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Chapter 1

Introduction - Industrial
radio systems engineering

Communication systems evolve rapidly to cater to new use cases with new
requirements. With the advent of digital communication, we observed an
exponential growth in possible data rates for human-centered communication
needs. Nowadays society is undergoing a fundamental transformation: digi-
tization. We, the people, require higher data rates to watch high resolution
videos, transfer large files, be in video chats with lots of people simulta-
neously, and more recently stream video games. All these use cases can
handle latency and occasional outages while being able to resume operation
immediately after an error. In most cases such errors are not even perceived
by users. Thus, current systems are designed for these enhanced Mobile
Broadband (eMBB) use cases that trade in low latency and high reliability
for higher overall throughput.

Over the course of the last years, Internet of Things (IoT) applications have
become more and more popular. For private consumers, IoT applications
include novel smart home appliances and health care utilities. According
to some estimates, many more IoT devices than human-operated devices
are online nowadays. This massive Machine Type Communication (mMTC)
device class exhibits different communication behavior with short packets, low
energy consumption, sporadic communication, low reliability, and high error
tolerance. Such devices are mostly used for monitoring, such as gathering
environmental data or maintaining situational awareness.

A third class of applications is gaining momentum now; the class of mission-
critical applications that include autonomous driving, Factory Automation
(FA), and Motion Control (MC), is becoming more and more popular [Fet14,
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AZB+21]. These mission-critical Industry 4.0 (I4.0) wireless communication
systems require support for short packet communication with real-time
deadlines. Furthermore, they require high reliability with exceptionally
high resilience to burst errors, i.e. Consecutive Erroneous Packets (CEPs).
Finally, these industrial applications require extremely low latency. These
requirements compete with each other in the Ultra Reliable Low Latency
Communication (URLLC) use case class.

During the 5th Generation New Radio (5G NR) standardization process,
it was recognized that current standards, e.g. Long Term Evolution (LTE)
and IEEE 802.11 (Wi-Fi), solely focus on eMBB use cases, while mMTC and
URLLC use cases are not addressed sufficiently. Thus, the 5G NR standard
includes three use case profiles: eMBB for human-centered high data rate
applications, mMTC for IoT devices, and URLLC for mission-critical I4.0
applications [OMM16, DPS18]. We focus on URLLC in our work.

Besides the rise of new application classes with their specific requirements,
we observe a trend towards softwarization. To this end, softwarization is
a key component to enable Cloud Radio Access Network (Cloud RAN)
deployments [CDG+21]. Cloud RAN configurations allow components to be
flexibly combined and extended without the need to re-deploy an entirely new
system. After an initial Cloud RAN deployment, these systems may receive
gradual improvements to better fit the current use case. Furthermore, Cloud
RAN deployments provide the flexibility to be adapted individually at every
site and Cloud RANs can be reconfigured to the farthest possible extend
whenever the requirements change. However, before we discuss technological
trends, we first consider industrial application requirements.

1.1 Industrial radio requirements

The origins of this work to identify industrial radio requirements can be found
in projects Innovative Wireless Technologies for Industrial Automation (Hi-
Flecs) and TACtile interNET 4.0 (TACNET 4.0). Project HiFlecs targeted
novel industrial wireless communication systems to meet the requirements
of I4.0 Closed-Loop-Control (CLC) applications [BDG+17]. The efforts to
identify and refine the requirements for I4.0 wireless communication were
picked up in project TACNET 4.0 along with further research towards suit-
able solutions [GSS+18, GSS+21]. These research efforts heavily impacted
5G NR standardization and requirements identification [3GP19a, 3GP20].
In our work, we focus on PHYsical layer (PHY) and Medium-Access-Control
(MAC) technologies for wireless communication systems to improve URLLC
systems.
The authors in [DMW+17] built a connection between the Key Perfor-
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mance Indicators (KPIs) in the automation industry, Mean Time To Failure
(MTTF), and in the communications industry, Frame-Error-Rate (FER).
However, this results in FER requirements that are extremely low and require
enormous effort to fulfill. Meanwhile the issue to minimize CEPs, or burst
errors, is not addressed directly. In [DBD20], we proposed to shift the KPI
to burst error minimization to directly address application requirements.
Thus, exceeding the maximum number of CEPs on a single link leads to an
emergency halt of the whole system. In particular, mission-critical systems
that require ultra reliable communication and suffer catastrophically from
burst errors are the focus of our work [3GP20].
The industrial wireless radio communication system requirements, low

latency and high reliability, and the small packet constraint with real-time
deadlines present contradicting targets for wireless communication systems.
Furthermore, these industrial applications expose periodic deterministic com-
munication behavior with short packets and real-time deadlines [3GP19a].
Moreover, smaller packets make it more difficult to satisfy reliability re-
quirements. Lower latency requirements make MAC layer re-transmission
mechanisms more challenging or even impossible. Real-time deadlines and
latency requirements of less than 1ms are expected, while communication pe-
riodicity is on the same time scale. Thus, we expect one-shot communication
systems to be the norm in these scenarios.

Industrial radio measurement campaigns [DHC+19, MBF+05] show that
all channels follow a Rayleigh fading model. Distributed Access Points
(APs) and antennas improve spatial diversity in an Ultra Dense Network
(UDN) and thus, robustness against deep fading events on a single link in
these particularly challenging channels. Likewise, a Cloud RAN architecture
enables distributed APs to boost reliability by observing the same signal
through different channels and joint processing [WRB+14, RBM+15].

Throughout this work, we investigate communication system components
and their impact on latency and reliability with respect to URLLC require-
ments in a Cloud RAN implementation where functional parts are either
distributed or centralized.

1.2 Softwarization for Cloud RANs

Traditional Radio Access Networks (RANs) are specialized hardware mono-
liths. Together with ever increasing system complexity, these monoliths
tend to be a hindrance to progress [Ray03]. At this point, only the largest
companies are able to develop such monoliths. Future RAN deployments are
expected to become more flexible to adopt new technologies more rapidly.
Commercial-Of-The-Shelf (COTS) hardware, such as General Purpose Pro-
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cessors (GPPs), offer the opportunity to innovate again. Generally, higher
RAN layers are more prone to softwarization [AVK19, MMM19]. However,
the need for RAN softwarization has been recognized [Lem17, DKP+17] and
thus, the demand for software RAN solutions is growing [LA20]. Further,
the O-RAN Alliance (O-RAN) is an industry organization that drives RAN
softwarization to be able to deploy open systems [O-R21].
A full software implementation offers great flexibility [Gra13]. In our

work, we consider a Cloud RAN under software design principles. Previously,
hardware design principles, with Field Programmable Gate Arrays (FPGAs)
or even Application Specific Integrated Circuits (ASICs), would assume
control and thus make it much more difficult to re-organize and leverage
flexibility. Hardware development, even if not ASIC focused, is inherently
difficult and cumbersome. The author in [Gra13] makes a case for FPGA de-
velopment in case requirements cannot be otherwise met but recommends to
stick to software development. However, specific functionality, e.g. Forward
Error Correction (FEC), may be provided by specialized accelerators such
as Graphics Processing Units (GPUs) or FPGAs that have to be seamlessly
integrated into the software implementation via an Application Programming
Interface (API) without interrupting the software system design.

In the wireless communication realm, the paradigm to use COTS hardware
to build flexible communication systems is called Software Radio (SR) and
was first coined by Joseph Mitola [Mit92]. The concept describes how to
use wideband transmitters and receivers and how to carry out all operations
in software to gain unprecedented flexibility. It enables myriads of new
applications and use cases; however, it is very resource intensive and requires
extremely sensitive hardware and thus is often infeasible in practice. Since
signal processing can be carried out in the equivalent baseband, we consider a
hardware frontend that strikes a balance between flexibility and practicability,
the Software-Defined Radio (SDR) concept. A Software-Defined Radio (SDR)
frontend is a transceiver for arbitrary complex samples and allows for the
control of physical signal properties dynamically through a standardized
interface. A Cloud RAN is built on COTS hardware with SDRs.

The principles of agile software development are being introduced alongside
the trend towards more flexible software RANs on COTS hardware [CB14,
DPL15]. Thus, the advantages of a Cloud Radio Access Network (Cloud
RAN), built on cloud computing, are being recognized with appropriate
development techniques, thorough understanding for implementation detail,
and deployment benefits and procedures [MG11, Lem17, DKP+17, OBJ13,
CDG+21]. This flexibility allows us to gradually upgrade systems, evaluate
different module combinations, avoid constant hardware changes, and find
the best feature set for the use case at hand.
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Often, software development for Cloud RAN is carried out with several
programming languages including C and C++ for performance critical code
as well as Python for support functionality and testing [WO20]. These
programming languages may provide a solid base for rapid application
development if they are well integrated into a modern, agile workflow that
follows State-of-the-Art (SotA) programming idioms and paradigms. One
should never underestimate the burden of legacy programming languages
with outdated programming paradigms and missing features, such as an
appropriate module import mechanism. Further, future development may
benefit from more recent programming languages such as Rust.
Previous works in the field of Cloud RAN include ones such as [GM13].

Nowadays, there are two open-source C/C++ LTE SDR implementations
known to the authors: srsRAN, formerly srsLTE, and OpenAirInter-
face (OAI), that have both shifted their focus towards 5G NR lately
[GMGSS+16, KSKW19]. These implementations target the LTE and 5G
NR standards, and thus, they are specifically designed to optimally accom-
modate the inherent LTE and 5G NR structure. In contrast, the GNU
Radio (GNU Radio) provides the framework to build a wide range of SDR
applications [LMA+22]. Specifically, it provides tooling for infrastructure,
e.g. multi-thread management, visualization, and hardware interface abstrac-
tion among other features, and thus GNU Radio is not tied to any specific
communication standard. Additionally, sophisticated methods to orchestrate
different parts of a RAN such as application configuration, deployments and
update management are out of the scope of this work since we focus on
Digital Signal Processing (DSP) aspects [DKP+17].

1.3 Objective of this thesis

This thesis aims to address the following research objectives. We investigate
which and how SotA technologies in wireless communication may be used in a
system that caters to URLLC requirements. These investigations include the
identification of suitable technologies for reliable short packet communication
as well as latency considerations in software implementations. Beyond
that, trade-offs between latency and reliability are discussed. Furthermore,
we investigate how a software implementation may enable Cloud RAN
deployments.

A Cloud RAN allows for a flexible RAN structure with distributed APs in a
UDN that we discuss to improve reliability. Here, we investigate how we can
leverage the proposed Cloud RAN structure with improved spatial diversity.
Then, we address the challenge to accurately abstract our PHY via Link
Abstraction (LA). Furthermore, we use LA to demonstrate Scheduling and
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Resource Allocation (S&RA) approaches that minimize burst errors. Finally,
we demonstrate in an Over-the-Air (OTA) implementation in GNU Radio
that our investigations lead to feasible solutions in a practical application.

1.4 Contributions and structure

The structure of this thesis is discussed in the following. Where appropriate,
we point towards prior work. Moreover, we briefly discuss our contributions
in each chapter.

1.4.1 Fundamentals

In Chapter 2, we introduce the basic scenario that we consider throughout
this work. Based on this scenario, we introduce our system model as well as
the channel model. Thus, this chapter serves as a reference to better discuss
the inter-dependencies between chapters.

1.4.2 Channel coding

In Chapter 3, we focus on channel coding, or Forward Error Correction
(FEC), for short packets. We start with an investigation into possible channel
codes. Here, we identify polar codes as a promising candidate that were
recently adopted for 5G NR [BCL21]. Thus, we introduce polar codes in-
depth and discuss algorithmic and software optimizations. Additionally, we
propose a technique to further integrate the security and reliability domain to
reduce overhead, especially in short packet scenarios. This proposal resulted
in a patent [DBD21]. We finalize this chapter with an extensive analysis of
error correction performance, mostly FER, and latency benchmarks. Our
contribution is a thorough analysis of the fundamental trade-offs between
error correction performance and processing latency in a polar codes software
implementation.

1.4.3 Symbol mapping

Symbol mapping and bit interleaving are often integrated in Bit-Interleaved
Coded Modulation (BICM). In Chapter 4, we discuss highly-optimized
and standardized soft-demappers that are required for modern wireless
communication systems. The focus of this chapter is on soft-demappers with
specializations and approximations for lower latency and higher throughput.
However, we investigate the latency impact of interleavers and symbol
mappers as well. Since the actual computational burden of these processing
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steps is lower compared to other chapters, this investigation delivers further
insight into Central Processing Unit (CPU) features and how to use them
advantageously in a software implementation.

1.4.4 Multicarrier modulation

In Chapter 5, we investigate Generalized Frequency Division Multiplexing
(GFDM) multicarrier modulation and Orthogonal Frequency Division Mul-
tiplexing (OFDM) as a simplified special case of GFDM. First, we present
theoretical considerations and algorithmic optimizations. Afterwards, investi-
gations including error rate performance evaluations, and latency benchmarks
reveal the performance and latency trade-offs. The result is a thorough
understanding of how a software implementation may influence latencies
and which parameters are the most influential on latency. This chapter
incorporates an extension to our prior works [DBD17a, DBD+17b].

1.4.5 Cloud radio access network

In Chapter 6, we investigate a Cloud RAN architecture with distributed APs
to improve reliability by leveraging spatial diversity. These considerations
include Functional Splits (FSs) to increase flexibility and efficiency. Thus,
joint signal processing on a cloud platform enables improved reliability.
Furthermore, we extend our proposal for a specific FS to forward quantized
Log-Likelihood Ratios (LLRs) over a fronthaul [DMB+20]. Without further
measures, we would need to forward LLRs with high resolution and thus high
data rates over a fronthaul. The employed Information Bottleneck Method
(IBM) method allows us to drastically reduce the required fronthaul data
rate by quantization while preserving relevant information. The quantizer
design is an offline process, and online quantizer selection and quantization
is a lightweight operation. Our contribution is an extensive analysis of the
required quantized bit rate, the number of individual quantizers, and the
required Signal-to-Noise-Ratio (SNR) range to consider for quantizer design.

1.4.6 Medium access control

In Chapter 7, we introduce concepts to improve resilience to burst errors on
the MAC layer. Based on our KPIs to minimize burst errors and our real-
time deadline constraint, we show how Scheduling and Resource Allocation
(S&RA) can greatly reduce burst error probabilities with measures to account
for delays. To this end, we start the chapter with Link Abstraction (LA)
to accurately abstract our previously introduced PHY for system level
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simulations. This chapter is an extension to our previous works in [DBD19]
and [DBD20].

1.4.7 Implementation

In Chapter 8, we discuss our OTA implementation in GNU Radio. The
resulting demonstrator is deployed in testbeds and thoroughly analyzed. On
the one hand, we demonstrate that our previous work on DSP latency inves-
tigations and reliability in a Cloud RAN setup are practically implementable.
On the other hand, we investigate software design considerations that are
an important factor in a fully optimized system.
Finally, in Chapter 9 we draw our overall conclusion, re-iterate our con-

tributions and gathered insights, and present routes for possible future
work.

1.5 Notation

Throughout this work, we adopt a notation that we want to outline here.

• Indices start at zero [Dyk82].

• Scalar values are lower case italic symbols h, i.e. in regular math font.

• Vectors h are in lower case italic and bold.

• Matrices H are in upper case italic and bold.

• Random variable symbols h use straight text font.

• Transmit signals x are denoted as is.

• Receive values x̃ that indicate a noisy or soft value use a tilde.

• Hard decision receive values ĉ carry a hat that indicates a decision for
a possible transmit symbol has been made.

• The set of complex numbers is denoted C, as are other common sets
of numbers.

• A specific set of values U is written in upper case calligraphic font.



Chapter 2

Industrial radio system
model

Hereinafter, we discuss our industrial radio scenario and reference several
other works and ongoing efforts that influence it. Our reference use case is
presented that joins distinguishing requirements and constraints of industrial
systems. Thus, we address the research question how to boost reliability and
how to reduce latency in the context of industrial radio systems with short
packets. Further, we present the architecture that we have in mind when
we present the details of our system. This includes the major components
and their connections. Also, the technological foundation of our work is
re-iterated. Finally, we consider our theoretical model both for the PHY and
MAC to carry out in-depth investigations. This model serves as a reference
for subsequent chapters so the reader may return to this chapter to put
things into perspective.
We present our scenario in Fig. 2.1 with several wirelessly connected,

remote controlled Automated Guided Vehicles (AGVs) in a factory hall and
thus an industrial environment. The AGV controller is part of a private
Cloud RAN architecture, potentially an edge cloud, that provides the wireless
communication system that meets the strict industrial requirements. In order
to boost reliability, we consider distributed Radio Access Points (RAPs)
that are connected via fronthauls to a cloud platform to jointly serve the
AGVs. In our work, we focus on PHY and MAC layers in a single cell while
interactions with neighboring cells or a wider network are out of scope.

“All models are wrong, but some are useful” by G. E. P. Box [BD87].
We know and acknowledge this saying. Still, in this chapter we strive to

present our useful industrial radio system model. We present an overview of
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the communication system we have in mind when we dive deeper into the
specifics such that an interested reader may be aided to follow the authors
train of thought. A SDR platform enables us to develop all algorithms in the
digital domain and only consider an equivalent baseband channel. Therefore,
we restrict our channel model to the digital domain and consider analog
details and frontend complexity to be out of scope.

fronthaul fronthaul

robot controller

Cloud

Figure 2.1: Scenario: AGVs in a factory hall.
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2.1 Link model

We want to present a link level model of our system in Fig. 2.2 that represents
one link between an AGV and a RAN on the PHY. Here, we discuss the
fundamental functionality of each component, while specific details are
discussed in subsequent chapters.

Error
detection

Error
correction

Mapping

Multicarrier
modulation

Framing

Calculate

Encode

Map

Modulate

Preamble

Channel

Sync

Demodulate

Demap

Decode

Check

a

b

c

d

x

s s̃

x̃

d̃

c̃

b̂

â

Figure 2.2: Link level flowgraph

Error detection provides confidence that a received packet is indeed
received error free. If a packet does not pass the error detection check, it is
discarded. The details are discussed in Chapter 3, specifically Ch. 3.2.3 and
3.3. Generally, a bit vector a ∈ FNa

2 with F2 = {0, 1} from a higher layer
enters our system for transmission. A checksum is calculated and appended
to every packet and we refer to the output of this block as b ∈ FK

2 . A receiver
uses this checksum to check for correct packet reception. Typically, a Cyclic
Redundancy Check (CRC) is used for error detection [ETS20a]. Though, we
propose Message Authentification Code (MACode) as an alternative because
we see benefits to lower overhead.
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Error correction or Forward Error Correction (FEC), encompasses all
aspects of channel coding such as encoding and decoding but also rate
matching, e.g. puncturing.
An information word b ∈ FK

2 is encoded into a codeword c ∈ FN
2 . This

codeword carries redundant information that is used to correct errors during
the decoding process. We define a coderate

R =
K

N
(2.1)

that characterizes the information to codeword size. A low coderate implies
that a lot of redundancy is used to improve reliability while high coderates
indicate less redundancy at the expense of possibly reduced reliability [RU08].
Chapter 3 discusses FEC in-depth where accurate performance evaluations
for specific, state-of-the-art codes are carried out.

Mapping describes the process to produce a complex vector d ∈ CNd . A
codeword c with N bit is mapped onto a complex vector d with Nd elements.
Every complex symbol d carries M bit of information. We can now define
the effective rate

Reff = M ·R = M · K
N

(2.2)

as the average amount of information bits conveyed by each transmitted
symbol in d and M = Nd

N . Chapter 4 discusses symbol mapping in further
detail with a focus on Quadrature Amplitude Modulation (QAM) mappings.
Especially in case of multipath fading, we want to ensure that received bits
are statistically independent. Therefore, Chapter 4 discusses Bit-Interleaved
Coded Modulation (BICM) with a bit interleaver before mapping as part of
this processing stage.

Modulation considers the process to transform all symbols in a packet into
a baseband signal that is ready for transmission. We consider multicarrier
modulation, specifically OFDM and GFDM, in Chapter 5 to transform a
complex vector d into a complex frame x [Gol05, KD18].

Framing adds a preamble xP to enable synchronization and to obtain
initial Channel State Information (CSI). Thus, the complex baseband vector
s is comprised of a preamble xP and a complex frame x. Synchronization
is required to recover transmit timing at a receiver. We consider preambles
in Chapter 5 and further in Sec. 8.5.2 that match the chosen modulation
scheme and require that preambles are more reliably detectable than a data
frame because misdetection results in a lost frame.
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2.2 Small scale channel model

Henceforth we discuss our channel model that we present in Fig. 2.3. It is
comprised of several components that we introduce one by one [Rap09, Pro95].
Our focus lies on a software implementation for a Cloud RAN where SDRs
provide an equivalent baseband in the digital domain. Thus, we discuss our
channel model solely in the digital domain in this chapter. Our channel
model implementation [Dem22d] is freely available for the interested reader
under the terms of the GNU General Public License v3.0 or later (GPLv3+).
This includes, Additive White Gaussian Noise (AWGN), multipath Rayleigh
fading, shadowing and temporal or spatial effects. The interested reader
is kindly referred to further material for discussion in the analog domain
[Rap09, Pro95].

H0,0

H0,1

H1,1

H1,0

n0

n1

s0

s1

s̃0

s̃1

Figure 2.3: Time domain 2× 2 channel model example flowgraph

In Fig. 2.3, we consider a NT ×NR = 2× 2 time domain channel example.
Thus, we have NT = 2 transmit antennas and NR = 2 receive antennas.
In general, we transmit a different time domain signal st on each transmit
antenna with t ∈ [0, . . . , NT − 1]. The signal from st propagates through
its distinct path with channel matrix Ht,r, introduced in (2.9), to receive
antenna r ∈ [0, . . . , NR − 1]. At every antenna the received signals are
super-imposed and corrupted by AWGN noise nr. Finally, we can express
the received signal at antenna r with

s̃r =

(︄
NT−1∑︂
t=0

Ht,r · st

)︄
+ nr (2.3)

Subsequently we discuss the properties and metrics for nr and Ht,r.
Properties related to st are introduced as a part of our discussions in later
chapters.
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2.2.1 Additive white Gaussian noise

First, we consider the simplified AWGN channel model

s̃ = s+ n (2.4)

where s̃ is the corrupted receive signal. Further, we consider the elements n
from the noise vector n that are drawn from a complex Gaussian distribution
n ∼ CN

(︁
0, σ2

n

)︁
and independent and identically distributed (i.i.d.). The

SNR is then denoted by

SNR =
Es

N0
=

E
{︂
|s|2
}︂

E
{︂
|n|2
}︂ =

σ2
s

σ2
n

(2.5)

where E
{︂
|s|2
}︂

is the mean signal power. Moreover, we define the mean

signal power for mapped complex symbols d by

Ed = E
{︂
|d|2
}︂
= σ2

d . (2.6)

Similarly, we may define a mean signal power for other signals when necessary.
Further, it is often important to denote a ratio for information bit power
over noise power

Eb

N0
= Reff ·

E
{︂
|d|2
}︂

E
{︂
|n|2
}︂ =

σ2
b

σ2
n

(2.7)

where σ2
b is the bit power for Non Return to Zero (NRZ) coded bits.

2.2.2 Multipath Rayleigh fading channel model

In this section we present our frame-based multipath Rayleigh fading channel
model [Pro95]. The channel model in (2.3) considers a NT × NR channel
model. First, we discuss the special case of a 1 × 1 setup that is trivially
extendable to the more general model from (2.3). We consider

s̃ = Hs+ n (2.8)

as our frame-based channel model that we illustrate in Fig. 2.3. A frame
s ∈ CNs is transmitted over a frequency selective Rayleigh block fading
channel and corrupted by AWGN. Just like the AWGN channel model in
Sec. 2.2.1 we denote the transmit, receive and noise vectors. Thus, we focus
on the characteristics of the channel matrix H ∈ CNs̃×Ns . We assume a
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frequency-selective Rayleigh fading channel with Nh taps and consequently
the receive frame consists of Ns̃ = Ns +Nh samples. The channel matrix
H is a Toeplitz matrix and we can denote the channel model in expanded
matrix notation

⎡⎢⎢⎢⎢⎢⎢⎣
s̃0

s̃1
...

s̃Ns̃−1

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 · · · 0 0

h1 h0

...
...

h2 h1 · · · 0 0
... h2 · · · h0 0

hNh−2

...
. . . h1 h0

hNh−1 hNh−2

... h1

0 hNh−1
. . . hNh−3

...

0 0 · · · hNh−2 hNh−3

...
... hNh−1 hNh−2

0 0 0 · · · hNh−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
s0

s1
...

sNs−1

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
n0

n1

...

nNs̃−1

⎤⎥⎥⎥⎥⎥⎥⎦

(2.9)
where we can identify the channel taps h = [h0, h1, . . . , hNh−1]

T whose
properties we discuss next.

Rayleigh fading

Industrial radio measurement campaigns [DHC+19, MBF+05] show that all
time-domain channel taps h follow a Rayleigh fading model. Also, the Power
Delay Profile (PDP) p of the channel follows an exponential distribution

pk =
e
− kTs

σRMS

σRMS
; k = 0, . . . (2.10)

with a delay spread σRMS in the range 40 ns to 100 ns and the sampling
duration Ts. Theoretically, the PDP only decays towards zero, though we
assume a maximum relevant channel delay τmax, that varies around 200 ns,
and pk = 0 if k > ⌊τmax/Ts⌋ [ETS20b]. This relation defines the number
of taps Nh that we consider as well. We obtain the elements of a channel
realization vector

h = [h0, . . . , hNh−1] (2.11)
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that follow
hk ∼ CN (0, pk) (2.12)

a complex Gaussian distribution with zero mean and variance pk. Thus, the
channel tap amplitude |hk| follows a Rayleigh distribution which explains
the name Rayleigh fading.

Temporal and spatial coherence

We focus on short packets, thus we assume a block fading channel, i.e. the
channel is constant over the duration of a frame. The channel correlation ρ
for consecutive frames can be approximated as

ρ = exp

{︄
−23 ·

(︃
∆tvfc
c0

)︃2
}︄

(2.13)

depending on time difference ∆t, carrier frequency fc and relative velocity
v between transmitter and receiver [Rap09]. Here, channel correlation ρ
quantifies how statistically dependent Gaussian channels are over a time
difference ∆t. It is then possible to obtain a channel realization

h =
√
ρ hprev +

√︁
1− ρ hnext (2.14)

from the previous’ frame channel realization hprev and a newly drawn channel
realization hnext. In case ρ = 1, the previous channel realization hprev solely
defines the current channel realization h. With (2.13), we expect that ρ = 1
only holds for ∆t = 0.

Frequency domain representation

It is sometimes advantageous to describe a channel model in the frequency
domain that represents a frame at the receiver, after demodulation [Pro95].
We describe our equivalent frequency domain channel after Cyclic Prefix (CP)
removal and a Discrete Fourier Transform (DFT) for OFDM modulation
for a received vector d̃ as discussed in Chapter 5. For GFDM, the channel
model holds under the assumption of perfect self interference cancellation.
First, we assume that the added CP length NCP ≥ Nh is equal or larger
than the number of channel taps Nh. Mind how vector length translates to
time duration at a given sampling rate Rs =

1
Ts
. Together with the block

fading assumption, we can now assume that a frame x is cyclically convolved
with a tap vector h. The equivalent frequency domain channel

h̆ = FNFFT
h (2.15)
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is obtained where FNFFT is a DFT of size NFFT. Now, we denote the
equivalent channel model

d̃ = H̆d+ n (2.16)

with a diagonal channel matrix H̆ ∈ CNFFT×NFFT , i.e. all off-diagonal
elements are zero, which translates into an element-wise multiplication. The
diagonal elements in H̆ are the elements from h̆. This implies that each
received symbol

d̃k = h̆kdk + n (2.17)

is transmitted over a frequency flat subcarrier channel plus noise. Finally,
the individual frequency channel taps h̆ are drawn from a complex Gaussian
distribution h̆ ∼ CN (0, 1).

Now, we can introduce the per subcarrier Carrier-to-Noise-Ratio (CNR)

CNRk =
|h̆k|2σ2

d

σ2
n

(2.18)

for a fixed channel realization to characterize the equivalent channel on
subcarrier k [DBD19]. Chapter 4 introduces further measures to calculate
LLRs with CNRs and Chapter 6 discusses how to combine the information
from multiple antennas to improve reliability.

2.3 Large scale channel model

The channel model in our work is composed of two components, namely large
scale fading and small scale fading. We need both, a small scale and a large
scale fading model, to accurately investigate multiple access schemes because
wireless communication implies the use of a shared medium. Whenever
multiple devices need to transmit, a multiple access scheme is required to
organize multiplexing.

Here, we describe large scale fading effects such as our path loss model and
shadowing effects [Skl01, MBF+05, ETS18b]. Afterwards, we incorporate
these results in our small scale fading model.
It is paramount to investigate which S&RA strategy, and thus multiple

access scheme, is appropriate for our use case [DBD20]. This includes an
investigation into appropriate metrics that quantify their usefulness for the
use case at hand. We will use our model via link abstraction [DBD19] in
Chapter 7 to investigate how to grant resources to packets from different
users.

We expect industrial radio systems in the 3.7GHz to 3.8GHz band within
the 5G NR n78 band [ETS18c]. At least in Germany this band is assigned
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to campus networks that are expected to play a key role in future industrial
radio communication deployments. Mostly, we need to choose between the
Time-Division-Duplex (TDD) and Frequency-Division-Duplex (FDD) duplex
schemes to organize uplink and downlink transmission. However, the 5G
NR standard requires TDD in the expected band n78 and thus, we focus on
this duplex scheme [ETS18c].
For our large scale fading model, we differentiate between Line-Of-Sight

(LOS) and Non-Line-Of-Sight (NLOS) channel conditions. LOS channel
conditions are often the most favorable because we observe a minimal path
loss as well as less stochastic channel effects that deteriorate a signal. NLOS
conditions have a more severe impact on a channel. This may result in
higher path loss and larger shadowing variability. A system that can fulfill
its requirements under NLOS conditions is expected to perform well under
LOS conditions. Mostly, we consider industrial radio environments where
NLOS conditions dominate [DHC+19, MBF+05].

Path loss expresses the received signal power depending on distance dg,
carrier frequency fc and path loss exponent η. We denote received signal
power with transmit power Pt and speed of light c0 as

Pr(dg) = P (fc, 1, 2)− 10 · η · log10
(︃
dg
d0

)︃
[dBm] (2.19)

P (fc, dg, η) = Pt +Gt +Gr + 10 log10

(︃
c20

(4πfc)2 · dηg

)︃
[dBm] (2.20)

where all values are in logarithmic units [Skl01]. The path loss exponent η
depends on channel conditions, e.g. LOS or NLOS [ETS18b]. The reference
received power P (fc, 1, 2) is defined at a reference distance d0 = 1m with
η = 2 to ensure that far field assumptions are valid [Rap09, HZA+11]. Also,
in most cases we assume isotropic antennas at the transmitter and receiver,
i.e. Gt = Gr = 1.

Thermal noise is a receiver characteristic that corrupts a signal. Under
the assumption that thermal noise is the source of AWGN, we express the
thermal noise power

E
{︂
|n|2
}︂
= σ2

n = N0 = 30 · log10 (κTBs) [dBm] (2.21)

with bandwidth Bs, temperature T and Boltzmann constant κ [Skl01].

Shadowing considers large scale fading effects that impact propagation
conditions. The random variable S follows a Gaussian distribution with µ = 0
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and shadowing deviation σSF dependent on channel conditions [MBF+05,
ETS20b]. Thus, we denote

S ∼ N
(︁
0, σ2

SF

)︁
(2.22)

in the log-domain. Since we consider logarithmic values for σSF and S for the
Gaussian distribution, this may be referred to as a log-normal distribution
for the corresponding linear values. Shadowing is a large scale parameter
that is more pronounced under NLOS conditions and spatially correlated

ρs = e−
∆dg
dcorr (2.23)

with shadowing correlation distance dcorr [ETS20b]. It is possible to convert
spatial into temporal correlation with known velocity v.

Link Budget Finally, we denote our link budget in terms of SNR as

SNR = Pr(d)−N0 − F − S . (2.24)

Here, radio receivers are characterized with a noise figure F that further
contributes to a higher noise floor. We use this SNR value for our small scale
fading model to abstract away physical details such as absolute transmit
power.

2.4 Chapter summary

In this chapter we laid out our reference scenario with several robots, or
AGVs in a factory hall. Based on this scenario, we discussed our system
structure and boundaries. This system is based on a solid mathematical
foundation for numerical evaluation that we introduced in this chapter as
well. The model includes, AWGN as well as small and large scale fading
effects. Furthermore, the model is topped off by coherence considerations.





Chapter 3

Low-latency channel
coding for short packets

Current modern communication systems rely on channel coding to ensure re-
liable transmission over error prone channels [RU08, ETS20a]. It is, however,
notoriously difficult to design a communication system that concurrently
fulfills contradicting requirements. While it is theoretically possible to reach
the ultimate limit, Shannon capacity, for error free transmission over AWGN
channels, it is also infeasible because it requires infinitely long codewords
[RU08]. Further, longer codewords increase latency because it takes more
time to transmit all coded bits but also because algorithmic complexity
tends to increase [Arı09].
Moreover, we focus on mission critical applications where Machine to

Machine (M2M) communication is prevalent [DPS18, 3GP19a]. Especially in
the realm of URLLC we expect particularly short packets with a low latency
requirement and a high reliability requirement [3GP19a]. In this chapter,
we consider polar codes as a viable candidate to meet these requirements.

Mission critical applications also require secure communication and au-
thentication to prevent unauthorized third parties from tampering with the
system at hand. It is advisable to integrate security into the communication
system early on instead of treating it as an afterthought [MB17]. Firstly, en-
cryption secures data packets from inspection by unauthorized third parties.
While encryption does not introduce overhead per se, authentication does.
Especially systems that convey short packets suffer from overhead which
reduces efficiency. In our patented proposal, we focus on the additional
overhead added by authentication requirements [DBD21]. A cryptographic
checksum, e.g. Cipher-based Message Authentification Code (CMAC) or
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Keyed-hash Message Authentification Code (HMAC), provides information
in order to reliably identify the source of a packet and thus verifies a packet’s
authenticity. In this chapter, we discuss our novel approach to merge the
security and reliability domains to reduce overhead. Moreover, we contribute
a set of experiments to evaluate its feasibility.
We focus on Cloud RAN development. Therefore, we need more insight

into software implementation aspects of the discussed algorithms. This
should serve as an indicator for expected performance and latency. Further,
under a software development paradigm, different algorithms and approaches
than under a hardware development paradigm may lead to better results.
Hence, we discuss polar codes with all required components.

In this chapter we re-evaluate the findings in [SWJ+16] that polar codes,
especially in conjunction with advanced decoders, are an attractive choice
for short packet communication systems. We start with an investigation
into different channel codes to justify our investigation into polar codes.
Furthermore, our open source polar coding implementation [DL22] reveals
competitive results in terms of error-correction performance, latency, and
throughput in comparison to previous works [Gia16, CHL+19]. These in-
vestigations extend towards selected parametrizations with corresponding
trade-off discussions. The focus of these investigations is on URLLC with
short packets. Also, since most advanced polar decoders make use of a CRC,
we propose to fuse the security and coding domains to leverage synergies
that help to reduce frame overhead and thus boost efficiency especially for
small packet communication. Specifically, we propose a joint MACode-FEC
polar code for reduced overhead and a polar decoder that makes use of a
MACode checksum. Finally, we present our investigation on error correc-
tion performance, latency, and throughput for software polar encoders and
decoders.

3.1 Codes for short packets

We compare multiple modern codes and their respective performance for
short codes [SWJ+16, BCL21, BAL+19]. There exists a software library
that supports several FEC technologies named aff3ct that we use for several
codes [CLT+21, CHL+19]. In accordance with [SWJ+16] we selected three
candidates, namely, Turbo, Low Density Parity Check (LDPC), and Polar
codes for this comparison.
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3.1.1 Code candidates

LTE Turbo codes are well known in 4th Generation (4G) systems
[ETS20c, CHL+19, WP16]. The decoding complexity for this class of codes
is steered with the number of iterations I. Generally, more iterations allow
for better error correction performance at the cost of more complexity.

LDPC codes are used in several communication standards such as WiFi
and DVB-S2 [Gra19]. Also this code class is selected for 5G NR data payload
[ETS20a, BAL+19]. Like turbo codes, LDPC codes are designed for iterative
decoding. Thus, their decoding complexity is dominated by the number of
decoder iterations I. LDPC codes exhibit lower complexity per iteration
compared to Turbo codes and thus the number of iterations is not directly
comparable [SWJ+16].

Polar codes are a new class of FEC first introduced by Arıkan [Arı09]
that are discussed in-depth in Sec. 3.2. For State-of-the-Art correction
performance, we use a CRC-Aided Successive Cancellation List (CA-SCL)
decoder discussed in Sec. 3.2.3. The CA-SCL decoder complexity is steered
by its list size L. In the current section we want to motivate our choice to
prefer polar codes for short packets.

3.1.2 Code comparison

We present simulation results over an AWGN channel for several codes in
Fig. 3.1 where we assume K = 256 information bits and a code rate R ≈ 0.5.
The difference in code rate for Turbo codes is due to implementation specifics
[CLT+21]. We use a (512, 256) LDPC code according to the Consultative
Committee for Space Data Systems (CCSDS) specification and aff3ct for
encoding and decoding [CCS15].
In Fig. 3.1, we observe that LDPC codes exhibit approximately 1 dB

worse performance than Turbo codes at FER = 10−1, even with a high
number of iterations I. At FER = 10−3 Turbo codes outperform LDPC
codes by approximately 0.8 dB. Further, even a simple polar decoder with
L = 1, known as Successive Cancellation (SC) decoder, exhibits a 0.5 dB
better performance at FER = 10−1 than LDPC codes and the SC decoder
is only approximately 0.1 dB worse at FER = 10−3 compared to the LDPC
decoder with I = 100 iterations. Turbo codes with I = 32 iterations almost
reach CA-SCL decoder performance with list size L = 32 at FER = 10−3.
However, CA-SCL decoders with L = I perform approximately 0.2 dB better
at FER = 10−1. It should be noted that the CA-SCL decoder achieves this
performance at a fraction of the complexity [SWJ+16, GRLa17]. The good
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Figure 3.1: Short code comparison with R ≈ 1
2
: CCSDS LDPC (512, 256), LTE

Turbo code (524, 256), and polar codes (512, 256) with CA-SCL
decoding.

FER performance in our simulations indicate that polar codes are suitable
candidates for short packet transmission. Moreover, the complexity of polar
codes is much lower to achieve the FER performance of their corresponding
LDPC and Turbo codes [SWJ+16, GRLa17].
With lower code rate R as shown in Fig. 3.2, we corroborate our con-

clusion that polar codes are good candidates for short packet transmission.
At FER = 10−1 polar codes with L = I perform approximately 0.2 dB
better than Turbo codes while at FER = 10−3 the performance is on par.
For URLLC applications we generally expect lower code rates to improve
reliability and the results in Fig. 3.2 are of particular interest. Finally,
for Cloud RAN systems polar decoders are of special interest because of
their lower decoding latency compared to Turbo code and LDPC software
implementations [Gia16, LGJ20, Gra19, XWXG19].

3.2 Polar codes

Polar codes were first presented by Arıkan in 2009 [Arı09]. The name polar
code originates from the channel polarization effect that is exploited for polar
codes. They are the first class of codes to asymptotically achieve capacity of
any binary input symmetric Discrete Memoryless Channel (DMC) with a SC
decoder [Arı09, TV13]. Moreover, a polar encoder and decoder exhibits a low
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Figure 3.2: Short code comparison with R ≈ 1
3
: LTE Turbo code (516, 168), and

polar codes (512, 168) with CA-SCL decoding.

complexity O (Nc logNc) and may be further optimized via Fast Simplified
Successive Cancellation (Fast-SSC) and more specializations [Gia16, HA17].
In the finite length regime, polar codes require more sophisticated decoders
to achieve competitive error correction performance. First, Successive Can-
cellation List (SCL) decoders were proposed in [TV15] that maintain a
candidate list. Further, the authors proposed to check the candidates in
the list with a CRC, sometimes referred to as a geany, to produce the
first candidate that passes this check as the final codeword. Other decoder
strategies emerged as well such as Soft CANcellation (SCAN) via Express
Journey for Belief Propagation (XJ-BP) and Successive Cancellation Flip
(SCFlip) [LSL+16, XCC15, CSD18].

Error correctionError
detection

Calculate Insert

AFr

Encode Match Map

Channel

DemapDematchDecodeExtractCheck

a b u x c d

d̃c̃x̃ûb̂â

Figure 3.3: Channel coding flowgraph
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Fig. 2.2 presents a system overview. Here, Fig. 3.3 focuses on a more
detailed coding flowgraph to clarify notation and code components. A bit
vector a enters the encoder chain and a checksum may be added to be able
to verify correct reception [KC04, ETS20a]. At the end of the receiver chain,
we obtain the bit vector â that is a obtained after hard decision. Thus, we
obtain an information bit vector b ∈ FK

2 of size K to enter the polar code
specific processing chain. The polar receiver chain yields the bit vector b̂
after decoding. While error detection and correction serve different purposes,
they are closely intertwined and many advanced polar decoders use some
error detection, mostly a CRC, to improve their error correction capabilities.

Next, we combine b with frozen bits in the vector u. Essentially, the frozen
bit position set AFr indicates all positions in u that are set to a fixed value.
While it is possible to choose an arbitrary frozen bit vector, conventionally
the all zero bit vector 0Nc−K is used [STG+16, ETS20a]. This choice enables
decoder optimizations, e.g. Fast-SSC, without further complication. The
exact choice for AFr depends on the chosen channel construction that will be
discussed in Sec. 3.2.2. It may further depend on the chosen rate matching
strategy that will be discussed in Sec. 3.2.4. Channel construction is an
offline task that focuses on error correction performance by finding the best
possible set of frozen bit positions AFr [TV13, VVH15]. Naturally, encoding
and decoding are online tasks where research efforts focus on decoder error
correction performance, latency, and throughput improvements. The number
of information bits in a polar codeword may be in the range K ∈ [0, Nc].
While theoretically possible, the options K = 0 and K = Nc are useless
because the former does not convey information while the latter cannot
provide error correction.

The encoder transforms the bit vector u ∈ FNc
2 into a codeword x ∈ FNc

2

as discussed in Sec. 3.2.1. A polar code decoder expects soft information
x̃ ∈ RNc , i.e. LLRs, for decoding with error correction as discussed in
Sec. 3.2.3. The dashed blocks are discussed in Chapter 4 along with further
LLR considerations.
Polar codewords are originally only defined for powers of 2 with Nc =

2nc and nc > 0; nc ∈ Z+. Thus, a flexible polar code requires rate matching
to yield codewords c of arbitrary size N . Puncturing to achieve arbitrary
code sizes is discussed in Sec. 3.2.4 and may have an impact on frozen bit
positions.

Polar encoder, decoder, and channel construction are entangled. Encoder
and decoder require the results of channel construction to be parameterized.
In turn, channel construction operates on the assumption of specific encoder
and decoder structures as discussed in Sec. 3.2.2. We try to disentangle all
three components and assume in the discussion for one component that the
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other components are given.

3.2.1 Encoder

First, consider a bit vector u ∈ F2
2 of size 2 with F2 ∈ {0, 1} and u = (u0, u1)

and compute a codeword

x = uG with G =

⎛⎝1 0

1 1

⎞⎠ (3.1)

over the Galois field GF(2) [Arı09]. Now, we extend this scheme to bit
vectors u ∈ FNc

2 of size Nc = 2nc where nc ∈ Z+ is a positive integer. The
generator matrix G is the ncth Kronecker product of the polar kernel F
[Arı09, STG+16] that is defined recursively

G = F⊗nc =

⎛⎝F⊗(nc−1) 0

F⊗(nc−1) F⊗(nc−1)

⎞⎠ with F⊗1 =

⎛⎝1 0

1 1

⎞⎠ (3.2)

Arıkan further describes a bit reversal matrix B to ensure input and output
positions correspond to each other [Arı09]. This is not strictly necessary and
is sometimes omitted, e.g. in [ETS20a]. Without a bit reversal matrix, the
codeword is in bit reversed order otherwise it is in natural order [SGV+16].
One needs to be careful to correctly distinguish between those two options
in order to insert frozen bits correctly. Other than that, these options are
equivalent and the preferred order is implementation defined [GSL+18]. We
obtain the codeword for transmission in natural order by

x = u ·B ·G with G = F⊗nc (3.3)

with the bit reversal matrix B. B is defined by permuting the rows of an
identity matrix INc ∈ FNc×Nc

2 . First, each row is indexed 0 . . . Nc − 1 and
represented with nc binary digits. Then, we reverse the binary digits of
this representation and obtain the target row index with that result. Other
numbering conventions, i.e. non-zero based, are used as well, e.g. in[Arı09],
but would only make the interpretation more convoluted [Dyk82].

Low complexity encoder

The encoder, as discussed so far, computes a matrix multiplication with
O
(︁
N2

c

)︁
complexity. In Fig. 3.4 we present graphs that illustrate polar

encoders with low complexity O (Nc logNc). These graphs resemble Fast
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Fourier Transform (FFT) butterfly structures [FJ05]. We consider a bit
vector u ∈ FNc

2 with indices k. The low complexity encoder consists of nc

layers with indices l. At each node in the graphs where two arrows end, we
perform addition over GF(2).

u0

u1

u2

u3

x0

x1

x2

x3

l=0 l=1 l=2

(a) Reversed encoder x = uG

l=0 l=1 l=2

u0 x0

u1 x1

u2 x2

u3 x3

(b) Natural encoder
x = uBG

Figure 3.4: Low complexity butterfly representation of polar encoders

Systematic polar codes

Originally polar codes were presented in their non-systematic form [Arı09].
A systematic code contains information bits as a part of its codeword [RU08].
Systematic polar codes were proposed in [Arı11] and further optimized in
[VHV16, STG+16]. When compared to non-systematic polar codes, the
structure of the code vector x differs slightly such that xAI

= uAI
while

there are parity bits xAFr
at the other indices. Systematic polar codes

exhibit the same complexity as their non-systematic counterparts, albeit
they usually require an additional encoder pass both in the encoder and
decoder [STG+16]. While systematic polar codes show lower Bit-Error-Rate
(BER), their FER performance is unaffected [Arı11]. Still, all approaches
to boost performance and throughput, or lower latency, for non-systematic
polar codes apply to their systematic counterparts as well.

3.2.2 Channel construction

The name polar code originates from the channel polarization effect that is
exploited for polar codes. Channel construction is an offline task that needs
knowledge about the encoder and decoder structures in Fig. 3.5a, 3.5c to

obtain reliability information of virtual bit channels W
(i)
l .

We consider symmetric binary input F2 = {0, 1} over a DMC, such as a
Binary Erasure Channel (BEC), Binary Symmetric Channel (BSC) or AWGN
channel W [RU08]. Further, we consider a polar encoder, cf. Fig. 3.5a, and
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a SC polar decoder, cf. Fig. 3.5c, to obtain virtual bit channels W
(i)
nc for

transmission of the bit ui bit to ûi. While all code bits xi are transmitted
over the same channel W , virtual bit channels W

(i)
l are derived from W for

each ui.
Starting with W , we combine this channel recursively in nc layers shown

in Fig. 3.5b to obtain an individual virtual bit channel W
(i)
nc for every bit.

From layer l to layer l + 1, we perform a channel downgrade to the left and
a channel upgrade to the right, which corresponds to the lower and higher
index positions respectively. The exact computation method for upgrades
and downgrades depends on the chosen algorithm [VVH15, HBL+17]. The

capacity of a virtual bit channel W
(i)
l either tends to 0 or 1 due to the

polarization effect [Arı09]. Since channel construction is an offline task,
research efforts focus on error correction performance improvements [TV13,
VVH15]. Still, accurate results are often computationally heavy and exact
computation is often intractable. We want to summarize common approaches
for channel construction and note that an in-depth analysis is out-of-scope
for this work.

u0

u1

u2

u3

x0

x1

x2

x3

l=0 l=1 l=2

(a) Encoder

W

W
(0)
1

W
(0)
2 W

(1)
2

W
(1)
1

W
(2)
2 W

(3)
2

(b) Channel construction

l=0l=1l=2

x̃0 û0

x̃1 û1

x̃2 û2

x̃3 û3

(c) Decoder

Figure 3.5: Polar code components

Different strategies exist that yield the required virtual bit channel relia-
bility. Originally, the Bhattacharyya Bound (BB) method is proposed for
BEC [Arı09]. The BB method is computationally tractable and exact for
BEC and it is proposed to use it as an approximation for other channels
as well [VVH15]. Alternatively, for all channels Monte-Carlo simulations
may be performed to obtain the desired information [Arı09]. In [TV13], the
authors propose the Density Evolution (DE) method to calculate reliabil-
ity information. Further, Gaussian Approximation (GA) has been studied
to determine reliability information [Tri12, WLS14, DNS+17]. All these
approaches perform channel construction for a specifically defined channel
W , e.g AWGN with σ2

n = 0.5. With either method it is possible to define
a reliability table, i.e. a sorted list of indices in ascending or descending
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reliability order, that can be used to parameterize a wide range of polar
codes [ETS20a, CLT+21].
Recently, β-Expansion (BE) was introduced as a more efficient option

to compute channel construction [HBL+17]. This channel construction
option relies on Universal Partial Order (UPO) to order virtual bit channels
according to their reliability. UPO is a polar code property that indicates
the relation between many, but not all, virtual bit channels. The authors
in [HBL+17] point out that the order of virtual bit channels up to Nc = 16
is unique. Thus, for Nc = 16 only 17 valid parametrizations for AFr exist
including a coderate R = 0 and R = 1 polar code.
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virtual bit channel

0.00
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p
a
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Figure 3.6: Virtual bit channel capacities for Nc = 64 and dSNR = 0dB

Fig. 3.6 shows an example for polar code virtual bit channel capacities
with Nc = 64 for BB and GA [Arı09, DNS+17]. Here, we use capacity as a
measure of bit channel reliability. We find the frozen bit position set AFr

by selecting the Nc −K indices that correspond to the lowest virtual bit
channel capacity. Correspondingly, the information bit position set AI is
obtained by selecting the K indices that correspond to the highest virtual
bit channel capacity.
Polar codes are designed for a specific SNR but often the channel SNR

is unknown during code design. Fully SNR dependent polar code design
is infeasible and thus the authors in [VVH15] proposed to use one Design
SNR (dSNR) that yields a set of frozen positions AFr with good FERs over
a wide range of SNRs. Polar codes are then defined as (Nc,K,AFr) codes.
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3.2.3 Decoder

Decoders are the most complex part of a channel coding processing chain.
Originally, Arıkan proposed a SC decoder to prove that polar codes achieve
capacity [Arı09]. The combination of a low complexity encoder and SC
decoder together are assumed to be present in the channel construction
process. With growing codeword size, e.g. Nc = 217, this decoder strategy
yields very good error correction performance due to the channel polarization
effect. For medium or short codes, we need additional measures to achieve
competitive performance.

Several approaches to improve performance are available. SCAN decoders
employ Belief Propagation (BP) and are able to produce soft output [FB14].
SCFlip decoders focus on finding the first incorrectly decoded bits to improve
on the original SC decoder [CSD18]. Successive Cancellation Stack (SCS) and
SCL decoders maintain a candidate list to defer bit decisions [TV15, NC21].
Further, CA-SCL decoders extend SCL decoders by searching the candidate
list for a candidate to pass a checksum test [TV15]. We focus on SC, SCL,
and CA-SCL polar decoders because they are found to achieve competitive
performance, low-latency, and high throughput in software implementations
[SGV+16].

Successive cancellation

Here, we present the Successive Cancellation (SC) decoder strategy that
Arıkan proposed to prove that polar codes achieve capacity. First, a 2 bit de-
coder is introduced in Fig. 3.7 and then further extended to larger codewords
[Arı09]. We will discuss more optimizations starting in Sec. 3.2.3.

x̃0

x̃1

û0 = Q {x̃1 ⊞ x̃0}

û1 = Q {x̃1 + (1− 2û0)x̃0}

Figure 3.7: 2 bit SC polar decoder with the decision function Q {. . .} in (3.6)

We use the LLRs of a codeword x̃ ∈ R2 for decoding that we discuss in
Sec. 4.1. Here, we want to reiterate the LLR definition

x̃ = ln
p
(︂
x = 0|d̃

)︂
p
(︂
x = 1|d̃

)︂ (3.4)

for a single transmit bit x and a single noisy BPSK receive symbol d̃. Here,
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p
(︂
x|d̃
)︂
is a conditional probability density function. Now, we compute

ũ0 = f (x̃0, x̃1) = x̃0 ⊞ x̃1 = log
1 + ex̃0ex̃1

ex̃0 + ex̃1

≈ sgn(x̃0)sgn(x̃1)min(|x̃0|, |x̃1|)
(3.5)

where sgn(. . . ) is the sign function. Throughout this investigation we use
the approximation in (3.5) because it yields good results and is significantly
more lightweight. With ũ0, we reach a decoder endpoint and are able to
detect the corresponding bit û0 via the decision function

ûi = Q {ũi} =

{︄
0 ũi > 0

1 otherwise
(3.6)

where we perform hard decision on a LLR in accordance with (3.4). The
first decoded bit must be a frozen bit in case of R < 1 [HBL+17]. This is a
direct result from channel polarization as discussed in Sec. 3.2.2 where the
first bit corresponds to the virtual bit channel with lowest capacity. Without
loss of generality, it is common in literature to assume all frozen bits are 0
[STG+16, ETS20a] and thus, we set ûi = 0; ∀i ∈ AFr regardless of (3.6).
Successively, we can compute

ũ1 = g (x̃0, x̃1, û0)= x̃0 + (1− 2û0)x̃1 = x̃0 + (−1)û0 x̃1 (3.7)

where û0 ∈ F2 and finally decide û1 = Q {ũ1}. At this point we finish the
2 bit polar decoder process. Now, we extend this decoder recursively to Nc

bit [Arı09, Gia16].
The extension to an 8 bit decoder, shown in Fig. 3.8 is straight forward.

First, we extend our notation to LLRs at layer l and element i as x̃l,i. The
layer l is indicated above the graph in Fig. 3.8 where we start at layer l = nc

and finish the decoding process at layer l = 0.
We start to compute the elements

x̃l,i = f
(︁
x̃l+1,i, x̃l+1,i+2l

)︁
(3.8)

with the function (3.5). We need to stick to a successive decoding strategy,
thus we only compute values necessary to decide for û0 which is indicated
with solid lines in Fig. 3.8. Afterwards, we obtain û1 = Q {g (x̃1,0, x̃1,1, û0)}
with (3.7). We progress successively through all ûi as shown in Fig. 3.8. For
nodes where two dashed lines end from a higher layer l > 0, we compute

x̃l,i = g
(︁
x̃l+1,i+2l , x̃l+1,i, ûl,i+2l

)︁
(3.9)

together with the previously decided and partially re-encoded bits ûl,i+2l .
Generally, whenever two solid lines end in a node, we use (3.5) and dashed
lines require (3.7) to be computed.



3.2 Polar codes 33

l=0l=1l=2l=3

x̃0 û0
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Figure 3.8: 8 bit SC polar decoder

How to implement a decoder in C++

The SC decoder structure as discussed so far, exhibits the general low com-
plexity structure. We want to discuss the implementation basics in C++

briefly to supply readers with an idea how to implement a polar decoder
from theory to a Single-Instruction-Multiple-Data (SIMD) optimized im-
plementation [ISO17, cpp21b]. This discussion may be complemented by
[Gia16]. However, it is crucial to notice that these examples are only useful
in a context where the overall software structure permits a high-throughput
and low latency implementation. The interested reader may refer to [DL22]
to immerse oneself in the C++ implementation structure.
We start with a straight forward implementation of (3.5) in Listing 3.1.

Listing 3.1: Straightforward C++ implementation of f (x̃0, x̃1) (3.5)

1 inline float calculate_f(const float llr0 , const float llr1)

2 {

3 return std:: copysign (1.0, llr0) *

4 std:: copysign (1.0, llr1) *

5 std::min(std::abs(llr0), std::abs(llr1));

6 }

The function std::copysign(1.0, llr) takes the sign of llr and applies it
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to the first argument 1.0. Besides, this function should be self-explanatory.
In Fig. 3.8, we observe that (3.5) needs to be computed in parallel on

several nodes at every layer. This may be optimized with SIMD intrinsics for
Streaming SIMD Extensions (SSE) or Advanced Vector Extensions (AVX)
on x86 platforms [Int21]. In Listing 3.2 the input parameters llrs are 256 bit
wide registers that hold eight 32 bit floating point values. Thus, we perform
the function from Listing 3.1 on eight values in parallel, i.e. we vectorize
this function.

Listing 3.2: AVX vectorized C++ implementation for eight values of f (•, •).

1 #include <immintrin.h>

2 inline __m256 calculate_f_vector(const __m256 llrs0 ,

3 const __m256 llrs1)

4 {

5 const __m256 sign_mask = _mm256_set1_ps (-0.0f);

6
7 __m256 sgnV = _mm256_and_ps(sign_mask ,

8 _mm256_xor_ps(llrs0 , llrs1));

9
10 __m256 abs0 = _mm256_andnot_ps(sign_mask , llrs0);

11 __m256 abs1 = _mm256_andnot_ps(sign_mask , llrs1);

12 __m256 minV = _mm256_min_ps(abs0 , abs1);

13 return _mm256_or_ps(sgnV , minV);

14 }

Since the code for this function is not as self-explanatory as Listing 3.1, we
want to point out several key properties. Starting with line 1, we include the
appropriate headers to make AVX intrinsics, e.g. _mm256_min_ps, available
[Int21]. We obtain signs in line 7 via bit-wise operations combined with
a bit mask. The Most Significant Bit (MSB) in a floating point (fp-32)
value carries the sign which we obtain by zeroing all other bits [IEE19]. Bit
manipulation of fp-32 values should be approached with caution because it
is prone to errors. Afterwards, in line 10 to 12, we compute the absolute
minimum by setting the sign bit to zero and obtaining the minimum. Note
how each of those eight values in llrs0 and llrs1 is computed in parallel
such that we obtain the minimum of the first elements in llrs0 and llrs1,
and so on. Finally, we compute the final result in line 13 with a bit-wise OR
operation to combine the sign bit with the minimum absolute value.

Listing 3.3: AVX vectorized C++ implementation for eight values of g (•, •, •).

1 #include <immintrin.h>

2 inline __m256 calculate_g_vector(const __m256 llrs0 ,

3 const __m256 llrs1 ,

4 const __m256 bits)
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5 {

6 const __m256 sum = _mm256_add_ps(llrs1 , llrs0);

7 const __m256 dif = _mm256_sub_ps(llrs1 , llrs0);

8 return _mm256_blendv_ps(sum , dif , bits);

9 }

Similarly to (3.5), we can vectorize (3.7) with AVX intrinsics in Listing 3.3.
We compute the result for both possibilities û = {0, 1} with element-wise
addition with _mm256_add_ps and subtraction with _mm256_sub_ps and
choose the appropriate result with _mm256_blendv_ps depending on the
values in bits. Here, we assume that the sign bit of a float value carries
the bit information in bits. The corresponding function for hard decision is
shown in Listing 3.4 where positive or negative 0 is returned depending on
the input. It should be noted that some compilers may remove the sign if
very aggressive optimization options are active.

Listing 3.4: C++ implementation of Q {. . .}.

1 inline float decide_hard(const float llr)

2 {

3 return (llr < 0) ? -0.0f : 0.0f;

4 }

Simplified successive cancellation

So far we discussed the originally proposed SC decoder that can be modified
to the Simplified Successive Cancellation (SSC) decoder for lower latency
and higher throughput [AYK11, Gia16, Sar16]. Particularly, we consider
constituent codes of a particular polar code in Fig. 3.9. We transform the
graph representation from Fig. 3.8 into a tree. At layer 0 in Fig. 3.9 we
see all elements of a 16 bit polar code with frozen bit positions in white
and information bit positions in black. With every layer, we can recursively
combine nodes into one parent node and identify three patterns. These
specializations do not impact error correction performance.

Rate R nodes in gray are generic. These nodes are computed as described
in Sec. 3.2.3.

Rate 0 nodes in white constitute sub-trees with only frozen bit positions.
Thus, all values are known and we do not need to compute them any further.

Rate 1 nodes constitute sub-trees with information bits only. It is sufficient
to decide all constituent bits at that layer and compute the encoder operation
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rateR

rate0

rate1

Figure 3.9: 16 bit SSC polar decoder tree

(3.3) on that constituent code and mind that u = uGG. This is a more
lightweight operation than LLR computations.

Fast simplified successive cancellation

The SSC decoder may be further optimized to the Fast-SSC decoder in order
to improve throughput and reduce latency with more specialized constituent
codes [Gia16, SGV+16, STG+16].

Again, we consider a code tree illustrated in Fig. 3.10.

Repetition (REP) nodes in green indicate a constituent code that is
really a repetition code, i.e. all bits in a constituent code of size Ncc = 2l

are frozen bits except for the last one. Thus, it is sufficient to compute

x̃Ncc−1 =

Ncc−1∑︂
0

x̃l,i (3.10)

and decide ûNcc−1 = Q {x̃Ncc−1}. It is important to note that this summation
is only valid under the assumption that frozen bits are always zero.
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rateR

REP

SPC

rate0

rate1

Figure 3.10: 16 bit Fast-SSC polar decoder tree

Single-Parity-Check (SPC) nodes in orange are processed such that we
perform hard decision for all constituent LLRs x̃l,i. Then, we compute

parity = ⊕Ncc
i x̃l,i (3.11)

over this constituent code and, in case the parity constraint is not fulfilled,
flip the bit that corresponds to the least reliable LLR.

More specialized nodes exist in literature [CBL18, HA17]. We use
several of these, such as TypeI Double Repetition (DREP), TypeII Triple
Repetition (TREP), TypeIII Double SPC (DSPC) and TypeV (TypeV)
constituent codes. Further, for Nc = 8 constituent codes we use TypeIV
Repetion One (REP-One) as well. In Appendix A we present a more complex
Single Parity Check (SPC) node C++ implementation example.

SC-List

While SC decoding yields excellent error-correction performance with large
codewords, it falls short for moderate and short code lengths [Sar16]. Al-
though several approaches to improve short code performance were proposed
such as SCFlip [CSD18] and SCAN [FB14] decoders, we focus on Successive
Cancellation List (SCL) decoding because it was recognized to yield the best
error-correction performance [PCB21, SGV+16, CSD16].
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The authors in [TV15] originally introduced SCL decoding where they
propose to follow both options whenever a bit decision is required under the
SC strategy. Thus, whenever we would decode an information bit ûi, instead
we branch the decoder and follow both options, i.e. continue with the SC
decoder process for ûi = 0 and ûi = 1. Without restricting the number of
branches to follow, this yields a Maximum Likelihood (ML) decoder [TV15].
Although, unrestricted branching yields optimal performance, it does also
yield high complexity. Therefore, we maintain a list of branches of size L
with the lowest metrics

γi =

{︄
γi−1 + |ũi| if sgn(ũi) ̸= (−1)ûi

γi−1 otherwise
(3.12)

where γ0 = 0, and prune all other branches [TV15, BSPB15]. This approach
penalizes every branch that yields a decoded bit ûi that differs from the
decoding decision a SC decoder would make. This penalty equals the
absolute value of the LLR |ũi| at the current position i. Importantly, this
metric is updated for frozen as well as information bit positions to penalize
probable incorrect prior decisions [BSPB15]. The branch list of size L is
maintained such that at every position where the SCL decoder branches into
2L branches, it will prune the L branches with the highest metrics. Thus,
the SCL decoder continues to decode L branches. The list size L steers the
decoding complexity of the SCL decoder [TV15]. Finally, we select the
surviving path with the lowest metric as the final result [TV15].

CRC-Aided SC-List

The authors in [TV15] observed that the SCL decoder yields a final candidate
list that often contains the correct information word. Still, the decoder may
yield an incorrect information word because this word might have a lower
metric than the correct information word. To overcome this issue the authors
in [TV15] introduce a geany, mostly a short CRC, to identify the correct
codeword in the candidate list. This leads to the CA-SCL decoder with
state of the art error-correction performance. Since modern communication
systems use a CRC for error detection [ETS20a], this strategy does not
introduce additional processing steps. Suitable CRC polynomials for CA-
SCL are known in literature [KC04].

However, a communication system that uses an error detection mechanism,
e.g. a CRC, to detect errors may need to be adopted in case a CA-SCL
decoder is employed. Effectively, log2 L bit of an error detection checksum
are used to select the correct information word from the candidate list
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[KEXMH20]. In turn, this may increase the error detector False Alarm Rate
(FAR) because the CRC is used for two different purposes [KEXMH20].

3.2.4 Puncturing

Polar code codeword sizes are inherently restricted to a power of 2 but we
may circumvent this restriction with puncturing, shortening or repetition
[CSD17, BGL17, ETS20a, KEXMH20]. Generally, puncturing is favorable
for low code rates while shortening is superior for high code rates [BCL21].
In case the desired code length N is just above a power of 2, repetition is a
suitable choice to maintain error correction performance.
In the realm of URLLC, we are mostly interested in low rate codes and

thus, we focus on puncturing strategies. We need to carefully choose a
puncturing pattern otherwise code performance may be degraded dramat-
ically [ZZW+14]. Consider a non-systematic polar code in reversed order
and puncture a code bit that is in AI. This punctured bit results in a
non-recoverable information bit and thus a catastrophic code.

A random puncturing strategy draws P puncturing positions from AFr at
random. The authors in [NCL13] propose Quasi Uniform Puncturing (QUP)
for non-systematic polar codes where puncturing positions are obtained by
bit-reversing the first P indices. In [ZZW+14], the authors propose to choose
P puncturing positions that correspond to the least reliable bit positions,
i.e. minimum puncturing.
In [DBD19], we investigate Frozen Quasi Uniform Puncturing (Frozen-

QUP) to obtain a punctured codeword c ∈ FN
2 . First, we find a base

codeword length Nc = 2⌈log2 N⌉ to a desired punctured codeword length N .
Then, we puncture the base codeword x at the P = Nc −N positions and
obtain a punctured codeword c. Here, we choose the first P bit positions
from AFr and apply bit-reversal according to the QUP strategy.

3.3 Integrated decoding and security

URLLC requirements focus on services with short packets and low latency
requirements. Thus, it is unfeasible to concatenate packets for efficiency and
error correction performance reasons. Packet overhead becomes a pronounced
problem for short packets that tend to cause more overhead because metadata
has a fixed size and is required for every packet. Furthermore, Factory
Automation (FA) requires a high level of confidentiality to ensure production
secrets do not leak to unauthorized third parties [MB17].
We filed a patent [DBD21] where we propose to merge the security and

reliability domains to leverage synergies and to lower overhead. In Fig. 3.11
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we illustrate the State-of-the-Art transmitter chain. It consists of two
separate domains, namely security and reliability.
In the security domain, the two key targets are data confidentiality and

authentication. Here, we assume every packet is first encrypted with the
Advanced Encryption Standard (AES) to ensure confidentiality and requires
16B packet size multiples and thus may add padding overhead [Dwo01].
Next, a cryptographic checksum, a MACode, and thus overhead is added to
the encrypted packet to provide message authentication. We focus on CMAC
for authentication [ISLP06, Dwo16]. Though, we note that other MACodes
are available, e.g. HMAC would be a viable alternative [KBC97, NIS08].

AES MAC CRC FEC

Reliability
domain

Security
domain

a b

Figure 3.11: State-of-the-Art: separate security MAC and reliability FEC

In the reliability domain, the focus is on correct packet reception. The
integrity of received packets is typically verified via CRC encoding with a
high level of assurance [KC04, ETS20a]. A CRC adds a checksum, again
overhead, to each packet for verification. Finally, we consider polar codes
for FEC as presented in Sec. 3.2.

Now, from a processing perspective, it can be shown that both CRC and
MACode add a checksum to each packet for integrity verification. The
difference is that the MACode checksum supports additional functionality,
namely authentication. Thus, our first idea is to drop the CRC and solely
rely on the MACode as shown in Fig. 3.12b. The benefit is that we combine
security and reliability and are able to reduce packet overhead.

AES encrypted

payload MAC CRC

frame

(a) Traditional frame structure with pay-
load and overhead (CRC and MACode)

AES encrypted

payload MAC

compressed frame

(b) Compressed frame structure with pay-
load and reduced overhead (CMAC
only)

Figure 3.12: Frame structure comparison

In Sec. 3.2.3 we present a CA-SCL polar decoder that employs a CRC
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to identify the correct information word â in a candidate list with b̂ℓ. We
propose to use a MACode checksum instead to effectively merge the security
and reliability domain as shown in Fig. 3.13. It is more efficient in terms
of overhead because the CRC checksum is eliminated. For the small packet
case with 128 bit packets and a typical CRC checksum size of 32 bit this
results in a 25% overhead reduction.

AES MAC FEC

Figure 3.13: Key contribution: integrated security MACode and reliability FEC.

3.3.1 Contribution

The proposed system joins security and reliability aspects instead of treating
them as separate entities in order to achieve a better wireless communication
system as shown in Fig. 3.13. The resulting system is more efficient because
overhead can be reduced while it maintains error correction performance as
illustrated in Fig. 3.12. Specifically, we propose a joint MACode-FEC polar
code for reduced overhead and a polar decoder that makes use of a MACode
checksum.

3.4 Numerical software defined radio parame-
ter evaluation

Naturally, FEC algorithms are rated by their error correction performance
[CLT+21, CHL+19]. Though, this is not the only metric of interest. Achiev-
able throughput and decoder latency often play a crucial role in the selection
process for FEC algorithms. We started our FEC investigation in Sec. 3.1
with a comparison of State-of-the-Art codes and identified polar codes as a
suitable candidate. Now, we want to present our findings for our polar code
implementation [DL22] in terms of error correction performance, throughput
and latency. We extend this investigation to different parametrizations to
identify suitable trade-offs for URLLC.

3.4.1 Benchmarks

We want to gather performance metrics for our polar codes implementation
that help to implement a SDR URLLC communication system. Sec. 8.4.4
details the general measurement approach and includes our definition of
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latency and throughput. Latency is defined as the time it takes to execute one
function call. In this chapter, this is either the encode or decode function
execution time. Moreover, the throughput is defined as the bit s−1 that are
processed by the corresponding function. Coded throughput considers the
Nc bit per function call while information throughput considers the K bit
per function call.
Others have published throughput and latency results for their imple-

mentations [Gia16, CHL+19], though these implementations are either not
publicly available or not as fast as our implementation. The authors in
[Gia16] report 398Mbit s−1 to 502Mbit s−1 throughput, and 2µs to 3 µs
latency for a (2048, 1024) SC decoder on an Intel Core i7-4770S. However, to
the best of our knowledge this implementation is not publicly available. The
implementation presented in [CHL+19] was evaluated regarding throughput
for an SC decoder in [LCL+19] where the authors report 215.15Mbit s−1

decoder throughput for a (2048, 1024) polar code. We are able to report
higher throughputs for similar codes with R = 0.5 in Fig. 3.17. The focus of
our work is on the impact of different parametrizations on error correction
performance, throughput, and decoder latency for short packets.
It is possible to adopt inter-frame and intra-frame decoder strategies to

boost throughput [GLJ15, Gra19]. We restrict our investigation to intra-
frame decoder strategies because we focus on URLLC where the additional
inter-frame latency is prohibitive. Further, we consider single-thread perfor-
mance exclusively because a full SDR system needs to perform more tasks
than coding which require compute resources as well.

3.4.2 SCL list size

In our discussion in Sec. 3.1, we showed that there exists a trade-off between
error correction performance and complexity. In terms of complexity, we
consider a SC polar decoder with complexity O (Nc logNc) and SCL decoders
with O (LNc logNc). Thus, keep in mind that complexity scales linearly
with list size L.

Error correction performance

All our investigations are performed with our implementation [DL22]. We
start our investigation with a comparison of different list sizes L and channel
construction strategies in Fig. 3.14 and Fig. 3.15 as discussed in Sec. 3.2.2 and
3.2.3. We use a 8 bit CRC in each case to enable CA-SCL where applicable.
We observe an error correction performance boost for larger list sizes at the
expense of increased complexity. While the error correction performance
receives a significant boost for L = 8 compared to L = 1, further error
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Figure 3.14: (512, 256) Polar codes with varying list size L and channel construc-
tions (5G, BB, BE, DE, GA).

correction performance boosts are relatively small while complexity escalates.
In accordance with 5G NR we will use L = 8 as an error performance
benchmark and consider it a suitable trade-off between throughput and error
correction performance [BCL21].
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Figure 3.15: (1024, 512) Polar codes with varying list sizes L.

We compare throughput for different list sizes L in Fig. 3.16 on an AMD
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Figure 3.16: Throughput for L ∈ {1, 2, 8, 32} polar codes with Nc = 512, BB,
dSNR = 1.0, without CRC, systematic code, and a fp-32 decoder
implementation. (solid: coded, dashed: information)

Ryzen Threadripper 3970X (TRX3970X) machine as discussed in Sec. 8.6.
Here, we consider no CRC, a block length Nc = 512, channel construction
with Bhattacharyya Bound (BB) and dSNR = 1.0 with a systematic floating
point decoder implementation. We present results for both, coded bits
throughput and information bits throughput because their relation varies
for different coderates R. Note that throughput is plotted logarithmically to
ensure all graphs are sensibly visible. A list size of L = 2 reduces throughput
by a factor of 65. A further increase in list size from L = 2 to L = 8
reduces throughput by factor of four 4. Thus, a list size L = 8 reduces
throughput by a factor of > 200. At first, we would expect throughput to
decrease to an eighth of the SC decoder, corresponding to L = 1, due to
the corresponding complexity increase with O (LNc logNc) [TV15]. Instead,
we observe a throughput decrease to two hundredth. We attribute this
decrease to complexities with memory management, list sorting and metric
calculation. Further investigation and optimization would be key to improve
performance here. The step from L = 8 to L = 32 decreases throughput by
a factor of four which corresponds to the complexity increase. We conclude
that further investigation into inherent SCL decoder optimizations seems
appealing. Also, we implement a mixed decoder as well. First, we employ
the SC decoder and only use a CA-SCL decoder if the first CRC check fails.
For practical points of operation, we expect most codewords to pass with the
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fast SC decoder and only very few codewords require a CA-SCL. We want
to point out that the worst case decoding latency is considerably higher in
this case, while throughput is significantly improved.

Further, we see lower throughput for codes around R = 0.5 while low and
high rate codes deliver higher coded throughput. A SC decoder for a low rate
code is able to decode more than 1Gbit s−1 on a single core. Information
throughput increases with code rate which is to be expected.
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Figure 3.17: Throughput for Nc ∈ {128, 256, 512, 1024} polar codes with L = 1.
(solid: coded, dashed: information)

Now, we want to further investigate throughput for different polar codes
in Fig. 3.17 with an SC decoder. Note that throughput is plotted on a
linear scale. The information bit throughput increases with higher code
rate. However, the coded throughput shows a minimum around R ≈ 0.6.
We reckon this dip is caused by smaller constituent codes. We corroborate
our findings by considering pruned decoder trees in Fig. 3.18 and observe
that high and low rate codes tend to show larger constituent codes that are
better suited for optimization.
Previously, we noted that polar codes exhibit O (Nc logNc) complexity.

Consequentially, we expect higher coded throughput for smaller block sizes
Nc. On the contrary, Nc = 256 codes yield higher throughput than smaller
Nc = 128 codes which in turn fall behind Nc = 512 codes at higher code
rates. Particularly, we observe a peak coded throughput for Nc = 256 of
1.25Gbit s−1 where the decoder hits a sweet-spot for vectorized optimiza-
tions.
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Figure 3.18: Polar decoder trees for Nc = 256

3.4.3 Channel construction algorithm

Sec. 3.2.2 introduced multiple channel construction algorithms. Fig. 3.19 and
Fig. 3.20 show the corresponding error correction performance evaluations.

Error correction performance
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Figure 3.19: (1024, 512) Polar codes with varying channel construction algo-
rithms with dSNR = 1dB where applicable.

For L = 1 BB exhibits the best performance while larger L favors 5G and
β-Expansion (BE) in Fig. 3.19. Gaussian Approximation (GA) shows the
worst performance among all algorithms. Though, we note that this channel
construction algorithm only yields a minor performance degradation. Finally,
Density Evolution (DE) performance is in between the other algorithms. DE
tends to yield better performance in comparison for larger list sizes L.
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While it might be suitable for small packets Nc ≤ 1024 to use 5G channel
construction, we generally consider BB and BE due to their generality, good
performance and simple construction algorithms.
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Figure 3.20: R = 0.5 polar codes with Nc ∈ {1024, 512}

We want to corroborate our findings with the results in Fig. 3.20 for
polar codes with code rate R = 0.5. We only consider BB and BE in
this case for different list sizes. First, we observe that BB yields better
performance for L = 1 while BE yields better performance for larger list sizes.
A larger codeword size N results in better error correction performance for
all configurations as expected.

Channel construction parameters

Different Design SNRs (dSNRs) yield varying polar code structures and in
turn different error correction performance. Our encoder latency investiga-
tion reveals that latency increases linearly with K, while code structure has
a negligible effect on latency. This might very well be a dominating factor for
decoder latency. Thus, in Fig. 3.21 we see the corresponding decoder results.
A first conclusion here would be to acknowledge that a lower dSNR yields
lower latency. Second, we see a maximum latency for a code with rate R = 5

8
which is an indication that specialized nodes, mostly Repetition (REP) and
SPC, have a positive impact on latency. Considering polar encoder and
decoder, it becomes obvious that channel construction for lower dSNR is
preferable.
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Figure 3.21: Polar decoder latency with varying dSNR and N = 1024, CRC32,
L = 1, fp-32, non-systematic.

3.4.4 CRC aided polar codes and security

The CA-SCL decoders in Sec. 3.2.3 use a CRC to identify the correct
codeword in a candidate list. Our proposal in Sec. 3.3 replaces the CRC
with a CMAC to aid correct codeword identification. Here, we explore the
benefits and drawbacks of these solutions. The encoder benchmarks highlight
the impact of the proposed checksum algorithms on latency. Simulation
results reveal the exact same error correction performance for CRC as well
as CMAC checksums, and thus we focus on latency investigations.

In Fig. 3.22 we investigate the impact of different truncated CMAC lengths
on latency. We use openssl to compute CMACs [Ope21]. We observe that
the polar encoder latency is unaffected by the CMAC length. Since a
truncated CMAC is used in each case that is derived from a 128 bit CMAC,
this result is to be expected. Further, a longer input sequence does not affect
latency which is probably due to constant-time execution requirements for
security reasons in the openssl library.
Next, we compare 32 bit CRC and 32 bit CMAC based polar encoders.

Here, we observe a constant offset of approximately 350 ns between both
implementations. We conclude that a CRC implementation offers slightly
lower latencies in case security features are not required.

Further, we consider different CRC lengths in Fig. 3.22. A length 0 CRC
implies that we do not add a checksum at all. Thus, this implementation
offers the lowest latency. For length 8, we use an optimized Look-Up-Table
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Figure 3.22: Polar encoder with CRC and CMAC checksum sizes 0, 8, 16, 32,
N = 1024, BB dSNR = 1.0, non-systematic.

(LUT) based implementation that increases latency slightly. The length 16
CRC is made available through the CRC++ library [Bah21]. In this case
latency increases faster with larger K, probably due to the added flexibility
offered by the chosen library. Finally, the length 32 CRC implementation
is optimized to leverage SIMD instructions [Int21]. We observe that longer
input increases latency only slightly in contrast to the plain case without
CRC. Therefore, we can conclude that specialized SIMD instructions are
useful to improve latency. Though, this optimization is restricted to one
specific CRC polynomial.

3.4.5 Systematic versus non-systematic codes

Systematic polar codes exhibit better BER performance while their FER
performance is unchanged [STG+16]. Here, we want to explore benchmark
results for these codes.

A systematic polar encoder mostly requires a second encoder pass to yield
a codeword. In Fig. 3.23 we observe that a systematic encoder requires
approximately 180 ns more latency. This result indicates that encoder
latency is dominated by information bit insertion, while the recursive encoder
structure is well suited for low latency applications.
On the contrary, the polar decoder exhibits lower latency for systematic

codes as shown in Fig. 3.24. This should come as a surprise but is well
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Figure 3.23: Polar encoder latency: systematic vs non-systematic, N = 1024,
CRC32, BB dSNR = 1.0.
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Figure 3.24: SC polar decoder latency: systematic vs non-systematic, and int8
vs fp-32, N = 1024, CRC32, BB dSNR = 1.0, and L = 1.

justified because the decoder implementation needs to compute most encoder
operations anyways and thus yields a systematic codeword first that needs
to go through another encoder pass to yield a non-systematic information
word. The systematic 8bit integer (int8) fixed point decoder implementation
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yields a peak latency at 2575 ns while the fp-32 decoder shows a peak at
2118 ns. Overall, the polar decoders show a higher impact on latency then
their encoder counterparts and thus, the configuration should be chosen such
that decoder latency is minimized.

3.4.6 Punctured codes

Polar codeword sizes are inherently restricted to powers of two. In order
to gain more flexibility, we investigate puncturing schemes for low rate
codes as discussed in Sec. 3.2.4. The focus of this investigation is on
error correction performance of punctured polar codes. Since we consider
puncturing outside the scope of the actual encoder and decoder, we do not
present benchmark results because these operations are readily integrable
into adjacent operations, e.g. interleaving.
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Figure 3.25: Puncturing scheme comparisons with R ≈ 1
3

Fig. 3.25 compares polar codes with R ≈ 1
3 with different codeword sizes

512 ≤ N ≤ 1024. First off, the polar codes (512, 168) and (1024, 336) exhibit
slightly lower coderate and do not require puncturing but serve as a reference.
The (936, 312) codes are all located within these bounds and reveal that
Frozen-QUP delivers the highest error correction performance among the
considered puncturing schemes. Puncturing out the positions with minimal
reliability reveals the poorest performance in every configuration. With
more punctured out bits, the Frozen-QUP performance moves closer to the
random puncturing strategy. Still, we conclude that Frozen-QUP yields the
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lowest FER and thus should be favored over the other puncturing schemes.

3.4.7 Contribution

We investigate the error correction performance, latency and throughput of
short polar codes with our latency-optimized software implementation [DL22].
These investigations reveal that low and high code rates are beneficial to
throughput while a code rate ≈ 0.6 yields the lowest throughput. Further,
we investigate the trade-off between error correction performance and latency
for CA-SCL decoders. The results show that a moderate list size of L = 8
is sufficient to collect most performance gains while still maintaining a
reasonable latency. Finally, we conduct a thorough analysis of polar codes
with differing parametrizations and discuss trade-offs.

3.5 Summary

We started this chapter with a review of modern coding algorithms for short
codes. Subsequent sections introduce polar codes together with their most
prominent advanced decoder option, the CA-SCL polar decoder. These
discussions include algorithmic as well as software implementation specific
considerations. Afterwards, we proposed a system that joins the security
and reliability realms of a communication system in a joint MACode-FEC
polar code for reduced overhead. Finally, an extensive set of experiments
reveals the impact of different polar code parametrizations in terms of error
correction as well as latency and throughput.

3.5.1 Contribution

In this chapter we verify the findings in [SWJ+16] that polar codes, especially
in conjunction with advanced decoders, are an attractive choice for short
packet communication systems. Since most advanced polar decoders make
use of a CRC, we propose to fuse the security and coding domains to leverage
synergies that help to reduce frame overhead and thus boost efficiency
especially for small packet communication. Specifically, we propose a joint
MACode-FEC polar code for reduced overhead and a polar decoder that
makes use of a MACode checksum. Moreover, we present our open source
polar coding implementation [DL22]. Extensive simulation and benchmark
measurement for short polar codes reveal trade-offs that may aid in designing
communication systems with short packets, especially URLLC.
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Symbol mapping

In this chapter we discuss symbol mapping with Bit-Interleaved Coded
Modulation (BICM) and their impact on latency. First, a discussion on all
components and their theoretical function is conducted. This includes a
discussion on specializations, approximations, and resulting optimizations
to reduce the latency impact of these components. Previous works on
soft demappers, [TB02, ALF04, MAXC16], focused on numerical perfor-
mance, approximation quality, and complexity analysis. In this chapter, we
contribute a thorough latency analysis of our open-source implementation
[Dem22a] to determine their impact and readiness for future Cloud RAN
systems.
We focus on symbol mappings that are standardized in current wireless

communications systems such as LTE, 5G NR, and Wi-Fi. First, the process
to map bits to complex symbols, i.e. symbol mapping, is discussed. It is
accompanied by LLR calculation for reception as well as optimized approxi-
mations for standardized symbol constellations. These measures boost low
latency but show a negligible impact on error rate performance. The theo-
retical part is completed with a discussion on BICM that ensures desirable
statistical properties for FEC. Afterwards, we present our latency benchmark
results for our open-source symbol mapping implementation [Dem22a] that
we integrate into the GNU Radio API. The presented implementation can
be used in simulations and SDR field tests. Field tests and simulations that
share a common code base may drastically accelerate technology verification
through synergies. Additionally, future Cloud RANs will benefit from a
software implementation [BRW+15] that will enable more efficient use of
available hardware. Benchmarks reveal how susceptible the implemented
functionality is to different parameter sets. Finally, these latency benchmarks
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provide reliable figures for low latency broadband SDR system design for I4.0
URLLC applications. In summary, the investigated software implementation
for Cloud RANs exhibits suitable low latency for I4.0 URLLC applications
Cloud RAN.

4.1 Fundamentals

Depending on the current channel state and reliability constraints, we may
dynamically choose different mapping schemes to boost efficiency or reliability
[CTB98]. Our considerations are restricted to QAM mappings because these
are the only relevant options in multicarrier contexts [ETS18a, IEE12].
We present a flowgraph in Fig. 4.1 that focuses on mapping details.

Correspondingly, in Fig. 2.2 we present a system overview. A codeword
c with N elements, as discussed in Chapter 3, is first interleaved into an
interleaved codeword cIL ∈ FN

2 . Bit interleaving is employed to ensure
bit-layers and code bits are sufficiently independent and thus boost FEC
decoder performance [CTB98]. Interleaving and rate matching, discussed in
Sec. 3.2.4, both require selecting specific elements and moving them to new
positions, which may be combined for efficiency reasons. Here, we require
that N = MNd holds after puncturing. The interleaved codeword cIL is
partitioned into groups of M elements and mapped to a complex symbol
from the current QAM constellation AC with |AC| = 2M that we discuss in
Sec. 4.2 with an example in Fig. 4.2. Thus, M represents the mapping or
constellation order, while 2M represents the mapping or constellation size.
Furthermore, the interleaved codeword cIL of size N is mapped onto the
complex symbol vector d ∈ AC

Nd with Nd elements.

Mapping

Calculate Encode Interleave Map

Channel

DemapDeinterleaveDecodeCheck

a b c cIL d

d̃c̃ILc̃b̂â

Figure 4.1: Mapping flowgraph with c ∈ FN
2 , cIL ∈ FN

2 , d ∈ AC
Nd , and N =

MNd.

At the receiver, the demapper yields LLRs c̃IL from the received complex
symbols d̃. These LLRs are then deinterleaved before they are fed into a
FEC decoder.
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4.2 Quadrature amplitude modulation

We consider multiple constellations with their corresponding alphabets AC

where |AC| = 2M is the number of constellation points. Many communication
standards, e.g. Wi-Fi, LTE, 5G NR, share a common set of constellations
and corresponding bit-to-symbol mapping [IEE12, ETS19b, ETS19a]. A
vector c ∈ FMNd

2 is rearranged into Nd groups

c = [c0, c1, . . . , cMi+l, . . . , cMNd−2, cMNd−1] (4.1)

where each group consists of M bits. Each group is mapped to a constellation
point

di = M ([cMi+0, . . . , cMi+l, . . . , cMi+M−1]) (4.2)

where l = {0, . . . ,M − 1} indicates the position within a group and i =
{0, . . . , Nd − 1} indicates the index of the corresponding complex symbol.
We assume Gray labeling for all constellations, i.e. neighboring constellation
point labels only differ by one bit [CTB98, Boc12]. Generally, we assume
that the mean complex symbol power σ2

d = 1.
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Figure 4.2: LTE/5G NR/Wi-Fi Quadrature Phase Shift Keying (QPSK) and
16QAM constellations with corresponding bit to symbol mappings

Fig. 4.2 shows two exemplary constellations, namely QPSK and 16QAM,
together with their bit labels. In our work, we mostly consider lower order
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constellations, e.g. Binary Phase Shift Keying (BPSK), QPSK or 16QAM,
but note that higher order constellations, e.g. 64QAM and 256QAM, are
commonly used as well and available in our implementation [ETS18a].

4.3 Soft demapping

While mapping with (4.2) boils down to a simple Look-Up-Table (LUT),
demapping is more complex. A soft demapper yields soft bit values, or LLRs,
c̃ that are fed into a FEC decoder as discussed in Sec. 3.2.3. Soft demapping
yields a significant performance gain compared to the hard decision approach
and is thus the preferred method in most cases [Pro95]. We want to leverage
corresponding error correction performance gains of soft demapping over
hard demapping with hard decision values ĉ. We assume that the sign
bit indicates the equivalent hard decision bit ĉ and the absolute value is
a measure of reliability, i.e. we assume c̃ > 0 if ĉ = 0 and c̃ ≤ 0 if ĉ = 1
[TB02, ALF04, MAXC16]. In general we obtain hard decisions

d̂ = QAC

(︂
d̃
)︂
= argmin

d∈AC

⃓⃓⃓
d− d̃

⃓⃓⃓2
(4.3)

from received symbols d̃ by finding the transmit symbol d ∈ AC with the
smallest Euclidean distance.
We recall our LLR definition from (3.4) for BPSK or NRZ mapped bits

c̃ = ln
p
(︂
c = 0|d̃

)︂
p
(︂
c = 1|d̃

)︂ = ln
p
(︂
d̃|c = 0

)︂
p
(︂
d̃|c = 1

)︂ (4.4)

with the Bayes’ theorem and under the assumption of equiprobable bits.
Now, we extend this LLR definition for mappings with higher mapping order

M . Here, we distinguish two distinct sets AC
(0)
l and AC

(1)
l . Specifically, the

set AC
(0)
l contains all constellation points d where cl = 0 holds for the bit at

position l, while AC
(1)
l holds the corresponding constellation points d where

cl = 1 holds. For M > 1, we sum up all likelihoods for AC
(0)
l and AC

(1)
l

separately and obtain

c̃l = ln

∑︂
∀d∈AC

(0)
l

p
(︂
d̃|d
)︂

∑︂
∀d∈AC

(1)
l

p
(︂
d̃|d
)︂ (4.5)
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where we compute the ratio between both sums. Finally, we obtain an
efficient approximate equation

c̃l ≈
1

σ2
n

(︄
min

d∈AC
(0)
l

|d̃− d|2 − min
d∈AC

(1)
l

|d̃− d|2
)︄

(4.6)

under the AWGN channel assumption. All further details are discussed
in Appendix C along with specialized and optimized implementations for
specific constellations [TB02, ALF04, MAXC16].

4.4 Bit-interleaved coded modulation

A mapped bit cl at bit position l may experience a different reliability then
a bit at another bit position on the same complex symbol. Furthermore, bits
that are mapped to symbols on neighboring subcarriers in a multicarrier
system may experience correlated channels. In contrast we assume i.i.d. bits
for FEC decoding, hence we need to ensure that this assumption is fulfilled
to the best extend possible. The authors in [CTB98] propose Bit-Interleaved
Coded Modulation (BICM) to ensure this assumption holds sufficiently well
with the help of an interleaver before bits are mapped to symbols.

An interleaver is defined by a permutation pattern σ(i), known to both
transmitter and receiver, that re-arranges c into

cIL = [cσ(0), cσ(1), . . . , cσ(i), . . . , cσ(N−1)] . (4.7)

The value at position i in cIL equals the value at position σ(i) in c. In
practice this permutation pattern is represented by a list of integers. In
most cases, we employ a standard random interleaver [CTB98]. Other
interleaver designs are available as well such as 5G NR interleavers [ETS20b].
Conceptually these interleavers insert values row-wise into a matrix and
gather them column-wise or vice versa. We refer to these interleavers as block
interleavers because they operate on blocks of fixed size. Often, columns are
permuted before the interleaver gathers values from this matrix.

4.5 Mutual information

Before we consider practical and achievable performance for standardized
constellations in simulations, we investigate its theoretical properties. The
mutual information IBICM for BICM is a measure of channel quality and
required for Link Abstraction (LA) in Sec. 7.2 as well. We would like
to remind the reader of the set of assumptions that are commonly made,
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specifically, we assume BICM, Gray labeling, and i.i.d. real and imaginary
parts. The goal is to compute bit capacity for each layer depending on SNR.
The mutual information IBICM calculation is split into M different bit layers
l and these bit layers differ in reliability [Boc12]. For each bit layer, we
compute

IBICM,l = 1− E

⎧⎪⎪⎨⎪⎪⎩log2

∑︁
d2∈AC

pd̃|d

(︂
d̃|d2

)︂
∑︁

d3∈AC
b
l

pd̃|d

(︂
d̃|d3

)︂
⎫⎪⎪⎬⎪⎪⎭ (4.8)

and then calculate IBICM =
∑︁M−1

l=0 IBICM,l for the desired SNR. The
interested reader may refer to Appendix B for further details how to
solve this equation numerically via NGHQ point Gauss-Hermite-Quadrature
[Jäc05, Boc12].
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Figure 4.3: Mutual information for multiple constellations

Results for different mappings are shown in Fig. 4.3 together with Gaussian
capacity. Computing these values is potentially a resource intensive task, thus
we will use cached values in conjunction with linear interpolation. Further,
Fig. 4.3 illustrates the need to dynamically choose different constellations
depending on channel conditions. A 16QAM constellation should be favored
over a 64QAM constellation for situation where SNR is below 10 dB but
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the same choice would be wasteful at 15 dB where 64QAM would be more
efficient.

4.6 Numerical software defined radio parame-
ter evaluation

In this section we benchmark the latency and throughput impact of BICM,
i.e. interleaver, mapping, and demapping, on a SDR system. We consider a
AMD Ryzen Threadripper 3970X (TRX3970X) Linux host as discussed in
Sec. 8.6 and 8.4.1 with GNU Compiler Collection (GCC) 9.3 and optimization
level -O3. Our latency benchmarks are performed according to the procedure
discussed in Sec. 8.4.4.
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Figure 4.4: Interleaver latency benchmarks

The reported interleaver latencies in Fig. 4.4 indicate that latency increases
linearly with block size N . We observe that all interleaver permutation
patterns, namely RANDOM, NR, and BLOCK, yield the same latency
results for unpacked bits of data type uint8. For N > 8192 the float

interleaver latencies rise faster than the latencies for the uint8 interleavers.
Since float values require 4B per value and 4B · 8192 = 32 768B, larger
N values require memory in excess to the 32 768B level 1 cache of the
TRX3970X. This result exemplifies that it is important to consider CPU
memory and caches on the host system during software development [HP14].
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If we exceed the available memory at a given cache level, we must expect a
steeper ascend in latency.
There is a trade-off in an implementation between packed and unpacked

bits. If all 8 bit in a byte carry information, we consider the corresponding
array to be packed. In contrast if only the Least Significant Bit (LSB) carries
information the corresponding array is unpacked. A packed implementation
incurs extra overhead if individual bits need to be extracted and inserted
while it carries the advantage that it requires less memory. In Fig. 4.4 we
observe that the packed interleaver introduces higher latencies because it
needs to unpack, interleave, and pack every codeword. The advantage of
packed interleavers, less memory usage, is outweighed by its disadvantage,
more complexity and slower execution. We observed the same issue for
packed bits and mappers and thus decided to stick to an unpacked design at
this stage.
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Figure 4.5: Mapping latency benchmarks with N = MNd bits for various map-
ping orders M .

The mapping benchmarks in Fig. 4.5 reveal that higher mapping orders
M introduce lower latency for the same number of bits N . The mapping
function needs to execute more instructions per produced complex symbol
in case M is larger, thus one would expect higher latencies for higher values
of M . To the contrary, a higher mapping order yields lower latencies for the
same number of bits N . Again, this result highlights the influence of CPU
memory access because a higher modulation order M results in a smaller
Nd and thus, fewer values to write.
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Figure 4.6: Generic demapper latency benchmarks. The highest latency spe-
cialized (scalar, vector) M = 6 demappers serve as a reference to
Fig. 4.7.

We evaluate demapper latencies with the generic equation (4.6) in Fig. 4.6.
First, we conclude that a higher mapping order M results in exponentially
higher latencies because the complexity scales with O

(︁
2M
)︁
[MAXC16].

Every received symbol must be compared to every possible transmit symbol.
Further, we observe that M = 1 exhibits higher latency than M = 2 which
we attribute to CPU cache access again.

At the very bottom, we observe the latency results for M = 6 with
optimized scalar and vector implementations. The M = 6 scalar and
vector implementations received latency optimizations for this specific
configuration while the generic implementation can be used for any mapping
order Nd configuration. In case of AWGN channels it is sufficient to use
one scalar SNR value to demap all symbols and hence, we call it a scalar

implementation. In order to obtain accurate LLRs in multipath Rayleigh
fading channels, especially in multicarrier systems where each subcarrier may
be subject to a different CNR, we use a CNR vector to scale LLRs for every
received symbol individually. Thus, we call this a vector implementation.
Both versions, scalar and vector, use a specialized implementation that is
optimized for M = 6.
Fig. 4.7 presents the results for specialized demappers as detailed in

Appendix C and, for comparison, the generic M = 2 latency results.
Even the fastest generic implementation yields higher latencies than all
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Figure 4.7: Specialized demapper latency benchmarks. The lowest latency
generic demapper with mapping order M = 2 serves as a refer-
ence to Fig. 4.6.

specialized implementations. For N < 2500, and thus for all N that we
expect in a URLLC scenario, we observe a latency of less than 1µs, even
for M = 6. Intuitively, we would expect that a higher mapping order
M yields higher latencies. However, we notice that M = 8 yields lower
latencies than M = 6 but we do not investigate this outlier any further.
The vector implementations all exhibit slightly higher latencies than their
scalar counterparts that we attribute to caching.

4.7 Summary

In this chapter, we introduced BICM which consists of interleaving, deinter-
leaving, symbol mapping, and symbol demapping. The discussion started
with the theory behind these signal processing steps, and focused on standard-
ized symbol mappings with specially optimized implementations afterwards.
Further, known optimizations and approximations were discussed that lower
latency drastically while their FER performance impact is known to be
small and negligible [TB02, MAXC16]. Finally, latency benchmarks reveal
the influence of different optimizations and parametrizations on the system
latency.
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4.7.1 Contribution

We presented our open-source symbol mapping and interleaving implemen-
tation that is integrated into a GNU Radio Out-Of-Tree (OOT) [Dem22a].
Besides a theoretical description and optimizations, the in-depth software
implementation analysis reveals the latency impact that these signal pro-
cessing steps exhibit on an overall SDR system. Since the actual processing
steps for both, transmitter and receiver, are lightweight, our results in-
dicate how further CPU features, such as caches, influence latency and
throughput as discussed in Fig. 4.5. Previous works on soft demappers,
[TB02, ALF04, MAXC16], focused on numerical performance, approxima-
tion quality, and complexity analysis. Here, we present measurements that
reveal the latency impact of these optimizations and approximations to
enable future Cloud RAN implementations.





Chapter 5

Multicarrier modulation

Most modern communication standards use multicarrier modulation, e.g.
Long Term Evolution (LTE), 5th Generation New Radio (5G NR), and
IEEE 802.11 (Wi-Fi). While most standards use Orthogonal Frequency
Division Multiplexing (OFDM), we consider Generalized Frequency Division
Multiplexing (GFDM) as well. In this chapter, we investigate how suited
our multicarrier modulation software implementation for GFDM [DRKK22],
as well as OFDM, is for Software-Defined Radio (SDR).
The chapter commences with a discussion on GFDM and OFDM multi-

carrier modulation with its specifics to arrive at optimized implementations.
Next, an extensive set of benchmarks of our open-source, modular, and
portable GFDM implementation in GNU Radio reveal how susceptible vari-
ous of its components are to specific parameters and their impact on latency.
We compliment these investigations with performance simulations for GFDM
and OFDM to enable educated decisions on trade-offs between performance
and latency. Finally, we show that low latency broadband SDR systems for
Industry 4.0 (I4.0) Ultra Reliable Low Latency Communication (URLLC)
applications are feasible.
The main contribution of this chapter is an investigation of latencies

and performance implications introduced in the multicarrier modulation
Digital Signal Processing (DSP) chain of our GFDM SDR implementation
[DRKK22]. To this end, the chapter incorporates an extension to our
prior works [DBD17a, DBD+17b]. An extensive set of benchmarks and
simulations demonstrates the practicability of our solution in the context
of URLLC and I4.0 low-latency applications. In contrast, other works
such as [DMG+15] focus on hardware implementations without a focus
on latency measurements. We identified the multicarrier modulation and
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demodulation steps to be critical while all other DSP operations have a minor
latency impact. Prior works [FJ05] focus on 2× Fast Fourier Transform
(FFT) transforms, while we analyze the impact of more primes on latency.
Furthermore, this analysis shows that the number of timeslots in a GFDM
system should be kept to a power of two contrary to the number of subcarriers
where the impact on latency is lighter. Moreover, GFDM in conjunction
with Forward Error Correction (FEC) does not benefit from more than two
Interference-Cancellation (IC) iterations at high effective rates Reff. At a
low effective rate, a GFDM system does not benefit from IC at all.

Multicarrier requirements Current 4G LTE, Wi-Fi, Digital Audio
Broadcasting (DAB), Digital Video Broadcasting (DVB) as well as 5G
NR systems rely on OFDM which is a simple and effective multicarrier
modulation scheme. However, several shortcomings with regards to OFDM
were identified [CSW14]. These shortcomings include high Out-Of-Band
(OOB) emission properties, strict synchronization requirements and low
spectral efficiency due to Cyclic Prefix (CP) requirements. Furthermore, low
spectral efficiency implies more overhead that contributes to higher latency,
e.g. with more guard intervals.
A multicarrier communication system for I4.0 URLLC is expected to

better suit these requirements than SotA systems. This includes operation
in harsh, densely populated environments such as production floors with
multiple communication systems in close spatial as well as spectral proximity
[OMM16]. Thus, I4.0 systems must coexist with each other and with legacy
systems. Further, these multicarrier systems are required to provide more
flexibility to adapt to fading and counter deep fades in industrial radio
channels [DHC+19].

Multicarrier options To overcome OFDM shortcomings, several mul-
ticarrier modulation scheme candidates for I4.0 exist which offer differ-
ent approaches [SGA14]. Filter-Bank Multi-Carrier (FBMC) minimizes
OOB emissions by filtering each subcarrier but introduces large filter delays
[CSW14]. Universal Filterbank Multi-Carrier (UFMC) groups multiple sub-
carriers and then filters each group jointly in order to decrease filter delays,
though it still only considers timeslots individually [VWS+13].

GFDM goes beyond symbol-based modulation by modulating entire frames
[MMG+14]. Generally, GFDM is a highly flexible non-orthogonal waveform
that promises to overcome the OFDM shortcomings, e.g. with low OOB
emissions. OFDM can be considered a special parametrization of GFDM.
Circular filters retain the option to use a CP and a Cyclic Suffix (CS) for
whole frames. Furthermore, these filters avoid large delays and are able
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to minimize OOB emissions. For I4.0 low-latency communication systems,
short filter delays are an important advantage because latency reduction is
a critical design criteria which GFDM can deliver.

Prior works on DSP latency In addition to over-the-air latencies,
signal processing adds significant delays to a communication system. The
introduced latencies need to be known in order to be able to design a reliable
low-latency I4.0 system.

In [DMG+15], the authors present a GFDM implementation that specifi-
cally targets a hardware implementation in the Field Programmable Gate
Array (FPGA) on an Ettus USRP X310 (X310). Though, the processing
latencies of this FPGA implementation are unknown to the best of our
knowledge. Moreover, we focus on SDR, and thus more flexible software
implementations, in contrast to FPGA targets as discussed in Sec. 8.3.
We conducted latency investigations in two prior publications and want

to extend on them [DBD17a, DBD+17b]. This includes new benchmarks
on newer hardware, a larger variable space, and performance versus latency
trade-off discussions. At the time of this writing, there are no other software
latency measurements of GFDM systems known to the authors.

Software defined radio principles Field tests and simulations which
share a common code base drastically improve technology verification. A
SDR implementation offers the advantage to combine these features and it
can reveal latency figures in a GFDM system for I4.0. Additionally, future
Cloud Radio Access Networks (Cloud RANs) will benefit from a software
implementation [BRW+15] which will enable more efficient use of available
Commercial-Of-The-Shelf (COTS) hardware.

5.1 Fundamentals

We want to develop a common notation for both, GFDM and OFDM,
before we focus on specifics. The flowgraph in Fig. 5.1 expects complex
vectors d ∈ CNd from a symbol mapper as discussed in Sec. 4.1. Multicarrier
modulation starts with resource mapping where elements from d are assigned
to positions on a resource grid, or time-frequency plane, that is discussed in
Sec. 5.2. We continue with multicarrier modulation in Sec. 5.3.
Eventually a CP is added, and discussed in Sec. 5.4, to ensure favorable

channel properties. A CP serves as a guard interval to prevent Inter-Symbol
Interference (ISI). Further, it transforms multipath fading channel distortions
into cyclic convolution which we exploit during channel equalization to
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Figure 5.1: Multicarrier modulation flowgraph

use simple one-tap equalizers. The corresponding receiver operations are
discussed in conjunction with their transmit counter-parts. However, we
expect some receiver-specific operations, namely channel estimation and
equalization.

5.2 Resource grid

Multicarrier systems divide the available bandwidth Bs into Ks equally-
spaced subcarriers with subcarrier spacing Bs/Ks as shown in Fig. 5.2
[SGA14, MMG+14]. Further, resources are divided into Kt timeslots over
time to comprise frames of size NF = Kt · Ks. In an OFDM system one
timeslot corresponds to one OFDM symbol.
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Figure 5.2: Multicarrier resource grid with Ks subcarriers and Kon active sub-
carriers symmetrically placed around a DC subcarrier. Kt timeslots
divide the resource grid in time. Individual elements, or complex
symbols, dm,k are located in the mth timeslot on the kth subcarrier.

Now, each element d from d ∈ CNd is mapped to a unique point on the
resource grid, or time-frequency plane, or lattice, represented byD ∈ CKt×Ks

where an element dm,k corresponds to a symbol in the mth timeslot on the
kth subcarrier [MMG+14, SGA14, Gol05, KD18]. We denote a frame on the
resource grid D with NF = Kt ·Ks elements. With dk ∈ AC

Kt we denote all
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elements on the kth subcarrier over all timeslots Kt and with dm ∈ AC
Ks

we denote all elements in the mth timeslot over all subcarriers Ks.
Moreover, only Kon active subcarriers are occupied with symbols and

Ks−Kon are unused to realize a guard band, shown left and right in Fig. 5.2.
Often, the carrier frequency fc and the Local Oscillator (LO) frequency
coincide, i.e. we abstain from offset tuning. In this case, it is desirable to
leave the corresponding baseband subcarrier, also known as Direct Current
(DC) subcarrier, unoccupied.

Together with the number of timeslots Kt we can denote a resource grid
for one frame that conveys Nd = Kt · Kon symbols and, together with a
guard band and DC subcarrier, occupies Kt · Ks resources. An OFDM
system modulates all Ks complex symbols in one timeslot m into one OFDM
symbol and adds a CP to each OFDM symbol. While OFDM modulates
individual timeslots in a frame, GFDM modulates an entire frame jointly.
Moreover, OFDM is a special case of GFDM with Kt = 1 and a rectangular
filter. However, it is possible to use GFDM and divide a frame into parts
that are modulated individually with GFDM.
Communications engineers must choose these parameters carefully to

match expected channel conditions. For example, if the number of timeslots
Kt results in a frame duration that is longer than the expected channel
coherence time, the system design assumptions are violated. While the
system design assumptions are discussed in Sec. 2.2.2, we want to re-iterate
those assumptions here in accordance with [Pro95, Gol05, KD18]. First,
individual subcarriers are approximately frequency flat. A CP effectively
prevents ISI if NCP ≥ Nh, i.e. the assumption that the CP duration TsNCP

is greater or equal to the maximum relevant channel delay τmax holds.
Finally, we assume a block fading channel as discussed in Sec. 2.2.2. If this
assumptions are violated a system might not perform as expected or may
even be rendered completely dysfunctional.

5.3 Multicarrier modulation

The core signal processing step is multicarrier modulation where all the
minute differences surface. While OFDM modulates single timeslots with a
fixed filter, GFDM modulates frames, or multiple timeslots, with a flexible
filter [Pro95, MZS+16]. The GFDM approach introduces more flexibility
and thus, GFDM can be better matched to different individual use-cases,
e.g. better Time-Frequency-Localization (TFL) and thus smaller guard
bands or minimize latencies by designing a system accordingly. According to
the Balian-Low theorem, we must choose between TFL, orthogonality and
efficient resource usage [SGA14]. In case of OFDM we choose orthogonality
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and efficient resource usage but the signal is not localized in frequency.
Generally, in case of GFDM we choose TFL and efficient resource usage at
the expense of a non-orthogonal system.

5.3.1 Orthogonal frequency division multiplexing

Orthogonal Frequency Division Multiplexing (OFDM) is a widely used
multicarrier modulation [Pro95, Gol05, KD18]. It is efficiently implementable
via FFTs, simple one-tap per subcarrier Frequency-Domain Equalization
(FDE), and it integrates well with other technologies, such as Multiple Input
Multiple Output (MIMO).
We obtain OFDM symbols by modulating each timeslot with

ym = F−1
Ks

dm (5.1)

from D with a Ks point inverse Discrete Fourier Transform (DFT) F−1
Ks

, i.e.
we transform each vector into the time domain [Pro95]. Similarly to (5.1),
we compute the received OFDM symbol vector

d̃m = G · FKs ỹm (5.2)

at the receiver. The modulated receive vector ỹm from timeslot m is
Fourier transformed FKs to the frequency domain. Afterwards, we perform
equalization with a FDE matrix G ∈ CKs×Ks that we discuss in Sec. 5.3.2.

5.3.2 Non-iterative equalization strategies

The receiver needs to mitigate channel distortions. With the channel assump-
tions, discussed in Sec. 2.2.2, we can narrow down the choice of non-iterative
equalizers to a simple one-tap Matched-Filter (MF), Zero-Forcing (ZF), or
Minimum Mean Square Error (MMSE) equalizer per subcarrier, i.e. we use
a Frequency-Domain Equalization (FDE) [Pro95]. Most importantly, we
assume frequency flat subcarrier channels, with block fading, i.e. the channel
does not change for the duration of a frame. It is a part of appropriate
communication system design to find a suitable parameter set that fulfills
these requirements.
With this assumption, the equalization matrix G in (5.2) is a square

matrix and we assume that all off-diagonal elements are zero. Thus, we
identify each diagonal element gkk in our equalization matrix G and simplify
our notation to gk for each diagonal element. While OFDM operates with
an equalizer matrix G ∈ CKs×Ks per timeslot, GFDM FDE employs the
same technique with an equalizer matrix G ∈ CNF×NF per frame.
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Matched-Filter (MF) equalization is suited for Phase Shift Keying (PSK)
constellations which solely use phase to carry information. We compute MF
equalizer taps with

gk = h̆
∗
k (5.3)

where ∗ denotes complex conjugation and h̆ denotes a channel tap in the
frequency domain as discussed in (2.17). The MF approach is ideal in the
sense that it maximizes Signal-to-Noise-Ratio (SNR) for PSK modulation.
However, this approach introduces a bias, i.e. for constellations which use
amplitude to carry information, the MF approach adds additional amplitude
distortion [KD18]. Thus, we may normalize the equalizer taps

gk =
h̆
∗
k

|h̆k|2
(5.4)

such that we compensate for the introduced bias [Ver98, Gal08]. Now,
the MF approach is suitable for Amplitude Shift Keying (ASK), and thus
Quadrature Amplitude Modulation (QAM), constellation equalization.

Zero-Forcing (ZF) equalization removes any fading distortion at the
expense of possible noise enhancement. We compute ZF equalizer taps with

gk = h̆
−1

k (5.5)

and thus just the inverse of the subcarrier channel tap h̆k.

Minimum Mean Square Error (MMSE) equalization tries to find
an equilibrium between SNR maximization and fading distortion removal
[Gol05, KD18]. This approach leads to the computation

gk =
h̆
∗
k

h̆
∗
kh̆k + σ2

n

=
h̆
∗
k⃓⃓⃓

h̆k

⃓⃓⃓2
+ σ2

n

. (5.6)

The MMSE approach requires additional information about σ2
n that the

receiver needs to obtain.

5.3.3 Generalized frequency division multiplexing

We present Generalized Frequency Division Multiplexing (GFDM) theory in
this section and note that the results are partially published in two prior
publications [DBD17a, DBD+17b]. While OFDM modulates individual
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OFDM symbols, or timeslots, GFDM modulates frames that consist of
multiple timeslots. Thus, it is only necessary to consider one CP per frame
which in turn enables shorter frames and potentially lower latency compared
to OFDM. Further, we may exploit more flexibility with filter design and
ensure TFL to potentially decrease required guard bands between co-existing
systems [SGA14]. However, these measures may increase receiver complexity
because we need to mitigate self-interference caused by non-orthogonal filter
design.
We consider a multicarrier resource grid DKt×Ks and stack its columns

dk ∈ CKt into a stacked vector

dSRG =
[︂
dT
0 dT

1 . . . dT
k . . . dT

Ks−2 dT
Ks−1

]︂T
∈ CKtKs (5.7)

with NF = KtKs elements [MMG+14]. The GFDM modulator computes a
linear operation

y = AmoddSRG (5.8)

to modulate whole frames with the modulation matrix Amod [MMG+14].
This modulation matrix Amod contains the filter coefficients for one symbol
in each column and can be written as

Amod =
[︂
ω0,0 ω0,1 . . . ω1,0 . . . ωKs−1,Kt−1

]︂
∈ CNF×NF (5.9)

where the columns represent filters derived from a prototype filter ω ∈ CNF×1

[MMG+14]. The i-th element of the derived filter for the k-th subcarrier in
the m-th timeslot is obtained by mixing and circularly shifting the prototype
filter

ωk,m[i] = ω[(i−mKs) mod NF] · ej2πi
k

Ks . (5.10)

The cyclic shift with mKs mod NF retains the cyclic frame property that is
similar to the OFDM case where we use a FFT. Furthermore, with Kt = 1
and a rectangular prototype filter ω we obtain an OFDM system as a special
case [MMG+14].

From (5.8) it can be observed that GFDM is a linear, frame-based multicar-
rier modulation scheme. However, the potentially large matrix multiplication
is a very expensive operation and we discuss efficient modulation in Sec. 5.3.3.
The desired spectral and interference properties can be designed by choosing
an appropriate prototype filter ω, e.g., Root-Raised-Cosine (RRC), or Gaus-
sian filters. OFDM is a special case of GFDM with Kt = 1 timeslot and a
rectangular time domain filter. The chosen prototype filter may constitute
orthogonal or non-orthogonal modulation and thus controls if and how much
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self-interference is present in a specific GFDM system. Appropriate pro-
totype filter design may be performed with the aid of ambiguity functions
[MWBD15, Du08]. In general, non-orthogonal modulation must be assumed
and self-interference must be considered.
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Figure 5.3: OFDM and GFDM periodograms with Ks = 64, Kon = 48, NCP = 8,
NW = 4, 40 dB SNR, and 10MHz bandwidth. NCP and NW are
discussed in Sec. 5.4.

The periodograms, or Power Spectral Densitys (PSDs), in Fig. 5.3 ex-
emplify a major GFDM advantage, namely frequency localization. The
normalized periodograms are computed via oversampling and with Welch’s
method [Wel67]. While we can observe strong OOB emissions for OFDM,
GFDM is well contained within the desired bandwidth from −3.75MHz
to 3.75MHz. With Ks = 64 subcarriers over 10MHz bandwidth, a signal
would use frequencies form −5MHz to 5MHz. Since the signal in Fig. 5.3
is designed with these properties before upsampling, we observe a drop in
the PSD at 5MHz. However, the system is configured with Kon = 48 active
subcarriers and thus, the active, or desired, bandwidth is 7.5MHz and a
signal would use frequencies from −3.75MHz to 3.75MHz. Thus, it is
possible to reduce guard bands of GFDM systems to neighboring systems
in comparison to OFDM systems and thus better utilize scarce spectrum.
We discuss further GFDM advantages, e.g., frame length, and latency, in
Fig. 5.4.



74 5 Multicarrier modulation

Efficient modulation

Matrix multiplication is an expensive operation, especially if NF tends
to be large. We perform efficient frequency domain GFDM modulation
and demodulation to drastically reduce complexity [GMN+13] and achieve
low latency processing [DBD17a, DBD+17b]. The main advantages of
the presented approach are efficient use of the FFT algorithm, element-
wise multiplications and additions instead of large matrix multiplications,
and complexity reduction that is steered by the overlap factor NOV. The
implementation in [DRKK22] uses the presented approach to enable low
latency processing.
In accordance with [GMN+13], we rewrite (5.8) to

y = AmoddSRG = F−1
NF

{︄
Ks−1∑︂
k=0

P
(k)
NF×Nt,OV

ΩNt,OV×Nt,OV
RNt,OV×Kt

FKt
dk

}︄
(5.11)

where dk ∈ CKt denotes the complex symbols modulated onto one subcarrier.
First, dk is transformed per subcarrier with a Kt-point DFT FKt into the
frequency domain.

Next, a repetition matrix RNt,OV×Kt
∈ RNt,OV×Kt is used for upsampling

with overlap factor NOV ≤ Ks and the short hand Nt,OV = KtNOV. The
repetition matrix consists of NOV repetitions of a IKt

identity matrix. The
multiplication with a repetition matrix can be implemented via a lightweigth
copy operation in software. For Ks = NOV, (5.11) is an alternative represen-
tation of (5.8). If the prototype filter ω is chosen such that its OOB leakage
decays outside its subcarrier bandwidth, NOV can become smaller than Ks

[GMN+13]. In most cases NOV = 2 is considered to be sufficient and it
becomes clear that NOV controls a modulators computational complexity.
The diagonal filter matrix ΩNt,OV×Nt,OV

holds ω ∈ CNt,OV filter taps on
its diagonal while all off-diagonal elements are zero. The multiplication
with the diagonal filter matrix is efficiently implemented via element-wise
multiplications in [DRKK22]. Under the assumption that ω decays outside
the subcarrier bandwidth, it holds only values with very low or zero amplitude
outside its subcarrier bandwidth and thus, truncating this filter is further
justified. In this case, only neighboring subcarriers overlap and selecting
a smaller NOV solely steers complexity. Our considerations signify the
observation that GFDM is a non-orthogonal multicarrier modulation scheme
and we must expect self-interference.

P
(k)
NF×Nt,OV

∈ RNF×Nt,OV performs subcarrier mixing in the frequency do-
main by shifting the samples into a vector of size NF at the corresponding
position of the kth subcarrier. The subcarrier mixing operation is imple-
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mented via pointer offset computations and addition to the input vector
to the inverse FFT F−1

NF
. Furthermore, the filter operation and mixing

operations can be combined into a multiply accumulate operation that may
further reduce latency. Finally, all subcarrier modulations are summed up
and transformed back to the time domain with F−1

NF
.

Considering (5.11), it becomes apparent that Kt and Ks should both be
a power of two in order to exploit the efficient Cooley-Tukey FFT algorithm
[FJ05]. However, GFDM systems exhibit bad performance if both, Kt and
Ks, are even numbers [MMF14]. Thus, we mostly consider systems where
either Kt or Ks is odd.

Interference-cancellation

Since GFDM is a non-orthogonal modulation scheme in general, Interference-
Cancellation (IC) might be performed in order to remove, or reduce, self-
interference [GMN+13]. Unlike OFDM, GFDM enables to control self-
interference by means of filter design, e.g. by choosing an appropriate roll-off
factor for RRC filters. The argument that the overlap factor NOV = 2
suffices is tantamount to only adjacent subcarriers need to be considered for
IC. In case of RRC filters ω, we only expect Inter-Carrier Interference (ICI),
i.e. adjacent subcarrier interference, but timeslots do not interfere.

A GFDM receiver expects a received frame

ỹ = H̆ · y + n (5.12)

in accordance with Sec. 2.2.2 where H̆ is a diagonal cyclic block fading
channel matrix and a noise vector n. Here we discuss the receiver operations
including equalization and IC that a GFDM receiver needs to perform
based on the modulation (5.11). The demodulator first obtains an equalized
frequency domain vector

ỹEQ = GFNF
ỹ (5.13)

by transforming the received vector ỹ to the frequency domain and per-
forming one-tap FDE with G in accordance with (5.3), (5.5), and (5.6). We
obtain a per subcarrier k demodulated frequency domain vector

ỹ0
F,k =

(︁
RNt,OV×Kt

)︁T
ΩRX,Nt,OV×Nt,OV

(︂
P

(k)
NF×Nt,OV

)︂T
ỹEQ (5.14)

by first shifting it back to the zero subcarrier with the real-valued matrix(︂
P

(k)
NF×Nt,OV

)︂T
, then we apply a truncated receiver filter ΩRX,Nt,OV×Nt,OV

,

and finally sum up all subcarrier parts with the real-valued matrix(︁
RNt,OV×Kt

)︁T
. In order to maximize SNR, we assume a MF design for
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ΩRX,KtNOV×KtNOV = ΩKtNOV×KtNOV for real-valued filter taps. Thus, ỹ0
F,k

only suffers from interference from adjacent subcarriers [MMF14]. A ZF
receive filter design would remove all self-interference, introduced by the
non-orthogonal waveform, at the expense of noise-enhancement. We may
obtain demodulated symbols per subcarrier

d̃k = F−1
Kt

ỹ0
F,k (5.15)

to produce D̃.
We introduce Interference-Cancellation (IC) with J iterations to combat

interference in d̃k from adjacent subcarriers d̃k−1 and d̃k+1 [GMN+13]. The
algorithm is parallelizable per iteration but each iteration runs successively.
In each iteration j, we compute hard decisions with (4.3)

d̂j
k = QAC

(︂
d̃j
k

)︂
(5.16)

from the soft values we obtain with (5.15). Unoccupied subcarriers produce
a zero vector d̂k = 0, otherwise these subcarriers would introduce additional
interference. Then, the interference from adjacent subcarriers

ỹj
I,k = ΩIFKt

(︂
d̂j
k+1 mod Ks

+ d̂j
k−1 mod Ks

)︂
(5.17)

is calculated where ΩI accounts for the weighted interference derived from the
used filters [GMN+13]. Eventually, the next IC iteration j + 1 is performed
with updated receive vectors

ỹj+1
F,k = ỹj

F,k − ỹj
I,k . (5.18)

This process from (5.15) onward is repeated J-times with updated values
ỹj+1
F,k in order to minimize self-interference. After J iterations the demod-

ulator returns interference-reduced soft values D̃ that are passed on to
resource demapping. With IC, the receiver needs to perform more Kt point
DFTs FKt

and its inverse F−1
Kt

because these operations are part of every IC
iteration. Thus, the focus for latency benchmarks is further pushed towards
the latency of the operations (5.15) – (5.18) that are computed in every IC
iteration in contrast to (5.13) and (5.14) that are only computed once.

5.4 Cyclic prefix

Most multicarrier systems consider a Cyclic Prefix (CP) with NCP elements
[Pro95]. A CP consists of the last NCP elements from y that are prepended
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to constitute a guard interval. The length is chosen such that it exceeds, or at
least equals, the expected maximum channel delay to form a guard interval
against ISI. As further discussed in Sec. 2.2.2, a CP helps to transform
the convolution of the baseband signal s and the frequency-selective fading
channel taps h into a cyclic convolution under the assumption thatNCP ≥ Nh

holds. Moreover, this leads to a cyclically convolved modulated receive vector
ỹ which in turn leads to a simple one-tap FDE [Pro95, Gol05, KD18]. In
case of OFDM, a DFT produces a cyclic timeslot that is prepended by a
CP to protect against ISI. Due to the cyclic filter shift in (5.10), a GFDM
frame is cyclic as well. Thus, a CP can be employed to obtain a cyclically
convolved signal at the receiver and again a one-tap FDE is feasible. In
contrast to OFDM, only one CP per frame is necessary for GFDM which can
be utilized to shorten frames and thus in turn reduce latency and improve
resource efficiency.

For our following considerations, we focus on GFDM frames, though the
argument applies to OFDM timeslots alike. A CP is prepended to a frame
by taking the last NCP elements from y = [y0, . . . , yNF−1] to use it as a
prefix. Similarly, it is possible to append a Cyclic Suffix (CS) by taking
the first NCS elements from y and append them to use them to smoothen
transition in conjunction with windowing. We obtain

xNW = [yNF−NCP
, . . . , yNF−1, y0, . . . , yNF−1, y0, . . . , yNCS−1] (5.19)

by prepending a CP and appending a CS.
Apart from CP, and CS, insertion, frame windowing is performed to reduce

OOB emissions [MMG+14]. In accordance with [IEE12], a Raised-Cosine
(RC) filter is applied where NW elements at the beginning and end of xNW

are considered. A window with 2NW RC taps is applied element-wise to
the first NW and last NW elements of xNW to obtain x. At the receiver we
obtain a received modulated frame

ỹ = [x̃NCP
, . . . , x̃NF+NCP−1] (5.20)

by simply removing all CP and CS elements.
In case of OFDM, we apply windowing per timeslot and use the CS to

smoothen discontinuities between adjacent timeslots. Thus, the last NCS

elements and the first NCS from the next timeslot are added up element-wise
[IEE12]. We introduce a CS to aide windowing, thus we expect NCS = NW

in most cases for both OFDM and GFDM. In order to reduce latency, we
investigate efficiency for OFDM and GFDM in Fig. 5.4. For the sake of
simplicity, we assume Ks = Kon, i.e. all subcarriers are occupied. Further,
we assume that the CP is NCP = Ks/2 and the CS length is NCS = Ks/4.
The large CP length is the same for both, GFDM and OFDM, for clarity.
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Figure 5.4: OFDM and GFDM efficiency, Ks = Kon, NCP = Ks/2, NCS = Ks/4.

With an increasing number of timeslots Kt, and thus growing NF, we can
observe that GFDM is advantageous because it only requires one CP per
frame instead of one CP per timeslot. We want to stress the point that
this GFDM property translates directly to lower latency because individual
GFDM frames exhibit a shorter Over-the-Air (OTA) duration TsNF than
their OFDM counterparts when those systems convey the same number
of complex symbols Nd. Furthermore, this increases efficiency because we
spend fewer resources on CPs.

5.5 Channel estimation

Unless we transmit over an Additive White Gaussian Noise (AWGN) channel,
a communication system must equalize received frames and thus requires a
channel estimate for various processing steps. A multicarrier demodulator
requires a channel estimate for equalization and a symbol demapper requires
SNR or better Carrier-to-Noise-Ratio (CNR) information for accurate Log-
Likelihood Ratio (LLR) computation. We rely on a Schmidl&Cox preamble
yP based approach with two identical parts to perform channel estimation
as discussed in Sec. 8.5.2 [ZM09, SC97, AKE08, GMMF14]. We expect the
same CP, CS, and windowing procedure as with every data frame to obtain
a preamble xP, only its transmitted data is known to the receiver.
Some algorithms we discuss in our work require SNR knowledge, e.g.,

LLR calculation, and MMSE equalization. We implement SNR, and CNR,
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estimation with the algorithm in [ZM09] based on a received preamble ỹP.
We refer the interested reader to [ZM09] for further information.

For channel tap estimation, we use the received preamble ỹP without a
corresponding CP and CS for channel estimation in the frequency domain.
We compute subcarrier channel coefficients

h̆k =
1

2

(︃
ỹP0,k

yP0,k

+
ỹP1,k

yP1,k

)︃
(5.21)

by averaging over both timeslots per subcarrier. In case of GFDM, we
employ linear interpolation to obtain a NF element estimate from our Ks

element original estimate. Since we focus on I4.0 URLLC, we expect small
packets and thus short frames that are subject to block fading as discussed
in Sec. 2.2 and thus further justify a preamble-based approach.

5.6 Numerical software defined radio parame-
ter evaluation

In this section we explore how our system performs regarding latency as
well as error correction performance depending on varying parameters to
identify suitable setups for URLLC. This is an extension to our previous
works [DBD17a, DBD+17b]. In this work we investigate a broader set
of parametrizations and incorporate investigations into FFT sizes. The
primary target is to measure latencies for the different stages in the signal
processing chain outlined in Sec. 5.1. Latency benchmarks run on a AMD
Ryzen Threadripper 3970X (TRX3970X) Linux host as discussed in Sec. 8.6
and 8.4.1. Sec. 8.5.3 discusses our software project gr-gfdm in further
detail [DRKK22]. The latency benchmarks on gr-gfdm are carried out as
described in Sec. 8.4.4. The benchmarks present a minimum latency cost
for the investigated multicarrier system. Additional latencies due to multi-
threading, peripheral access and such are not considered. The simulation
benchmarks help identify suitable parameter sets for the task at hand. Also,
they help at identifying possible targets for future optimizations.

5.6.1 Resource mapping

Before modulation, the resource mapper assigns symbols to multicarrier
resources. Fig. 5.5 and Fig. 5.6 show latencies for resource mapper and
demapper with Ks = 256. Ks = 256 is a representative while other values
yield similar results. First, we observe that more active subcarriers Kon

contributes to a higher latency for both, resource mapper and demapper.
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Figure 5.5: Resource mapping latency measurements per Kon ∈ {160, 192, 224}
with Ks = 256, per timeslot (per TS) or per subcarrier (per SC).
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Figure 5.6: Resource demapping latency measurements perKon ∈ {160, 192, 224}
with Ks = 256, per timeslot (per TS) or per subcarrier (per SC).

Typically, an OFDM system requires per subcarrier resource mapping
such that values for one OFDM timeslot are in consecutive memory while
GFDM requires per timeslot resource mapping in accordance with (5.11)
where a FFT FKt

is applied to Kt symbols that are modulated onto one
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subcarrier. We note a significant difference if we map resources per timeslot
(per TS) or per subcarrier (per SC). In Fig. 5.6 it can be observed that this
difference is more pronounced at the resource demapper.
We conclude that resource mapper and demapper contribute a minor

increase in latency compared to multicarrier modulation in Fig. 5.7 and
Fig. 5.11. Parametrization for GFDM introduces slightly higher latencies
than their OFDM parameter counterpart.

5.6.2 Fast Fourier transform

We discuss Fastest Fourier Transform in The West (FFTW) benchmarks
because we use it to compute all FFTs [FJ05]. Having more insight here
contributes to a better benchmark analysis and deeper insights.

2000 4000 6000 8000

NFFT

0

20000

40000

60000

80000

la
te
n
cy

[n
s]

6400

2

3

5

7

11

17

Figure 5.7: FFTW latency measurements with different largest primes.

OFDM systems are canonically designed with NFFT = 2× being a power
of two. This convention implies that the largest prime in NFFT is 2• and
can be computed most efficiently with the Cooley-Tukey FFT algorithm
[FJ05]. We observe corresponding latencies for power of two 2× FFTs in
Fig. 5.7 as the baseline. In case Kt > 1 for OFDM, we can simply multiply
this latency by Kt.

With prime factorization, we compute all prime factors of an integer value,
e.g. NFFT =245 = 5 · 72. Thus, the largest prime in 245 would be 7•. The
second largest prime would be 7 as well, while the third largest would be 5.
We increase the largest prime in NFFT from 2• to 3•, 5•, 7•, 11•, and

17•. Small prime values 3• and 5• show a minor latency increase where 5•
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appears to be the most efficient. We want to point out NFFT = 28 ·52 = 6400
as an example that is annotated in Fig. 5.7 and produces results very close
to our 2• baseline. Other examples for this observation may be found at
NFFT ∈ {400, 640, 1280}. 7• already contributes a larger latency increase.
We can observe that latency increases significantly with 17• while 11•

contributes to a moderate latency increase. We omit other, especially larger,
prime values but note that increasing the largest prime increases latency
further.
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Figure 5.8: FFTW latency measurements with largest prime 17• and differing
second largest primes. 2• serves as a baseline.

The graph for 17• exhibits significant jumps in latency because further,
smaller prime values {13, 11, 7, 5, 3, 2} may be present. Fig. 5.8 yields further
insight into behavior with 2• as a baseline. The largest prime 17• is the
same for all curves, but the second largest differs as indicated. Instead of
significant jumps, we observe smoother graphs compared to Fig. 5.7 that
lead to the conclusion that the number of large primes is a significant factor
in latency increase as well. It becomes obvious that NFFT must be chosen
carefully because large prime values dominate latency.
The FFT algorithm is prone to higher latencies if NFFT includes large

primes. Hence, it is important to find a configuration that requires FFT
calculations with a small largest prime value. Further, it is important to
pay attention to smaller prime values as well, especially if the largest prime
grows.
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5.6.3 GFDM parameter evaluation on latency

At the heart of the transmitter chain is the Generalized Frequency Division
Multiplexing (GFDM) modulator. Fig. 5.9 presents a latency comparison
for Ks = 64 with increasing overlap factor NOV. The modulator causes most
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Figure 5.9: GFDM modulator latency measurements with varying overlap factor
NOV, Ks = 64.

of the processing latency spent at the transmitter in comparison to symbol
mapping and encoder discussed in Sec. 4.6 and Sec. 3.4. In contrast to the
other processing steps, it does not exhibit a linear behavior with regards to
NF due to the employed Fourier transforms that are not powers of 2×. We
discuss this observation and reasons in Sec. 5.6.2 extensively.
We compare latency results at NF = 2880 = 5 · 32 · 26 with the largest

prime 5• and NF = 3264 = 17 · 3 · 26 with the largest prime 17•. Measured
latency at NF = 2880 is 16.3 µs for NOV = 2 and increases by 4.6 µs for
NOV = 4 and by 14µs for NOV = 8. While at NF = 3264 measured latency
is 44.7 µs for NOV = 2 and increases by 4.6 µs for NOV = 4 and by 14.8 µs for
NOV = 8. While the frame size NF increases by roughly 13%, the latency
increases by 174%. This result signifies the importance to focus on low
prime values in NF. In contrast to the impact of non-power-of-two primes
in NF, the overlap factor NOV has a lighter impact on latency increase.
Still, the impact of the overlap factor NOV on latency is higher than other
processing steps in the transmitter processing chain, e.g. resource mapping
in Sec. 5.6.1. In conjunction with the assumption that employed filters decay
rapidly outside their subcarrier bandwidth, this result indicates that it is
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advisable to stick to NOV = 2.
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Figure 5.10: GFDM modulator latencies for either fixed Ks or Kt, NOV = 2.

Equation (5.11) shows that every GFDM modulator needs to compute
multiple Kt-point FFTs and one NF = KtKs-point FFT. Fig. 5.10 explores
different options with either Kt = 2× or Ks = 2× while the respective other
value varies. A fixed power of two 2× value for Kt tends to yield lower
latencies. We recommend to increase the number of timeslots Kt to the next
power of two if possible if NF needs to be larger because it is advantageous
to decrease latency.
It is worth discussing a special case at NF = 4096. In this case both, Kt

and Ks, are a power of two. We can observe that larger Kt, but ≤ 64, i.e.
the FFT that needs to be computed multiple times, has a larger impact on
latency then one large NF-point FFT. Increasing Kt from 64 to 128, however,
does not expose the same effect on latency. With Kt ≥ 64 latency stays
roughly the same and it is sufficient to increase the number of subcarriers.
Correspondingly, we investigate latencies for GFDM demodulators in

Fig. 5.11. The graph for a modulator with NOV = 2 is included for reference.
We conclude that modulator and demodulator incur the same latencies
for the same configuration. Again, latency increases if NOV increases. A
GFDM demodulator may include equalization, and thus, we include these
results in Fig. 5.11 with dashed lines. We conclude that Frequency-Domain
Equalization (FDE) has a minor impact on latency. We note that channel
estimation is not a part of equalization but we conduct corresponding channel
estimation experiments.
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Figure 5.11: GFDM demodulator latencies, varying overlap factor, with and
without equalization, Ks = 64.
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Figure 5.12: GFDM demodulator latencies with varying number of IC iterations
J for either Ks = 64 (solid) or Kt = 64 (dashed).

GFDM is not an orthogonal modulation scheme and thus introduces self-
interference. To combat this self-interference, GFDM demodulation may
incorporate Interference-Cancellation (IC) that we investigate in Fig. 5.12
where more iterations generally improve the Symbol-Error-Rate (SER) per-
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formance [GMN+13]. We include a simple demodulator with J = 0 as a
baseline. While discussing Fig. 5.10 we established that either Kt = 64 or
Ks = 64 is a favorable choice to reduce latency. With Fig. 5.12, we conclude
that it is favorable to restrict the number of timeslots Kt = 2× to powers of
two because this variable has the highest impact on latency. Specifically, Kt

has a higher impact on latency than Ks. This finding is emphasized if we
compare the results for NF = 4096 where we observe a dip in latency for
Ks = 64 while Kt = 64 only incurs a minor latency decrease. Since IC is
a major contributor to increased latency, it is advisable to restrict J to a
minimum.
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Figure 5.13: Multicarrier Frame-Error-Rate (FER) performance with Kon = 56,
Ks = 64, M = 2, N = 1008, L = 8 for high rate (K = 672) and
low rate (K = 256) polar codes with varying IC iterations J for
GFDM.

We want to explore the performance implications of IC in Fig. 5.13 and
compare the FER performance of OFDM and GFDM. The simulations
are carried out with a polar code with N = 1008 and L = 8 and varying
information word size K as discussed in Chapter 3. OFDM yields roughly
0.5 dB better performance than GFDM. The non-orthogonal GFDM design
has a negative impact on performance that can not be recovered with
IC under perfect channel conditions, i.e. no offsets or time or frequency
mismatch. The simulations for low R ≈ 1

4 and high R ≈ 2
3 coderates reveal

that GFDM only benefits from IC at high coderates. Furthermore, these
simulations reveal that J = 2 suffices to improve performance. More IC
iterations do not improve performance.
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Figure 5.14: GFDM demodulator latencies with varying number of active subcar-
riers, with and without residual phase compensation, J = 1,Ks =
64.

GFDM demodulation may incorporate multiple processing steps. Besides
demodulation, equalization, and IC, it is possible to integrate residual phase
compensation as part of the IC process. In Fig. 5.14, we present benchmark
results with and without residual phase compensation for J = 1 withKs = 64.
Since residual phase compensation requires detected receive symbols, we
require J ≥ 1. Given the latency impact of residual phase compensation, we
conclude that it should only be an option in cases where it is impossible to
improve equalization.

Further, latency increases with an increasing number of active subcarriers
Kon because IC is computed for active subcarriers only. However, the impact
of an increased number of active subcarriers is small, especially without
residual phase compensation.

5.6.4 Cyclic prefix

After modulation, a Cyclic Prefix (CP), a CS, and windowing is applied.
The corresponding benchmark results in Fig. 5.15 include only one CP, CS
and windowing operation per frame of size NF. This implies that increasing
the frame size NF, while the other parameters are unchanged, only results
in more elements that need to be copied. In case of OFDM, this operation
must be computed per timeslot and thus might have a larger impact on
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Figure 5.15: CP insertion and windowing, Ks = 128.

latency. The benchmark reveals two major sources for latencies. First, the
copy operation dominates latency. Second, a larger transition window at the
beginning and the end of a block increases latency. A cyclic shift, indicated
with shifted, leaves latency mostly unaffected. The details on cyclic shifts
are discussed in Sec. 6.1.1 where we discuss Cyclic Delay Diversity (CDD)
for Joint Transmission (JT).

5.6.5 Channel estimation

Aside from AWGN channel simulations, a receiver requires equalization. In
order to perform equalization, channel estimation needs to provide proper
channel estimates. In our work, we focus on preamble-based channel estima-
tion.

Channel tap estimation is a two step process. First, the preamble is used
to estimate per subcarrier channel taps together with filtering to reduce noise.
Second, we need to interpolate to obtain NF taps from a 2Ks preamble. The
latency benchmarks in Fig. 5.16 indicate that we experience a fixed offset
due to the input size that is fixed to 2Ks. Again, we observe higher latency
if the largest prime in Ks is greater two. In comparison to modulation and
demodulation, we conclude that channel tap estimation has a minor impact
on latency.
Accurate LLR calculation requires SNR values and per subcarrier CNR

values. Fig. 5.17 reveals that SNR estimation latency is input driven. Again,
the largest impact is due to the number of subcarriers Ks but the number
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Figure 5.16: Preamble-based channel tap estimation.
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Figure 5.17: Preamble-based SNR and CNR estimation.

of active subcarriers Kon, i.e. the necessary number of values we need to
compute, impacts latency as well. To summarize our SNR estimation results,
we note that it has a minor impact on latency compared to channel estimation.
Compared to demodulation, SNR estimation latency is negligible.
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5.6.6 System evaluation

We consider several examples for multicarrier systems and their overall DSP
latency. In Fig. 5.18, several graphs with either differing Ks or varying Kt are
shown. In accordance with our conclusions in Sec. 5.6.2, we limit the largest
prime to 7• because larger prime values show a significant latency increase.
Moreover, we keep the overlap factor NOV = 2 because the conclusions
in Fig. 5.9 indicate that the overlap factor NOV = 2 is sufficient. Finally,
the results in Fig. 5.13 show that J = 2 IC iterations are sufficient to
improve error correction performance even in conjunction with high rate
codes. First, we compare the FFT results, that correspond to OFDM
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Figure 5.18: Full transceiver with Kon = 7Ks
8

, NCP = Ks/2, NCS = Ks/4, FFT
size NFFT = Ks for OFDM, and either Kt or Ks are a power of
two for GFDM.

systems, with the other results for GFDM where Kt = {16, 32, 64} and
Ks = {32, 64, 128}. By comparing the latency results at NF = 3000, we
conclude that OFDM systems with multiple timeslots are computationally
lightweight with latencies below 10 000 ns in comparison to GFDM systems
with latencies above 60 000 ns. Second, we compare GFDM configurations
where either Kt = 2× with {16, 32, 64} or Ks = 2× with {32, 64, 128}.
Here, we conclude that a GFDM system where the number of timeslots Kt

is kept to a power of two 2× yields lower latency. However, the GFDM
configuration with Kt = 16 exhibits higher latencies than most configurations
with Ks = 2×. Here, we conclude that it is advantageous to keep all FFT
sizes NFFT ≥ 32 in a GFDM system.
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Finally, we conclude that a low-latency GFDM system is possible that
offers advantages in terms of OOB emissions and efficiency. Further, current
and future low latency applications are well supported with system latencies
well below 1ms.

5.7 Summary

We started with a discussion of the theory behind multicarrier modulation
and continued with an in-depth analysis of their latency impact in an
optimized software implementation. The presented GFDM and OFDM
transceiver runs completely in software [DRKK22]. The common code-base
enables simulations as well as field tests for rapid prototyping. We focused
on flexible modulation for GFDM and OFDM where we discuss their specific
advantages an disadvantages. The implementation is capable of providing
low latency signal processing for high data rate broadband I4.0 URLLC SDR
environments. The performance indicates that General Purpose Processor
(GPP) hardware is a suitable option to be considered for low-latency systems.

5.7.1 Contribution

The main contribution of this chapter is an investigation of latencies and
performance implications introduced in the multicarrier modulation DSP
chain of our GFDM SDR implementation [DRKK22]. To this end, the
chapter incorporates an extension to our prior works [DBD17a, DBD+17b].
Our extensive set of latency benchmarks and error correction performance
simulations demonstrates the practicability of our solution with system
latencies well below 1ms in the context of URLLC and I4.0 low-latency
applications. In contrast, other works on GFDM such as [DMG+15] focus
on hardware implementations without a focus on latency measurements. We
identified the multicarrier modulation and demodulation steps to be critical
while all other DSP operations have a minor latency impact. Prior works
[FJ05] on FFT implementation benchmarks focus on 2× FFT transforms,
while we analyze the impact of more primes on latency. Furthermore, this
analysis showed that the number of timeslots in a GFDM system should
be kept to a power of two contrary to the number of subcarriers where the
impact on latency is lighter. Moreover, GFDM in conjunction with FEC
does not benefit from more than two IC iterations at high code rates R as
discussed in Fig. 5.13. At a low code rate, a GFDM system does not benefit
from IC at all.





Chapter 6

Cloud radio access network
with functional splits

In order to deliver small packets with ultra high reliability and low latency,
it is crucial to leverage diversity. Even more so in industrial communication
systems for Industry 4.0 (I4.0) applications that require Ultra Reliable
Low Latency Communication (URLLC) where challenging wireless channel
properties with deep fades must be expected [DHC+19]. In this chapter
we propose a Cloud Radio Access Network (Cloud RAN) architecture with
Functional Split (FS) options to leverage channel diversity from distributed
Radio Access Points (RAPs) in conjunction with centralization benefits.
First, we consider polar code based Forward Error Correction (FEC)

as discussed in Chapter 3. Second, the considered symbol mappings are
discussed in Chapter 4. Third, multicarrier modulation as presented in
Chapter 5 forms the basis for the analysis in this chapter. Here we extend
this analysis to multiple distributed RAPs in an Ultra Dense Network
(UDN) that jointly provide connectivity to leverage diversity and thus boost
reliability. We aim to exploit spatial diversity with multiple RAPs for
pre-processing and Joint Transmission (JT) and Joint Reception (JR) on
a cloud platform. At a transmitter, we consider JT via distributed RAPs
with Cyclic Delay Diversity (CDD) to boost reliability, and thus Frame-
Error-Rate (FER) performance [BM06]. At a receiver, we achieve spatial
diversity in an UDN where distributed RAPs observe the same message
through different channels. Moreover, we explore an option to partition
Radio Access Network (RAN) functions via FSs to flexibly balance fronthaul
data rates and JR gains to fully leverage spatial diversity. We specifically
propose an intra-PHYsical layer (intra-PHY) FS to reduce fronthaul data
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rate requirements while leveraging JR processing gains. Full I&Q sample
forwarding from a RAP to a cloud platform requires a very high fronthaul
data rate that may be unavailable.

Our contribution in this chapter is a Cloud Radio Access Network (Cloud
RAN) architecture with distributed Access Points (APs) and FSs where we
investigate its performance. Additionally, this chapter includes an extension
to our paper [DMB+20] where we use the results from [KY14] to reduce the
fronthaul data rates in a Cloud RAN deployment with distributed APs. This
analysis receives an extension with quantizers for high Signal-to-Noise-Ratios
(SNRs) in frequency-selective Rayleigh fading channels and investigations
with multiple distributed RAPs. Without quantization, floating point (fp-32)
values with high resolution, and thus high rate, require potentially pro-
hibitively high data rates for forwarding. Information Bottleneck Method
(IBM) quantization and potential alternatives may provide good FER per-
formance with low quantization resolution to minimize the fronthaul data
rate. We investigate these options in this chapter. Further, it is sufficient
to design NQ = 32 quantizers for different SNRs over a sufficiently large
SNR range to reap all diversity in a frequency-selective Rayleigh fading
scenario. In contrast, our previous work [DMB+20] suggested that this
may be insufficient while we show how to overcome the inherent difficulties
in Rayleigh fading channels. Finally, the JT extension with Cyclic Delay
Diversity (CDD) shows the potential to improve FER performance, while
Joint Decoding (JD) shows promising benefits to drastically improve FER
performance with NRAP = {2, 4} RAPs and IBM quantization beyond the
improvements available with JT.

6.1 Cloud RAN with distributed radio access
points

In order to fulfill URLLC requirements a Cloud RAN setup is considered
to enable high reliability. In Fig. 6.1 we outline our physical architecture.
We assume an industrial environment with Automated Guided Vehicles
(AGVs), or otherwise mobile units, that require URLLC. The AGVs are
wirelessly connected to a RAN to enable mobility. While the communication
system on the AGVs is required to be simple, the RAN may deploy advanced
communication technologies to provide the highest possible reliability and
lowest latency.
Before we dive deeper into Cloud RAN functional components, we want

to discuss our understanding of the term cloud and by extension cloud
computing based on the National Institute of Standards and Technology
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Figure 6.1: Physical Cloud RAN example

(NIST) definition [MG11]. Most importantly, we expect ubiquitous compute
resources to deploy our Software-Defined Radio (SDR) solutions with minimal
effort. The cloud computing model presented in [MG11] considers essential
characteristics, service models and deployment models. We focus on the
RAN, while a core network provides internet connectivity and management
services and is possibly deployed on a public cloud platform via a software as a
service model. The RAN may be deployed on a private cloud with a platform
as a service model where accelerators for specific Digital Signal Processing
(DSP) processing tasks are available. A platform, or software, provider offers
the infrastructure and maintenance thereof. Thus, we need to investigate
the performance of our solution and the resulting cloud requirements. This
investigation includes Cloud RAN considerations for required capabilities in
distributed as well as centralized setups.
According to [3GP17], the RAN contains three components, Centralized

Unit (CU), Distributed Unit (DU), and Radio Unit (RU) that we consider
to be part of a cloud. The cloud concept introduces the flexibility to
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rapidly distribute RAN functions among resources on demand via FSs
[LCC19, 3GP17]. While a Cloud RAN is under heavy load, it acquires
additional resources to cater all users, while it releases resources as soon as
the load drops. Moreover, we distinguish between RAPs and a cloud platform.
The cloud platform provides compute power for a RAN on demand, while a
RAP includes dedicated radio hardware and may provide some specialized
compute functions.

The Centralized Unit (CU) in Fig. 6.1 performs higher layer tasks and is
connected to the network core on a public cloud platform via a backhaul. In
our Cloud RAN scenario the CU always runs on a General Purpose Processor
(GPP) cloud platform. Each CU is connected to one or more Distributed
Units (DUs) via a midhaul. The DU performs lower layer DSP in order
to reduce the required midhaul data rate requirements. Finally, the Radio
Unit (RU), also known as Remote Radio Unit (RRU) or Remote Radio
Head (RRH), is connected to the DU via a fronthaul and provides Radio
Frequency (RF) functionality such as Analog-to-Digital Converters (ADCs),
amplifiers and antennas. An example of a RU may be a Universal Software
Radio Peripheral (USRP). A RU is preferably located at, or close to, an
actual antenna site while a CU is preferably located such that it can be used
to pool resources. We consider a DU to be co-located with either a RU in
a RAP or a CU on a cloud platform. However, a DU may be a physically
separate unit located in a different location [BBK22].
In order to leverage spatial diversity, with Joint Transmission (JT) and

Joint Reception (JR), it is advantageous to execute most, or all, signal
processing jointly on a cloud platform to maximize performance [CCY+15,
PHV15, AVK19, LCC19]. Thus, a CU and DU are co-located on a cloud
platform and all DSP is performed in software including the whole PHYsical
layer (PHY). However, this approach puts a huge data rate requirement
on a fronthaul and might be infeasible due to hardware restrictions. A FS
has major implications in terms of system capabilities and requirements.
We discuss possible mixtures for distributed functionality execution and
centralized execution shortly.

In literature, numerous possible FS options are considered [3GP17, LCC19],
though the usefulness of some options is disputed in literature [AVK19].
Fig. 6.2 presents a selection of these FSs with focus on relevant functions
in our work. These FSs are enumerated and this notation is preserved but
irrelevant options are omitted. A FS separates logical functions that can be
flexibly located in a CU, a DU, or a RU [LCC19].
Split 1 is the highest layer FS between RAN and core network with

network layer functionality. With this option, we are unable to leverage
spatial diversity or flexibility gains to reduce cost [LCC19, RBD+14]. The
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Figure 6.2: Logical Cloud RAN functions with selected FS options.

lowest FS is Split 8 where only a radio frontend is part of a RAP and thus
all Inphase and Quadrature component (I&Q) samples are forwarded to a
cloud platform. Consequently, all DSP is performed in software including
the whole PHY. While this split preserves all possible options to leverage
spatial diversity, it puts a huge data rate requirement on a fronthaul that is
often impossible to meet, especially in case of rate-limited fronthauls. Split 4
considers all PHY and Medium-Access-Control (MAC) processing to be part
of a RAP while Split 6 only locates PHY processing in RAP. Split 5 would
be an intra-MAC split.
In our work we focus on intra-PHY splits. Here, three options, Split 7.1,

Split 7.2, and Split 7.3, are known in literature [LCC19]. We focus on Split 7.3
in the uplink for Joint Decoding (JD) because this FS separates FEC and
symbol mapping. In contrast, other literature does not consider the Split 7.3
in the uplink [3GP17]. In each RAP we perform distributed low-PHYsical
layer (low-PHY) processing, including synchronization and multicarrier
demodulation. Next, a symbol demapper produces Log-Likelihood Ratios
(LLRs) with high resolution that we forward to our cloud platform which are
then used for FEC decoding. We propose to replace the symbol demapper
with an IBM quantizer in the RAPs to drastically reduce forwarded bit
resolution and thus fronthaul data rates while preserving relevant information
for JD. On the cloud platform we use Look-Up-Tables (LUTs) to obtain
representative LLRs for joint high-PHYsical layer (high-PHY) processing,
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including decoding. This JD concept is evaluated with polar codes that are
discussed in Chapter 3.

6.1.1 Joint transmission

The focus of our work is on URLLC and thus measures to boost reliability.
Joint Transmission (JT) with Cyclic Delay Diversity (CDD) is a simple and
effective measure to improve transmit diversity [BM06]. CDD aids to combat
deep fades, and thus channel outages, in frequency-selective Rayleigh fading
channels. The CDD approach promises to be a computationally lightweight
solution at the transmitter and does not require additional processing at
the receiver since we consider CDD for fading channels where equalization
is strictly required [BM06]. In Sec. 5.6.4, we included a benchmark for a
combination of cyclic shifts and Cyclic Prefix (CP) insertion that shows that
CDD has a minor, if any, effect on latency.
We consider a modulated vector y for transmission at NRAP distributed

RAPs with usually one antenna each NT/NRAP = 1. Some channel realiza-
tions may constitute a deep fade and thus, it is preferable to send a copy of
y at spatially diverse locations. However, we risk destructive interference
at the receiver in case multiple signals arrive at the receiver through good
channel realizations with differing phase. Therefore, we introduce CDD to
circumvent this issue.
The transmit vector for the ith RAP

yi = Piy (6.1)

is a cyclically shifted version of y via a permutation matrix Pi. Pi is an
identity matrix INy

with cyclically shifted rows by cyclic shift NCDi. Thus
the first row [1, 0, . . . , 0] of INy

is the NCDith row in P . For example if
cyclic shift NCDi = 1, the corresponding permutation matrix

Pi =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ (6.2)

can be found by moving the last row [0, 0, 0, 1] in I4 to the first row. NCDi

is expected to be a multiple {0, 1, 2, . . . } of NCD.
CDD impacts the effective channel even under ideal conditions. Effectively,
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the received signal

ỹ =

NRAP∑︂
i=0

yi (6.3)

through an ideal channel is convolved with an artificial channel h =
[1, 0, . . . , 1, 0 . . . , 0, 1] in time domain. These channel taps are all zero ex-
cept at the NRAP positions where it is 1. These positions are at indices
NCDi [BM06]. We expect that a receiver mitigates this effect via channel
estimation and subsequent equalization.

6.1.2 Joint reception

The idea of Joint Reception (JR) in our Cloud RAN scenario is to perform
high-PHY processing on a cloud platform. A visual presentation of the idea
is shown in Fig. 6.3 with intra-PHY Split 7.3. At the cloud platform, we
perform JD, Cyclic Redundancy Check (CRC) check and all upper layer
tasks while low-PHY processing at NRAP RAPs is performed distributedly
to lower fronthaul data rates.
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x̃id̃ic̃i

c̃b̂â
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Figure 6.3: Receive flowgraph with Joint Reception (JR) on a cloud platform,
forwarding over a fronthaul, and low-PHY processing on multiple
distributed RAPs.

While it is possible to have multiple antennas at each RAP, we usually
assume one antenna per RAP. Many systems use multiple antennas per RAP.
However, we focus on large scale diversity and thus, only one antenna per
RAP. To leverage spatial diversity we require independent signal paths. The
most effective approach to ensure spatial diversity is to physically separate
all antennas. Large scale fading considerations, e.g. spatial coherence,
emphasize the importance of this approach as discussed in Sec. 2.2.
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A transmitter sends a signal x that is received by distributed RAPs.
These distributed RAPs observe received signals x̃i that are received through
independent and identically distributed (i.i.d.) Rayleigh channels as discussed
in Sec. 2.2. After low-PHY processing, all RAPs forward their resulting
received codeword c̃i to a cloud platform for high-PHY processing. Before,
we continue with our conventional signal processing, we compute a combined
received codeword

c̃ =

NRAP−1∑︂
i=0

c̃i (6.4)

from the forwarded pre-processed i.i.d. receive codewords c̃i. In other words,
the combined received codeword c̃ is the sum of all c̃i from every RAP. In
the log-domain, the summation of LLRs corresponds to the multiplication of
their probabilities in the linear domain. Further, we assume i.i.d. values for
all observations. Thus, our approach in (6.4) is optimal [RU08]. Besides this
summation processing step, all DSP is carried out as discussed in previous
chapters. This holds true for all RAPs, however, each RAP processes a
signal in parallel as illustrated in Fig. 6.3.

6.2 Quantization

Sec. 6.1.2 introduces JR where we forward LLRs over the FS via a rate-limited
fronthaul to reap the benefits of JD on a cloud platform. Now, the aim of our
investigation is to reveal how Information Bottleneck Method (IBM) can be
employed to reduce fronthaul rate requirements [KY14, HCSM21]. We add
uniform quantization in Sec. 6.2.2 and fixed LLR quantization in Sec. 6.2.3
as further options, while we consider floating point LLR FER performance
as our FER benchmark that we want to achieve. Fig. 6.4 illustrates the
concept. At each RAP a quantizer compresses a received vector d̃ to lower
the required fronthaul rate.

For now, we assume Quadrature Phase Shift Keying (QPSK) symbols and
replace the demapper with a quantizer that produces a vector q̃i of quantized
values. At the cloud platform, a LUT transforms these quantized values to
representative LLRs c̃i. These LLRs are treated in the exact same fashion
as discussed in Sec. 6.1.2 with (6.4) but are sourced from a reduced pool of
values. In [MWD21], the authors use a different decoder that operates on
quantized values while we integrate quantization into an available system
without any modifications to the processing chain.

The quantizer is SNR dependent. Therefore, each RAP requires accurate
SNR information to select a quantizer according to the current SNR value.
In case of Rayleigh fading channels and multicarrier systems, each RAP
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Figure 6.4: Joint Reception (JR) flowgraph on a cloud platform featuring IBM
quantizers at each RAP with a LUT at the cloud platform for every
connected RAP.

needs accurate Carrier-to-Noise-Ratio (CNR) information, as discussed in
(2.18), to perform this selection process per subcarrier. Overall, a RAP has
NQ SNR dependent options to select from and therefore needs to forward
the index of the selected quantizer Qidx ∈ {0, . . . , NQ − 1} along with the
quantized values. In case of frequency-selective channels, this information
needs to be forwarded per subcarrier depending on the CNR. In [DMB+20],
we demonstrated that 4 bit quantization is sufficient to arrive at a negligible
FER performance loss. Here, we extend these findings by considering multiple
RAPs and a wider range of designed quantizers.

6.2.1 Information bottleneck based quantization

In the field of IBM research, we focus on the special case of Determin-
istic Quantizers (DQs) that are known in literature to maximize mutual
information [KY14]. Furthermore, an efficient algorithm computes optimal
Sequential Deterministic Quantizers (SDQs) for real valued Amplitude Shift
Keyings (ASKs) that maximize mutual information at a limited bit rate
[HCSM21]. The focus of this work is on complex Additive White Gaussian
Noise (AWGN) channels under the assumption of i.i.d. real and imaginary
parts. In this work, a quantizer processes the real and imaginary parts
independently. The interested reader may refer to e.g. [HWD20] for IBM
quantization. The receiver flowgraph in Fig. 6.5 illustrates the IBM quantizer
setup.
We restrict this discussion to binary input, e.g. d ∈ {1,−1} = AC, with

equiprobable symbols p (d) = 1
2 [KY14]. Considering an AWGN channel, we



102 6 Cloud radio access network with functional splits

LUT Quantize Channel
dd̃q̃c̃

Figure 6.5: IBM quantizer receiver flowgraph

denote the conditional probability density function

p
(︂
d̃|d
)︂
=

1√
2πσ2

exp

(︄
−|d̃− d|2

2σ2

)︄
(6.5)

for the received symbols. The offline task at hand is to find an optimal quan-

tizer q̃ = Q⋆
(︂
d̃
)︂
that maximizes mutual information IBICM (q̃; d) between

the quantized symbols q̃ ∈ Q and the transmit symbols d with

Q⋆ = argmax
Q

IBICM (q̃; d) subject to |Q| = N q . (6.6)

IBICM (•) is discussed in Appendix B. q̃ is a label for an interval that is
bounded by a lower and upper threshold. In (6.11), we consider representative
LLR values for each interval. We enumerate these labels Q = {0, 1, . . . , N q−
1}. The cardinality ofQ determines the number of bits ⌈log2 |Q|⌉ for a specific
quantizer Q⋆. Therefore, we need to find the set Aq of N q − 1 thresholds
that optimally partitions R into N q intervals.
An algorithm to design the optimal quantizer is presented in [KY14].

This algorithm discussion, which is reiterated here, starts with a fine-

grained, uniformly discretized version of p
(︂
d̃|d
)︂
with N qd elements. The

presented algorithm requires this initial discretization since the algorithm is
designed for discrete-output channels. We obtain N qd−1 finite bounds with
{−Nσσmin(AC), . . . , Nσσmax(AC)} to define N qd intervals. Typically, we
consider the two-sigma-interval with Nσ = 2 because it covers over 95%
probability that a value falls into this interval.

Partial mutual information In accordance with [KY14] we first define
partial mutual information

ι (a′ → a) =
∑︂
d∈AC

p (d)

a∑︂
y=a′+1

p (y|d) log
∑︁a

y′=a′+1 p (y
′|d)∑︁

d′∈AC
p (d′)

∑︁a
y′=a′+1 p (y

′|d′)
(6.7)

to compute the contribution of individual intervals to the overall mutual
information. It is important to note that a, a′, y, and y′ are all indices.
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Moreover, p (•|•) denotes a conditional probability mass function and the

ratios
p(d′|1)
p(d′|−1) are sorted in ascending order [KY14].

The values ι (a′ → a) are pre-computed for each combination of
a′ ∈ {0, 1, , . . . , N qd − 1} and a ∈ {a′ + 1, . . . , t} with t =
min (a′ + 1 +N qd −N q, N qd). In essence, we compute the partial mutual
information contribution of every possible quantization with N q intervals
that each contain a contiguous set of integers. Next, we search for the
quantization that yields the maximum overall mutual information.

Dynamic state computation We recursively compute the state value

Sq (a) = max
a′

(Sq−1 (a
′) + ι (a′ → a) ) (6.8)

that maximizes the sum of partial mutual information terms when we cluster
a elements into q bins. We start with S0 (0) = 0 and compute state values
for all q ∈ {1, . . . , N q} and a ∈ {q, . . . , q +N qd −N q}. Further, we need
to store the index

hq (a) = argmax
a′

(Sq−1 (a
′) + ι (a′ → a) ) (6.9)

that yields the just computed maximum where a′ is in the interval
[q − 1, a− 1]. Obviously, both computations can be efficiently combined to
yield the state value and its corresponding index.

Optimal index backtrace Finally, we need to backtrace through the just
computed state values and indices to find the optimal quantizer Q⋆ with
its optimal bound indices a⋆. The backtrace starts at index a⋆N q

. Then
we traverse q ∈ {N q − 1, N q − 2, . . . , 1} in descending order and find the
optimal quantizer bound indices

a⋆q = hq+1 (a
⋆
q+1) . (6.10)

These indices are then used to find the N q − 1 finite quantizer bounds Aq

that we use for the optimal quantizer Q⋆.
We illustrate the results depending on SNR in Fig. 6.6 for the computed

finite bounds. With ascending SNR values, the bounds tend towards zero.
As long as we assume that all transmit symbols are equiprobable, the
optimal decision bound is zero. Further, the most critical region in terms of
information preservation is around zero. Thus, we expect the bounds to be
symmetric around zero.
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Figure 6.6: SNR dependent quantizer bounds for Re{·} / Im{·} QPSK compo-
nents with N q = 8, N qd = 1024.

Log-likelihood ratio computation is facilitated by computing the values
of conditional probability mass function p (•|•) over the intervals defined by
the found quantizer bounds. Thus, we compute the representative LLR

c̃ = log

⎛⎝p
(︂
a⋆q < d̃ ≤ a⋆q+1|c = 0

)︂
p
(︂
a⋆q < d̃ ≤ a⋆q+1|c = 1

)︂
⎞⎠ (6.11)

where we replace indices by their respective bounds. These values are
required for the LUT to transform a quantized label q̃ into a representative
LLR c̃ for further processing.
In Fig. 6.7, we observe the resulting representative LLR values for the

computed intervals depending on SNR that are depicted in Fig. 6.6. With
ascending SNR, and thus a better channel quality, we observe higher LLR
values. Although the bounds tend towards zero, the LLRs grow faster.

6.2.2 Uniform quantization

We choose the finite quantizer bounds over the same interval we use for IBM
based quantization, i.e. from {−Nσσmin(AC), . . . , Nσσmax(AC)} with
N q − 1 bounds. However, we choose uniformly distributed, or equidistant,
bounds over this interval [DMB+20]. In order to obtain representative LLRs,
we use the same approach we discuss in Sec. 6.2.1.
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Figure 6.7: SNR dependent quantizer LLR representatives for Re{·} / Im{·}
QPSK components with N q = 8, N qd = 1024. Each LLR curve
corresponds to an interval in Fig. 6.6.

6.2.3 Fixed log-likelihood ratio quantization

Instead of SNR dependent quantization, we consider fixed LLR quantization
(LLRq). We define a LLR value interval ±B and choose N q−1 bounds. We
choose the corresponding representative LLR values at equidistant positions
over the interval ±B.

6.3 Numerical cloud RAN evaluation

We investigate how data compression according to the IBM on the fron-
thaul link affects system performance for Generalized Frequency Division
Multiplexing (GFDM) as well as OFDM in our proposed Cloud RAN archi-
tecture with JT and JR. We focus on the impact of coarser quantization on
system performance first where we extend the results from our prior work
[DMB+20]. For a rate limited fronthaul, coarser, or lower, quantization
contributes to lower latency because of the reduced data rate. We focus on a
fixed setup for all GFDM and Orthogonal Frequency Division Multiplexing
(OFDM) simulations with Ks = 64 subcarriers, Kon = 50 active subcarriers,
Kt = 5 timeslots, K = 256 information bits, N = 500 coded bits, and QPSK
modulation. We show that 3 bit IBM quantization already achieves close
to floating point performance in frequency-selective channels. We extend
our prior work [DMB+20] in three key aspects, namely quantizers for higher
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SNRs, an additional quantizer, and multi RAP setups, and therefore multiple
antennas. Hence, we investigate the performance of our FS Cloud RAN
setup with distributed RAPs and JT and JR as introduced in Sec. 6.1.

6.3.1 Additive white Gaussian noise

Quantization strategies with different levels of quantization in an AWGN
channel serve as a base line. Fig. 6.8 shows a comparison of OFDM and
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Figure 6.8: AWGN FER performance of IBM and fp-32 for OFDM and GFDM
with Kt = 5, Ks = 64, Kon = 50, K = 256, N = 500, and QPSK.

GFDM systems transmitted over an AWGN channel. Here, GFDM in-
troduces a 0.5 dB performance loss due to non-orthogonality compared to
OFDM. Further, 4 bit IBM quantization delivers fp-32 performance while
3 bit quantization only incurs a minor loss of about 0.1 dB. Thus, we con-
clude that IBM quantization is a suitable method to drastically reduce the
required fronthaul bit rate in our Cloud RAN setup.

Fig. 6.9 continues with an in-depth analysis of different quantizer strategies.
A fp-32 LLR result serves as a base line. While we focus on OFDM for clarity
in this case, we note that GFDM results yield the same characteristics. The
fixed LLR quantization (LLRq) shows the worst performance and requires
at least 6 bit to close the performance gap. A 3 bit fixed LLRq incurs a
performance loss of about 1 dB. However, the fixed LLRq strategy does not
require any knowledge about the chosen quantizer in contrast to the other
strategies. The uniform quantizer shows improved performance compared
to the fixed LLRq and closes the performance gap with 5 bit while 4 bit
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Figure 6.9: FER performance for fp-32, IBM, LLRq, and uniform quantizers
with varying resolution for OFDM with Kt = 5, Ks = 64, Kon = 50,
K = 256, N = 500, and QPSK.

uniform quantization is on par with 3 bit IBM quantization. A coarse, 3 bit
uniform quantizer incurs a performance loss of about 0.6 dB which is an
improvement over the fixed LLRq strategy but still far from the floating
point (fp-32) performance. Moreover, a uniform quantizer needs to signal
the chosen quantizer for a specific SNR. We observe that the IBM quantizer
is able to close the performance gap with only 4 bit. A 3 bit IBM quantizer
only incurs a performance penalty of about 0.1 dB and hence may still be a
viable option.

IBM quantization yields better error correction performance at lower quan-
tization resolution and thus outperforms the other quantization strategies
by at least 1 bit of resolution. Therefore, IBM quantization may be a viable
option for FS Cloud RAN deployments.

6.3.2 Frequency-selective Rayleigh fading

After we established a base line in Sec. 6.3.1, our investigation continues
in frequency-selective Rayleigh fading channels. We investigate FER per-
formance for 3 bit and 4 bit IBM quantizers in Fig. 6.10. Here, a set of
NQ = 100 quantizers designed for SNRs in the range −10 dB to 40 dB in
0.5 dB steps is available. We mostly observe the same behavior that we
already discussed in the AWGN case in Fig. 6.8. A 3 bit IBM quantizer incurs
a FER performance penalty of about 0.1 dB while a 4 bit IBM quantizer is
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Figure 6.10: Frequency-selective Rayleigh fading FER performance of 3 bit and
4 bit IBM and floating point quantizers for GFDM and OFDM.

mostly able to achieve fp-32 performance. However, we note that the IBM
quantizer in conjunction with GFDM performs slightly worse in terms of
FER performance in comparison to a GFDM system with a fp-32 demapper.
Besides, we observe the same non-orthogonality performance loss of about
0.5 dB for GFDM in comparison to OFDM that we already observed in our
AWGN simulations. Still, GFDM offers potentially higher spectral efficiency
and lower latency as discussed in Chapter 5.

The results in Fig. 6.10 are different from our previously published results
in [DMB+20] where we speculated that the insufficient range of available
quantizers causes a FER performance loss. This work confirms our conjecture
and emphasizes the importance of a sufficient range of IBM quantizers to
achieve good FER performance.

Similarly to our AWGN investigation in Fig. 6.9, Fig. 6.11 shows frequency-
selective Rayleigh fading channel FER performance results for fp-32, IBM,
LLRq, and uniform quantizers with 3 bit to 5 bit quantization resolution for
GFDM. A 3bit uniform quantizer as well as a 4 bit fixed quantizer incur a
FER performance penalty of about 0.7 dB. Further, a 4 bit uniform quantizer
delivers FER performance on par with a 3 bit IBM quantizer. A 4 bit IBM
quantizer is able to outperform all other quantization strategies and almost
closes the gap to fp-32 FER performance.
Our FS Cloud RAN system with distributed RAPs and rate limited

fronthauls requires to minimize the overhead caused by signaling indices
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Figure 6.11: Frequency-selective Rayleigh fading FER performance for fp-32,
IBM, LLRq, and uniform quantizers with 3 bit to 5 bit quantization
resolution for GFDM.

Qidx of the employed quantizers. We assume block fading and thus, only
need to signal a new set of used quantizers when the selected quantizers
change due to changing CNRs. However, we need to forward the index Qidx

of the used quantizer per active subcarrier Kon because of the changing CNR
per subcarrier. This may cause an additional overhead of Kon log2 (NQ)
for every received frame. Hence, minimizing the number of quantizers NQ

minimizes the corresponding overhead. In our scenario with Kon = 50
active subcarriers, Kt = 5 timeslots and QPSK mapping, a 6 bit fixed LLR
quantizer requires to convey 6KonKtM = 3000 bit over a fronthaul while a
4 bit IBM quantizer only requires 2000 bit and Kon log2 (NQ) used quantizer
signaling. With NQ = 32 quantizers this results in 250 bit of signaling
overhead and thus a total of 2250 bit are conveyed over the fronthaul.

We investigate FER performance depending on the number of quantizers
NQ in Fig. 6.12. As a first result, we conclude that NQ = 32 quantizers are
sufficient. A further reduction in NQ results in a negligible FER performance
loss for NQ = 16 quantizers and a minor performance loss for NQ = 8
quantizers. With NQ = {2, 4} quantizers we observe a more significant
performance loss. Considering the additional signaling overhead, we still
reap a significant rate reduction with IBM quantization even with NQ = 32
quantizers while maintaining fp-32 FER performance. Here, we assume that
each subcarrier potentially requires a different quantizer. However, with
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Figure 6.12: Varying number of quantizers NQ for GFDM.

higher coherence bandwidth, we may be able to use the same quantizer for
a group of subcarriers. This approach would further reduce overhead.

6.3.3 Multiple distributed radio access points

Now we investigate the performance of our proposed setup with multiple
RAPs NRAP. Here, we assume Nant = 1 antenna for a mobile device and
one antenna per RAP Nant/NRAP = 1. Naturally the number of transmit
NT and receive NR antennas changes depending on the number of NRAP

RAPs and the downlink or uplink scenario.
In Fig. 6.13 we consider an increasing number of RAPs NRAP, and thus

receive antennas NR, for reception to leverage Joint Decoding (JD). The
AWGN result is included as a benchmark. All simulations are conducted
under the assumption that all channels are i.i.d.. However, in case of multiple
antennas per RAP this assumption might be invalidated.
A second RAP yields a 7 dB FER performance improvement at FER =

10−3 and four RAPs with NR = 4 yield another 4 dB improvement. Doubling
the number of receive antennas further to NR = 8 yields improvements with
declining benefit while the required hardware and complexity increase steeply.
This tendency is exacerbated with even more receive antennas NR = {16, 32}
with diminishing FER performance gains. Given physical constraints to
distribute RAPs, we assume that more than NR = 4 receive antennas are
infeasible with NRAP = 4 under the condition that NR/NRAP = 1. The
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Figure 6.13: GFDM system with increasing number of receive antennas NR for
fp-32 with Kt = 5, Ks = 64, Kon = 50, K = 256, N = 500, and
QPSK.

results confirm that our proposed FS Cloud RAN setup is able to improve
FER performance and thus reliability significantly.
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Figure 6.14: GFDM system with increasing number of receive antennas NR

and IBM quantizers with Kt = 5, Ks = 64, Kon = 50, K = 256,
N = 500, and QPSK.
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Fig. 6.14 shows the results to how suitable IBM quantization is in con-
junction with JD. First, we note that quantization is feasible in a multi
RAP setup. However, one may notice that an increasing number of receive
antennas NR is more susceptible to quantization. With NR = 8, we recognize
a FER performance loss of about 1 dB. As a conclusion, we state that IBM
quantization is suitable for feasible multi RAP setups while a large number
of RAPs would incur a FER performance penalty.
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Figure 6.15: GFDM system with increasing number of transmit antennas NT

with Kt = 5, Ks = 64, Kon = 50, K = 256, N = 500, and QPSK.

For Joint Transmission (JT), we consider Fig. 6.15. By increasing the
number of transmit antennas from NT = 1 to NT = 2, we observe a
FER performance improvement of about 4 dB at FER = 10−3. A NT = 4
transmit antenna setup reaps another improvement of about 4 dB. Doubling
the number of transmit antennas again to NT = 8, yields an improvement of
about 1 dB. Again, all simulations are conducted under the assumption of
i.i.d. Rayleigh channels from the transmitter to the receiver. To put things
into perspective, we added the NR = {2, 4} results for comparison. Thus, we
conclude that JT is a viable option to improve performance but increasing
receive diversity with JD promises higher gains by a large margin.

6.4 Summary

We discussed a Functional Split (FS) Cloud Radio Access Network (Cloud
RAN) system with distributed RAPs and IBM quantization in this chapter.
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To this end, we introduced our interpretation of Cloud RAN with FSs within
the PHY layer. Further, the introduction of IBM quantization together with
alternatives paves the way to enable Cloud RAN deployments with rate lim-
ited fronthauls. Then, a thorough analysis of these quantization approaches
provides insight into the FER performance in AWGN and frequency selective
Rayleigh fading channels. Finally, we considered Joint Transmission (JT)
with CDD and Joint Reception (JR) with Joint Decoding (JD) to boost
system reliability with a distributed RAP setup. Finally, we conclude that
a Cloud RAN deployment with FS with IBM quantization and distributed
RAPs is capable of boosting reliability tremendously for URLLC and I4.0
applications.

6.4.1 Contribution

Our contribution in this chapter includes an extension to our paper
[DMB+20] where we use the results from [KY14] to reduce the fronthaul
rate in a Cloud RAN deployment with distributed APs. We extend our
prior work [DMB+20] in three key aspects, namely quantizers for higher
SNRs, an additional quantizer approach, and a multiple distributed AP
setup with JD and JT. We showed that 4 bit IBM quantization is sufficient
to close the performance gap to a fp-32 implementation while 3 bit IBM
quantization only incurs a minor performance penalty. All other quantization
strategies cause FER performance to deteriorate more significantly. Further,
NQ = 32 quantizers for different SNRs over a sufficient range suffice to reap
all diversity in a frequency-selective Rayleigh fading scenario. In contrast,
previous works suggested that this may be insufficient while we show how
to overcome the inherent difficulties in Rayleigh fading channels [DMB+20].
Finally, the JT extension with CDD shows the potential to improve FER
performance, while JD shows promising benefits to drastically improve FER
performance with NRAP = {2, 4} RAPs and IBM quantization beyond the
improvements available with JT.





Chapter 7

Medium access control

Mission-critical Closed-Loop-Control (CLC) applications exhibit periodic
deterministic communication behavior with short packets. Industrial systems
with these URLLC requirements may consist of tens to hundreds of devices.
These applications pose new Quality-of-Service (QoS) challenges on wireless
communication systems because they require ultra low latency which bars
the application of MAC re-transmissions to improve reliability. Further,
these industrial systems impose a real-time deadline constraint on a wireless
communication system. Packet loss at the application level occurs not only
due to failed packet reception but also due to a missed real-time deadline.

FER performance is often used as a Key Performance Indicator (KPI) in
communications engineering for system evaluation. In contrast, automation
engineers consider Mean Time To Failure (MTTF) as their KPI [DMW+17].
Thus, the authors in [DMW+17] proposed a method to obtain a relation
between those KPIs. Hence, they elaborate how URLLC system requirements
result in extremely low FER requirements which may lead to prohibitively
high resource consumption.
In [3GP19a], the KPI for URLLC systems is availability. Availability

is defined as the probability a communication system fulfills a set of QoS
requirements at the application level [3GP19a]. Throughout [3GP19a], we
find a typical 99.999% availability requirement. The consolidated KPIs
under the term availability are packet size, latency, survival time, number of
devices and maximum supported mobile unit speed.
In essence, industrial applications are very sensitive to burst errors but

can tolerate single packet loss. Burst errors are Consecutive Erroneous
Packets (CEPs) on a single link that exceed the required survival time. If a
communication system fails to successfully convey a new packet within a
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users’ survival time, the industrial application may require an emergency
halt. Hence, we propose to shift the focus from sum-rate maximization to
burst error minimization as our KPI to boost availability [WE08, DBD20].
Our extensive burst error analysis of State-of-the-Art (SotA) Scheduling

and Resource Allocation (S&RA) strategies shows that any dynamic Resource
Allocation (RA) outperforms a static RA by a large margin. We build this
chapter on two prior publications that we extend here [DBD19, DBD20].

Link abstraction Accurate Link Abstraction (LA) models are required
for MAC or system level simulations to evaluate new S&RA algorithms that
target URLLC requirements [PPM18]. The employed Link Abstraction (LA)
models use a channel realization and given PHY and transform this knowledge
into a link characterization, preferably a FER [LKK12]. Otherwise accurate
system level simulations need to simulate the whole PHY to determine
packet loss instead of employing a simple, accurate Link Abstraction (LA)
model. In [DBD19] we investigate if and how Effective SNR Mapping (ESM)
approaches can be used to characterize short polar-coded packets with
Bit-Interleaved Coded Modulation (BICM) in OFDM systems at low FERs.

In this chapter, we contribute an extension to our previous work [DBD19]
and a re-evaluation of these Exponential Effective SNR Mapping (EESM) and
Mutual Information Effective SNRMapping (MIESM) results for short packet
LA. The addition of Average Effective SNR Mapping (AESM) constitutes
one extension that we contribute in this chapter. We compare new error
measures for FER curve fitting in order to find optimal ESM adjustment
factors for low FERs. Typically, Mean Square Error (MSE) is used as an
error measure [LKK12], but according to our findings this neglects small
FER values which are of special interest for industrial radio systems. Thus,
we propose a relative error measure to find optimal adjustment factors. We
present simulation results that show how susceptible adjustment factors are
to different system parameters. Finally, we demonstrate that accurate Link
Abstraction (LA) is possible for the target system even at the desired working
point. Ergo we contribute a suitable Modulation and Coding Scheme (MCS)
set for our S&RA simulations that enables us to study S&RA in frequency
selective block fading channels with polar codes and multicarrier modulation
[Ars15].

Scheduling and resource allocation Based on our Link Abstraction
(LA) model, we investigate how SotA Scheduling and Resource Allocation
(S&RA) strategies perform with respect to burst errors in scenarios with short
packets, low latency and low FER requirements. Furthermore, large scale
and small scale fading contribute to burst errors and need to be taken into
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account [ETS18b]. We re-evaluate our prior work [DBD20] and contribute
an extension to these investigations to meet URLLC requirements, e.g.
fixed MCS setups [ADE+19]. We suggest new delay-sensitive approaches to
S&RA that improve burst error resilience and conclude that it is important
to shift the focus from sum-rate maximization to burst error minimization.
Moreover, our investigation reveals the benefits and trade-offs between
different scheduling and RA schemes. Further, recommendations are devised
for efficient RA for URLLC systems based on burst error minimization for
different scenarios that allow for QoS with Mean Time To Failure (MTTF)
in mind. Any dynamic RA outperforms a static RA by a large margin
under resource constraints. Finally, these investigations demonstrate that
delay-sensitive scheduling as well as RA yield superior results in terms of
burst error performance.

7.1 System view

We want to investigate S&RA for wireless industrial communication systems
with accurate LA models. The PHY technologies include polar codes in
Chapter 3, symbol mapping in Chapter 4 and multicarrier modulation
in Chapter 5. Adaptive Modulation and Coding (AMC) enables efficient
resource usage with multiple MCSs. These investigations require accurate
Link Abstraction (LA) for precise S&RA decisions as well as fast system
simulations.
A MCS combines the selected coderate R and mapping order M for a

frame. A lower MCS index indicates a lower effective rate Reff and thus
higher robustness against errors. However, a lower MCS requires more
resources to convey the same amount of information bits K. Now, the task
at hand is to schedule and allocate a fixed set of shared resources to a set of
users U with |U| = NU .
Here we discuss our view on resources from a system level perspective.

Then, we discuss further information that is required for our proposed S&RA
algorithms. Finally, we discuss the information flow in our S&RA system.
We already published to prior works where we build upon [DBD19, DBD20].

7.1.1 Resources

The available resources depicted in Fig. 7.1 are organized in slots on a resource
grid as introduced in Sec. 5.2. Then, Scheduling and Resource Allocation
(S&RA) operate on slot granularity that is sometimes called Transmission
Time Interval (TTI). We assume a multicarrier system where the bandwidth
Bs is divided into NRB resource blocks with Nsc,RB subcarriers per resource
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block. Similarly, a slot is divided in time into Kt timeslots, also referred to
as OFDM symbols.

time

frequency

slot

K
t

NRB

Bs

Nsc,RB

K
t slot

Figure 7.1: Resource grid with one slot, comprised of Kt timeslots, and band-
width Bs divided into resource blocks NRB and further divided into
subcarriers.

Hence, the multicarrier system offers a resource set R that consists of
Kt timeslots with Ks = NRBNsc,RB subcarriers. Consequently, each slot
consists of KtNRBNsc,RB = KtKs elements. We may assign an arbitrary
subset Ru ⊆ R to a user for transmission in a slot. Each user experiences a
different i.i.d. frequency-selective block fading channel as discussed in Sec. 2.2.
Thus, we assume that the channel is constant for one slot. Consecutive slots
may experience correlated channel realizations according to our channel
model from Sec. 2.2. Moreover, a frequency-flat channel per resource block
is assumed by 5th Generation New Radio (5G NR) [ETS18a]. The Channel
State Information (CSI) for each user comprises CNRs for all resource blocks
that is available for S&RA.
The resource grid is scarce and it is shared among all users. The S&RA

task is to allocate elements from the resource grid to users such that all
users meet their communication requirements. In order to fulfill this task,
we require LA to accurately, and efficiently, determine the most suitable
resources to allocate to each user depending on the selected MCS.

We focus on Time-Division-Duplex (TDD) to organize uplink and downlink
transmissions because we consider a I4.0 scenario in the 3.8GHz band
[ETS18d]. However, our approaches apply to Frequency-Division-Duplex
(FDD) as well. In 5G NR terminology, a slot spans over 14 timeslots while a
minislot consists of fewer timeslots [SWD+18]. We apply the term slot for a
TTI regardless of the number of timeslots.
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7.1.2 System flowgraph

We consider Frequency-Division-Multiplex (FDM) and Time-Division-
Multiplex (TDM) to allocate resources to users. With a FDM RA strategy
entire resource blocks are allocated to a user [DPS18]. In contrast, a TDM
RA strategy allocates a number of elements from every resource block to
a user, i.e. each user is allocated a share of elements from every resource
block. Different users may be allocated varying amounts of elements per
resource block depending on CSI and success delay Nsd,u.
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Figure 7.2: Scheduling and Resource Allocation (S&RA) flowgraph for one slot:
Every user enqueues a new packet, the scheduler computes wu for
every packet, then the allocator determines MCSu and Ru for every
user. Finally, all packets are multiplexed onto the slot resource grid
and transmitted.

The system flowgraph in Fig. 7.2 illustrates the packet data flow. Our
Scheduling and Resource Allocation (S&RA) flow is split into two consecutive
tasks that operate on a slot. All NU users in the set of users U enqueue a
packet withK information bits, user CSI, and user success delay Nsd,u ∈ N0+.
N0+ is the set of positive integers including zero. A Nsd,u = 1 indicates
that a users the last transmission attempt in the previous slot by this user
failed. The user success delay Nsd,u is incremented in every consecutive
slot with a failed transmission attempt and reset to Nsd,u = 0 as soon as
a transmission succeeds in a slot. Thus, a larger value Nsd,u indicates a
longer burst error for a specific user. As mentioned before, we focus on
burst error minimization in contrast to other works that focus on sum-rate
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maximization [WE08]. Thus, we require user success delay Nsd,u.
The scheduler assigns a weight wu to each packet according to the current

scheduler strategy as discussed in Sec. 7.4. This step requires accurate LA
to determine an accurate weight wu. All packets for a slot are sorted in
ascending weight order. Starting with the packet with the lowest weight wu,
the RA sequentially determines the current user MCSu for a packet and the
user allocated resources Ru as discussed in Sec. 7.5. After all packets are
allocated or all resources are spent, transmission in a slot commences. The
whole process is repeated for every slot with updated CSI and Nsd,u.

7.1.3 Packet arrival model

We restrict our investigations to mission-critical URLLC applications with
periodic deterministic communication behavior [3GP19b]. This translates
to CLC applications with cyclic communication behavior in the I4.0 context
[UW20]. In either case, these applications expose hard real-time deadlines.
Here, we discuss our packet arrival model that we assume for later evaluations.

We assume a deterministic packet arrival model where each active user en-
queues a new packet for every communication cycle with duration Tcycle and
bit size K [DMW+17]. The cycle duration Tcycle constitutes the maximum
latency Tlatency after which a packet is discarded, i.e. the real-time deadline

[SWD+18]. The slot duration Tslot is assumed to be
Tcycle

2 < Tslot ≤ Tcycle.
Thus, only a single slot is eligible for transmission within one communication
cycle and re-transmission is infeasible. Typical Motion Control (MC) appli-
cations expose cycle times in the range 0.25ms to 2ms [3GP19a, DMW+17].
These constraints constitute several communication system assumptions.

Re-transmissions add a prohibitively high delay and thus are unavailable
to improve reliability [SWD+18, FDG+18, SKMB21]. Packet segmentation
would cause latency to grow beyond the maximum latency Tlatency and thus
their real-time deadline. If a communication system would support shorter
latencies, this would be leveraged to reduce cycle duration Tcycle instead of
re-transmissions [SWD+18].

Thus, we assume that all NU users enqueue a new packet with size K for
every slot. Hence, the considered S&RA strategies need to accommodate
NUK bit in every slot, while unsuccessfully transmitted packets are dis-
carded because their real-time deadline is exceeded. The industrial wireless
communication systems are expected to operate in the 3.7GHz to 3.8GHz
band with TDD [SWD+18, ETS18b]. The uplink and downlink are consid-
ered to reveal symmetric communication behavior [DMW+17]. Therefore
the requirements on both, uplink and downlink, are the same. However,
uplink and downlink packets are not interdependent, i.e. we consider end-
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to-end transmission in contrast to round trips [3GP19a]. Consequently, a
symmetric DUDU TDD scheme is employed with a 1 : 1 ratio between
uplink and downlink, i.e. resources are split equally between uplink and
downlink. According to [ETS18b] , we assume six downlink timeslots, or
OFDM symbols, followed by two timeslots for downlink to uplink switching,
and six timeslots for the uplink. Furthermore, we assume that the system
introduces a suitable timing advance to enable uplink to downlink switching.
Finally, the system switches between uplink and downlink and vice versa
every six timeslots to enable low latency communication.

7.2 Link abstraction

The idea of Link Abstraction (LA) is to use the current CSI and transform
it into an effective SNR and further into an expected FER as depicted in
Fig. 7.3 [BAS+05, LKK12, DBD19].
The obtained effective SNR is used in S&RA algorithms to determine

the user MCS MCSu as well as the resources Ru allocated to that user.
The effective SNR SNReff represents an equivalent AWGN SNR. Further, in
our simulations we use the selected MCSu in conjunction with the effective
SNR to obtain a single expected FER value to simulate packet loss. We
extend our prior work [DBD19] with a larger range of Quadrature Amplitude
Modulation (QAM) mappings.

CSI
(SNR, Taps, ...)

System level
simulation

Link Abstraction

C
S
I

F
E
R

Figure 7.3: Link abstraction concept

The current CSI consists of path loss, large scale fading, and frequency-
selective Rayleigh fading effects that are constant for the duration of a slot
as described in Sec. 2.2. Since a user transmits one frame per slot, this
assumption translates the channel into a block fading channel for a frame.
In case of frequency-flat fading, LA reduces to obtaining a

CNR =

⃓⃓⃓
h̆
⃓⃓⃓2
σ2

σ2
n

(7.1)
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that we use to obtain the corresponding AWGN FER for our system level
simulations. However, in case of a frequency selective Rayleigh block fading
channel, LA is facilitated by transforming the per-subcarrier

CNRi =

⃓⃓⃓
h̆i

⃓⃓⃓2
σ2

σ2
n

(7.2)

into an effective SNR SNReff via Effective SNR Mapping (ESM). The method-
ology is to run extensive simulations for all desired MCSs with the described
channel model, as well as AWGN simulations, and then find a suitable
translation into effective SNR and further into a FER [BAS+05].

7.2.1 Effective SNR mapping

We consider multiple Effective SNR Mapping (ESM) approaches, namely
Exponential Effective SNR Mapping (EESM) and Mutual Information Ef-
fective SNR Mapping (MIESM) [BAS+05]. Alternatively, one may use the
Average Effective SNR Mapping (AESM) approach that yields results with
lower accuracy. The presented approaches are described in [LKK12].

For ESM per-occupied-subcarrier CNRs are used to compute an effective
SNR

SNReff = βf−1

(︄
1

Kon

Kon−1∑︂
i=0

f

(︃
CNRi

β

)︃)︄
(7.3)

where the function f (. . .) is chosen according to the desired method for
EESM or MIESM and β is an adjustment factor, discussed in Sec. 7.2.2
[LKK12]. If one uses the identity function f (x) = x, (7.3) boils down to
Average Effective SNR Mapping (AESM), or the average SNR calculation,
with

SNReff =
1

Kon

Kon−1∑︂
i=0

CNRi (7.4)

where β cancels out.

Exponential Effective SNR Mapping uses f (x) = exp (−x) where the
equation (7.3) turns into

SNReff = −β ln

(︄
1

Kon

Kon−1∑︂
i=0

exp

(︃
−CNRi

β

)︃)︄
(7.5)

and we need to find suitable adjustment factors β depending on the current
configuration. For (7.5) we require the LogSumExp (LSE) algorithm for
numerical stability.
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Mutual Information Effective SNR Mapping The function f (. . .) for
the MIESM approach is more involved. We need to calculate the mutual
information depending on the current constellation AC. The details to obtain
these values are discussed in Appendix B where we arrive at (B.14) for f (x).
We pre-compute the desired values over a wide SNR range with small step
size and use the obtained data for linear interpolation. Similar to the EESM
approach, we need to find suitable adjustment factors β.

7.2.2 Adjustment factor calibration

Our goal is to use accurate LA for our S&RA investigations. Thus, it is
crucial to find the optimal adjustment factor

βMCS
opt = argmin

β
ϵ (β) (7.6)

for any MCS that minimizes an error measure ϵ (. . .) [LKK12]. The AWGN
result FERMCS

AWGN serves as a reference that we want to match with the
FERMCS

ESM curve. The error measure ϵ (. . .) quantifies the difference between
the AWGN FER curve FERMCS

AWGN and the ESM FER curve FERMCS
ESM over

SNR or effective SNR respectively. Thus, our goal is to find a βMCS
opt where

FERMCS
ESM and FERMCS

AWGN align for SNReff = SNR.
First, we obtain FER performance simulations results for a specific MCS

setup for AWGN channels as well as frequency-selective Rayleigh fading
channels. Then, we calculate the effective SNReff for all frames that we
obtained for fading channels with a specific β. Afterwards, we sort all frames
into bins according to their calculated SNReff and obtain NFER bins. We
need a sufficient number of frames per bin to calculate a FER for that bin,
and thus we chose the bin width to be 0.1 dB. Finally, we obtain an ESM
FER FERMCS

ESM (β) over SNR curve that depends on the adjustment factor β.
We repeat this process to find the optimal adjustment factor βMCS

opt according
to (7.6) that minimizes the error measure ϵ (. . .).
Other works use MSE as an error measure ϵMSE (. . .) [LKK12]. Our

observation is that MSE omits low FER values and thus we consider two
alternatives, namely a relative error measure ϵrel (. . .) and a target FER
error measure ϵt (. . .). The MSE error measure calculates

ϵMSE (β) =

NFER−1∑︂
i=0

⃓⃓
FERMCS

ESM,i (β)− FERMCS
AWGN,i

⃓⃓2
(7.7)

for all NFER bins under the assumption that SNReff = SNR. Similarly, the
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relative error measure calculates

ϵrel (β) =

NFER−1∑︂
i=0

⃓⃓
FERMCS

ESM,i (β)− FERMCS
AWGN,i

⃓⃓
FERMCS

AWGN,i

(7.8)

but normalizes with FERMCS
AWGN,i to compensate for small FER values. Finally,

we consider a target FER error measure

ϵt (β) =
⃓⃓
FERMCS

ESM,t (β)− FERMCS
AWGN,t

⃓⃓
(7.9)

where we choose a specific FERMCS
AWGN,t. Thus, we use only one evaluation

point at a specific target SNR.
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Figure 7.4: Exemplary ESM FER curve results for different error measures
ϵ
(︁
βMCS
opt

)︁
to match the target AWGN reference with OFDM, Kt = 8,

Ks = Kon = 32, K = 256, N = 512, L = 8, and QPSK.

In Fig. 7.4 the resulting FER over effective SNR curves are shown. The
goal is to match the FER over effective SNR curves as closely as possible to
our AWGN reference. First, we observe that the AESM yields inaccurate
results in comparison to the other approaches. They are not sufficiently
close to the AWGN FER curve and the slope is considerably gentler. The
MSE measure ϵMSE (. . .) yields FER values which are too low compared to
the AWGN curve at low FER values. While the target FER measure ϵt (. . .)
yields results which tend to be too high. The relative error measure ϵrel (. . .)
yields results in between the other two approaches that are closer to the
AWGN curve over a wide SNR range. Thus, we conclude that the relative
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error measure should be preferred to find optimal adjustment factors βMCS
opt .

Although we focus on a single configuration in Fig. 7.4, the results hold for
other configurations with short blocks as well. Also, this investigation focuses
on MIESM results but the EESM results lead to the same conclusion. Finally,
the results lead to the conclusion that it is indeed possible to accurately
perform LA for short codes.

7.3 Link abstraction evaluation

We want to analyze how well LA works for varying system parameters with
polar codes and small packets. We conduct a series of simulations to evaluate
the suitability of our approaches and extend the evaluations from [DBD19].
The impact of several varying parameters on the optimal adjustment factor
are discussed. Finally, these investigations result in a set of MCSs selected
from Fig. 7.5 with their corresponding optimal adjustment factors for use in
our S&RA simulations.
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Figure 7.5: AWGN Ed/N0 results for various mapping orders M and effective
rates Reff with K = 256 information bits.

All AWGN reference simulation curves are obtained by simulating 217

frames per SNR with an early stop criterion of 8192 erroneous frames as
shown in Fig. 7.5. We assume a channel as discussed in Sec. 2.2.2 with
frequency-selective Rayleigh fading. For frequency-selective Rayleigh channel
simulations we simulated 219 = 524288 frames for each data point, though
again we use an early stop criterion with 8192 erroneous frames. The receiver
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assumes perfect CSI and SNR knowledge. Note that we use Ed

N0
instead of

Eb

N0
in Fig. 7.5.

We assume a polar code with K = 256, L = 8, β-Expansion (BE) chan-
nel construction and varying N as discussed in Chapter 3. The chosen
constellations are discussed in Chapter 4 and we vary the mapping order
M ∈ {2, 4, 6, 8}. Further, we assume an OFDM system with a Minimum
Mean Square Error (MMSE) equalizer with Ks = Kon = 32 subcarriers by
default. This is our setup for numerical evaluations and to investigate how
suitable the previously presented approaches are for ESM. These evaluations
focus on EESM and MIESM and exclude AESM because of its inferior
accuracy as observed in Fig. 7.4.
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Figure 7.6: Relative error ϵrel (. . .) over adjustment factor β for varying subcar-
riers Ks.

Our LA investigations start by comparing the results for different numbers
of subcarriers Ks in Fig. 7.6. In both cases, EESM as well as MIESM, we
observe thatKs has a negligible effect on the optimal adjustment factor βMCS

opt ,
marked with an X. This results leads to several conclusions. It is sufficient to
use a smaller number of subcarriers for our subsequent investigations, i.e. the
bandwidth is divided into fewer subcarriers and thus, the subcarrier spacing
increases correspondingly. Based upon this conclusion we infer that we only
need to consider CNRs of active subcarriers and that it is possible to vary
the number of subcarriers for our investigations. Thus, we can dynamically
use a subset of all available subcarriers in our S&RA investigations.

Fig. 7.7 presents the impact of varying mapping orders M on the optimal
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Figure 7.7: Relative error ϵrel (. . .) over adjustment factor β for varying M map-
ping orders with a (2048, 256) code.

adjustment factor βMCS
opt for EESM and MIESM. Here, we incorporate M =

6, 8, or 64 and 256 QAM, in our simulations as an extension to [DBD19].
The first observation is that EESM yields widely varying optimal adjustment
factors βMCS

opt for varying mapping orders M . MIESM is more robust against
varying mapping orders and thus, shows smaller variation. Since MIESM
explicitly accounts for the mapping order M , this result is to be expected.
With MIESM the optimal adjustment factor errors ϵ

(︁
βMCS
opt

)︁
are lower than

with EESM. As a first result, we conclude that MIESM is preferable because
it yields lower errors and less variance in the optimal adjustment factor
βMCS
opt .
An investigation on code rate R dependence is shown in Fig. 7.8. While

the information size K = 256 and mapping order M = 2 are fixed, we vary
the block size Nc and thus, the code rate R. We observe that the optimal
adjustment factor βMCS

opt value increases with code rate. Again, MIESM
yields lower errors and less variance. However, each code rate yields a
distinct optimal adjustment factor that is required for S&RA simulations.
Next, we investigate the dependence of the optimal adjustment factor

βMCS
opt on the effective rate Reff in Fig. 7.9 with K = 256. The results indicate

that EESM yields similar βMCS
opt values for the same effective rate Reff, while

MIESM does not. We omit the results for further effective rates for the sake
of clarity. Our findings for MIESM on effective rates are inconclusive. EESM
offers the possibility to restrict the required number of adjustment factors
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Figure 7.8: Relative error ϵrel (. . .) over adjustment factor β for varying coderates
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Figure 7.9: Relative error ϵrel (. . .) over adjustment factors β for varying effective
rates Reff.

to one per effective rate. However, we choose one MCS per effective rate for
S&RA and thus, this advantage is rather philosophical but impractical.
We want to minimize the number of adjustment factors to gain more

flexibility. Correspondingly, Fig. 7.10 presents the investigation results on
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Figure 7.10: Relative error ϵrel (. . .) over adjustment factor β for varying coder-
ates R and block sizes Nc with M = 2.

the influence of the code block length at constant code rate. We focus
on MIESM results and note that the EESM simulation results are very
similar and thus we omit them. Regardless of the block length, the optimal
adjustment factors are grouped by code rate. While the optimal values are
not exactly the same for different block lengths at the same code rate, they
are sufficiently close. A larger block length N reveals a tendency for lower
adjustment factor β and steeper error value ascend when moving away from
the optimal adjustment factor. However, all optimal adjustment factors
βMCS
opt for a constant code rate R are sufficiently close such that choosing one

adjustment factor only incurs a negligible performance degradation. Thus,
it is sufficient to use one adjustment factor value per code rate. We consider
it advisable to choose a representative system configuration that represents
the expected mean value.

7.3.1 Link abstraction contribution

With our LA evaluations, we confirm that EESM and MIESM are well
suited for small packets with polar codes and low error rates. Both ESM
approaches yield small relative error values ϵrel (. . .) for their respective
optimal adjustment factors βMCS

opt , i.e. both approaches closely match the
FER over effective SNR curves to our AWGN target. We verified that it
is sufficient to obtain one adjustment factor per code rate and mapping
order, i.e. one adjustment factor per MCS. Varying number of subcarriers
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Table 7.1: Properties of selected MCS values

MCS index 0 1 2 3 4 5

Coderate 1/8 1/4 1/2 1/2 1/2 1/2

Mapping QPSK QPSK QPSK 16QAM 64QAM 256QAM

Reff 0.25 0.50 1.00 2.00 3.01 4.00

MIESM βMCS
opt 0.465 0.789 1.038 0.847 0.752 0.670

EESM βMCS
opt 0.648 1.169 1.522 4.389 5.389 0.005

SNR [dB] for
FERt = 10−1 −5.69 −2.38 1.44 6.79 11.43 15.53

SNR [dB] for
FERt = 10−2 −5.08 −1.78 2.04 7.51 12.24 16.46

SNR [dB] for
FERt = 10−3 −4.60 −1.25 2.53 8.05 12.91 17.20

as well as block size have a negligible impact. Based on these findings, we
introduce a set of MCSs with corresponding MIESM adjustment factor values
in Table 7.1 that we use for our S&RA investigations with small packets.
We favor MIESM over EESM due to the slightly lower ϵrel (. . .) results and
the lower variability for βMCS

opt for different configurations. The target FERt

is a threshold and if not met causes the system to use a more robust MCS.
The reported thresholds FERt in Tab. 7.1 are exemplary values for S&RA
with further investigations in Fig. 7.15.

7.4 Scheduling

The scheduler task is to prioritize packets, i.e. determine the order, for
subsequent RA [WE08]. We introduced the S&RA flowgraph in Sec. 7.1.2
and Fig. 7.2 while Fig. 7.11 illustrates the scheduling flow. All users U
enqueue their packets for a slot and thus the scheduler operates on the set
of packets P. The considered system resources are equally split between
the uplink and downlink with a switch after every slot as discussed in
Sec. 7.1.1. Further, our packet arrival model in Sec. 7.1.3 assumes symmetric
communication behavior between uplink and downlink. Thus, we assume that
S&RA treats the uplink and downlink in the same fashion. The scheduler
computes weights wu for all packets in P and orders them in ascending
weight order Pord. Subsequently, a RA sequentially allocates resources to
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users such that user packets with lower weight wu receive resources first.
We focus on burst error minimization and thus, we consider the packet
transmission success delay Nsd,u ∈ N0+ which quantifies a users delay in
number of slots since the last successful reception. Therefore, a transmission
is successful if a packet is received correctly. Moreover, we assume that the
successful transmission information is available for S&RA. In other words,
the success delay Nsd,u quantifies the burst error length, or CEP length, per
user as discussed in Sec. 7.1.2. It is important to associate the success delay
with a user in contrast to other measure such as Head-of-Line Access Delay
[CWC17] because packets from previous slots have reached their dead-line.
A system needs to take emergency measures if a single user experiences a
burst error above a threshold. In accordance with Sec. 7.1.3, we assume that
every user enqueues a new packet in every slot deterministically. Besides
success delay, a scheduling algorithm may use CSI as discussed in Sec. 7.2 to
refine the packet order in Pord. In the following we discuss our considered
scheduling strategies, namely Round Robin (RR), Channel Aware (CA),
Sum-Rate (SR), Delay Sensitive (DS), and Channel Aware Delay Sensitive
(CADS).

User

User

... Scheduler

enqueue

enq
ueu

e

Pord

Link Abstraction

C
S
I

F
E
R

data

CSI, Nsd

Figure 7.11: Scheduling flowgraph: all users enqueue a new packet in every slot
deterministically. CSI and Nsd,u information is available for every
user.

Round Robin (RR) scheduling aims to distribute resources to all users
equally. Thus, this strategy assumes P = Pord. Subsequently, the RR
strategy implies that RA drops the last user packets in Pord for the current
slot, in case not enough resources for all users are available.
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Channel Aware (CA) scheduling prioritizes packets for users with cur-
rently poor channel conditions. The target is to ensure that all options to
mitigate poor channel conditions during the subsequent RA are available.
We assume users with good good channel conditions have a higher proba-
bility that more resources are suitable for transmission. Here, we consider
AESM to be sufficient because only the packet order is important instead of
absolute values. Thus, the weights wu = CNRavg,u = 1

NRB

∑︁NRB−1
k=0 CNRk

are averaged CNRs.

Sum-Rate (SR) scheduling prefers packets for users with superior channel
conditions in a slot to maximize the number of transmitted packets and
thus maximize sum data rate. SR serves as a reference because sum-rate
maximization is a widely used target [WE08]. In contrast to CA scheduling,
the weights wu = −CNRavg,u are negated and thus, the order in Pord is
reversed.

Delay Sensitive (DS) scheduling prefers packets by users that experience
a longer delay since the last successfully received packet. This strategy
addresses problematic burst error conditions directly by prioritizing users that
experience burst errors. Instead of CNRs, the weights wu = −Nsd,u ∈ N0−

are negative success delay values per user. Since Nsd is an integer value,
user packets with the same weight are ordered according to the RR strategy.

Channel Aware Delay Sensitive (CADS) scheduling combines the
CA and the DS strategy. First, a scheduler uses the DS strategy to prioritize
packets and afterwards it uses the CA strategy to determine the priority
order of packets with the same user success delay Nsd,u.
Since the goal is to minimize burst errors, the scheduler favors DS over

CA and computes the weights

wu = −Nsd,u +
1

1 + exp {−CNRavg,u}
(7.10)

such that success delay Nsd,u always takes precedence over CSI CNRavg,u.
The DS scheduler produces integer weights wu = −Nsd,u ∈ N0−. The CADS
scheduler preserve the DS scheduler order but uses the CA scheduler to
determine the order among packets with the same success delay Nsd,u. Here,
we transform the CA scheduler weight CNRavg,u ∈ R+ into the interval (0, 1)
with 1

1+exp {−CNRavg,u} while we preserve the CA scheduler order.
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7.5 Resource allocation

After scheduling, we consider RA strategies. All RA strategies consume an
ordered set of packets Pord and allocate these in ascending scheduler weight
order as illustrated in Fig. 7.12. These packets receive allocations from the
set of resources R a system offers in a slot as discussed in Sec. 7.1.1. Then,
RA yields a Modulation and Coding Scheme MCSu and allocated resources
Ru per user. The set of user allocated resources Ru ⊆ R is the subset of
resources that is considered for one user and finally allocated to a specific
user. The allocated packets are multiplexed onto their designated resources
in a slot before transmission.
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Figure 7.12: Resource Allocation (RA) flowgraph

The allocator may use CSI to determine an expected FER for a specific
MCS. While a more robust MCS, i.e. a MCS with a lower index, is desirable
from a reliability point of view, we need to consider multiple users which
compete for shared resources. A more efficient effective rate Reff, and thus
higher MCS index, for links with high SNR allows to spend more resources
on links with low SNR and in turn improve system robustness against burst
errors.

The general RA approach to select an MCS starts with the highest MCS.
The allocator selects the required resources for the current MCS and queries
link abstraction for the resulting FER. Here, the allocator selects the most
suitable resources over the whole bandwidth. By setting FERt, we define
an effective SNR threshold for the every MCS. AWGN simulations provide
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FER over SNR curves that we use to obtain switch points between MCSs.
We require accurate LA to conduct precise simulations where a FER is an
accurate measure to simulate packet loss. If the obtained FER is smaller
than the threshold FERt, the current user packet is assigned the selected
MCS along with the allocated resources Ru. In case FER > FERt, the error
probability is above our target FERt threshold and a lower MCS is selected
that allows for more robust transmission. This process is repeated until
an MCS that satisfies the threshold is found. The RA algorithm continues
with the next user until all user packets are allocated or until resources
are exhausted. Unallocated packets are dropped and the user success delay
count Nsd,u is increased by one for the user corresponding to a dropped
packet.

Throughout our work, we mostly consider Eb/N0 for our SNR definition.
However, for our system level investigations, the Ed/N0 SNR is more suitable.
Thus, we use this definition here.

We require some form of multiplexing to combine packets from different
users and convey them over the shared resource grid in a slot as discussed in
Sec. 7.1.1 [Fre14]. The discussed S&RA strategies determine how multiplex-
ing is facilitated on a slot by slot basis. Generally, two options to allocate
resources exist, namely Time-Division-Multiplex (TDM) and Frequency-
Division-Multiplex (FDM) [DPS18]. With TDM, we allocate the required
amount of resources for a packet equally distributed over the whole band-
width. Thus, the TDM allocator selects the same number of elements from
each block, e.g. three elements from each of the NRB resource blocks for
a total of 3NRB elements. This approach offers some advantages, e.g., fre-
quency diversity, and resource allocation. We only need to determine the
MCS and allocate an equal amount of resources from every resource block.
In case of stale CSI, we may still leverage diversity to reliably receive a
packet. However, we might need to compensate for bad channel conditions
in some resource blocks by spending more resources over all.
With FDM, the allocator assigns the resource blocks with the best CSI

for a user to that user packet to leverage multi-user diversity. In this case,
we need to select the MCS and allocate specific resources Ru that depend
on each other and make this process more involved. However, we avoid the
need to compensate for bad channel conditions within a sub-band of our
overall bandwidth. In contrast to TDM, we are more prone to imperfect
CSI because the selected resources might in fact be in a state of deep fade
at time of transmission. In this case, the chosen MCS in conjunction with
the selected resources might not be able to cater a successful transmission.
Full inclusion of FDM with all RA strategies is an extension to our prior
work [DBD20].
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With these considerations in mind, we discuss our considered RA strategies.

Static RA does not consider any dynamic information but uses a static
MCSu. This approach is simple because it discards the need to dynamically
select a MCS. However, it wastes resources on users with superior channel
conditions while it might be able to cater more users otherwise.
With K = 256 and MCSu = 0, i.e. R = 1

8 and QPSK, we need Nd =
1024 complex symbols to convey one user packet. With our further slot
assumptions and Bs = 100MHz, we expect a maximum of 7290 information
elements per slot. We are only able to serve 7 users in that system. In
accordance with [ADE+19], we may assume QPSK and R = 0.5 which
corresponds to MCSu = 2 in Tab. 7.1. While there are enough resources to
serve NU = 28 users in this case, users with poor channel conditions may
not be allocated with sufficient resources at all.

Dynamic RA uses LA to compute an expected FER. Starting with the
highest MCS index in Tab. 7.1 its corresponding expected FER is calculated.
The highest MCS index corresponds to the configuration with the highest
effective rate Reff. If the expected FER is above the threshold FERt, the
next lower MCS index is selected and the process starts over. Thus, the
MCSu = MCSdyn,u for the current user packet is determined as the highest
MCS index that satisfies the threshold FERt. In case of TDM, the required
resources for this MCS are now allocated equally from every resource block.
In case of FDM, the selected resources Ru correspond to resource blocks
that are now allocated to that user packet. This strategy enables efficient
use of available resources and supports more users on average than the static
strategy. In case we are unable to allocate sufficient resources for a user
packet that packet is dropped. Finally, we assume that re-transmission
or incremental redundancy schemes are unavailable because the additional
latency would exceed the packet real-time deadline.

Backoff RA is an extension to dynamic RA. First, it determines MCSu
according to the dynamic RA strategy. However, the backoff strategy takes
success delay into account. The finally selected MCS is computed with
MCSu = MCSdyn,u −Nsd,u. Thus, the allocator grants extra resources to
user packets with a corresponding user in a burst error state to minimize
the burst error probability. With this strategy we are able to efficiently use
available resources but focus on burst errors specifically.
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Failsafe RA is a more aggressive extension to backoff RA. Again, the
allocator use the dynamic RA but then calculates

MCSu =

{︄
MCSdyn,u if Nsd,u = 0

0 otherwise
(7.11)

such that it switches into a failsafe mode for a user that experiences a burst
error. The MCSu = 0 implies that the RA strategy selects the MCS with the
best error protection but lowest effective rate Reff. Accordingly, MCSu = 0
implies that it requires more resources than any higher MCSu > 0. Still,
the failsafe strategy uses resources efficiently while errors are weighted even
heavier. However, this aggressive strategy might quickly exhaust resources
and packets might be dropped despite excellent channel conditions.

7.6 System level simulations

In this section we investigate the impact of different parameters on burst
errors. The results we present here are partially published in our prior work
[DBD20]. Here, we re-evaluate this work and extend it in several areas. We
investigate application level availability with success delay probability

P (Nsd) = P (successful reception after max. Nsd packets)

curves for packet transmission success delay Nsd as discussed in Sec. 7.1.2.
The success delay probability P (Nsd) is computed as follows. First, we sum
up all transmitted packets by all users in a simulation run. Second, we
compute how often individual Nsd values appear. Finally, the P (Nsd) values
are computed, e.g. for the P (Nsd ≤ 2) value for Nsd = 2, we accumulate
the number of occurrences for Nsd = 0, 1, 2 and determine their percentage
among all transmitted packets. Thus, a P (Nsd) is a cumulative distribution
function that indicates the delay until the next successful packet transmission
for all users in the system.

7.6.1 Assumptions

We assume an industrial radio setup at 3.8GHz and 100MHz bandwidth,
60 kHz subcarrier spacing, and thus NRB = 135 with the structure discussed
in Sec. 7.1.1 which corresponds to 5G NR band n78 [DPS18, SKMB21,
ETS21]. While we consider the downlink, we assume a TDD configuration
with balanced uplink and downlink resources. Thus, each resource blocks
consists of Nd = 54 data symbols that are assigned to one user in case of
FDM. In case of TDM, a user receives the same number of resources from
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each resource block, e.g. 2 symbols from every resource block as discussed
in Sec. 7.1.1. The required resources for a user are determined based on
the MCSs presented in Tab. 7.1. We simulate 2 · 106 slots where every user
transmits one packet with 32 byte or 256 bit of information per slot.
All devices are equipped with a single antenna, have 24 dBm maximum

transmit power, and F = 9dB receiver noise figure [ETS18b]. The noise
floor calculation assumes room temperature at T = 300K.

We always assume Non-Line-Of-Sight (NLOS) conditions. The large scale
parameters are σSF = 8dB shadowing deviation, ρs = 5m correlation dis-
tance and a path loss exponent η = 3 [ETS18b]. We assume that all devices
move at v = 15m s−1 velocity which determines the channel coherence time.
For small scale parameters, we assume σRMS = 46.8 ns and τmax = 250 ns
with an exponential power delay profile as discussed in Sec. 2.2 [DHC+19].

7.6.2 Simulation results

Communication system availability is defined as the success delay probability
P (Nsd) for burst errors Nsd ≤ 2 that are marked with crosses in all result
figures. We require availability above 99.999%, indicated with a dashed
horizontal line.
First, we discuss the results in Fig. 7.13 where we compare scheduler

strategies with TDM and DYNAMIC RA for NU = 42 users at 20m
distance. First, the DS scheduler delivers best performance. Second, the
CADS scheduler is on par with the DS scheduler. Thus, we conclude that a
scheduler for a TDM system must focus on delay sensitivity. The CA and
RR schedulers both exhibit the poorest performance while the SR scheduler
represents a middle ground.

We continue this discussion with Fig. 7.14 with FDM and the distance is
increased to dg = 30m. The SR strategy exhibits the poorest performance
which highlights our proposed focus shift to burst error minimization. The
RR strategy delivers better performance than the SR strategy but falls short
to the other strategies.
The DS, CA, and CADS strategies exhibit the best performance. These

scheduler strategies are almost able to provide the required 99.999% burst
error resilience at 30m in FDM mode. In conjunction with our scheduler
results gathered in our TDM simulation, we conclude that the CADS should
be preferred to meet burst error resilience requirements present in URLLC
systems.

Fig. 7.15 presents the results of a TDM system with a CADS scheduler and
a DYNAMIC RA strategy with NU = 42 users at 20m distance for different
target FERs FERt. The burst error resilience increases with decreasing
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Figure 7.13: Scheduler strategies with TDM, DYNAMIC NU = 42, dg = 20m
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Figure 7.14: Scheduler strategies with FDM, DYNAMIC, NU = 42, dg = 30m

FERt values. However, we conclude that it is sufficient to use FERt = 0.1
because lower values have a negligible impact on burst error performance.
Especially FERt values below 10−2 do not boost burst error resilience while
resource usage may increase.
Next, Fig. 7.16 shows a comparison of the DYNAMIC, BACKOFF, and

STATIC RA strategies for TDM and FDM with NU = 16 users at 20m
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Figure 7.15: Target FERs with TDM, CADS, DYNAMIC, NU = 42, dg = 20m
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Figure 7.16: RA strategies with CADS, NU = 16, dg = 20m

distance and perfect CSI. The results for the FAILSAFE strategy are omitted
because they duplicate the BACKOFF results in this case. With perfect
CSI knowledge the FDM mode exhibits superior performance for all RA
strategies. With MCS = 2 in accordance with [ADE+19], we observe that
the burst error probability increases significantly. In case of FDM a static
MCS with MCS = 2 yields better results due to an additional degree of
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freedom, namely allocated resource blocks. Even with MCSu = 0 and FDM,
the STATIC RA strategy still outperforms any dynamic TDM strategy at
success delay Nsd = 1. The STATIC RA strategy in conjunction with TDM
is unable to meet the 99.999% target. With a static MCSu = 0 the system
is already overloaded with NU = 16 users and the allocator drops some
packets in every slot due to a lack of resources. In summary, we point out
that dynamic RA strategies are a strict requirement for realistic numbers
of users. Strategies that incorporate burst error state knowledge improve
performance further.
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Figure 7.17: Delayed CSI with CADS, DYNAMIC, NU = 16, dg = 20m

In contrast to Fig. 7.16, the picture changes quite significantly with
imperfect CSI in Fig. 7.17. While FDM based DYNAMIC RA performs best
with perfect CSI, a 250 µs delay causes a significant performance loss. In
case of TDM, the performance loss is way lower. At 250µs a TDM based RA
is able to deliver Nsd = 2 burst error resilience just above 99.999%. Even at
1ms CSI delay, a TDM based RA is able to cope with Nsd = 3 burst errors.
The FDM performance degrades dramatically with increasing CSI delay.

We compare allocator strategies with imperfect CSI for FDM in Fig. 7.18
and for TDM in Fig. 7.19. As expected, the BACKOFF RA strategy yields
the best results with perfect CSI and serves as a reference. Again, we observe
that the DYNAMIC RA strategy degrades. However, the Nsd aware RA
strategies exhibit different behavior for both multiplexing modes. In case
of FDM, the FAILSAFE strategy yields the best results with imperfect
CSI but the BACKOFF strategy is unable to yield similar performance. In
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Figure 7.18: RA strategies for FDM with CADS, NU = 16, dg = 20m

contrast in TDM mode, the BACKOFF RA strategy delivers almost the
same performance as the FAILSAFE strategy. Thus, we summarize that
Nsd aware allocator strategies are strictly necessary for systems with strict
burst error requirements.
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Figure 7.19: RA strategies for TDM with CADS, NU = 16, dg = 20m

In Fig. 7.20 NU = 16 users move at different constant distances to an AP.
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Figure 7.20: Varying distance to dg a AP for TDM with CADS, DYNAMIC RA,
NU = 16

Here we consider TDM with CADS and a DYNAMIC RA strategy. Even at
a distance dg = 25m the communication system fails to provide the required
Nsd = 2 burst error resilience requirement. In order to cover larger areas
other measures are required, e.g. multiple APs as discussed in Chapter 6
and suggested in [ETS20a].
After we established that the 99.999% availability requirement is only

met for distances up to 20m from the AP in Fig. 7.20, we investigate burst
errors in greater detail in Fig. 7.21. For both, TDM and FDM, the mean
SNReff for burst errors with Nsd ≥ 2 is below −5.69 dB. For TDM with the
assumed FERt = 0.1, the maximum SNReff for Nsd ≤ 3 is above −5.69 dB,
while for FDM it is below. However, imperfect CSI would reverse these
results as shown in Fig. 7.18. Thus, we conclude that burst errors are
caused by channel outages due to fading and shadowing and a single AP
system is incapable of mitigating these. Deployments with multiple APs are
supposedly a suitable counter-measure.
The results for varying system bandwidths Bs are presented in Fig. 7.22

for NU = 9 at 30m distance with TDM, CADS, and DYNAMIC RA. We
chose NU = 9 users to ensure that a system with Bs = 20MHz bandwidth
is not overloaded. First, a higher bandwidth results in more burst errors
because a higher bandwidth implies more noise power with the same 24 dBm
transmit power. With 20MHz bandwidth we observe a higher burst error
probability for Nsd = 1 then for 50MHz bandwidth. The 20MHz system is
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Figure 7.21: Burst error analysis with CADS, FAILSAFE RA, NU = 16, dg =
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Figure 7.22: Varying system bandwidth Bs for TDM with CADS, DYNAMIC
RA, NU = 9, dg = 30m

already fully loaded and thus prone to dropped packets because it exhausted
its resources for the current slot. A reduced bandwidth may only be an
option in scenarios with only a few users.

Similar to varying amount of CSI delay, we investigate the impact of user
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velocity with constant 1ms CSI delay in Fig. 7.23. We observe that higher
velocity results in more burst errors because velocity translates into more
rapidly changing channels and thus, CSI may become stale quicker.
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Figure 7.24: Varying NU users for TDM with CADS, DYNAMIC RA, dg = 20m

We analyze the influence of the number of users NU in a system that
receive resources in every slot on system performance in Fig. 7.24. We would
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expect higher resilience to burst errors for systems with fewer users NU .
However, the contrary seems to be correct. We observe slightly better results
for systems with more users. Though, the differences are very small.

7.7 Summary

In this chapter we discussed a MAC layer for a URLLC system with periodic
deterministic communication behavior with real-time constraints. First, we
evaluated the LA algorithms AESM, EESM, and MIESM. This includes
investigations into suitable error measures, and into how multiple parameters
impact the optimal adjustment factor that tweaks the LA performance.
Based on these findings, we derived a suitable set of MCSs that we use in
our S&RA investigations to combat burst errors. Our S&RA investigations
commenced with a thorough discussion of our considered system, including
the signal processing flow, multiplexing options, and an introduction to
our considered strategies. Finally, we conducted a series of experiments
to provide an in-depth analysis of burst error dependence. This analysis
carved out that dynamic S&RA strategies are strictly necessary and that
they benefit greatly from error state knowledge to quickly mitigate and thus
minimize burst errors.

7.7.1 Contribution

First, we contributed a re-evaluation of the EESM and MIESM results for
short packet LA and extend upon them [DBD20]. The addition of AESM
constitutes one extension that we contribute in this chapter. This evaluation
leads to the conclusion that accurate LA for short packets and URLLC
requirements is possible. Further, MIESM with a relative error measure
yields the best performance. Additionally, simulation results show how
susceptible adjustment factors are to different system parameters. Based on
these findings, we derived a suitable set of MCSs and corresponding optimal
adjustment factors that we use in our S&RA investigations to combat burst
errors. This enables us to study S&RA in frequency selective block fading
channels with polar codes and multicarrier modulation [Ars15].

Next, we re-evaluated our prior work [DBD20] where we investigated how
SotA Scheduling and Resource Allocation (S&RA) strategies perform with
respect to burst errors in scenarios with short packets, low latency and low
FER requirements. Here, we contribute an extension to these investigations
to meet URLLC requirements, e.g. fixed MCS setups [ADE+19]. Further,
the fully integrated TDM and FDM multiplexing approaches constitute
an additional contribution in this work. This leads to the conclusion that



146 7 Medium access control

while FDM is able to provide better burst error resilience with perfect
CSI knowledge, TDM is favorable in case CSI is imperfect, even if only
slightly. Additionally, we suggest new delay-sensitive approaches to S&RA
that improve burst error resilience and conclude that it is important to
shift the focus from sum-rate maximization to burst error minimization. On
top of that, one single antenna AP is only capable of providing a 99.999%
availability URLLC QoS for users with up to 20m distance, due to fading and
shadowing, while larger coverage areas require multiple APs. We performed
an in-depth analysis of burst error dependence and carved out that dynamic
S&RA strategies are strictly necessary unless surplus resources are available.
Specifically, any dynamic RA outperforms a static RA by a large margin
under resource constraints. Dynamic S&RA strategies benefit greatly from
error state knowledge to quickly mitigate and thus minimize burst errors.
Finally, these investigations demonstrate that delay-sensitive scheduling as
well as RA yield superior results in terms of burst error performance.



Chapter 8

Testbed implementation

The technologies we discussed in previous chapters are implemented in an
Over-the-Air (OTA) testbed that we discuss in-depth in this chapter. The
implementation is the culminated work gathered through various projects,
including Innovative Wireless Technologies for Industrial Automation (Hi-
Flecs), TACtile interNET 4.0 (TACNET 4.0), and Industrial Radio Lab
Germany (IRLG). We start with a discussion of our testbed concept, the
software environment, and the used and implemented software components
and their usage. Afterwards, we discuss the available hardware. Finally,
we present two testbeds and conducted measurements that demonstrate
the capabilities of our implementation. The testbed at the NEOS build-
ing, Bremen, in Sec. 8.7.4 employs our full implementation while the older
testbed at Bosch Hildesheim in Sec. 8.7.3 was deployed with alterations
that are discussed in the corresponding section. The capabilities of interest
are the achievable latencies under different parameterizations and reliability
investigations for our Cloud RAN setup. The Cloud RAN setup includes
distributed antennas and APs to improve reliability by providing spatial
diversity, and thus redundancy.
We contribute an open-source software OTA communication system im-

plementation built upon GNU Radio with multiple Out-Of-Tree (OOT)
modules [Dem22a, DRKK22, DG22, Dem22b, Dem22c, DL22]. The USRP
Hardware Driver (UHD) provides the connection between GNU Radio and
our implementation and the connected USRPs to leverage their capabilities.
These capabilities include, continuous high rate sample streams, exact receive
and transmit timing information, and high precision synchronization across
multiple devices. With distributed APs to improve reliability through spatial
diversity, the chosen approach shows a significant improvement to counter
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fading induced communication outages. Thus, distributed APs provide an
important option to minimize burst errors in URLLC communication systems.
Our latency measurements confirm that low latency communication systems
are achievable and fully implementable in software. Moreover, the accompa-
nying reliability measures demonstrate that our system is able to provide
ultra reliable communication. Especially, our measurements at the NEOS
building add valuable insight into reliability and latency properties while
the measurements at Bosch Hildesheim comprise a good first understanding
of the system properties. The GNU Radio OTA software implementation is
able to provide lower latency than current Long Term Evolution (LTE) and
5G NR systems [SFVS20]. We show that DSP algorithms alone are only a
partial contributor to system latency. The whole system needs to be tightly
integrated and optimized in a future work in order to deliver the highest
possible performance and consequently lowest latency. Thus, we contribute
detailed insight into a full software implementation of a communication
system along with valuable pointers what to optimize further.

8.1 Testbed concept

The testbed includes numerous parts in software and hardware. Here we
present an overview as illustrated in Fig. 8.1 and references to more details
in their corresponding sections. All aspects of our testbed are designed with
this concept in mind.

We consider a factory hall where multiple AGVs operate as introduced in
Fig. 2.1. In this testbed we use Götting KG Kinetic Automat for Transport
Enhancements (Götting KATEs) as discussed in Sec. 8.6. All Götting
KATEs are controlled by a central AGV control server that requires periodic,
deterministic communication with small packets. By default this application
uses IEEE 802.11 (Wi-Fi) to communicate, however, Wi-Fi only allows
for a 100ms reliable communication periodicity. We replace this system
with our custom SDR solution to accommodate for these high reliability
and low latency requirements with short packets. Thus, the application
may decrease the communication periodicity to 20ms which is the lowest
periodicity supported by the application.
Our communication system is comprised of modules on the AGVs and

a RAN as described in Sec. 8.6. Most importantly, we consider USRPs as
RAPs to realize a distributed AP setup to improve spatial diversity in the
uplink and downlink. All USRPs are synchronized and connected to our
Cloud RAN system where all DSP is performed. Thus, all DSP is either
computed on a Central Processing Unit (CPU) on the cloud platform or on
a CPU in a computer on an AGV.
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Cloud RANRAP
(USRP)

RAP
(USRP)fronthaul fronthaul

AGV control
server

AGV
(KATE)

Figure 8.1: Demonstrator concept with its core physical components. All DSP is
implemented in software and executed on the Cloud RAN platform
or on a computer on an AGV.

We use a GNU Radio based software environment to implement all the
necessary DSP and support functionality as discussed in Sec. 8.4. The
polar code and GFDM based implementation consists of various components
that we discuss in detail in Sec. 8.5. Since the software implementation is
very flexible, we start with a discussion on a suitable configuration for the
application at hand in Sec. 8.2. It is important to note that a simulation
environment and a live communication system exhibit significant structural
differences. In Sec. 8.3 we discuss the design of our implementation and
how components are usable in both simulations and our OTA live streaming
implementation while maintaining the flexibility to employ different system
designs.

8.2 Testbed configuration

The presented testbed implementation is very flexible. However, the number
of parameters and their inter-dependencies are numerous. Thus, we present a
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default configuration that is assumed throughout this chapter for the uplink
as well as the downlink.

dst ID
1B

src ID
1B

counter
2B

size
1B

timestamp
8B

payload
84B

checksum
2B

99B packet

13B header + 2B

IP header info
10B

checksum
2B

IP src
4B

IP dst
4B

UDP header
8B

payload
56B

84B MTU

20B IP header 64B available for ICMP packet

Figure 8.2: Uplink and downlink frame structure with 99B frames that consist
of our custom 15B MAC header and an encapsulated 84B IP MTU
structure with a minimal 20B IPv4 header, fixed 8B UDP header,
and up to 56B payload.

We configure our GNU Radio flowgraph such that it accepts packets with
a Maximum Transmission Unit (MTU) of 84B. In Sec. 8.4.1 we discuss
how the Linux network stack ensures seamless integration including packet
segmentation and re-assembly. The frame and packet structure is shown
in Fig. 8.2. We assume a 99B, or 792 bit, fixed size OTA packet with our
custom 15B MAC header and 84B payload that corresponds to a 84B
Maximum Transmission Unit (MTU). Shorter payloads are zero-padded to
fill a fixed size MAC packet in order to keep system complexity at bay. The
15B MAC header consists of a 1B destination IDentifier (ID), 1B source
ID, 2B frame counter, and 1B payload size indicator. Additionally, we add
an 8B high precision timestamp. Finally, a 16 bit, or 2B CRC checksum is
appended to every packet that is re-used for polar code list decoding.

As illustrated in Fig. 8.2, the MAC payload may carry Internet Protocol
(IP) packets with a 84B MTU [Pos81a]. The 84B MTU includes a 20B IP
header without any optional fields [Pos81a]. Thus, the effective maximum
packet payload is 64B which is also the minimum packet size to ensure that
ping Internet Control Message Protocol (ICMP) packets are not fragmented
[Pos81b]. A User Datagram Protocol (UDP) packet with a fixed 8B UDP
header may carry up to a 56B payload without fragmentation [Pos80].
Further, we want to make sure that we always operate on 1B multiples

because smaller units incur management overhead without benefit, e.g. larger
packet size header fields for bits instead of bytes. Modern CPUs operate on
bytes and thus it is beneficial to keep all configuration aligned to the 1B
multiple principle to avoid additional complexity. Thus, data structures are
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aligned to byte-multiples, e.g. C/C++ int8_t, or 8bit integer (int8), and
float, or fp-32. Software applications allow for more rapid development
and CPUs are optimized to execute on byte multiples and thus offset any
custom data structures.

MAC packet
792 bit

FEC

coderate .44

QPSK

M = 2

GFDM

Kt = 15
Ks = 64
Kon = 60

CP

NCP = 16
NCS = 8

Preamble

with Kt = 2
KtKs + NCP + NCS

=152 S

frame
1136 S

sample rate 30.72MS s−1

frame duration 36.98 µs
active bandwidth 29.28MHz

1800 bit 900 S 960 S 984 S

Figure 8.3: PHY configuration for fixed size 99B, or 792 bit, MAC packets.

The PHY configuration is presented in Fig. 8.3 where a 99B MAC packet
is transformed into a 1136 S frame. In order to align the configuration with
5G NR systems, we assume a 30.72MS s−1 sample rate that saturates the
Universal Serial Bus (USB) transport link of an Ettus USRP B210 (B210)
in a Nant = 2 antenna configuration1. With these constraints in mind, we
configure the FEC encoder with a R = 0.44 coderate and fix the mapping
to QPSK. Thus, we assume a fixed MCS because dynamic MCS selection
requires additional work that is out of scope for this demonstrator. The
GFDM system uses Kt = 15 timeslots, Ks = 64 subcarriers, and Kon = 60
active subcarriers and thus the multicarrier system may convey Nd = 900
complex symbols per frame. We set the CP and Cyclic Suffix (CS) length
to NCP = 16 and NCS = 8 respectively. The preamble requires Kt = 2
additional timeslots with its own CP and CS. As a result, a complete
frame consists of 1136 S at 30.72MS s−1 which results in a 36.98 µs on air
duration, or burst duration. Finally, the occupied bandwidth in this system
is 29.28MHz.

Additionally, the system needs to organize multiple access and duplexing.
Hence, the configuration accommodates TDD to integrate uplink and down-
link transmissions as well as TDM to support multiple User Equipments
(UEs). Since we expect periodic deterministic communication behavior, the
system organizes access in cycles and assigns transmit slots to each UE
and the RAN. To this end, the Tcycle parameter controls the duration until
another packet may be transmitted, i.e. a single UE may only transmit in
its designated slot every Tcycle. Finally, we employ a static S&RA strategy
where we statically assign resources to each device in every cycle. Any

1https://kb.ettus.com/About_USRP_Bandwidths_and_Sampling_Rates

https://kb.ettus.com/About_USRP_Bandwidths_and_Sampling_Rates
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dynamic behavior would require a feedback channel and a corresponding
protocol that is out of scope for this work.

8.3 Software modem system design

Software system design is inherently difficult [Mar08]. Thus, it is strictly
required to follow software design principles to build a complex system such
as a Cloud RAN system that aims to deliver its promised benefits. These
benefits are flexibility, reusability, efficiency and performance [MGG+12,
GM13]. Still, a software system offers greater flexibility and is more accessible
[Gra13]. Benefits include more rapid development cycles and thus features
may be deployed faster. Abstracting away hardware implementation details
offers the potential for broader adoption. Hardware development, even if
not Application Specific Integrated Circuit (ASIC) focused, is inherently
difficult and cumbersome. The author in [Gra13] makes a case for Field
Programmable Gate Array (FPGA) development in case requirements cannot
be met otherwise but recommends to stick to software development. Often,
software development for RAN is carried out with several programming
languages including C and C++ for performance critical code as well as
Python for support functionality and testing [WO20]. However, one should
never underestimate the burden of other legacy programming languages
with outdated programming paradigms and missing features, such as an
appropriate module import mechanism. Further, future development may
benefit from more recent programming languages such as Rust.

8.3.1 Streaming and simulation software architecture

Arguably most communications engineering research is performed via sim-
ulations. Investigations may be scaled over a large set of parameters, e.g.
SNRs, to obtain results in a timely manner. Importantly, resource intensive
components of a simulation may slow down investigations but generally do
not prohibit them. Further, such components may introduce latency but
researchers control time within a simulation. In a simulation environment it
may be useful to leverage inter-frame parallelism to speed up simulations
because such implementations may be fed with data at an arbitrary rate.
In order to obtain useful models, measurements are conducted where

recorded data may be replayed and analyzed at a later date. Again, the
latency between recording and analysis may be high but not important.
Beyond that, researchers may replay a recording and thus go back and forth
in time. Thus, in these scenarios researchers have full control over all aspects
of their investigation, e.g. time and hardware resources. Researchers require
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easy access to their simulation environment to alter and re-assemble it in
all aspects. Under these constraints, optimized components help to obtain
results faster and to focus on components that are currently under heavy
investigation and thus are changed rapidly. However, optimized components
need to integrate seamlessly into the simulation environment.

On the contrary, a streaming communications system is targeted at OTA
live data. New data, e.g. samples, are produced at a constant rate. Thus, a
communication system must be able to consume samples at that rate, extract
the conveyed data, and reduce the overall rate. A slow component may
introduce latency or limit the maximum sample rate that a system digests.
If a component is unable to process data at a required rate, eventually the
system will be flooded with data and be required to drop samples. Running
multiple instances of such a component in parallel to meet the required
rate in turn requires an environment that allows for concurrent operation
while maintaining consistency. However, such parallelism does not decrease
latency but may even increase it in cases where these components need to
wait for more data such as in case of inter-frame parallelism.

unit tests

C/C++

kernels

GNU Radio
block interface

sample streaming,
hardware interfaces

pybind11
interface

simulations,
flexible

Figure 8.4: Software architecture with computational kernels, integration into
different interfaces, and appropriate unit tests.

We opt for the flexible overall software architecture depicted in Fig. 8.4.
Our software design encapsulates small, fixed computational kernels. These
computational kernels are highly optimized and implemented in C/C++. A
computational kernel is a C++ class that holds the required internal data
structures and provides the optimized methods to compute a specific task,
e.g. polar encoding. For our demonstrator testbed, we integrate these
kernels into GNU Radio to leverage the streaming architecture for live OTA
transmissions. Prior to an optimized implementation the kernel functionality
and suitability is investigated in simulations in a Python implementation.
Afterwards, the simulation infrastructure may be repurposed to verify the
correct operation of such a kernel in unit tests as discussed in Sec. 8.3.2.
As indicated in Fig. 8.4, we are able to plug an optimized kernel into
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different interfaces. The GNU Radio block interface integration allows us to
easily interface with hardware and leverage the multi-threading capabilities
that GNU Radio provides. We use pybind11 to integrate an optimized kernel
into our Python simulations to speed them up and spend more resources on
other components [JRS+22]. In fact, we use the SotA core scientific libraries
NumPy and SciPy that heavily rely on that approach and thus, we follow
their example [HMW+20, VGO+20].

8.3.2 Test driven development

As we want to leverage GPP capabilities to enable Cloud RAN, we need to
follow software design principles to achieve this goal. The flowgraph blocks
in Fig. 8.5 are decomposed into their components to enable easily verifiable
unit tests to ensure correct operation. Here, we rely on SotA open source
unit test frameworks, such as Python unittest and C++ cppunit to enable
test driven development [Pyt21, FLS+21]. This enables rapid progress while
maintaining correct operation because we can confidently optimize while
verifying correct operation. Further, we facilitate integration tests to ensure
units interact as expected. Finally, we expect a continuous integration
system that builds every set of changes, runs all tests, and reports errors, if
any, automatically. Unit tests are the foundation to build high-performance
software that enables real-time operation and thus Cloud RAN.

8.3.3 Object oriented programming

In order to achieve fast function execution, Object Oriented (OO) program-
ming aides to separate initialization tasks and actual function execution.
This implies that each processing block in our transmitter and receiver
chain is composed of one or more classes that hold a processing block’s
configuration, e.g. information and codeword size. Only data associated to
individual frames is passed around during program execution, e.g. LLRs or
complex symbols.
Another example would be a polar decoder where a constructor creates

necessary buffers upon instantiation which is only performed once. The
actual decode function reuses these structures. Naturally, we are interested
in the decode function execution time because it impacts system throughput
and latency, with possibly millions of function calls, while constructor and
destructor tasks are only performed once.
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8.4 Software environment

In this section, we discuss GNU Radio and the USRP Hardware Driver (UHD)
along with important used software libraries that comprise our software
environment. Further, the Linux host system and important configura-
tions are discussed. In Sec. 8.5 we assume this environment to discuss our
implemented OOT modules and how they are used.

8.4.1 Linux host

The Operating System (OS) and its configuration have a major impact on
performance. We conduct all of our experiments on Ubuntu 20.04 with
a Linux 5.x generic kernel. We expect that SDRs are run on a server or
embedded system and thus we expect a Linux system. Further, essential
SotA tools such as software package managers, can only be expected on these
platforms. First, we increase the network buffer size to 62.5MB, and thus
follow UHD recommended settings2. Further, it is important to set the CPU
performance governor to performance instead of ondemand or powersave
which are common default options2. Finally, real-time scheduling is enabled
for UHD and GNU Radio flowgraphs2.
In order to plug our GNU Radio flowgraphs into the host network stack,

we employ Linux Foo over UDP (FOU) tunneling [Cor14]. This approach
allows us to easily add virtual network devices to a host and connect a
flowgraph to them via UDP. A flowgraph adds GNU Radio Socket PDU
blocks to bind and listen to UDP ports. With this approach we seamlessly
integrate our wireless communication system into an IP based system. Thus,
the full stack of network tools to configure and measure our system are
available including ping, ip tools with flow control and rate limiting.

8.4.2 GNU Radio

GNU Radio is a modular, multi-threaded framework for SDR applications
that offers a lot of standard capabilities for signal processing, visualization,
infrastructure, and hardware interfaces in order to develop new waveforms
[LMA+22]. A developer may focus on the actual algorithms at hand while
GNU Radio deals with all the software design implications, e.g. multi-
threading is a challenging software design topic itself [Hin13]. GNU Radio
is freely available under the terms of the GNU General Public License v3.0
or later (GPLv3+) [Fre07].

2https://kb.ettus.com/USRP_Host_Performance_Tuning_Tips_and_Tricks

https://kb.ettus.com/USRP_Host_Performance_Tuning_Tips_and_Tricks
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“If you’ve spent years learning tricks to make your multithreaded code
work at all, let alone rapidly, with locks and semaphores and critical sections,
you will be disgusted when you realize it was all for nothing. If there’s one
lesson we’ve learned from 30+ years of concurrent programming, it is: just
don’t share state . It’s like two drunkards trying to share a beer. It doesn’t
matter if they’re good buddies. Sooner or later, they’re going to get into a
fight. And the more drunkards you add to the table, the more they fight
each other over the beer. The tragic majority of multithreaded applications
look like drunken bar fights.” [Hin13]
GNU Radio offers two Application Programming Interfaces (APIs) to

convey data from one DSP block to the next in a multi-threaded system,
namely the stream and the message passing API. The streaming API is
targeted at efficient, thread-safe data conveyance between blocks that target
continuous data. This interface allows for the highest sample throughput.
The message passing API targets thread-safe online re-configuration and
packetized data exchange between blocks. Besides, both APIs provide thread-
safe multi-threading by scheduling each block in its own thread and taking
care of concurrency implications. Thus, developers may focus on the DSP
software implementation at hand.

Conceptionally, GNU Radio is a framework with numerous modules that
extend its functionality while the core runtime offers a block scheduler and
a standardized interface. A lot of modules with specific blocks are available
as part of the GNU Radio core distribution, e.g. gr-fft for Fastest Fourier
Transform in The West (FFTW), gr-uhd for UHD, and gr-digital for common
DSP operations. Besides these in-tree modules, Out-Of-Tree (OOT) modules
exist to extend GNU Radio with user specific functionality. We use OOT
modules to plug our DSP functions into GNU Radio. GNU Radio relies on
optimized software libraries that we employ in our OOT modules and thus
introduce here shortly.

Vector-Optimized Library of Kernels (VOLK) A library of math
functions which are typically used in signal processing [DDA+22]. It makes
use of Single-Instruction-Multiple-Data (SIMD) extensions which are present
in many modern GPP hardware architectures such as x86 64bit (x86) Stream-
ing SIMD Extensions (SSE), x86 Advanced Vector Extensions (AVX), or
ARM (ARM) NEON (NEON). It abstracts individual implementations for
specific hardware and provides a canonical interface to all of them.

Fastest Fourier Transform in The West (FFTW) One of the fastest
known software implementations for Fourier transforms [FJ05]. It is a de
facto standard for many software projects, both commercial and open-source.
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8.4.3 USRP hardware driver

We consider USRPs for our testbed implementation and thus, we require the
USRP Hardware Driver (UHD) to exchange data between the device and a
host [Ett21]. UHD facilitates multiple essential functions that include efficient
sample streaming from and to a device, and access to numerous frontend
parameters such as transmit and receive gain, and carrier frequency. Further,
it provides an efficient abstract interface for all USRP products regardless
of underlying hardware details such as the data transport technology, e.g.
IEEE 802.3 Ethernet (Ethernet), and Universal Serial Bus (USB). Besides,
various approaches to reduce system load and latency and improve reliability
are available and investigated, such as UHD with Data Plane Development
Kit (DPDK) [BM20].
USRPs are SotA SDR frontends that offer features beyond continuous

sample streaming and interactive RF frontend configuration. We require
a high and sustained sampling rate with low latency transfers between
the frontend and our CPU. SDR frontends need to offer low latency data
transfers between the frontend and the host and they need to offer a timed
commands feature to start a burst transmission at a precise time. Timed
commands need to enable users to control frontend properties with high
timing precision as well, e.g. re-tune to a different radio frequency. In
combination with the UHD, USRPs provide precise transmit timing control,
as well as precise receive timing information. This feature set is particularly
required for communication technologies that rely on precise synchronization
between clients such as LTE or 5G NR.

The gr-uhd module provides access to UHD and is part of the GNU Radio
core distribution. Earlier versions of the UHD were part of the GNU Radio
core distribution and USRPs were first developed as an SDR frontend for
GNU Radio [Sta06, PND+11].

8.4.4 Software benchmarking tools

It is crucial to gather performance metrics to identify resource hot spots.
Naturally, the results depend on the chosen system parameters, the chosen
platform, and implementation details may have an even greater impact on
the exact results [Gia16]. We focus on GPP hardware in order to leverage
software technologies and flexibility.

We mainly use the two programming languages Python and C++. In most
cases we are interested in a functions execution time in order to determine
the share of resources we need to dedicate to it. It is possible to measure
latency with C++ std::chrono or derivatives thereof [cpp21a, Gia16]. In
case of Python function benchmarks,the Python time and timeit modules



158 8 Testbed implementation

provide time measurement tools [Pyt21]. The function execution duration is
computed via timestamps right before and after a function call.
It is inherently difficult to measure latency and throughput though and

full of caveats. Difficulties to measure range from finite clock resolution
to complex CPU architectures with caches, speculative execution, multi-
threading, to frequency-scaling. Further, current compilers are very good
at optimizing code for speed, up to the point where the function under test
is optimized out if not handled properly. In order to minimize issues, we
adopt the micro-benchmarking tool benchmark that enables accurate DSP
processing latency measurements in C++ [Goo21]. Here, latency is defined
as the time it takes to execute one function call. Throughout this work, we
measure a whole set of functions that need to be executed repeatedly in an
OTA system, e.g. decode, demodulate, or demap. However, any kind
of setup computations, such as of memory allocation, are excluded from this
measurement because they are executed once during system initialization and
re-used in every call to the function under test. Moreover, the throughput is
defined as the number of elements that are processed by the corresponding
function per second. Depending on the function this might be the number
of bits, LLRs, or complex samples that are passed to the function under
test, or that the function under test yields. For example a decoder achieves
a coded throughput on the input where it considers the N bit per function
call while information throughput at the output considers the K bit per
function call. Thus, the information throughput is defined as the number
of information bit K divided by the function execution latency in bit s−1.
All values are directly measured and computed via the micro-benchmarking
tool benchmark.

8.5 Implemented software components

Based on our software environment, discussed in Sec. 8.4, we discuss our
software components that comprise the testbed communication application.
The GNU Radio flowgraph in Fig. 8.5 represents a top-level view that we
discuss in more detail in this section. The UHD: USRP Source block serves as
a receiver interface for USRPs. Similarly, the UHD: USRP Sink block serves
as the transmitter interface for USRPs. While these blocks are separate
in this flowgraph, they may represent a single USRP or a multiple USRP
configuration where transmit and receive antennas are distributed arbitrarily
between physical devices.
The Periodic time tag block consumes time tags offered by the UHD to
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achieve exact timing information for accurate burst transmit timing3 as
discussed in Sec. 8.5.1. The status collector block gathers metadata, such
as SNR estimates, which is ultimately stored in a database for analysis and
visualization.

The UDP Interface block is a hierarchical block that is discussed in
Sec. 8.5.1. The hierarchical transmitter and receiver blocks will be discussed
shortly because each consists of numerous blocks from several OOT modules.

Figure 8.5: Top-level GNU Radio flowgraph with Nant = 2 that is executed on
our Cloud RAN and AGV communication system.

8.5.1 Testbed software integration

The overall configuration of our OTA implementation is subsumed in the
GNU Radio OOT module gr-tacmac [Dem23]. Here, we present the hierar-
chical flowgraphs that constitute the overall OTA demonstrator shown in
Fig. 8.5. The flowgraph in Fig. 8.5 includes all DSP to transmit and receive
in the uplink and downlink. Furthermore, this flowgraph is executed on
our Cloud RAN system as well as on our AGV communication system as
discussed in Sec. 8.6. The presented hierarchical flowgraphs are available in
the GNU Radio Graphical User Interface (GUI), the GNU Radio Companion
(GRC), however, we implement them as hierarchical Python blocks as well
because this approach offers greater flexibility.

The GRC is a GUI to simplify flowgraph creation and execution. Within
GRC the Pad source and Pad sink blocks indicate inputs and outputs for
hierarchical GNU Radio blocks. These Pad blocks result in block ports in

3https://kb.ettus.com/UHD#Sample_streaming

https://kb.ettus.com/UHD#Sample_streaming
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e.g. Fig. 8.5. We omit the Pad blocks in most flowgraphs in favor of greater
clarity.

Figure 8.6: Internals of the gr-tacmac UDP interface block in Fig. 8.5 for FOU.

The GNU Radio flowgraph is connected to the Linux network stack via
FOU as discussed in Sec. 8.4.1. This MAC functionality shown in Fig. 8.6 is
encapsulated in the hierarchical flowgraph UDP interface in Fig. 8.5. We
use Socket PDU blocks to connect to UDP ports and we implement a MAC
controller block that takes care of MAC processing. Within the message
passing API, a Protocol Data Unit (PDU) is a structured unit that contains
a dictionary with meta data and a uniform data vector, e.g. a byte vector.
The MAC controller block controls transmission and reception. Based on the
given configuration, it adds a custom header to each packet based on source
and destination ID, the packet length, a timestamp, and a checksum as
discussed in Sec. 8.2. At the receiver, it parses this header information, rejects
invalid packets and extracts data packets. Packets above the configured
MTU size are rejected. Instead, we rely on Linux network stack features to
perform packet segmentation and re-assembly. Fig. 8.6 shows a client that
is configured with the shown configuration and connects to a base station
that replicates the Socket PDU UDP server, MAC controller, and Socket
PDU UDP client structure for each client. We use the GNU Radio message
passing API because it allows to connect an arbitrary number of thread-safe
connections to a single port and thus enables packet interleaving. Besides,
this part of the overall flowgraph processes packets and thus is predestined
for this API.

The transmitter flowgraph is presented in Fig. 8.7. It accepts PDUs that
are converted to the stream API in the PDU to Tagged Stream block and then
propagate through the whole PHY processing chain. This includes a polar
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Figure 8.7: Internals of the gr-tacmac PHY transmitter block in Fig. 8.5 with
Nant = 2.

encoder in the FEC Encoder block, an Interleaver block, a Symbol Mapper
block and a GFDM Transmitter which are discussed in detail sections 8.5.5,
8.5.4, 8.5.3, and 8.5.2.
The Short Burst Shaper block handles zero-padding and adds timed-

command stream tags for a UHD: USRP Sink block to control the exact
transmit time. Zero-padding is required for burst transmissions to ensure
that data samples are not corrupted by switching any frontend components.
This block may consume periodic timing information to better align timed
burst transmission with a USRP device.

Figure 8.8: Internals of the gr-tacmac GFDM PHY Receiver block in Fig. 8.5
with Nant = 2.
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The details of the receiver block in Fig. 8.5 are shown in Fig. 8.8 while
the lower PHY receiver is shown in Fig. 8.9 for clarity. The Lower PHY
receiver block provides LLRs that are deinterleaved in the Interleaver block
and polar decoded in the FEC Decoder block. Since we consider constant
size packets only, the Stream to Tagged Stream and Tagged Stream to PDU
blocks can be used to convert chunks of bytes into PDUs that contain PHY
receiver meta data from stream tags in a corresponding dictionary. This
information includes precise timing information, DSP delay, per antenna
stream SNR estimates, and per antenna CNR estimates.

Figure 8.9: Internals of the gr-tacmac Lower PHY receiver in Fig. 8.8 block
with PHY synchronization, GFDM demodulation, and demapping
receiver flowgraph for Nant = 2.

The flowgraph in Fig. 8.9 details a lower PHY receiver for a Nant = 2
antenna setup that leverages diversity to improve reliability. A continuous
stream, e.g. at 30.72MS s−1 per antenna port, is fed to a Multicarrier Sync
hierarchical block as discussed in Sec. 8.5.2. The start of frame stream tags
are aligned in the Tag align block to ensure each Multicarrier Sync stream
produces the same number of aligned frames. UHD provides a convenient
interface that aligns sample streams across devices and we leverage this
feature. The GFDM receiver blocks extract frames based on aligned frame
start sample tags and perform GFDM demodulation as discussed in Sec. 8.5.3.
Finally, the Symbol Demapper blocks use the received complex samples
together with stream tags that contain SNR and CNR estimates to compute
LLRs for FEC decoding. Here we use receive diversity to obtain multiple
observations of the same frame and thus, we can use the Add block to sum
up LLRs in accordance with (6.4) to enhance the FEC decoder process with
more information.
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8.5.2 Synchronization

Reliable and robust synchronization is paramount to any communication
system because all further DSP relies on synchronized data. In [DKJ15],
it has been shown that frame synchronization is a computationally expen-
sive operation. We employ the multicarrier synchronization proposed in
[AKE08], which is an improved Schmidl&Cox-based preamble approach
[SC97, GMMF14]. A Schmidl&Cox preamble yP consists of two identical
parts. This preamble is extended with a CP and CS to a baseband preamble
xP and prepended to a frame x to obtain a baseband signal s that is ready
for transmission. The improved Schmidl&Cox (Schmidl&Cox) approach re-
lies on coarse synchronization with a fixed-lag auto-correlation followed by a
cross-correlation with the known preamble. By combining both correlations,
this approach yields high precision timing information. We use a Zadoff-
Chu sequence to generate preamble symbols. Other strategies to obtain a
Schmidl&Cox preamble are available as well [ZM09]. Also, Schmidl&Cox
preambles are well suited for SNR and CNR estimation [ZM09]. Here, we
discuss our efficient implementation XFDMSync [DG22].

Figure 8.10: Internals of the XFDMSync Multicarrier Sync hierarchical flow-
graph in Fig. 8.9.

The GNU Radio flowgraph in Fig. 8.10 shows the XFDMSync
Schmidl&Cox synchronization blocks that are encapsulated in a Multicarrier
Sync block in Fig. 8.9. A continuous stream of samples from a source,
e.g. a USRP, is fed to the Schmidl and Cox correlator block. First, the
algorithm performs a fixed-lag auto-correlation of length NyP

/2 which yields
a frame timing estimation with moderate accuracy. Furthermore, the fixed-
lag auto-correlation is used to estimate a Carrier-Frequency-Offset (CFO).
Auto-correlation peak detection as well as CFO calculation is performed
by the Schmidl and Cox tagger block. This block searches for a peak in a
window that start with the first sample above the Upper Threshold and ends
with the last sample above the Lower Threshold. The block adds a GNU
Radio sample tag to the peak sample. Afterwards, the Cross-correlation
tagger block computes a cross-correlation with yP around the detected peak.
In this window, element-wise multiplication of the fixed-lag auto-correlation
and cross-correlation values results in a high precision timing synchronization
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[AKE08]. The result is a sample stream with sample tags that denote high
precision timing information. Fig. 8.9 includes multiple hierarchical synchro-
nization blocks and employs a Tag align block to ensure tags from multiple
parallel synchronization streams are aligned. Eventually, subsequent blocks
extract received frame vectors s̃ that we can decompose into a received
preamble x̃P and a received frame x̃.
It is important to note that synchronization runs at full receiver input

rate, e.g. 61.44MS/s. Measurements on a AMD Ryzen Threadripper 3970X
(TRX3970X) with a GNU Radio Probe rate block indicate that the presented
set up is able to sustain 120MS/s throughput for a single stream. A two
stream configuration may sustain 110MS/s throughput including additional
tag alignment work. The bulk of the computional burden lies on the Schmidl
and Cox correlator block which may be separated into multiple blocks that
are executed concurrently if the need for higher throughput arises.

8.5.3 GFDM implementation

We already discussed multicarrier modulation theory in Chapter 5, here
we discuss implementation aspects. The gr-gfdm module [DRKK22] is
a joint effort that we presented in previous works [DBD+17b, DBD17a]
and it is freely available under the terms of the GPLv3+ [Fre07]. Besides
the GNU Radio API integration, pybind11 provides a Python API for
our C++ implementation [Pyt21, JRS+22]. The approach to separate the
optimized C++ implementation from a specific API ensures that we benefit
from algorithmic optimizations in our OTA demonstrator as well as in
simulations as discussed in Sec. 8.3. Like GNU Radio, gr-gfdm heavily
relies on Vector-Optimized Library of Kernels (VOLK) and FFTW for
optimizations as discussed in Sec. 8.4.2 [DDA+22, FJ05].

Figure 8.11: Internal flowgraph of the gr-gfdm GFDM Transmitter block in
Fig. 8.7.

The transmitter flowgraph in Fig. 8.11 implements the GFDM multicarrier
modulation discussed in Sec. 5.3.3 and corresponds to the hierarchical GFDM
Transmitter block in Fig. 8.7. The input is a stream of complex symbols d
where KtKon symbols are mapped to a resource grid in the GFDM resource
mapper block, and transformed to GFDM frames y in the simple GFDM
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Modulator block. In case of OFDM, it is possible to replace the simple
GFDM Modulator block by a GNU Radio FFT block. Subsequently, CP and
CS are added in the GFDM Cyclic Prefixer block and finally, a pre-computed
preamble xP is pre-pended to every such frame. Suitable preambles xP are
discussed in Sec. 8.5.2. The gr-gfdm module provides a GFDM Transmitter
block that includes all previously discussed blocks. Our software architecture
specifically aims for this flexibility by separating the block functionality in
computational kernels from the API. Since most blocks shown in Fig. 8.11
are computationally lightweight, this measure offers the potential to decrease
transmitter DSP latency by avoiding multi-threading overhead.

Figure 8.12: Internal flowgraph of the gr-gfdm GFDM receiver block in Fig. 8.9.

The receiver counterpart of the GFDM transmitter is depicted in Fig. 8.12.
The Extract Burst block expects a GNU Radio stream tag as discussed
in Sec. 8.5.2 and extracts received frames s̃ including the preamble and
GFDM frame. The GFDM Remove Prefix blocks extract the modulated
receive frame ỹ and the preamble ỹP. Next, the GFDM Channel Estimator
block produces a new channel estimate for every input preamble that is
interpolated to the GFDM frame size as well as an SNR estimate. Finally, a
CNRs estimate is produced. Both, the SNR and the CNRs estimate, are
propagated to downstream blocks via GNU Radio stream tags.
The core of the gr-gfdm module is the GFDM Advanced Receiver (SB)

block. This block equalizes and demodulates frames, and further performs
interference cancellation. The final processing block is the GFDM Resource
Demapper block that yields complex received symbols d̃ for downstream
processing.

8.5.4 Symbol mapping

The theory of Bit-Interleaved Coded Modulation (BICM) is discussed in
Chapter 4. The blocks in Fig. 8.13 represent the necessary DSP operations
for BICM that are included in the gr-symbolmapping GNU Radio OOT
module [Dem22a].
The Interleaver block is configurable in multiple ways. It offers an inter-
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Figure 8.13: gr-symbolmapping blocks flowgraph

leaver and a deinterleaver mode, it may be configured for multiple input
and output types, and it can operate on packed bytes. The implications of
packed versus unpacked bytes are discussed in Sec. 4.6. Finally, The actual
interleaver indices are an arbitrary list that must only contain unique indices,
while the corresponding deinterleaver indices are automatically derived. The
interleaver and deinterleaver implementations were upstreamed into GNU
Radio as part of the gr-blocks module [LMA+22].
The Symbol Mapper block accepts packed or unpacked bytes and emits

complex symbols from various constellations, including QPSK, 16QAM, and
256QAM as discussed in Chapter 4. The Symbol Demapper block processes
complex symbols and produces LLRs for every bit. The actual LLR values
may be dynamically scaled via GNU Radio stream tags that specify the
current SNR or stream tags that contain a vector with CNRs that are applied
repeatedly. Thus, CNRs are used under the assumption that a multicarrier
system maps symbols to resources per timeslot.

8.5.5 Polar codes

We consider polar codes for URLLC with short packets. The error correction
performance as well as the raw implementation latency are discussed in
Chapter 3. Here, we discuss gr-polarwrap, a module that integrates the
polar-codes project into a GNU Radio OOT [DL22, Dem22c]. The OOT
module gr-polarwrap implements the GNU Radio FECAPI to provide polar
encoder and decoder objects that are plugged into FEC Encoder and FEC
Decoder blocks as shown in Fig. 8.14. The FECAPI provides a convenient
separation between FEC implementations and the GNU Radio streaming
and message passing APIs that we utilize.

8.5.6 Latency measurements

We focus on latency measurements because communication system laten-
cies are considered to be crucial for URLLC applications. The authors in
[BMH19] conducted profiling measurements and suggested to use GNU Radio
stream tags with timestamps for latency measurements [Blo21]. We pick up
this idea and implement functionality to measure DSP latency in the GNU
Radio OOT module gr-latency [Dem22b]. The software benchmarking tools,
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Figure 8.14: gr-polarwrap blocks and GNU Radio FECAPI integration.

discussed in Sec. 8.4.4, follow a different paradigm and thus, we consider
this OOT module to be a crucial component for live latency measurements.

(a) gr-latency streaming latency measurement

(b) gr-latency message passing latency measurement

Figure 8.15: gr-latency components

The available GNU Radio blocks in this module are shown in Fig. 8.15.
Either, we add timestamps periodically to stream samples with the Stream
time stamper block or we use the message passing API with the PDU time
stamper block. In any case, a high precision timestamp obtained with
C++ std::chrono is added and later the propagation delay, or latency, is
measured in a downstream Tag timestamp debug block. The high precision
timestamp with ns resolution is obtained from the local system clock. It is
important to note that some OSs lack clocks with µs precision and render
this tool as well as many others useless.
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8.6 Hardware components

The demonstrator setup comprises many hardware components that we want
to introduce in this section. It consists of AGVs, computers, USRPs and
radio equipment.
Our Cloud RAN is illustrated in Fig. 8.16, where we consider systems

with an AMD Ryzen Threadripper 3970X (TRX3970X), 64GB Random
Access Memory (RAM), and a AMD Radeon RX 550 (Radeon RX 550)
Graphics Processing Unit (GPU). Further, each system is equipped with
an Intel Ethernet Converged Network Adapter X710-DA2 (Intel X710)4 to
connect USRPs over IEEE 802.3 Ethernet (Ethernet) with 10Gbit s−1. One
or more Ettus USRP N310 (N310) are connected to a Cloud RAN to realize
a distributed AP setup. Multiple distributed AP are synchronized via an
Ettus Octoclock-G (Octoclock-G). Our hardware platform focuses on x86
hardware with AVX SIMD extensions that are mostly available on hardware
from Advanced Micro Devices (AMD) and Intel [Int21]. Multiple other GPP
Instruction Set Architectures (ISAs) are available such as ARM NEON or
RiscV (RiscV) but are out of scope for this work.

Our AGVs are Götting KATEs5 and thus these devices are our mobile units
as shown in Fig. 8.17. We replace the provided communication module with
our solution by simply plugging it in at the internal Götting KATE Ethernet
port to replace the default Wi-Fi bridge. Each Götting KATE carries
an additional power supply Jauch Quartz Power Station JES1500WHA
(JES1500)6 to power our experimental radio equipment. Here, we use a B210
connected via USB to a compact computer with an AMD Ryzen 9 5900X
(Ryzen 5900X) CPU, 32GB RAM and a Radeon RX 550. The GPU serves
as an optional debug interface only.

We selected the Radeon RX 550 because it is reliably and fully supported
within Linux via the AMDGPU driver7. This feature sets the Radeon RX
550 apart from most other cheap discrete GPUs where manufacturer driver
support is a constant source of frustration. The purpose of a GPU in our
demonstrator project is to serve as a reliable debugging and visualization
tool.

For the Hildesheim testbed in Sec. 8.7.3 we use a NI USRP-2974 (USRP-

4https://ark.intel.com/content/www/us/en/ark/products/83964/

intel-ethernet-converged-network-adapter-x710da2.html
5https://www.goetting-agv.com/kate
6https://www.jauch.com/en-INT/products/battery_technology/

mobile-lithium-energy-storage/getPrm/energysolutions/POWERSTATIONEN/

JES1500WHA/
7https://cgit.freedesktop.org/xorg/driver/xf86-video-amdgpu/

https://ark.intel.com/content/www/us/en/ark/products/83964/intel-ethernet-converged-network-adapter-x710da2.html
https://ark.intel.com/content/www/us/en/ark/products/83964/intel-ethernet-converged-network-adapter-x710da2.html
https://www.goetting-agv.com/kate
https://www.jauch.com/en-INT/products/battery_technology/mobile-lithium-energy-storage/getPrm/energysolutions/POWERSTATIONEN/JES1500WHA/
https://www.jauch.com/en-INT/products/battery_technology/mobile-lithium-energy-storage/getPrm/energysolutions/POWERSTATIONEN/JES1500WHA/
https://www.jauch.com/en-INT/products/battery_technology/mobile-lithium-energy-storage/getPrm/energysolutions/POWERSTATIONEN/JES1500WHA/
https://cgit.freedesktop.org/xorg/driver/xf86-video-amdgpu/
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Octoclock

N310

AGV controller

Figure 8.16: Cloud RAN hardware and connections with Ettus USRP N310s
(N310s) synchronized via an Octoclock-G, antennas, AGV controller,
AGV, and a TRX3970X host.

2974)8 with an integrated computer. However, the embedded x86 hardware
only supports a single antenna configuration because of its limited compute
power. Thus, we prefer modularity in our setup to effectively upgrade
components when and where necessary.
We use Pasternack PE510849 rubber duck antennas with a frequency

range from 3.3GHz to 3.8GHz with a custom-designed ground plane. The
AP antennas are mounted at fixed positions in the testbed while the mobile
antennas are mounted on top an AGV.

The presented system is measured with /usr/bin/time to measure mem-
ory usage. Across machines, our measurement tool reports a peak of 220MB

8https://www.ni.com/en-us/support/model.usrp-2974.html
9https://www.pasternack.com/rubber-duck-antenna-108mm-sma-male-3300-3800-mhz-2-dbi-pe51084-p.

aspx

https://www.ni.com/en-us/support/model.usrp-2974.html
https://www.pasternack.com/rubber-duck-antenna-108mm-sma-male-3300-3800-mhz-2-dbi-pe51084-p.aspx
https://www.pasternack.com/rubber-duck-antenna-108mm-sma-male-3300-3800-mhz-2-dbi-pe51084-p.aspx
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KATE
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to on-board
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computer
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Figure 8.17: AGV that consists of a Götting KATE connected to our DSP
computer, an additional battery, antennas with custom ground
planes, and a B210.

RAM usage even under heavy load in a client configuration. The Cloud
RAN configuration measurement results in 222MB RAM usage, which is
slightly higher. It should be noted that the system processes approximately
2Gbit s−1 with a 30.72MS s−1 sample rate and NR = 2 receive antennas.

8.7 Testbed

The software and hardware components are assembled in various experi-
ments to obtain performance data. We start with experiments to compare
latency for different system scenarios that include DSP flowgraph latency,
multi-threaded GNU Radio flowgraph latency and hardware frontend com-
munication. These tests culminate in OTA experiments with the ping utility
to determine system latency. Besides, we conduct system throughput ex-
periments. The presented communication system is deployed in testbeds
that we discuss and present obtained measurement results to reveal the
communication system performance and validate their practicability. Finally,
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we conduct reliability measurements in these testbeds.

8.7.1 Latency

We want to analyze the latencies we measure in the presented system.
In contrast to previous chapters, we are interested in the overall latency.
However, we split our latency investigations into DSP latencies, multi-
threaded DSP latencies, and Round Trip Time (RTT) measurements.
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Figure 8.18: Aggregate DSP latency for all considered PHY components without
synchronization as discussed in Sec. 8.4.4.

Fig. 8.18 shows the aggregated latencies for a transmitter, receiver, and
transceiver with increasing frame size NF and different configurations for
Interference-Cancellation (IC) iterations J and polar code list size L. The
component DSP latencies are investigated in previous chapters, specifically
Sec. 3.4, 4.6, and 5.6. The results in Fig. 8.18 exclude synchronization.
The black vertical line indicates the chosen parameterization according to
Sec. 8.2. The receiver causes the bulk of the measured latency while the
transmitter is responsible for a minor latency increase. The largest impact
on latency is caused by the polar decoder with a list size L = 8, while the
number of IC iterations has a lighter impact on latency. Again, we observe
a lower latency if NF is a power of two as discussed in Sec. 5.6. We selected
these parameters for this comparison because we identified them to be the
ones with the highest impact on latency in previous chapters. We conclude
that it is most beneficial to focus on polar Successive Cancellation List (SCL)
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decoder optimization to reduce the overall DSP latency.
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Figure 8.19: DSP latencies in GNU Radio on Ryzen 5900X and TRX3970X.

We leverage GNU Radio features to build a full OTA transceiver. Fig. 8.19
shows the measured latencies in a full OTA system in a box plot with 3σ
whiskers. All measurements are obtained by sending a ping, or ICMP echo
request, from a host in AP configuration to a client in UE configuration.
The receivers are configured with J = 2 IC iterations and a dynamic polar
decoder approach. First, a Successive Cancellation (SC) decoder attempts to
decode a frame and only in case this fails, the SCL decoder with L = 8 is used.
This approach minimizes latency in most cases, and more importantly, makes
more resources available for other tasks. The Echo entries show the time it
takes for a host to respond with an ICMP echo reply, i.e. the duration that
starts when an ICMP request leaves our system until a corresponding reply
enters our system again. These upper layer processing delays are introduced
by the Linux host and differ slightly between the chosen platforms. On a
Ryzen 5900X the mean latency is 82.2 µs, while on a TRX3970X the mean
is measured at 107.3 µs. This result is an indicator that a higher single core
CPU performance is beneficial to lower latency.

The mean transmit DSP latency on a TRX3970X host in UE configuration
is 158.3 µs, while the receive DSP latency is 565.3 µs. The AP configuration
on a TRX3970X host yields 166.2 µs transmit and 554.1 µs receive latency.
The mean latencies on a Ryzen 5900X UE host are 135.2 µs for transmit
and 438.6 µs for receive processing. The Ryzen 5900X host exhibits higher
latency spread than the other hosts. This DSP latency spread is an indicator
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to investigate optimizations in multi-thread scheduling.
Overall, the mean one way DSP latency from a TRX3970X AP to a

TRX3970X UE is 731.5 µs, and 712.4 µs in the other direction. Similarly, the
mean one way DSP latency from a TRX3970X AP to a Ryzen 5900X UE is
604.8 µs, and 689.3 µs in the other direction. Finally, the mean transceiver
DSP latencies are 1294.1 µs with a Ryzen 5900X UE and 1443.9 µs with a
TRX3970X UE.

These results are surprising at first glance because they are almost an
order of magnitude higher than the aggregated DSP benchmarks suggest.
However, multiple factors contribute to these results and show a way forward
for future latency optimization investigations. We require an efficient multi-
threading scheduler and decided to use GNU Radio. The GNU Radio
scheduler focuses on throughput in contrast to latency [BMH19, MLM22,
LMA+22]. A latency-optimized scheduler requires further knowledge on
data and structural dependencies within a flowgraph [BMH19, MLM22].
Optimizing this scheduler is a potential task for future investigations, e.g.
by grouping lightweight operations. This approach might minimize the
deviations we observe in Fig. 8.19 as well. Further, the results in Fig. 8.18
lack synchronization and transmit control tasks, which are compulsory
for OTA transmissions. Also, the interaction to integrate our GNU Radio
flowgraph into the host system network layer is not part of our measurements
in Fig. 8.18. We consider these investigations to be out of scope for this
work and want to point the interested reader towards these topics for future
research.
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Figure 8.20: System RTT on Ryzen 5900X and TRX3970X.
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The results in Fig. 8.20 show the application RTTs, or ping times. While
the AP is always equipped with the same hardware, a TRX3970X CPU
with a N310, the UE configurations differ. The N310 requires a 10Gbit s−1

Network Interface Controller (NIC) on the host to sustain the constant data
rates, which is only available on our TRX3970X hosts.

Besides the hardware configuration, GNU Radio flowgraph configuration
is configured to allow transmission once every Tcycle cycle time. Hence, the
system supports the transmission of 8 frames every Tcycle. With, Tcycle =
320 µs cycle time a Ryzen 5900X B210 UE experiences a mean 2.625ms RTT.
Similarly, a TRX3970X B210 system experiences a 2.890ms RTT, while
with a N310 the mean RTT is 2.511ms. Again, the lower RTT of the Ryzen
5900X system is attributed to the higher single core CPU performance. The
B210 UEs reveal a higher RTT, likely because the B210 is connected via
USB. In turn, the USB latency is higher than the Ethernet based connection
latency, which requires that timed commands over USB receive an additional
520 µs timing advance, while 320µs timing advance is sufficient for the N310.
A lower timing advance results in samples that arrive at the frontend after
their indented transmit time and are thus dropped, i.e. not transmitted at
all.

Further, we observe some variance in our RTT measurements in Fig. 8.20.
We do not conduct any investigation into the root causes of these variances
and leave this topic open for future research. However, we can present some
conjectures. Since we use a generic Linux kernel instead of a lowlatency

or realtime kernel, the variance might be caused or at least boosted by
sub-optimal Linux kernel scheduling decisions. Moreover, we conjecture
that the block execution order in our flowgraph is re-ordered frequently and
causes data stalls. Therefore, a latency optimized scheduler that makes use
of additional information on data and structural dependencies might reduce
variance as well as latency and RTT [BMH19, MLM22].

Next, we lower the cycle time to Tcycle = 160 µs. The RTTs drop to
2.352ms for a Ryzen 5900X B210 system, to 2.508ms for a TRX3970X B210
system, and to 2.361ms for a TRX3970X N310 system. Thus, the RTTs
shrink by 272 µs, 382 µs, and 150µs respectively. These numbers correspond
roughly to the round-trip cycle time reduction. Thus, we conclude that a
Tcycle cycle time reduction causes a latency reduction, which is important
for communication system design, or configuration, i.e. keep cycle times to
a minimum.

One step further, we lower the cycle time to Tcycle = 80 µs. The RTTs drop
to 2.274ms for a Ryzen 5900X B210 system, to 2.528ms for a TRX3970X
B210 system, and to 2.184ms for a TRX3970X N310 system. In contrast
to the other configurations, the TRX3970X N310 system shows the lowest
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latencies now. The RTTs reduce by 79µs, −2 µs, and 177 µs respectively.
The systems with a B210, and thus a USB connection, are unable to fully
leverage the lower cycle time.

For reference, a TRX3970X N310 system that sends packets immediately
is able to provide a mean RTT of 1.97ms, which is another 214µs latency
decrease. However, at this point all measures to enable cooperation with
multiple units are disabled and such a system would suffer from packet
collisions, i.e. self-interference. The TRX3970X DSP latency measurements
reveal a 1443µs delay and, thus, the mean fronted transceiver delay for a
N310 is 527µs including data transfer between the host and the USRP.

In this section, we demonstrated the capabilities of our SDR communica-
tion system solution. It is possible to build a low-latency communication
system atop the general purpose GNU Radio framework and we identified
areas for further optimizations.

8.7.2 Throughput

We focus on reliability and latency in our work. However, in this section
we present throughput measurements for several Tcycle configurations for
one UE in Fig. 8.21. First off, all measurements appear to be flat lines over
the full measurement run because we did not observe any packet errors.
The obtained throughput measurements may be considered as an indicator
that the presented system is able to provide highly reliable communication
services. The Tcycle parameter controls the duration until another packet
may be transmitted, i.e. a single UE may only transmit in its designated
slot every Tcycle.
Given the fixed configuration, these throughput results, 175 kB s−1,

116.7 kB s−1, and 87.5 kB s−1, represent maximum possible throughput for
the corresponding cycle times 320 µs, 480µs, and 640 µs. However, the pre-
sented measurements exclude all protocol overhead as discussed in Sec. 8.2.
A packet consists of 56B payload, 8B UDP header, 20B IP header, and 15B
PHY header. Thus, a packet consists of 99B and the corresponding PHY
information data rate is 309.4 kB s−1, 206.3 kB s−1, and 154.7 kB s−1 respec-
tively. These numbers indicate that a short packet system would greatly
benefit from reduced overhead. However, investigations in that direction are
out of scope for this work.
The theoretical throughput of our system with QPSK mapping, Bs =

29.28MHz bandwidth, and the given GFDM configuration with Kon = 60
active subcarriers is 57.6Mbit s−1. However, this value omits any overhead
including a CP. Considering whole frames with 99B and 1136 S per frame,
the theoretical throughput may be up to 21.42Mbit s−1. Including UDP,
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Figure 8.21: Throughput measurements for one UE with varying Tcycle in 1 s
buckets.

IP, and MAC overhead, the maximum throughput may be 12.11Mbit s−1.
Moreover, the system is able to transmit 8 frames every Tcycle = 320 µs, 12
frames every Tcycle = 480 µs, and 16 frames every Tcycle = 640 µs. Thus, the
maximum system throughput, or goodput, that is available to an application
is 11.2Mbit s−1 to 11.56Mbit s−1, or 1400 kB s−1 to 1445.2 kB s−1, while the
PHY throughput is 19.8Mbit s−1 to 20.44Mbit s−1. The results in Fig. 8.21
show that the system is able to achieve these goodput numbers.

8.7.3 Testbed measurements at Bosch Hildesheim

We investigated our communication system solution in a testbed at Bosch
Hildesheim during project TACNET 4.0. The testbed serves as a demon-
strator to validate that distributed APs improve reliability by leveraging
spatial diversity. The gathered SNR measurement data confirms that the
chosen approach with a full software implementation and distributed APs is
a viable solution for future URLLC systems.

The testbed area, shown in Fig. 8.22, is located inside a factory hall with
heavy machinery at Bosch Hildesheim. The AGV tracks cover an area of
6.3m by 9m and are surrounded by a metallic truss that carries the APs
at 3m height as indicated. The truss itself is located at a height of 3.35m
and is carried by posts. Two more trusses cross the area above the AGV
tracks but are omitted for the sake of clarity. The metallic walls are mobile
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Figure 8.22: Testbed area at Bosch Hildesheim with APs positioned at 3m height
and AGV tracks.

and thus, are used to produce different measurement scenarios. We obtain
measurements for a metallic walls scenario and a free scenario where the
walls are removed from the testbed.

The APs in Fig. 8.22 consist of one transmit and one receive antenna
each and thus constitute a NT = 2, NR = 2 setup. Due to issues with
frequency synchronization between USRPs at the time, we emulate the
two AP configuration by connecting all antennas to one USRP via High
Frequency (HF) cables. The long cables from the USRP to AP1 cause
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approximately 5.22 dB loss that we compensate by adding 5.22 dB in our
plots to ensure better comparability. The AGV is equipped with a USRP-
2974 with NT = 1, NR = 1 and the GNU Radio flowgraph is executed in a
Docker container. Due to the limited compute power of the embedded CPU,
multiple transmit and receive antennas are unavailable.
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Figure 8.23: Testbed area SNR heatmap with scenario free. Black triangles
indicate AP positions. AP0 results are in the left heatmap and AP1
results on the right. Axes units in m.

We gather SNR measurements while the AGV drives along the presented
tracks. The heatmap in Fig. 8.23 presents the measured SNRs for both AP
receive streams for the free scenario. The lower left corner, near the origin,
serves as an example how the system benefits from our distributed approach.
The AP0 heatmap indicates low SNR values for this AP near the origin while
the AP1 heatmap reveals high SNR values in that area. In other words, the
distributed system is able to compensate bad channel conditions on one link
with better channel conditions on the other link.
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Figure 8.24: Testbed area SNR heatmap with scenario metallic walls. Black
triangles indicate AP positions. Gray bars indicate metallic walls.
AP0 results are in the left heatmap and AP1 results on the right.
Axes units in m.
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The heatmaps in Fig. 8.24 show the result for the metallic walls scenario.
First, we can observe the influence of the walls on the measured SNR, e.g. by
considering the upper left corner of the heatmap for AP0. The area behind
the metallic wall from a AP0 point of view exhibits significantly lower SNR
values. Further, AP0 is able to serve the AGV on the track to the right with
a high SNR while AP1 exhibits better results for the track on the left. These
results bolster our conclusion that distributed APs are a strict requirement
for ultra reliable communication systems.
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Figure 8.25: Testbed area in the NEOS building Bremen with APs positioned
at 1.5m height and AGV tracks. AGVs are restricted from the red
areas.
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8.7.4 Testbed measurements at NEOS

The measurement campaign in this section is an extension to the testbed
measurements we present in Sec. 8.7.3. We published preliminary results
for this testbed in [DBD23]. We execute multiple experiments to validate
the capabilities of our full demonstrator. Most importantly, the testbed
area is significantly larger and we are able to use all discussed software
components without restrictions. This includes spatially separated and
synchronized USRPs that compose a Cloud RAN with distributed APs.
Additionally, a wider range of experiments with latency measurements, more
SNR measurements, and packet error measurements reveal further insight.
Also, the AGV carries our equipment for a fully capable 2× 2 Multiple Input
Multiple Output (MIMO) mobile unit. While the testbed is located in an
office building, we consider it to be an industrial like environment due to
the abundance of reflecting surfaces all around.
The testbed area is illustrated in Fig. 8.25 with a stairwell in the center

that introduces NLOS channel conditions from an AP to an AGV in their
respective areas. While the testbed area at Bosch Hildesheim covers 100.0m2,
the testbed area at the NEOS building in Bremen covers 358.5m2. Thus,
this testbed area is significantly larger. The testbed area in Fig. 8.25 is
surrounded by insulated windows on the top, right and bottom side that
stretch from the floor to the ceiling, while the building extends to the left
but is separated from this area by a wall. The ceiling height is approximately
3.2m and the ceiling is covered with a ceiling heating system with metal
elements. These physical properties lead to the conclusion that the testbed
represents an industrial like environment. AGVs are restricted from the red
areas because they contain equipment connection floor boxes with Ethernet
and power outlets. Also, the restricted areas are used for other equipment
such as APs and antenna racks.

The tracks in Fig. 8.25 indicate possible routes for AGVs where we conduct
SNR measurements as presented in Fig. 8.26. Specifically in Fig. 8.26a AP0
experiences good channel conditions with high SNR in the upper area, while
the area behind the stairwell suffers from poor SNR values in the bottom half.
Similarly, AP1 measures a lower SNR in the top half of the testbed area. In
contrast to Fig. 8.26a, the measurements in Fig. 8.26b show the results with
a 2× 2 antenna configuration at a single AP0. Both antennas exhibit the
same SNR heatmap pattern with the lowest values in the lower left behind
the stairwell. As expected, the single AP configuration does not provide
spatial diversity to the extend the distributed AP setup does. However, we
require further insight into the system to verify that the distributed AP
setup provides better resilience against burst errors and thus is better able
to support URLLC use cases.
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(a) Two distributed APs in one Cloud RAN system with a 1× 1 antenna setup each that
jointly serve the area.

5 10 15 20

4

8

12

16

5 10 15 20

18 19 20 21 22 23 24 25

SNR [dB]

(b) One AP with a 2× 2 antenna setup.

Figure 8.26: Testbed area SNR heatmaps. Black triangles indicate AP positions.
Gray area indicates stairwell position. Axes units in m.
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(a) One AP with a 2× 2 antenna setup.
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(b) Two distributed APs with a 1×1 antenna
setup each.

Figure 8.27: Testbed area burst error length heatmaps. Crosses [×] mark single
packet loss positions. Triangles [▼] indicate AP positions. Gray
area indicates stairwell position. Axes units in m.

We continue with a lost packet heatmap in Fig. 8.27a with a 2× 2 single
AP configuration. A cross marks a location with a single packet error. In
contrast, the color-coded points indicate burst errors. Therefore, the results
in Fig. 8.27a make it obvious that a single AP is insufficient to prevent burst
errors over the whole demo area.

Finally, we consider a lost packet heatmap in Fig. 8.27b that corresponds
to the SNR measurements in Fig. 8.26a. In this case only single packet errors
occur. Thus, burst errors are successfully mitigated with a distributed AP
setup. Again, we conclude that our Cloud RAN approach with distributed
APs is required to enable URLLC.

In order to gain more insight into the latency behavior of our system during
an experiment, we periodically use multiple ICMP ping tests to measure the
RTT of our system as shown in Fig. 8.28. It should be noted that these tests
may interfere with the application communication and thus, they are prone
to a larger variance. The presented mean, minimum, and maximum graphs
show the respective cumulative results over a short time frame. These results
are in agreement with the results presented in Fig. 8.20 with a Tcycle = 320 µs
cycle duration that was configured during this measurement as well. Most
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importantly, our GNU Radio software implementation offers lower latencies
than current LTE, and more remarkably 5G NR, systems [SFVS20]. In
conjunction with our investigations on reliability in Fig. 8.27, we conclude
that our implementation offers the capabilities to support URLLC in an
industrial like environment.
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Figure 8.28: RTT measurement during a ∼10min SNR measurement run.

8.8 Summary

We presented a full communication system demonstrator implemented in
software and integrated into GNU Radio. We started this chapter with
a discussion of our testbed concept, the software environment, and the
used software components along with their configuration. This includes a
discussion on our own software as well as important dependencies such as
GNU Radio, VOLK, and FFTW. Afterwards, we presented the available
hardware and their integration. We conducted multiple experiments to vali-
date system performance regarding reliability and latency constraints. Here,
we can conclude that the presented system is able to deliver reliable low la-
tency communication for future URLLC systems with periodic deterministic
communication behavior.
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8.8.1 Contribution

Firstly, we contribute an open-source software communication system im-
plementation in GNU Radio [Dem22a, DRKK22, DG22, Dem22b, Dem22c,
DL22]. With distributed APs to improve reliability through spatial diversity,
the chosen approach shows a significant improvement to counter fading
induced communication outages. Thus, distributed APs provide an impor-
tant option to minimize burst errors in URLLC communication systems.
Our latency measurements confirm that low latency communication systems
are achievable and fully implementable in software. The GNU Radio OTA
software implementation is able to provide lower latency than current LTE
and 5G NR systems [SFVS20]. We show that DSP algorithms alone are only
a partial contributor to system latency. The whole system needs to be tightly
integrated and optimized in a future work in order to deliver the highest
possible performance and consequently lowest latency. Thus, we contribute
detailed insight into a full software implementation of a communication
system along with valuable pointers where and when to optimize further.





Chapter 9

Summary

New use cases for wireless communication that require Ultra Reliable Low
Latency Communication (URLLC) systems open a new trove of challenges.
In this thesis we address multiple aspects to achieve lower latency and
higher reliability. Furthermore, we present a thorough analysis of PHYsical
layer (PHY) Digital Signal Processing (DSP) concepts and their impact on
latency and reliability. These concepts are used in a Medium-Access-Control
(MAC) layer Scheduling and Resource Allocation (S&RA) analysis to find
suitable approaches for S&RA that minimize burst errors. Finally, our PHY
and MAC analysis results in a demonstrator that verifies our approaches
in a testbed. Thus, it is possible to meet the requirements of URLLC
systems with a full software Cloud Radio Access Network (Cloud RAN)
implementation with distributed Access Points (APs).

9.1 Contributions

In Chapter 2 we introduced the scenario we consider and our system model.
This resulted in a description for our small and large scale fading channel
model with considerations towards industrial channels. Most notably, we
consider all fading channels to be Rayleigh distributed.
In Chapter 3, we showed that polar codes are good candidates to meet

the requirements of low latency and high reliability for small packets. Based
on these findings, we introduced polar codes in-depth with algorithmic
improvements towards latency reduction and increased error correction
performance. Thereafter, the trade-offs between latency and reliability and
the impact of specific parameters were analyzed.
In Chapter 4, we introduced Bit-Interleaved Coded Modulation (BICM)
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signal processing techniques. The results show that interleaving as well as
optimized soft-demappers exhibit very low DSP latency. However, these
processing steps may serve as a starting point to better understand how
DSP may be optimized in software on a Central Processing Unit (CPU).

In Chapter 5, we introduced Generalized Frequency Division Multiplexing
(GFDM) and Orthogonal Frequency Division Multiplexing (OFDM) multi-
carrier modulation. Here, we devise advantages and disadvantages of these
multicarrier modulations. While GFDM is more flexible, exhibits lower
Out-Of-Band (OOB) emissions, and allows to shorten frame duration, it is
a non-orthogonal modulation and may suffer from self-interference. Further,
we demonstrate how Interference-Cancellation (IC) for GFDM demodulation
has a large impact on DSP latency. All in all, we devise critical parameters
that impact reliability and latency as well as trade-offs based on parameter
selection.

In Chapter 6, we show how a Cloud RAN concept with distributed APs and
a Functional Split (FS) within the PHY aides to meet reliability requirements
via spatial diversity. Moreover, we demonstrate Joint Transmission (JT),
and Joint Reception (JR) with Joint Decoding (JD) approaches that greatly
improve resilience against deep fades and overall system reliability. In
order to ease the fronthaul rate burden with multiple distributed APs, we
introduced an offline quantizer design based on the Information Bottleneck
Method (IBM). Here, this quantizer approach shows promising results to
significantly reduce fronthaul data rates with minimal online computational
effort and negligible error correction performance loss.

In Chapter 7, we discussed MAC layer improvements for URLLC systems,
based on our Key Performance Indicator (KPI) burst error minimization.
First, we identified Mutual Information Effective SNR Mapping (MIESM)
as a suitable approach to Link Abstraction (LA). This includes a thorough
analysis of derived parameters to optimize accuracy. Afterwards, we in-
vestigated S&RA algorithms to combat burst errors. Most importantly,
Frequency-Division-Multiplex (FDM) based Resource Allocation (RA) ap-
proaches require more accurate Channel State Information (CSI) knowledge
while Time-Division-Multiplex (TDM) based approaches perform better
with imperfect CSI knowledge. Furthermore, we show that dynamic S&RA
strategies are necessary to minimize burst errors unless an abundance of
spectrum resources are available. In order to minimize burst errors, these
S&RA strategies must take error state knowledge into account to meet
URLLC requirements.

In Chapter 8, we fused our gathered software implementation experience
into an Over-the-Air (OTA) demonstrator in GNU Radio (GNU Radio).
This demonstrator is capable of low latency transmission with high reliability.
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Here, we analyzed the impact of a software system on the overall latency in
contrast to DSP latencies to identify further areas for future work. Moreover,
we analyzed our distributed AP approach to improve reliability. Distributed
APs are a feasible and implementable approach to meet URLLC requirements
in a practical system.

9.2 Open research questions and future work

Naturally, we identified multiple areas for future work with open research
questions.

• Besides DSP latencies, system integration latencies were revealed as a
major contributor to the overall system latency. These latencies need
to be addressed in a latency-optimized multi-threading environment.

• Data exchange between hardware frontends and and hosts that execute
a Software-Defined Radio (SDR) system is another major latency con-
tributor. Approaches to reduce these latencies are known in literature
[BM20]. However, this is another area that would benefit from further
research.

• Overall host Operating System (OS) configuration investigations as
well as suitable hardware investigations are an open research topic. Our
considerations focus on x86 64bit (x86) hardware but other CPU archi-
tectures like ARM (ARM) and RiscV (RiscV) become more prominent
and may be better suited in the future.

• It may be beneficial to integrate hardware accelerators, e.g. Graphics
Processing Units (GPUs), for specific tasks, e.g. Forward Error Correc-
tion (FEC), into an otherwise full software implementation. However,
it is imperative to learn more about the latency impact of dedicated
accelerators because data transfer latencies may outweigh their benefit.
Furthermore, these accelerators need to be evaluated in terms of DSP
latencies as well because often times such hardware is optimized for
throughput while latency is worse than on a CPU.

• We investigated a set of algorithms for S&RA. However, integration of
different optimization targets for different users or services as well as
more complicated approaches may be of interest.

• Further polar decoder optimizations both for error correction perfor-
mance as well as latency are an active area of research.
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Specialized node
implementation in C++

Listing A.1: C++ implementation of a Single Parity Check (SPC) node.

1 #include <limits >

2 #include <vector >

3 #include <immintrin.h>

4
5 static const __m256 SIGN_MASK = _mm256_set1_ps (-0.0f);

6
7 inline __m256 _mm256_abs_ps(const __m256 values) {

8 return _mm256_andnot_ps(SIGN_MASK , values);

9 }

10
11 inline __m256 _mm256_cmplt_ps(const __m256 a, const __m256 b)

{

12 return _mm256_cmp_ps(a, b, _CMP_GT_OQ);

13 }

14
15 inline __m256 _mm256_argabsmin_ps(__m256& minindices , const

__m256 indices ,

16 const __m256 minvalues , const __m256 values) {

17 const __m256 abs = _mm256_abs_ps(values);

18 const __m256 mask = _mm256_cmplt_ps(abs , minvalues);

19 minindices = _mm256_blendv_ps(indices , minindices , mask);

20 return _mm256_blendv_ps(abs , minvalues , mask);

21 }

22
23 inline unsigned _mm256_argmin_ps(const __m256 x) {

24 const __m256 fourMin = _mm256_min_ps(x, _mm256_permute2f128_ps

(x, x, 0b00000001));
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25 const __m256 twoMin = _mm256_min_ps(fourMin , _mm256_permute_ps

(fourMin , 0b01001110));

26 const __m256 oneMin = _mm256_min_ps(twoMin , _mm256_permute_ps(

twoMin , 0b10110001));

27 const __m256 mask = _mm256_cmp_ps(x, oneMin , _CMP_EQ_OQ);

28 const int movemask = _mm256_movemask_ps(mask);

29 const unsigned idx = __tzcnt_u32(movemask);

30 return idx & 0x7;

31 }

32
33 inline float reduce_xor_ps(__m256 x) {

34 /* ( x3+x7 , x2+x6 , x1+x5 , x0+x4 ) */

35 const __m128 x128 =

36 _mm_xor_ps(_mm256_extractf128_ps(x, 1), _mm256_castps256_ps128

(x));

37 /* ( -, -, x1+x3+x5+x7 , x0+x2+x4+x6 ) */

38 const __m128 x64 = _mm_xor_ps(x128 , _mm_movehl_ps(x128 , x128))

;

39 /* ( -, -, -, x0+x1+x2+x3+x4+x5+x6+x7 ) */

40 const __m128 x32 = _mm_xor_ps(x64 , _mm_shuffle_ps(x64 , x64 , 0

x55));

41 /* Conversion to float is a no -op on x86 -64 */

42 return _mm_cvtss_f32(x32);

43 }

44
45 template <unsigned size >

46 void calculate_spc(float* bits , const float* llrs) {

47 __m256 parity = _mm256_setzero_ps ();

48 __m256 minvalues = _mm256_set1_ps(std:: numeric_limits <float >::

max());

49 __m256 minindices = _mm256_setzero_ps ();

50 __m256 indices = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};

51 const __m256 step = _mm256_set1_ps (8.0);

52 for (unsigned i = 0; i < size; i += 8) {

53 __m256 part = _mm256_loadu_ps(llrs + i);

54 _mm256_storeu_ps(bits + i, part);

55 parity = _mm256_xor_ps(parity , part);

56 minvalues = _mm256_argabsmin_ps(minindices , indices , minvalues

, part);

57 indices = _mm256_add_ps(indices , step);

58 }

59
60 const unsigned p = _mm256_argmin_ps(minvalues);

61 const unsigned minidx = unsigned(minindices[p]);

62
63 union { float fParity; unsigned int iParity; };

64 fParity = reduce_xor_ps(parity);

65 iParity &= 0x80000000;

66
67 reinterpret_cast <unsigned int*>(bits)[minidx] ^= iParity;

68 }
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Mutual information
derivations

Here, we present a more detailed approach to mutual information computa-
tions in accordance with [Boc12, Jäc05].

B.1 Entropy

First, we reiterate over the entropy

He (d) = −E {log2 p (d)} = −
2M−1∑︂
i=0

P (di) · log2 P (di) (B.1)

with a discrete alphabet AC with |AC| = 2M . And furthermore, we recall
differential entropy

he (d) = −E {log2 pd (d)} = −
∞∫︂

−∞

pd (ζ) · log2 pd (ζ) dζ (B.2)

B.2 Channel capacity

Now, we want to compute channel capacity for a Gaussian alphabet d ∈ AC

transmitted over an Additive White Gaussian Noise (AWGN) channel with
n ∼ N

(︁
0, σ2

n

)︁
because it serves as an upper bound and thus as our reference.
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We can compute mutual information

he

(︂
d; d̃
)︂
= E

⎧⎨⎩log2

pd,d̃

(︂
d, d̃
)︂

pd (d) · pd̃
(︂
d̃
)︂
⎫⎬⎭ = he

(︂
d̃
)︂
− he (n) (B.3)

for Gaussian variables under the AWGN channel assumption d̃ = d+ n. If
we find the maximum mutual information, we compute channel capacity

C = he

(︂
d̃
)︂
−he (n) = log2

(︁
2πeσ2

d

)︁
− log2

(︁
2πeσ2

n

)︁
= log2

(︃
1− σ2

d

σ2
n

)︃
(B.4)

for complex Gaussian alphabets [RU08].

B.3 Mutual information for BICM

Instead of a theoretical bound, we want to compute mutual information for
specific, practical constellations AC with |AC| = 2M , e.g. QPSK or 16QAM.
This task is split into computations over bit layers. For one layer, mutual
information is calculated as

Cl = 1− E

⎧⎪⎪⎪⎨⎪⎪⎪⎩log2

∑︁
δ∈AC

pd̃|d

(︂
d̃|δ
)︂

∑︁
ϱ∈AC

(b)
l

pd̃|d

(︂
d̃|ϱ
)︂
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B.5)

where

AC
(b)
l = {dl = M (blb|blb,l = b)} (B.6)

denotes the set of symbols where the bit pattern at layer l has the value b
and

py|x (y|x) =
1

πσn
e
− 1

σ2
n
|y−x|2

, x, y ∈ C (B.7)

denotes the complex conditional probability density function. In (B.5) we
substitute x =

√
pα and σ2

n = 1 and reformulate the per layer mutual
information

Cl = 1− 1

2 · 2Mπ

1∑︂
b=0

∑︂
α∈AC

∫︂
C

e−|ζ−
√
pα|2 log2

∑︁
δ∈AC

e−|ζ−√
pδ|2∑︁

ϱ∈AC
(b)
l

e−|ζ−√
pϱ|2 dζ (B.8)
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to apply the Gauss-Hermite-Quadrature approximation and use symmetry
arguments to simplify it. Colors in (B.8) indicate how different parts of the
equation are connected. With the Gauss-Hermite-Quadrature

y =

∞∫︂
−∞

e−v2

f(v)dv ≈
N−1∑︂
ρ=0

wρf(vρ) (B.9)

we are able to solve (B.8) numerically. We may compute the weights

W (vρ) = wρ = e−v2
ρ for an N -point Gauss-Hermite-Quadrature or rely

on software toolkits such as numpy.polynomial.hermite.hermgauss that
yield the correct evaluation points v. This strategy may be extended to
multivariate Gauss Hermite Quadrature to solve this mutual information
calculation for complex values [Jäc05, Wil21].

We need to substitute ∆1 = ζ −√
pα and thus ζ = ∆1 +

√
pα

Cl = 1− 1

2 · 2Mπ

1∑︂
b=0

∑︂
α∈AC

∫︂
C

e−|∆1|2 log2

∑︁
α∈AC

e−|∆1+

∆2⏟ ⏞⏞ ⏟√
p(α− δ) |2

∑︁
ϱ∈AC

(b)
l

e

−|∆1+
√
p(α− ϱ)⏞ ⏟⏟ ⏞

∆3

|2
d∆1

(B.10)

and identify the weights w = e−|∆1|2 and the function

f b
l (∆1) = log2

∑︁
∆2

e−|∆1+∆2|2∑︁
∆3

e−|∆1+∆3|2
= f b

l (∆
I
1,∆

Q
1 ) (B.11)

and observe that we want to solve a two-dimensional Gauss-Hermite-
Quadrature equation with ∆1 = ∆I

1 + j∆Q
1 . We rewrite

w = e−|∆1|2 = e−∆I
1
2−∆Q

1

2

= e−∆I
1
2

· e−∆Q
1

2

= wI · wQ (B.12)

and arrive at our final per layer mutual information equation

Cl = 1− 1

2 · 2Mπ

1∑︂
b=0

∑︂
AC

∑︂
ρ

wI
ρ

∑︂
τ

wQ
τ f

b
l (∆

I
1,ρ,∆

Q
1 ,τ ) . (B.13)

that we can use to calculate reliabilities for specific constellations that we
use. Finally, we can define the mutual information function

f (x) =

M−1∑︂
l=0

Cl (B.14)
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for a constellation AC with |AC| = 2M and thus M bit layers.



Appendix C

Log-likelihood ratio
calculation

We need to calculate Log-Likelihood Ratios (LLRs) c̃ from complex received
symbols d̃ before decoding to leverage soft decision error correction perfor-
mance gains [Pro95]. A soft demapper yields soft bit values, or LLRs, whose
sign bit indicates the equivalent hard decision bit and the absolute value is
a measure of reliability [TB02, ALF04, MAXC16].

This calculation is performed under the assumption of an equivalent AWGN
channel with noise power σ2

n on a per symbol basis. We assume transmit
symbols d ∈ AC, |AC| = 2M from a given constellation, e.g. Quadrature
Phase Shift Keying (QPSK) or 16Quadrature Amplitude Modulation (QAM).

C.1 LLR definition

We recall our LLR definition from (3.4) for Binary Phase Shift Keying
(BPSK) or Non Return to Zero (NRZ) mapped bits

c̃ = ln
p
(︂
c = 0|d̃

)︂
p
(︂
c = 1|d̃

)︂ = ln
p
(︂
d̃|c = 0

)︂
· p (c = 0)

p
(︂
d̃|c = 1

)︂
· p (c = 1)

= ln
p
(︂
d̃|c = 0

)︂
p
(︂
d̃|c = 1

)︂ + ln
p (c = 0)

p (c = 1)

(C.1)
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and apply Bayes’ theorem

p
(︂
c = 0|d̃

)︂
=

p
(︂
d̃|c = 0

)︂
· p (c = 0)

p
(︂
d̃
)︂ (C.2)

where we note that p
(︂
d̃
)︂
cancels out in (C.1). We note that the a-priori

LLR ln p(c=0)
p(c=1) = 0 under the assumption of equiprobable bits. We may either

make this assumption because we lack knowledge about the source statistics,
or assume that source coding removed all redundancy and thus, all bits
should be equiprobable. Thus, we focus on the a-posteriori probabilities

p
(︂
d̃|c
)︂
now.

C.2 Likelihood

We compute a likelihood

p
(︂
d̃|d
)︂
=

1

πσ2
n

· e−
|d̃−d|2

σ2
n d ∈ AC (C.3)

for a transmit symbol d when d̃ is received under our AWGN assumption.
We move to the ln domain

ln p
(︂
d̃|dm

)︂
= −|d̃− dm|2

σ2
n

− ln
1

πσ2
n

. (C.4)

and note that this computation simplifies to computing the euclidean distance
between a complex received symbol d̃ and an assumed transmit symbol d
and multiplication with a scaling factor.

C.3 Calculation

With all necessary prerequisites in place, we can now compute a LLR

c̃ = ln
p
(︂
c = 0|d̃

)︂
p
(︂
c = 1|d̃

)︂ = ln
p
(︂
d1|d̃

)︂
p
(︂
d0|d̃

)︂ =
|d̃− d1|2

σ2
n

− |d̃− d0|2

σ2
n

(C.5)
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for our BPSK case. Finally, we want to extend this calculation to constella-
tions of size M . We calculate an LLR

c̃l = ln
p
(︂
cl = 0|d̃

)︂
p
(︂
cl = 1|d̃

)︂ = ln

∑︂
∀d∈AC

(0)
l

p
(︂
d̃|d
)︂

∑︂
∀d∈AC

(1)
l

p
(︂
d̃|d
)︂ (C.6)

for layer l by summing up the probabilities of d ∈ AC
(c)
l . The set AC

(c)
l ⊂ AC

contains all symbols whose labels hold c, 0 or 1, at layer l. In order to
carry out all operations in the ln domain, we employ the LogSumExp (LSE)
approximation

ln
∑︂
j

ezj ≈ max
j

zj (C.7)

[TB02]. Under the AWGN assumption and (C.3) together with the approxi-
mation (C.7), we approximate (C.6) and arrive at a computationally more
lightweight LLR calculation

c̃l = ln

∑︂
∀d∈AC

(0)
l

p
(︂
d̃|d
)︂

∑︂
∀d∈AC

(1)
l

p
(︂
d̃|d
)︂

≈ 1

σ2
n

(︄
min

d∈AC
(0)
l

|d̃− d|2 − min
d∈AC

(1)
l

|d̃− d|2
)︄ (C.8)

that we use for general constellations.

C.4 Specialized calculations

Specialized demappers might help tremendously to improve soft demapper
latency and throughput while the impact on error rate performance is
negligible [TB02, ALF04, MAXC16]. Specialization, and thus optimization,
is executed under the assumption of fixed constellations [ETS18a] and an
independent and identically distributed (i.i.d.) assumption for inphase and
quadrature components. Here we present the formulas for BPSK, QPSK,
16QAM, 64QAM, and 256QAM.

BPSK

c̃0 =
2

σ2
n

Re
{︂
d̃
}︂

(C.9)
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QPSK

c̃0 =

√
2

σ2
n

Re
{︂
d̃
}︂

c̃1 =

√
2

σ2
n

Im
{︂
d̃
}︂ (C.10)

16QAM

c̃0 =
2√

10 · σ2
n

Re
{︂
d̃
}︂

c̃1 =
2√

10 · σ2
n

Im
{︂
d̃
}︂

c̃2 =
2√

10 · σ2
n

(︃
2√
10

−
⃓⃓⃓
Re
{︂
d̃
}︂⃓⃓⃓)︃

c̃3 =
2√

10 · σ2
n

(︃
2√
10

−
⃓⃓⃓
Im
{︂
d̃
}︂⃓⃓⃓)︃

(C.11)

64QAM

c̃0 =
2√

42 · σ2
n

Re
{︂
d̃
}︂

c̃1 =
2√

42 · σ2
n

Im
{︂
d̃
}︂

c̃2 =
2√

42 · σ2
n

(︃
4√
42

−
⃓⃓⃓
Re
{︂
d̃
}︂⃓⃓⃓)︃

c̃3 =
2√

42 · σ2
n

(︃
4√
42

−
⃓⃓⃓
Im
{︂
d̃
}︂⃓⃓⃓)︃

c̃4 =
2√

42 · σ2
n

(︃
2√
42

−
⃓⃓⃓⃓⃓⃓⃓
Re
{︂
d̃
}︂⃓⃓⃓

− 4√
42

⃓⃓⃓⃓)︃
c̃5 =

2√
42 · σ2

n

(︃
2√
42

−
⃓⃓⃓⃓⃓⃓⃓
Im
{︂
d̃
}︂⃓⃓⃓

− 4√
42

⃓⃓⃓⃓)︃

(C.12)
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256QAM

c̃0 =
2√

170 · σ2
n

Re
{︂
d̃
}︂

c̃1 =
2√

170 · σ2
n

Im
{︂
d̃
}︂

c̃2 =
2√

170 · σ2
n

(︃
8√
170

−
⃓⃓⃓
Re
{︂
d̃
}︂⃓⃓⃓)︃

c̃3 =
2√

170 · σ2
n

(︃
8√
170

−
⃓⃓⃓
Im
{︂
d̃
}︂⃓⃓⃓)︃

c̃4 =
2√

170 · σ2
n

(︃
4√
170

−
⃓⃓⃓⃓⃓⃓⃓
Re
{︂
d̃
}︂⃓⃓⃓

− 8√
170

⃓⃓⃓⃓)︃
c̃5 =

2√
170 · σ2

n

(︃
4√
170

−
⃓⃓⃓⃓⃓⃓⃓
Im
{︂
d̃
}︂⃓⃓⃓

− 8√
170

⃓⃓⃓⃓)︃
c̃6 =

2√
170 · σ2

n

(︃
2√
170

−
⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓
Re
{︂
d̃
}︂⃓⃓⃓

− 8√
170

⃓⃓⃓⃓
− 4√

170

⃓⃓⃓⃓)︃
c̃7 =

2√
170 · σ2

n

(︃
2√
170

−
⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓
Im
{︂
d̃
}︂⃓⃓⃓

− 8√
170

⃓⃓⃓⃓
− 4√

170

⃓⃓⃓⃓)︃
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Acronyms

3GPP 3rd Generation Partnership Project. 205

4G 4th Generation. 23, 66, 205

5G 5th Generation. 43, 46, 47, 205

5G NR 5th Generation New Radio. 2, 5, 6, 17, 18, 23, 43, 53, 55, 57, 65, 66, 118,
136, 148, 151, 157, 184, 185, 205

ADC Analog-to-Digital Converter. 96, 205

AES Advanced Encryption Standard. 40, 205

AESM Average Effective SNR Mapping. 116, 122, 124, 126, 132, 144, 145, 205

AGC Automatic-Gain-Control. 205

AGV Automated Guided Vehicle. 9–11, 19, 94, 148, 159, 168–170, 176–178, 180,
181, 205

AMC Adaptive Modulation and Coding. 117, 205

AMD Advanced Micro Devices. 168, 205

AP Access Point. 3, 5, 7, 94, 113, 141, 142, 145, 147–149, 168, 169, 172, 173,
176–183, 185, 187–189, 205

API Application Programming Interface. 4, 53, 156, 160, 164–167, 205

ARM ARM. 156, 168, 189, 205

ASIC Application Specific Integrated Circuit. 4, 152, 205

ASK Amplitude Shift Keying. 71, 101, 205

AVX Advanced Vector Extensions. 34, 35, 156, 168, 205

AWGN Additive White Gaussian Noise. 13, 14, 18, 19, 21, 23, 28, 29, 57, 61, 78,
88, 101, 102, 106–108, 110, 112, 121–125, 129, 133, 195, 196, 199–201, 205

B210 Ettus USRP B210. 151, 168, 170, 174, 205

BB Bhattacharyya Bound. 29, 30, 43, 44, 46, 47, 49, 50, 205

BE β-Expansion. 30, 43, 46, 47, 126, 205
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BEC Binary Erasure Channel. 28, 29, 205

BER Bit-Error-Rate. 28, 49, 205

BICM Bit-Interleaved Coded Modulation. 6, 12, 53, 57–59, 62, 116, 165, 188,
205

BLT Balian-Low Theorem. 205

BP Belief Propagation. 31, 205

BPSK Binary Phase Shift Keying. 31, 56, 199, 201, 205

BSC Binary Symmetric Channel. 28, 205

CA Channel Aware. 131, 132, 137, 205

CA-SCL CRC-Aided Successive Cancellation List. 23–25, 31, 38, 40, 42, 44, 45,
48, 52, 205

CADS Channel Aware Delay Sensitive. 131, 132, 137–144, 205

CCDF Complementary Cumulative Distribution Function. 136, 205

CCSDS Consultative Committee for Space Data Systems. 23, 24, 205

CDD Cyclic Delay Diversity. 88, 93, 94, 98, 113, 205

CDF Cumulative Distribution Function. 205

CEP Consecutive Erroneous Packet. 2, 3, 205

CFO Carrier-Frequency-Offset. 163, 205

CLC Closed-Loop-Control. 2, 115, 120, 205

cloud platform cloud platform. 7, 93–97, 99–101, 205

Cloud RAN Cloud Radio Access Network. 2–5, 7–9, 13, 22, 24, 53, 54, 63, 67,
93–97, 99, 105–108, 110, 112, 113, 147, 149, 152, 154, 159, 168, 169, 181–183,
187, 188, 205

CMAC Cipher-based Message Authentification Code. 21, 40, 48, 49, 205

CNR Carrier-to-Noise-Ratio. 17, 61, 78, 89, 101, 108, 109, 118, 122, 126, 132,
162, 163, 165, 166, 205

Core i7-4770S Intel Core i7-4770S. 42, 205

COTS Commercial-Of-The-Shelf. 3, 4, 67, 205

CP Cyclic Prefix. 16, 66, 67, 69, 72, 76–79, 87, 88, 98, 151, 163, 165, 176, 205

CPU Central Processing Unit. 7, 59–61, 63, 151, 155, 157, 158, 168, 172–174,
177, 188, 189, 205

CRC Cyclic Redundancy Check. 11, 22, 25, 26, 38–42, 44, 48–50, 52, 99, 150, 205

CS Cyclic Suffix. 66, 77–79, 87, 151, 163, 165, 205

CSI Channel State Information. 12, 118–121, 126, 131–134, 138–140, 142–145,
188, 205
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CU Centralized Unit. 95, 96, 205

DAB Digital Audio Broadcasting. 66, 205

DC Direct Current. 68, 69, 205

DE Density Evolution. 29, 43, 46, 205

DFT Discrete Fourier Transform. 16, 17, 70, 74, 76, 77, 205

DMC Discrete Memoryless Channel. 24, 28, 205

DPDK Data Plane Development Kit. 157, 205

DQ Deterministic Quantizer. 101, 205

DREP TypeI Double Repetition. 37, 205

DS Delay Sensitive. 131, 132, 137, 205

dSNR Design SNR. 30, 47–50, 205

DSP Digital Signal Processing. 5, 8, 65, 66, 90, 91, 95–97, 100, 148, 149, 156,
158, 159, 162, 163, 165, 166, 170–173, 175, 185, 187–189, 205

DSPC TypeIII Double SPC. 37, 205

DU Distributed Unit. 95, 96, 205

DVB Digital Video Broadcasting. 66, 205

EESM Exponential Effective SNR Mapping. 116, 122, 123, 125–127, 129, 130,
144, 145, 205

eMBB enhanced Mobile Broadband. 1, 2, 205

ESM Effective SNR Mapping. 116, 122–124, 126, 205

Ethernet IEEE 802.3 Ethernet. 157, 168, 174, 181, 205

FA Factory Automation. 1, 39, 205

FAR False Alarm Rate. 39, 205

Fast-SSC Fast Simplified Successive Cancellation. 25, 26, 36, 37, 205

FBMC Filter-Bank Multi-Carrier. 66, 205

FDD Frequency-Division-Duplex. 18, 118, 205

FDE Frequency-Domain Equalization. 70, 75, 77, 205

FDM Frequency-Division-Multiplex. 119, 134–140, 142, 145, 188, 205

FEC Forward Error Correction. 4, 6, 12, 22, 23, 40, 41, 52–54, 56, 57, 66, 92, 93,
97, 151, 162, 166, 189, 205

FER Frame-Error-Rate. 3, 6, 24, 28, 30, 49, 52, 62, 86, 93, 94, 100, 106–113, 115,
116, 121–124, 129, 133, 135, 137, 138, 145, 205

FFT Fast Fourier Transform. 27, 66, 70, 72, 74, 75, 79, 81, 82, 84, 90, 91, 205
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FFTW Fastest Fourier Transform in The West. 81, 82, 156, 164, 184, 205

FOU Foo over UDP. 155, 160, 205

fp-32 floating point. 34, 44, 48, 50, 51, 94, 106–109, 111, 113, 151, 205

FPGA Field Programmable Gate Array. 4, 67, 152, 205

Frozen-QUP Frozen Quasi Uniform Puncturing. 39, 51, 52, 205

FS Functional Split. 7, 93, 94, 96, 97, 100, 105, 107, 108, 110, 112, 113, 188, 205

GA Gaussian Approximation. 29, 30, 43, 46, 205

GCC GNU Compiler Collection. 59, 205

GFDM Generalized Frequency Division Multiplexing. 7, 12, 16, 65–67, 69–75,
77–81, 83–87, 90–92, 105–112, 149, 151, 162, 164, 165, 176, 188, 205

GNU Radio GNU Radio. 5, 6, 8, 53, 63, 65, 147–150, 153–160, 163–167, 170,
171, 173–175, 177, 183–185, 188, 205

GPLv3+ GNU General Public License v3.0 or later. 156, 164, 205

GPP General Purpose Processor. 3, 91, 96, 154, 156, 157, 168, 205

GPU Graphics Processing Unit. 4, 168, 189, 205

GRC GNU Radio Companion. 159, 205

GUI Graphical User Interface. 159, 205

Götting KATE Götting KG Kinetic Automat for Transport Enhancement. 148,
168, 170, 205

HDL Hardware Description Language. 205

HF High Frequency. 177, 205

HiFlecs Innovative Wireless Technologies for Industrial Automation. 2, 147, 205

high-PHY high-PHYsical layer. 97, 99, 100, 205

HMAC Keyed-hash Message Authentification Code. 22, 40, 205

i.i.d. independent and identically distributed. 14, 57, 58, 100, 101, 110, 112, 118,
201, 205

I4.0 Industry 4.0. 2, 54, 65–67, 79, 91, 93, 113, 118, 120, 205

I&Q Inphase and Quadrature component. 94, 97, 205

IB Information Bottleneck. 205

IBM Information Bottleneck Method. 7, 94, 97, 100, 101, 105–113, 188, 205

IC Interference-Cancellation. 66, 75, 76, 85–87, 92, 171, 172, 188, 205

ICI Inter-Carrier Interference. 75, 205

ICMP Internet Control Message Protocol. 150, 172, 183, 205
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ID IDentifier. 150, 160, 205

int8 8bit integer. 50, 51, 151, 205

Intel X710 Intel Ethernet Converged Network Adapter X710-DA2. 168, 205

intra-PHY intra-PHYsical layer. 93, 97, 99, 205

IoT Internet of Things. 1, 2, 205

IP Internet Protocol. 150, 155, 176, 205

IRLG Industrial Radio Lab Germany. 147, 205

ISA Instruction Set Architecture. 168, 205

ISI Inter-Symbol Interference. 67, 69, 77, 205

JD Joint Decoding. 94, 97–100, 110, 112, 113, 188, 205

JES1500 Jauch Quartz Power Station JES1500WHA. 168, 205

JR Joint Reception. 93, 94, 96, 99–101, 105, 113, 188, 205

JT Joint Transmission. 88, 93, 94, 96, 98, 105, 112, 113, 188, 205

KPI Key Performance Indicator. 2, 3, 7, 115, 116, 188, 205

LA Link Abstraction. 5, 7, 57, 116–118, 120–123, 125, 126, 129, 133, 135, 144,
145, 188, 205

LDPC Low Density Parity Check. 22–24, 205

LLR Log-Likelihood Ratio. 7, 17, 26, 31, 32, 36–38, 53, 54, 56, 61, 78, 89, 97,
100, 103–106, 109, 154, 158, 162, 166, 199–201, 205

LLRq LLR quantization. 105–109, 205

LO Local Oscillator. 69, 205

LOS Line-Of-Sight. 18, 187, 205

low-PHY low-PHYsical layer. 97, 99, 100, 205

LSB Least Significant Bit. 60, 205

LSE LogSumExp. 122, 201, 205

LTE Long Term Evolution. 2, 5, 23–25, 53, 55, 65, 66, 148, 157, 184, 185, 205

LUT Look-Up-Table. 49, 56, 97, 100, 101, 104, 205

M2M Machine to Machine. 21, 205

MAC Medium-Access-Control. 2, 3, 7, 9, 40, 97, 115, 116, 144, 150, 151, 160,
176, 187, 188, 205

MACode Message Authentification Code. 11, 22, 40, 41, 52, 205

MC Motion Control. 1, 120, 205



210 Acronyms

MCS Modulation and Coding Scheme. 116–118, 121–123, 125, 128–130, 132–136,
139, 144, 145, 151, 205

MF Matched-Filter. 70, 71, 75, 205

MIESM Mutual Information Effective SNR Mapping. 116, 122, 123, 125–127,
129, 130, 144, 145, 188, 205

MIMO Multiple Input Multiple Output. 70, 181, 205

ML Maximum Likelihood. 38, 205

MMSE Minimum Mean Square Error. 70, 71, 78, 126, 205

mMTC massive Machine Type Communication. 1, 2, 205

MSB Most Significant Bit. 34, 205

MSE Mean Square Error. 116, 123, 124, 205

MTC Machine-type-Communication. 205

MTTF Mean Time To Failure. 2, 115, 117, 205

MTU Maximum Transmission Unit. 150, 205

N310 Ettus USRP N310. 168, 169, 173–175, 205

NEON NEON. 156, 168, 205

NIC Network Interface Controller. 174, 205

NIST National Institute of Standards and Technology. 94, 205

NLOS Non-Line-Of-Sight. 18, 19, 136, 181, 205

NR New Radio. 205

NRZ Non Return to Zero. 14, 56, 199, 205

O-RAN O-RAN Alliance. 4, 205

OAI OpenAirInterface. 5, 205

Octoclock-G Ettus Octoclock-G. 168, 169, 205

OFDM Orthogonal Frequency Division Multiplexing. 7, 12, 16, 65–73, 75, 77,
78, 80, 81, 86, 88, 90, 91, 105–108, 116, 118, 121, 124, 126, 165, 188, 205

OO Object Oriented. 154, 205

OOB Out-Of-Band. 66, 67, 73, 74, 77, 91, 188, 205

OOT Out-Of-Tree. 63, 147, 155, 156, 159, 165–167, 205

OS Operating System. 155, 167, 189, 205

OTA Over-the-Air. 6, 8, 78, 147–150, 153, 158, 159, 164, 170, 171, 173, 185, 188,
205

PDP Power Delay Profile. 15, 205
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PDU Protocol Data Unit. 160, 162, 205

PHY PHYsical layer. 2, 5, 7, 9, 11, 96, 97, 112, 116, 117, 151, 160, 162, 171, 176,
187, 188, 205

PSD Power Spectral Density. 73, 205

PSK Phase Shift Keying. 71, 205

QAM Quadrature Amplitude Modulation. 12, 54–56, 58, 59, 71, 102, 121, 127,
130, 166, 196, 199, 201–203, 205

QoS Quality-of-Service. 115, 117, 145, 205

QPSK Quadrature Phase Shift Keying. 55, 56, 100, 102, 104–107, 109, 111, 112,
124, 130, 134, 151, 166, 176, 196, 199, 201, 202, 205

QUP Quasi Uniform Puncturing. 39, 205

RA Resource Allocation. 116, 117, 119, 120, 130–135, 137–145, 188, 205

Radeon RX 550 AMD Radeon RX 550. 168, 205

RAM Random Access Memory. 168, 169, 205

RAN Radio Access Network. 3–5, 11, 93–96, 148, 152, 205

RAP Radio Access Point. 9, 93, 94, 96–101, 105, 108, 110–113, 149, 205

RC Raised-Cosine. 77, 205

REP Repetition. 36, 47, 205

REP-One TypeIV Repetion One. 37, 205

RF Radio Frequency. 96, 157, 205

RiscV RiscV. 168, 189, 205

RR Round Robin. 131, 132, 137, 205

RRC Root-Raised-Cosine. 72, 75, 205

RRH Remote Radio Head. 96, 205

RRU Remote Radio Unit. 96, 205

RTT Round Trip Time. 171–175, 183, 184, 205

RU Radio Unit. 95, 96, 205

Ryzen 5900X AMD Ryzen 9 5900X. 168, 172–174, 205

S&RA Scheduling and Resource Allocation. 5, 7, 17, 116–121, 123, 125–128, 130,
144, 145, 187–189, 205

SC Successive Cancellation. 23, 24, 29, 31, 33, 35, 37, 38, 42, 44, 45, 50, 172, 205

SCAN Soft CANcellation. 25, 31, 37, 205

SCFlip Successive Cancellation Flip. 25, 31, 37, 205
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Schmidl&Cox Schmidl&Cox. 78, 163, 205

SCL Successive Cancellation List. 25, 31, 37, 38, 42, 44, 171, 172, 205

SCS Successive Cancellation Stack. 31, 205

SDQ Sequential Deterministic Quantizer. 101, 205

SDR Software-Defined Radio. 4, 5, 10, 13, 41, 42, 53, 54, 59, 63, 65, 67, 91, 95,
148, 155, 157, 175, 189, 205

SER Symbol-Error-Rate. 86, 205

SIMD Single-Instruction-Multiple-Data. 33, 34, 49, 156, 168, 205

SINR Signal-to-Interference-plus-Noise-Ratio. 205

SNR Signal-to-Noise-Ratio. 7, 14, 19, 30, 58, 61, 71, 73, 75, 78, 89, 90, 94, 100,
101, 103–105, 107, 113, 121–126, 129, 130, 133, 134, 152, 159, 162, 163, 165,
166, 176, 178–184, 205

SotA State-of-the-Art. 5, 40, 41, 66, 116, 145, 154, 155, 157, 205

SPC Single Parity Check. 37, 47, 191, 205

SR Sum-Rate. 131, 132, 137, 205

SR Software Radio. 4, 205

srsLTE srsLTE. 5, 205

srsRAN srsRAN. 5, 205

SSC Simplified Successive Cancellation. 35, 36, 205

SSE Streaming SIMD Extensions. 34, 156, 205

STL Standard Template Library. 205

TACNET 4.0 TACtile interNET 4.0. 2, 147, 176, 205

Tal&Vardy Tal & Vardy. 205

TDD Time-Division-Duplex. 18, 118, 121, 136, 151, 205

TDM Time-Division-Multiplex. 119, 134–145, 151, 188, 205

TFL Time-Frequency-Localization. 69, 70, 72, 205

TREP TypeII Triple Repetition. 37, 205

TRX3970X AMD Ryzen Threadripper 3970X. 43, 59, 79, 164, 168, 169, 172–175,
205

TTI Transmission Time Interval. 117, 118, 205

TypeV TypeV. 37, 205

UDN Ultra Dense Network. 3, 5, 93, 205

UDP User Datagram Protocol. 150, 155, 160, 176, 205

UE User Equipment. 151, 152, 172–175, 205
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UFMC Universal Filterbank Multi-Carrier. 66, 205

UHD USRP Hardware Driver. 147, 155–158, 162, 205

UPO Universal Partial Order. 30, 205

URLLC Ultra Reliable Low Latency Communication. 2, 3, 5, 21, 22, 24, 39, 41,
42, 52, 54, 62, 65, 66, 79, 91, 93, 94, 98, 113, 115–117, 120, 137, 144, 145,
148, 166, 176, 181, 183–185, 187–189, 205

USB Universal Serial Bus. 151, 157, 168, 174, 205

USRP Universal Software Radio Peripheral. 96, 147–149, 157, 158, 161, 163, 168,
175, 177, 181, 205

USRP-2974 NI USRP-2974. 168, 177, 205

VOLK Vector-Optimized Library of Kernels. 156, 164, 184, 205

Wi-Fi IEEE 802.11. 2, 53, 55, 65, 66, 148, 205

X310 Ettus USRP X310. 67, 205

x86 x86 64bit. 156, 168, 189, 205

XJ-BP Express Journey for Belief Propagation. 25, 205

ZF Zero-Forcing. 70, 71, 76, 205
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