Algorithmen zu
entwerfen, die Lösungen berechnen, die höchstens um einen bestimmten beweisbaren Faktor
von einer optimalen Lösung abweichen. Im zweiten Teil der Arbeit werden diese Online-Modelle
untersucht und verbesserte Algorithmen und Analysen präsentiert.

Das Learning-Augmented-Modell liegt zwischen dem Online-Modell und dem Offline-Modell.
Dieses Modell ist anwendbar, wenn es in einem Online-Modell unrealistisch erscheint, dass
überhaupt keine Informationen über die unsicheren Informationen zur Verfügung stehen,
aber auch nicht garantiert werden kann, dass diese Informationen präzise zur Verfügung
stehen, wie es im Offline-Modell der Fall ist. Stattdessen wird im Learning-Augmented-Modell
angenommen, dass es eine Vorhersage über die unsicheren Instanzparameter gibt, zum Beispiel,
wie viel Bearbeitungsvolumen ein Job benötigt. Diese Vorhersage muss nicht der Wahrheit
entsprechen und es werden keine Annahmen über ihre Qualität getroffen. Solche Vorhersagen
können beispielsweise durch maschinelles Lernen aus historischen Daten generiert werden. Das
Ziel ist es, Algorithmen zu entwickeln, die diese Vorhersagen nutzen und dadurch beweisbar
besser sind als Algorithmen, die keine Vorhersagen verwenden. Gleichzeitig muss sichergestellt
werden, dass die Algorithmen der Vorhersage nicht zu sehr vertrauen, um auch dann kompetitiv
zu sein, wenn die Vorhersage völlig falsch ist. Im dritten und letzten Teil dieser Arbeit werden
Algorithmen für Learning-Augmented-Modelle verschiedener Schedulingprobleme entworfen
und untersucht.
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