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Abstrakt

Eine Vielzahl von Prozessen und Systemen in der chemischen- und anderen Bere-
ichen der Ingenieurwissenschaft sind mehrphasig. Anwendungen, die Prozesse
mit mehreren Phasen und zunehmender geometrischer Komplexität beinhalten,
sind in den letzten Jahren immer häufiger geworden. Versuche zur Modellierung
und Simulation von Systemen mit einer großen Anzahl von Grenzflächen mit kom-
plexen Geometrien werden häufig durch die Grenzflächennachführung und die
Genauigkeit der Krümmungsberechnung eingeschränkt, die eine große Fehlerquelle
der numerischen Methode darstellt. Diese Arbeit löst die seit langem bestehende
Schwierigkeit, die Krümmung von Grenzflächen genau und effizient zu berechnen.

In dieser Arbeit wurde ein neues praktisches Werkzeug entwickelt, das in eine breite
Palette von State-of-the-Art-Methoden implementiert werden kann. Es wird gezeigt,
dass die rigorose Ableitung der Krümmung von Grenzflächen eine genaue oder
nahezu genaue Berechnung der Krümmung für die Simulation von Dreiphasen-
systemen ermöglicht. Darüber hinaus wird gezeigt, dass ein spezieller trapezför-
miger Integrationsfehler verwendet werden kann, um die Kontinuität der Gren-
zfläche abzuschätzen, was für die Gewährleistung der dynamischen Genauigkeit
bei Dreiphasensimulationen nützlich ist, indem die Verfeinerung einer numerisch
erfassten Fluid-Fluid-Grenzfläche, die vielfältig ist, kontrolliert wird.

Es wird weiter gezeigt, dass die hier entwickelte Methode zur Berechnung von Krüm-
mungen für beliebige Fluid-Fluid-Grenzflächen, die vielfältig sind, genau berechnet
werden kann. Das Ausmaß, in dem eine Grenzfläche vielfältig ist, kann durch Berech-
nung der Topologie des vereinfachten Komplexes mit Hilfe der hier entwickelten
rechnerisch effizienten Methoden verfolgt werden.
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Abstract (English)

A myriad of processes and systems in Chemical- and other fields of Engineering
Science are multiphase. Applications that involve processes containing multiple
phases of increasing geometric complexity have become increasingly common in
recent years. Attempts to model and simulate systems with a large number of
interfaces with complex geometries is often limited by the interface tracking and
accuracy of the curvature computation which is a large source of error of the
numerical method. This work resolves the long standing difficulty in computing the
curvature of interfaces accurately and efficiently.

In this work a new practical tool was developed that can be implemented in a wide
array of state-of-the art methods. It is shown that the rigorous derivation of the
curvature of interfaces allows for an accurate, or near-exact computation of curvature
for simulation of three-phase systems. Additionally, it is demonstrated that a special
trapezoidal integration error can be used to provide an estimate of continuity of the
interface, which is useful for ensuring dynamic accuracy in three-phase simulations
by controlling the refinement of a numerically captured fluid-fluid interface that is
manifold.

It is further shown that the method for computing curvatures developed herein can
be computed exactly for arbitrary fluid-fluid interfaces that are manifold. The extent
to which an interface is manifold can be tracked by computing the topology of the
simplicial complex using computationally efficient methods developed especially for
this application. Since the method for computing curvatures are near-exact and mesh
independent, a very large tolerance can be used in large scale simulation of complex
three-phase materials. In principle, it is only necessary to track that the interface
is continuous. Therefore, the complex can be refined in such a way that the error
matches the desired tracking of non-solid volume due to porosity and asperities in
three-phase systems. The result of this work can be implemented in any formulation
where the underlying geometry of the model is manifold, and is especially useful in
the fields of multiphase flow, thermodynamics, materials engineering and surface
energy minimisation.
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What I have today mentioned as to the origin of the moving forces which
are at our disposal, directs us to something beyond the narrow confines of our
laboratories and our manufactories, to the great operations at work in the life
of the earth and of the universe.

Hermann von Helmholtz
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1Introduction

Multiphase systems applied in engineering practice have become increasingly
complex over the last century especially due to the advent of functional
nanoscale materials. Systems of complex hierarchical mesoporous structures
exhibit a rich array of phenomenological physics and chemistry that manifest
as forces which drive the restructuring of materials and their properties. Due
to the differences in scales of interest, with pores on the order of 2-50 nm to
films on the order of several µm, a fundamental understanding necessitates
the development models at the interface of surface science and continuum
mechanics in order to understand and predict the material properties. In
addition to modelling challenges, the large surface-area-to-volumes involved
presents a unique challenges in computing the geometric data structures
needed for the direct numerical simulations of structures. Of vital importance
to such systems with large surface areas, and to multiphase systems in
general, are the resulting surface tension forces which must be computed
using curvature estimation; the central topic of this thesis.

1.1 Introduction to forces in mesoporous
structures

Much of the progress in the scientific and engineering modelling and simula-
tion of mesoporous materials stems from a desire to understand and optimise
their production, structural integrity and performance. Due to the myriad
of potentially useful applications in catalysis, battery materials, sensors and
solar cells, there are many multi-physics and multi-scale problems that arise
where nanoscopic properties affect bulk material properties on the order
of several micrometres. In particular, the processes of fluid imbibition and
drying. Fluid-solid interaction at this scale is largely driven by surface tension
forces. The rich body of literature on this topic is reviewed in Section 2. In
these systems nanoscopic primary nanoparticles (3-50 nm) aggregate to form
chemically sintered aggregates (200-300 nm) which in turn agglomerate
due to physical forces such as surface tension. As discussed in Section 2
restructuring can occur in these materials that is primarily driven by sur-

1



face tension forces. Other important forces at this scale are van der Waals-,
electrostatic-, repulsive-, friction forces and forces due to disjoining pressure.
The simulation of surface tension in mesoporous systems has historically been
challenging due to the inherent difficulty in computing the curvature of inter-
faces between phases, especially at the nanoscale which produce very large
floating point errors and other more fundamental issues that have limited the
application of direct numerical simulation in both engineering applications
and advancing scientific understanding of mesoporous materials.

Therefore, the main focus of this work resolves the long standing difficulty in
computing the curvature of interfaces and the applications of this in meso-
porous materials such as nanoparticle films. Nanoparticle films are arguably
the most challenging systems to model due to the restructuring of aggre-
gates and primary nanoparticles which necessitate multi-phase simulation
with moving solid bodies. The main applications are to understand the
restructuring that occurs due to fluid imbibition and drying.

1.2 Restructuring in mesoporous systems and the
need for direct numerical simulation

Restructuring in mesoporous systems is an important phenomenon that leads
to changing characteristic macroscopic materials properties due to restructur-
ing at the meso- and microscale. This phenomenon is especially common in
multiphase processes such as coating, drying, imbitition and catalytic systems
involving fluid-solid interaction as elaborated on in Section 2. While common
in particulate systems with high shear gradients, it is also very common in
nano- and microscale systems where the surface tension forces can dominate
over viscuous forces. In such systems where surface tension forces dominate
interface capturing becomes important for accurate simulation of the process.
The difficulties in state of the art curvature computation methods for fluid-
fluid interfaces and three-phase contact lines is explored in Section 2 and
Section 3.

In order to derive salient quantitative information there is a need to track
both the solid phases as well as the fluid phase in coupled multi-phase
simulation using methods such coupled computational fluid dynamics (CFD)
and discrete element method (DEM) simulation (called CFD-DEM). The
large surface area present in nanoparticulate systems relative to the spatial
volumes of interests presents a challenge interface tracking due to the large
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number of discretised points required to simulate the interface accurately.
Therefore new approaches were needed in order track the interface as well
as compute curvature accurately which is the origin of the surface tension
forces that cause the restructuring. A new collection of methods and data
structures based on discrete differential geometry is discussed in Section 3
which has direct applications in energy minimisation computations, and
coupled multiphase CFD.

1.3 Interface curvature computation using discrete
differential geometry

Energy minimisation computations are useful for finding equilibrium states
of complex materials and parameterisation in coarse grained methods such
as DEM. Meanwhile accuracy in coupled multiphase CFD is essential for
modelling and understanding processes especially at scales that lack dynamic
experimental data to validate the solver. While there are wide families
of methods that can be classified within surface energy minimisation and
multiphase CFD, all of them require an accurate computation of curvatures
on the interface. Therefore, this work will focus on a general method that is
applicable to all three-phase systems. Such a method is general because in 3
dimension there are only two geometric possibilities: contact between two
phases (interface surfaces) and contact between three phases (three-phase
contact lines, which in terms of differential geometry are more accurately
described as curves).

Because of the importance of surface tension (and therefore curvature)
in nanoparticle films and other multiphase processes where surface forces
tension are dominant, it is worth developing a rigorous formulation built on
the powerful theorems available in Differential Geometry, and the related
field of Discrete Differential Geometry (DDG) in particular. Therefore, the
focus of this work lies in gaining a deeper understanding of the curvature
and surface tension of interfaces. The central hypotheses of this work are as
follows:

Hypothesis H1: A rigorous derivation of the curvature of interfaces will
allow for an accurate simulation of three-phase systems by controlling the
refinement of a numerically captured fluid-fluid interface that is manifold.

1.3 Interface curvature computation using discrete differential geometry 3



Hypothesis H2: Curvature can be computed exactly for arbitrary fluid-fluid
interfaces that are manifold, which allows for a very large tolerance of
Hypothesis H1 to be used in large scale simulation of complex three-phase
materials.

Hypothesis H1 and H2 will be referred back to multiple times throughout
this work. Section 3 reviews basic concepts from the mathematical theory
of Discrete Differential Geometry which is fundamental to developing a
new formulation that proves these hypotheses. Because of the generality
of the formulation it is applicable to any data structure that is triangulable,
which covers most families of CFD and energy minimisation surface tracking
methods and can therefore be implemented common CFD solvers as will be
discussed in Section 2.3.1.

1.4 Overview of Dissertation

An overview of this Dissertation is provided in Figure 1.1. The development
of a new method based on discrete differential geometry for computing cur-
vatures in three-phase systems as well as topological methods useful for the
modelling and simulation of large interface areas is conducted in Section 3.
The applications and validations on analytical solutions, experimental data
and particle liquid bridges is bridges is shown in Section 4. The last two
chapters 5 and 6 discuss the future of this work as well as the conclusions of
the current dissertation.
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Modelling 
nanoparticles films 1-50 
µm, requisite scalable 

data structures 
discussed in §3. 

Agglomeration of 
aggregates (200-300 nm), 
state-of-the-art models 

reviewed in §2. 

New models for fluid-
solid interactions in 
multiphase systems 
developed in §3. 

Agglomeration 
mechanism of primary 

nanoparticles (5-50 
nm). The focus of §4. 

:ℝ2 → ℝ3

:ℝ2 → ℝ3

A)

B)

Figure 1.1.: A) An overview of this thesis. Mesoporous materials such as nanoparticle
films are built up from a hierarchical assembly of nanoparticles, the complexity
involved in capture the direct numerical simulation of fluid-fluid-solid interfaces
is discussed in Section 3. In Section 2, the models for numerical simulation
and how they are connected to multi-scale models is discussed. At the primary
particle level the fluid-solid interaction is modeled at an aggregate level with
new models and methods developed in Section 4. Finally, advances in particle-
particle liquid bridges for differently sized particles are discussed in Section 4.2.
B) The overarching idea in this work is the use of Discrete Differential Geometry
to solve the problem of computing accurate curvatures on interfaces efficiently.
The key constructions and theorems involved in discrete surfaces and their
associated properties are discussed in Section 3

.
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2Forces in multiphase mesoporous
systems

Literature review of force models and simulation methods in nanopartic-
ulate systems, CFD-DEM methods and the discrete differential geometry
of interfaces

In this Chapter the state-of-art models and methods available in literature
for simulating mesoporous films are reviewed. A particular focus is placed
on the contact forces between nanoparticles and their interaction with fluids
in Section 2.1. The argument is made that the surface tension forces are
primarily responsible for the structure of materials at this scale, which in
turn necessitates the development of rigorous methods for direct numerical
simulation and scientific understanding of agglomerating systems. In Sec-
tion 2.3 CFD-DEM models used in engineering applications of agglomerating
particulate systems as well as the latest developments in the field of contact
between nanoparticles in mesoporous films in particular are reviewed, ending
the discussion on phase interfaces and the current understanding of them.
The field of differential geometry and curvature in particular is reviewed in
Section 2.4 which becomes the fundamental building block for the methods
developed in this work. As demonstrated in Section 2.3 a major limitation of
multi-phase simulation is inaccurate curvature computations used to compute
surface tension forces.

2.1 Contact Forces in Nanoparticulate Systems

The most general multiphase, mesoporous systems involve cases where all
phases including the solid phases move. In this section the important contact
forces involved in such nanoparticle systems are reviewed. This system
is summarised in Figure 2.1 for mesoporous films, but similar concepts
are applicable in all agglomerating systems where surface tension plays an
important role. A detailed review of contact forces in agglomerating nano-
and microparticle systems can be found in Endres, Ciacchi, and Mädler (2021)
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Figure 2.1.: Hierarchical assemblies of nanoparticle films with a thickness on the order of
1–50 m is formed by agglomerates with typical size ranges bewteen 200–300
nm which are held together by weaker forces arising from electrostatics, van der
Waals, solvation or capillary effects. These in turn are made up of chemically
bonded aggregates which typically consist of a distribution of primary particles
in the nanoscale range (5–50 nm)

and tables summarising all models is shown in Appendix A. As discussed in
Endres, Ciacchi, and Mädler (2021) particle-particle contact forces F can be
broadly categorised as follows:

1. Particle-particle repulsive forces Fnr.
2. Particle-particle attractive forces Fna:

a) Short range:

i. Van der Waals (JKR, Hamaker) Fvdw.
ii. Coulombic forces Fe.

b) Long range:

i. Capillary forces Fcap.
ii. Solvation forces Fsol.

3. Dissipative forces.
4. Sintering bridge forces.

While all these forces play a role in the final structure (and importantly,
the macroscopic performance) of the material it should be noted that at

8 Chapter 2 Forces in multiphase mesoporous systems
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Figure 2.2.: Capillary and solvation forces can dominate the interaction at a critical distance
which lead to various agglomerated particle-particle structures due to local
minima in the force-distance curves.

small scales the agglomeration mechanism dominates over the other forces
when liquid is present or if the even if the material is just exposed to humid
conditions. This is primarily as a result of the fact that local energy minima
of the system will converge to long range force minima as opposed to short
range forces as demonstrated by the presence of local minima in Figure 2.2
for two unit charged 4 nm particles. Interactions in microscopic particles,
where solvation is less prominent are dominated by the competition between
capillary and repulsive forces -which occurs in the fluid phases as well as
solid particle collisions- (Endres, Ciacchi, and Mädler, 2021).

Capillary forces occur due surface tension which arises due asymmetries in
fluid-fluid interfaces and adhesion forces due to fluid-solid or three-phase
fluid-fluid-solid interaction. While exact analytical solutions are known for
particle-particle liquid bridges with particles of the same diameter (Schubert,
1984; Schubert, 2012; Dörmann and Schmid, 2014; Herminghaus, Sempre-
bon, and Brinkmann, 2019; Wittel et al., 2019) it is less well established how
arbitrary particle configurations should be discretised as shown in Figure 2.3
for applications in CFD-DEM and parameterisation, especially when complex
topologies such as those shown in Figure 2.1 are present.

2.1 Contact Forces in Nanoparticulate Systems 9



Figure 2.3.: The discretisation of liquid-liquid particle bridges is needed in order to predict
the surface tension forces Fcap between the particles by integrating the surface
tension at the interface. A central topic of investigation in this thesis is deter-
mining precisely how much refinement is needed in order to precisely predict
the correct forces for arbitrary configurations and sizes of particles

The key conclusion of this Section is that while there are many forces at play
that determine the final structure of agglomerating materials the Capillary
force (due to surface tension) tends to dominate the energy minima in the
mesoporous scale. In the next Section it will elaborated on the precisely what
the surface tension forces are and how these arise as asymmetries in surface
energies of phases in contact.

2.2 Description of gas-liquid-solid interfaces

In order to avoid confusion with the three-phase solid-fluid-fluid contact
angle and the two contact angles of bridge models for describing wetted
particle-particle liquid bridges it is useful to first consider investigation on
a more fundamental case. The refinement and discretisation of the proto-
typical capillary rise phenomenon is shown in Figure 2.4. The capillary rise
phenomenon has been studied quantitatively by Thomas Young as early as
1805 (Young, 1805).

Surface tension is the primary determinant of the equilibrium shape and
mechanical driving force of gas-liquid-solid interfaces. It can be understood as
a surface energy minimisation of inhomogeneous phase interfaces (e.g. gas-
liquid-solid). This can be intuitively understood as the tendency of interfaces
to shrink to the minimum surface area possible under volume and boundary
constraints. The minimisation of surface energy is the main driving force in
dynamic processes such as the formation of metallurgical microstructures,
porous filters, and the restructuring of nanoparticulate systems (Endres,
Ciacchi, and Mädler, 2021). In the Young-Laplace equation, which applies to
macroscopic systems and extends down to the nanoscale (Liu and Cao, 2016;
Laube et al., 2017), changes in mechanical pressure due to surface tension
are driven by the mean curvature of the interface.

10 Chapter 2 Forces in multiphase mesoporous systems
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Figure 2.4.: A) The three-phase contact angle ΘC is determined by the balance of three
surface energies: γS − γSL − γL cos ΘC = 0 Surface tension arises due to the
asymmetric cohesive force on the surface of a fluid interface. The energy of
the system is minimised when the local surface area is minimised subject to
constraints. B) Idealised capillary rise geometry with a symmetric discretisation
shown as an example. The angle ΘC is the three-phase contact line, a is the
radius of the tube, R is the radius of the spherical cap or osculating sphere,
and hJ = 2γ cos ΘC

ρga is the Jurin height. The discretised contact angle θ only
approaches the true smooth contact angle ΘC for very fine discretisations,
which are computationally expensive and exhibit low convergence.
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A generalisation of the Young-Laplace equation that accounts for deviations
due to non-continuous effects, providing a direct link between the number
density profiles of surface interfaces (found using methods such as MD
simulations as a function of height above the solid interface h) and the
surface tension γ(h)), is given by the Young-Laplace-Derjaguin equation
(MacDowell, 2017; MacDowell et al., 2018):

∆p(h) = γ(h)H − Π(h). (2.1)

The mechanical pressure drop between fluid phase surface interfaces is
denoted by ∆p. The surface tension is γ, and H is twice the mean curvature.
The liquid interface film height is h and the disjoining pressure at a given
height is Π(h). The surface tension can be expressed as γ(h) = γ1v − ξ2dΠ

dh
,

where the macroscopic surface tension is denoted by γ1v and it is perturbed
by the disjoining pressure gradient ξ2dΠ

dh
(MacDowell, 2017; MacDowell et al.,

2018). The term Π(h) allows the model to account for non-continuum effects
near an interface, such as solvation forces (Endres, Ciacchi, and Mädler,
2021). These effects become important in nano- and mesoscale systems,
where the capillary and solvation forces are dominant.

The prototypical example of surface tension modelling is the idealised cap-
illary rise experiment, which is modelled using the Young-Laplace-Gauss
equation (Gauss, 1877). In a capillary rise system, liquid adhesion to the
walls of the tube causes the fluid to rise or fall. If the tube is sufficiently
narrow, the surface interface can be approximated as a spherical cap. In this
case, the Young-Laplace equation has an exact analytical solution for ∆p,
which is related to the radius of the osculating sphere, R:

∆p = γH = 2γ
R
. (2.2)

This idealised solution is useful for the numerical comparison of errors
between any developed framework and the physical solution.

The equilibrium of the interfacial energies at gas-liquid-solid interfaces can be
parameterised by the contact angle ΘC (see Figure 2.4A). In any numerical
discretisation of gas-liquid-solid interfaces, the discretised contact angle θ
(or the measured geometric angle) only approaches the true smooth contact
angle ΘC for a very fine discretisation and will never theoretically result in
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the true value, as shown in Figure 2.4B. In many formulations, the handling
of the contact angle is based on heuristics developed from numerical studies
(Chen, 2013).

The large number of discretised elements required to approximate interfaces
(such as mesh elements or sampling points) is a challenge for most simulation
methods. The reader is referred to De Vaucorbeil et al. (2020) for an extensive
review of surface tension formulations in material point methods. Similar
issues are present in other computational fluid dynamics (CFD) methods,
where three-phase contact angles can be modelled as a boundary condition.
In some cases, it is impossible to simulate systems with large representative
volume elements (i.e., large enough to compute the bulk properties of a
system) without extensive computational resources over the desired real
time. Some examples of numerical CFD methods used in multiphase fluid
simulation include volume of fluid (VoF), constraint interpolation (CIP), and
level set methods. In a dynamic system with fluid phases coupled to moving
solid phases, these methods require iterated calculations of fluid fields with
the coupled interfaces at each timestep.

The remeshing step is computationally expensive and lacks a formal method
for computing the accuracy of the discrete approximation scheme. For these
reasons, a new formulation for surface interface modelling and their three-
phase contact lines was developed based on recent advances in discrete
differential geometry (DDG). Currently, there are no definitions of a physical
boundary condition for the three-phase contact angle ΘC (as opposed to a
geometric contact angle θ) available in DDG literature. The main contribution
of this work is to provide a discretised formulation of ΘC (Chapter 3) to a
DDG framework, which accurately represents the true smooth three-phase
contact angle ΘC , as demonstrated later.

This formulation allows for the use of minimal computational resources to
capture interfaces in three-phase processes to a specified degree of accuracy.
In a dynamic framework, this formulation would allow the solver to refine
the mesh in domains with large momentum gradients and otherwise sparsely
sampled interfaces at a specified accuracy. The formulation described here is
most suited for coupling with mesh free methods such as the Material Point
Method (MPM), recently reviewed by De Vaucorbeil et al. (2020). In the
present work, only the energy of the surface itself is minimised (described
in more detail in Section 3), and the possibility of coupling the formulation
to a momentum solver is briefly discussed. In order to provide the broader
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context of this work within the context of dynamic multiphase CFD the next
subsection will provide a brief overview of the state of the art multiphase
CFD applications involving CFD with wet particulate systems.

2.3 Computational Fluid Dynamics - Discrete
Element Methods

2.3.1 Overview of multiphase CFD-DEM methods

The field of multiphase CFD is still an active field of development with a
large number of methods available suitable to different use cases. These
can often be broadly categorised as pure Eulerian as well has many hybrid
Euler-Lagrange approaches, some popular approaches include:

1. The volume of fluid (VOF) method.
2. Smoothed-particle hydrodynamics (SPH).
3. Level-set method (LSM).
4. Lattice Boltzmann methods (LBM).
5. Material point methods (MPM).
6. Particle-in-cell (PIC) methods.

One of more of these methods is further combined with an interface capturing
method such as the popular scheme by Roenby, Bredmose, and Jasak (2019)
in combination with VOF method (Noh and Woodward, 1976; Hirt and
Nichols, 1981) that can be used to compute the curvature and subsequently
the surface tension forces. In order to place the hypotheses of this work
into greater context some of the most prominent studies using CFD-DEM
methods in field of Chemical Engineering are reviewed. Many of these
studies are based on the popular CFDEM© software (Hager, Kloss, and
Goniva, 2018). The model behind this software, as well as an array of friction
models (describing the fluid-solid component of the momentum exchange)
is reviewed in Section B. In general, the surface tension force Fs can be
linearly added to the momentum balance equation. Surface tension in turn is
computed from the local curvature of the interface or estimated from coarse
grained DEM models.
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2.3.2 CFD-DEM simulation applications

In simulations it is of interest to understand the change in structure of the
particulate systems, either because the performance of the final material
depends on that structure or because the drag force coefficient CD is changed
by the geometry of the particulate structure which in turn affects the fluid
velocity field and flow properties of the process as discussed in Section B.

An important class of materials is aerosol-synthesised materials which are
naturally formed as aggregates and agglomerates of primary nanoparticles.
The porous, fractal, and complex hierarchical structure of these materials
results in transport properties in gases that differ from those of spheres. In
addition to particle size, the complex geometry of nanoparticle structures
plays a key role in nanoparticle transport parameters such as the friction
coefficient (Mädler and Friedlander, 2007).

The coupling of fluid mechanics to DEM is widely employed in simulating
processes such as the production of nanoparticle powders in fluidised bed
reactors (Anantharaman, Ommen, and Chew, 2015; Martín et al., 2014; Diez
et al., 2019; Fabre et al., 2016; Fabre et al., 2017; Jin, Kleijn, and Ommen,
2017; Liu et al., 2016; Mogre et al., 2017; Salikov et al., 2015; Sutkar et al.,
2016; Salameh et al., 2017) and particle separation in cyclones (Misiulia,
Lidén, and Antonyuk, 2021; Misiulia, Nedumaran, and Antonyuk, 2023).
Additionally, this coupling approach is used for modeling the agglomeration
and fragmentation of dry powder inhalers (Pei et al., 2013; Pei et al., 2015;
Tong et al., 2013; Tong et al., 2015; Yang, Wu, and Adams, 2014; Yang, Wu,
and Adams, 2015).

These selected use cases and more are reviewed in detail in Section B. An
important remark is that most of these applications are of of the unresolved
and two-way coupled flavour suitable for the scale of the processes studied
in those work. However, more recently there has been an increasing focus
on direct four-way coupled numerical simulation where the details of the
interface affect the fluid flow and it is desired to understand how much
refinement is needed. The problem with such processes is the poor scalability
of current methods. The confirmation of Hypothesis H1 is essential in this
context for accurate simulation using the minimal amount of computational
resources. In particular, direct numerical simulation is essential in order to
understand that the restructuring that occurs in nanoparticle films produced
by the FSP process (Schopf, Salameh, and Mädler, 2013a; Laube et al., 2018;
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Baric, Ciacchi, and Mädler, 2019; Schopf et al., 2017) where no dynamic
validation is available to understand the changes in mesoporous sturctures
during processes such as fluid imbibition in catalytic, sensor and battery
systems.

For most numerical schemes, the accuracy of the simulation is dependent
both on the refinement of the discretisation as well as the magnitude of
the local field gradients and curvature. For example, for the VOF method
(Jasak, 1996) found that the number of computational points required is
large where the solution of the gradient is large and depends on the local
curvature. In multiphase flow an interface capturing method is required
in order to approximate the geometry of the interface so that curvature
can be computed locally. These methods in turn rely on finite difference
methods such as second order Crank-Nicholson or the adapted from Arbitrary-
Lagrangian-Eulerian (ALE) techniques (Hirt, Amsden, and Cook, 1974) and
marker and cell (MAC)-like schemes (Harlow and Welch, 1965) developed
for continuum surface force (CSF) model developed by Brackbill, Kothe, and
Zemach (1992).

What all these schemes have in common is that they compute the gradient
of the normal using finite difference approximation. In developing Hypoth-
esis H2, it is important to highlight loss of geometric knowledge in the
integrated approximations of gradients to find the surface tension force in
contrast to exact computation of integrated forces. In particular, when com-
puting surface tension forces it is important to note the distinction between
integrated and point-wise forces. For example, Brackbill, Kothe, and Zemach
(1992) distinguish between the volumetric surface tension force Fsv and a
surface tension force per unit interfacial area Fsa related through:

lim
h→0

∫
∆V

Fsvd
3x =

∫
∆A

FsadA, (2.3)

where h is the thickness of arbitrary edges that are normal to the surface.
The term Fsv can be used directly in the momentum balance, for example in
the Navier-Stokes equation, by bilinear addition to the right hand side:

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p+ µ
(
∇2v

)
+ ρFsa. (2.4)
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In this context both Fsv and Fsa can be refered to as point-wise forces that
act on the fluid at a point in the field. This is equal to the force when the
Young-Laplace equation Equation 2.1 is integrated over some arbitrary patch
of area of the surface. By integrating both sides of Equation 2.4 over some
arbitrary volume element Ω (substituting the surface force Equation 2.3 that
only acts on the interface):

∫
Ω
ρ

(
∂v
∂t

+ (v · ∇)v
)
dV =

∫
Ω
−∇pdV +

∫
Ω
µ
(
∇2v

)
dV +

∫
S
ρFsadA. (2.5)

The entirety of the term
∫

S ρFsvdA is an integrated force. It is important
to note that most CFD methods actually solve the integrated version of the
momentum balance equation as written in Equation 2.5 through the various
discretisation methods outlined at the beginning of this chapter. However,
as will be discussed in Section 3 any discrete data structure embedded in R3

can be triangulated and therefore its integrated gradients can be computed.
In order to preserve consistent notation this work will only refer to the area
surface tension force as Fs with the understanding that this force acts on a
local volume element due to the presence of a curved interface. The surface
tension force is defined as

Fs = γHN, (2.6)

where γ is the surface tension, H is the mean curvature and N is the unit
vector normal to the surface. Many interface capturing methods, such as the
method by Brackbill, Kothe, and Zemach (1992) compute the mean curvature
H at a point on the surface calculated using

H = −(∇ ·N), (2.7)

Further in the CSF model, the normals of the gradients are computed from a
mollified color function c̃ at a point on the surface:

N = ∇c̃
|∇c̃|

, (2.8)

so
H = −(∇ · ∇c̃

|∇c̃|
), (2.9)
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Other definitions can include estimation from volume fractions, but are sim-
ilar in form to Equation 2.9 in the sense that it is required to compute the
Laplace-Beltrami operator ∆ = ∇ · ∇ of the surface. Because this involves
a second order approximation, this can result in large errors especially in
regions where curvature is high which additionally results in other numer-
ical artifacts such as spurious currents. The main focus of this work is to
eliminate that error entirely and develop integrated methods that can be
applied towards more rigorous interface formulations. In order develop a
general formulation of curvature in discrete interfaces, key concepts from
the field of smooth differential geometry are first reviewed, this background
will be essential for development of a discrete formulation that follows in
Section 3.

2.4 Smooth differential geometry of general
surfaces

Before a general formulation of a discrete differential geometric framework
can be developed, that is computable and applicable to a CFD framework, it
is necessary to first review key concepts from the field of smooth differential
geometry and then develop a discrete formulation based on the theorems
discussed in this section.

2.4.1 Smooth differential geometry of general surfaces
embedded in R3

The mean curvature normal HN of an interface point has a general geometric
interpretation on an arbitrary smooth mathematical surface, as illustrated in
Figure 2.5. It represents the deviation of the local gradient of the surface and
is given by:

HN = ∇ ·N = ∇ · ∇f, (2.10)

where N is the normal vector of the surface f at a point. It is important to
understand unambiguously what is meant by surface in order to understand
the limitations of the formulation developed in this work. More rigorous
definitions adapted from literature (Lee, 2003, p. 3) are:
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Definition 1. A manifoldM is a topological space that is locally Euclidean,
that is every point has a neighborhood that is homeomorphic to an open subset
of Rn.

Additionally adopting the definition of a surface (Henle, 1979) with or
without a boundary:

Definition 2. A surface S is a manifold of dimension two embedded in R3.

These definitions apply to the all physically realisable phase surface interfaces,
but notably excludes certain important abstracted models that do not fit
within these definitions. For example, a 1D string model attached to a 2D
surface is not manifold at the point of intersection. In order to use the
methods developed in this work the 1D model must be mollified (given
an extruded finite volume). These definitions will be referred back to in
Section 3 when developing the discrete equivalents, but first curvature on
smooth surfaces is reviewed. Mathematical surfaces can often be represented
by a parametric function that maps a R2 domain to its embedding in R3

f : R2 → R3 as shown in Figure 2.5. An important example of such a
function for validating numerical solutions of liquid bridges with analytical
solutions is the Catenoid function (explained later in Equation 4.3).

In order to fully understand the mean curvature H, the smooth Gaussian
curvature and the principal curvatures are first introduced. At a given point
s on a 1D curve C(s) embedded in a 3D surface (Figure 2.6), there exists
a unique tangent vector T(s), normal vector N(s), and the (scalar) radius
of an osculating circle R(s). The scalar curvature κ(s) is simply the inverse
radius of this osculating circle κ(s) = 1

R(s) . The vector and scalar quantities
are related by the equations κ = |κN| = |dT(X)| = 2π/(2πR) = 1/R, where
X is any vector on the tangent plane projecting T. At any given point on a
curve C(s), a tangent vector can be rotated to any direction θ as shown in
Figure 2.6). The mean normal point curvature H(s) can be defined as an
integral over the curvature κ(s, θ), omitting the parameter s for clarity:

2H = 1
2π

∫ 2π

0
κ(θ)dθ (2.11)
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Figure 2.5.: A smooth mathematical surface can be represented by a mapping f : R2 → R3

that transforms a 2D plane into a 2D surface embedded in a 3D space. Every
point on the surface is associated with a tangent plane TpM , a normal vector N,
and a tangent vector T, which are related through the equation dT(X) = −κN,
where κ represents the curvature in the direction X (for example, defining
a curve embedded in the surface). An example of a 1D curve C : I → R3

parameterised by s ∈ I ∈ R cut out from this plane provides a definition for
an osculating circle R(s).
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Figure 1: The principal curvatures 𝜿𝜿𝟏𝟏 and 𝜿𝜿𝟐𝟐 shown with their osculating spheres. Note 
that the angle 𝜽𝜽 of a tangent vector T  can be defined at any point on the surface. 
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Figure 2.6.: The principal curvatures κ1 and κ2 are displayed alongside their osculating
spheres. Notably, the angle θ of a tangent vector T can be determined at any
point on the surface.

The principal curvatures κ1 and κ2 represent the maximum and minimum
curvatures obtained when rotating θ at a given point on the surface. They
are mathematically defined as:

Definition 3. The two principal curvatures are defined as κ1 = maxθ κ(θ)
and κ2 = minθ κ(θ).

The tangent vectors pointing in the directions corresponding to maxθ κ(θ)
and minθ κ(θ) are denoted as X1 and X2 in Figure 2.6, respectively. Euler’s
theorem states that the mean curvature H can be determined by summing
the principal curvatures:

H = (κ1 + κ2) . (2.12)

Note that Equation 2.12 is sometimes referred to as Hf to distinguish it
from the more common mean curvature definition, Hd = 1

2(κ1 + κ2). Due
to its prevalence in computational fluid dynamics Equation 2.12 is utilised
throughout this work without the subscript f to avoid confusion. The mean
curvature H is a scalar quantity which is less useful than the mean curvature
vector H, for an arbitrary parameterised surface (Do Carmo, 2016, p. 203):

H = HN (2.13)
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1

Curvature notions on surface boundaries

−Unit sphere tangent plane

−Unit sphere tangent plane

Figure 2.7.: The geodesic curvature is a measure of how much a curve deviates from being
a geodesic on the unit sphere.

The Gaussian curvature, denoted byK, represents the product of the principal
curvatures:

K = κ1κ2 (2.14)

2.4.2 Geodesic curvature, the Gauss-Bonnet Theorem and
Stokes’ Theorem

A final important curvature essential of modelling three-phase contact lines,
kg represents the geodesic curvature, as defined formally in Do Carmo (2016,
p. 252), adapted here:

Definition 4. Let C be an oriented regular curve contained in an oriented
surface S, and C(s) is a parametrisation of C, in a neighbourhood of p ∈ S.
The geodesic curvature kg is the value of the covariant derivative of C ′(s) at
a point p.

Intuitively, the geodesic curvature captures the local deviation of a curve C
from being a geodesic on a sphere as demonstrated in Figure 2.7.

The total integrated Gaussian curvature
∫

M KdA of a bounded surface S and
the boundary integral

∫
∂M kgds (see Section 3 for a more detailed explanation

of this integral) are connected through the surface’s Euler characteristic χ
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(e.g., χ = 1 for a bounded disk). This relationship is known as the Gauss-
Bonnet Theorem:

Theorem 1. Gauss-Bonnet Theorem:∫
M
KdA+

∫
∂M

kgds = 2πχ. (2.15)

The Gauss-Bonnet Theorem, a local-global theorem, establishes a crucial link
between the local curvatures and the global characteristics of surfaces. The
theorem applies to any smooth, orientated and bounded surface, including
piecewise linear manifolds, enabling the formulation of a Gauss-Bonnet
Theorem which also applies piece-wise to the discrete setting.

The equivalence of the Gauss-Bonnet Theorem in the smooth and discrete
settings allows for an integral formulation in which our discrete contact
angles are defined in a manner consistent with the smooth definition of
ΘC for any number of sampling points. In practice, this enables the use of
significantly fewer computational elements in simulations while preserving
the properties of the smooth model equations. A final important and powerful
Theorem is Stokes’ Theorem which states:

Theorem 2. Stokes’ Theorem: If c is a smooth k-chain in a smooth manifold
M, and ω is a smooth (k− 1)-form onM, then∫

∂M
ω =

∫
M
dω

Intuitively Stokes’ Theorem can be interpreted as an extension of the Fun-
damental Theorem of Calculus (FTC) to higher-dimensional manifolds. For
instance, in the case of a one-dimensional function scalar f (a 0 -form),
the integral of the differential f ′ = df

dx
(a 1 -form) can be determined by

calculating the difference at the domain’s boundaries. The formal definitions
of a k-chain will be provided provided in Section 3.

2.5 Conclusions

In this Chapter an overview was provided of surface tension in multiphase
systems and the importance of the force in various applications. It was
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demonstrated that the method to compute surface tension in CFD and energy
minimisation both involve the computation of curvature computed from the
the Laplacian of the interface. Developing a common framework would
allow for a fast and accurate method that can be used for CFD and energy
minimisation useful finding equilibrium structures as well DEM contact force
parameterisation.

Therefore, the focus of this work lies in gaining a deeper understanding of
the surface tension and discrete curvature. The next chapter will review basic
concepts from the mathematical theory of Discrete Differential Geometry
which is fundamental to developing a new formulation that proves the central
hypotheses of this thesis as outlined in Hypothesis H1 and H2. Because
all discrete data structures can be triangulated and represented as piece-
wise linear complexes on which the Gauss-Bonnet -and other key theorems
applicable smooth and Riemannian manifolds- apply, many of the definitions
from smooth differential geometry discussed in Section 3 can be applied in
order to develop rigorous definitions in the discrete setting even when full
knowledge of the surface is not available.
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3
Discrete differential geometry for
surfaces with dynamic topologies

Geometric and Topological Methods and Data Structures for Surfaces
with Dynamic Topologies

This Chapter discusses methods and a library which can capture a surface
interface and compute properties such as curvature efficiently under the
conditions of dynamically changing topologies. The novelty of the method in
comparison with the state of the art is that most efficient solvers in the field
of discrete differential geometry make use of a fixed incidence array which
must be rebuilt every time the topology or connectivity of the mesh changes.
By contrast the method and data structures described in this Chapter is fully
dynamic. Additionally, tracking connectivity and topology is inherent without
the need for expensive mesh traversal operations that limit the use of DDG in
dynamic frameworks.

Before developing the discrete differential geometric notions of curvature,
it is required to develop a well defined discrete representation of a surface.
Such constructions must have several important properties defined in order
to ensure robustness and stability in any simulation. In particular the focus
is consistently proving that the data structure meets the criteria of a surface
as defined in Definition 2. This can be done by computing the topology of
the surface. Critically, using the homology as a numerical criterion is used
to prove Hypothesis H1. Additionally the topology, while cheap to compute
with the method described here, can provide valuable physical insights into
a system such as the number of bubbles or pores present in a phase, the
percolation paths of solid porous structures and so forth without the need for
more expensive clustering, segmentation and reconstruction.
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3.1 Discretisation of surfaces

In this section an object central to modelling of interfaces and their curvatures
is exposited; the simplicial complex. A simplicial complex results whenever a
manifold embedded in any a space Rd of any dimension d is triangulated,
the terms "triangulation" and "simplicial complex representation" can there-
fore be used interchangeably in this context. When the triangulation of any
Definition 2 (i.e. a manifold according to Definition 1) is can be found then
a discrete curvature is always well defined as will be demonstrated in Sec-
tion 3.4. A more general structure than a simplicial complex restricted to R2

is used because this is useful for computing more complex information such
as the integrated curvature tensors of interest in this work. It is important
to emphasise that all discrete data structures that can be embedded in a Rn

and supplied with a metric (forming a topological space) which can be trian-
gulated, this includes meshes of any geometric structures (polygons, cubes
etc.), point-clouds (through a Delaunay triangulation), smooth surfaces with
analytical expressions etc. The mathematical proof of the latter is provided
later in this Section.

A fundamental problem in holding these geometric data structures in com-
puter memory in is elaborated on in Section 3.2 which largely deals in
methods to alleviate this problem as well as applications of the new data
structure. First, it is shown how surfaces such as that shown in Figure 2.5
can be constructed explicitly in a discretised way. A fundamental problem
in discretising smooth surfaces -and in fact all smooth mathematical objects
such as vector fields- is that only a finite number of discretised points can be
stored to represent an object that is defined at an infinite number of points.
This is a source of numerical error and can lead to instabilities if the surface is
not well refined. However, as will be demonstrated in this work, by a careful
application of the rigorous theorems for differential geometry, it is possible to
eliminate numerical errors completely; even with representations that have
low refinement in certain cases when the geometry (and topology) is well
understood such as for curvature as per Hypothesis H2.

A demonstration of the discretisation of a spherical cap is shown in Figure 3.1.
Many issues are immediately apparent in this representation. First, it is
seen that curvature is not well defined on a discrete surface since it is zero
everywhere except at the vertices where the Laplace-Beltrami operator ∆f is
not defined due to a discontinuity. Secondly the interior angles at the vertex
point sum to more that 2π as would be expected in a smooth geometry.
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Figure 3.1.: Discretisation of a spherical cap. While curvature is well defined as the laplacial
of the surface function f in a smooth context, the curvature is not well defined
on a discrete surface since it is zero everywhere except at the vertex where the
Laplace-Beltrami operator ∆f is not defined due to a discontinuity.

Before any formalism is introduced it is helpful to understand how a triangu-
lation of a surface f is found in general. Later a more rigorous definitions
of all these concepts will be derived. For now consider the parameterised
function of the torus, this equation describes the mapping f : R2 → R3 where
f(u, v) is the vector function:

x1 = (a cosu+ b) cos v,
x2 = (a cosu+ b) sin v,
x3 = a sin u.

(3.1)

Where the domain is u ∈ [0, 2π] and v ∈ [0, 2π]. The output x = (x1, x2, x3)
is the mapped position in R3 space. In Algorithm 2 (which requires many
more constructions) it is explained how this can be computed explicitly.
For now an intuitive description is that the domain of the function can be
triangulated and then the triangulation can be mapped to the corresponding
vertex positions in R3 as shown in Figure 3.2. The next Section will detail
precise how this can be constructed efficiently.
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Figure 3.2.: Triangulations of the surface function Equation 3.1. Subplots A, B and C show
increasingly fine triangulations

28 Chapter 3 Discrete differential geometry for surfaces with dynamic topologies



3.2 Theoretical detail

A)

0-simplex 1-simplex 2-simplex 3-simplex

0-chain of vertices 2-chain of vertices

B)

C)

Directed simplicial complex Star domain of vertex st(vi) Boundary of the star domain

1-chain of vertices

Figure 3.3.: (A) 0-simplex (point), 1-simplex (edge), 2-simplex (triangle) and a 3-simplex
(tetrahedron). (B) 0-chain of vertices, a 1-chain of edges and a 2-chain of
simplices. (C) Directed 2-simplex in the directed simplicial complex (left), star
domain defined by st (vi) (centre) and it’s boundary defined as ∂ (st (vi)) =
v2v3 + v3v5 − v5v4 − v4v2 (right)

The purpose of this section is to describe a discrete mapping h : P → H to
provide a simplicial approximation for the (hyper-)surface f . Describing this
construction will require several concepts from algebraic and combinatorial
topology (Henle, 1979). The following definition was adapted from Hatcher
(2002, p. 9), a visual demonstration of the concepts defined here is also
shown in Figure 3.3:
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Definition 5. A d-simplex is a set of d + 1 vertices in a convex polytope of
dimension d. Formally if the d + 1 points are the d + 1 standard d + 1 basis
vectors for R(d+1). Then the d-dimensional d-simplex is the set

Sd =
{

(t1, . . . , td+1) ∈ Rd+1 |
d+1∑

1
td+1 = 1, ti ≥ 0

}

For example, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. The
following combinatorial definition of a simplicial complex is used (Hatcher,
2002, p. 107):

Definition 6. A simplicial complex H is a set H0 of vertices together with sets
Hd of d-simplices, which are (d+1)-element subsets ofH0. The only requirement
is that each (k + 1)-elements subset of the vertices of an d-simplex in Hd is a
k-simplex, in Hk.

Thus each d-simplex has d + 1 distinct vertices, and no other d-simplex
has this same set of vertices. The superscript Hk represents the subset of
k−dimensional simplices where for an d-dimensional problem the highest
dimensional k-simplex contains d + 1 vertices. Finally, the definition of a
k-chain (Henle, 1979):

Definition 7. A k-chain is a union of simplices with an Abelian algebra defined
on the chain arithmetic.

For example a 0-chain is a set of vertices, a 1-chain is a set of edges and a
2-chain is a set of triangles. C(Hk) denotes a k−chain of k−simplices. A
vertex in H0 is denoted by vi. If vi and vj are two endpoints of a directed
edge in H1 from vi to vj then the symbol vivj represents the edge so that it is
bounded by the 0−chain ∂ (vivj) = vj − vi and similarly for an edge directed
from vj to vi is ∂ (vjvi) = ∂ (−vivj) = vi − vj. Higher dimensional simplices
can be represented and directed in a similar manner, for example a triangle
consisting of three vertices vi, vj and vk directed as vivjvk has the boundary
of directed edges ∂ (vivjvj) = vivj + vjvk + vjvi. It should be noted that only
mod 2 incidence and therefore the coefficients of the chain group are limited
to {0, 1} in the domain.
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A special kind of surface with boundary is now defined (Henle, 1979, p.
129) which is what will be used throughout this work as all three-phase fluid
interfaces are of this type:

Definition 8. A surface with boundary is a topological space obtained by iden-
tifying edges and vertices of a set of triangles according to all the requirements
of the definition of a surface except that certain edges may not be identified
with another edge. These edges, which violated the definition of a surface, are
called boundary edges, and their vertices, which also violate the definition of a
surface, are called boundary vertices.

This also leads to an important theorem:

Theorem 3. Classification Theorem for Surfaces with Boundary. Every
compact, connected surface with boundary is equivalent to either a sphere or a
connected sum of tori or a connected sum of projective planes, in any case with
some finite number of disks removed.

Theorem 3 is proven by triangulation of plane models (Henle, 1979, p.
129-131). Therefore since all plane models can be triangulated (explicit
algorithms are provided in Section 3.2.2) it is mathematically proven that
all possible surfaces (as defined by Definition 8) can be triangulated. This
ensures that the algorithms developed here are applicable to all physical
multiphase fluid systems that can simulated regardless of the geometric or
topological complex of the system.

Finally, the abstractions used the simplicial complex will defined explicitly.
First by formally defining the set of vertices from which 0-chains of the
simplicial complex H are built and the edges from which the 1-chains of H
are built. Definitions 9 through 13 provide this construction for h:

Definition 9. Let X be the set of sampling points generated by a sampling
sequence. The set P = {x ∈ X | g(x) ≥ 0} is a set of points within the feasible
set bounded by constraints g.

Definition 10. For any function f , F is the set of scalar outputs mapped by the
objective function f : P → F for a given sampling set P ⊆ Ω ⊆ Rn.
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Definition 11. Let H be a directed simplicial complex. Then H0 := P is the set
of all vertices of H .

Definition 12. For a given set of vertices H0, the simplicial complex H is
constructed by a triangulation connecting every vertex in H0. The triangulation
supplies a set of undirected edges E.

Definition 13. The set H1 is constructed by directing every edge in E. A vertex
vi ∈ H0 is connected to another vertex vj by an edge contained in E. The edge
is directed as vivj from vi to vj iff ||f(vi)− f(vj)|| < 0 so that ∂ (vivj) = vj − vi.
Similarly an edge is directed as vjvi from vj to vi iff ||f(vi)− f(vj)|| > 0 so that
∂ (vjvi) = vi − vj.

For practical computational reasons the case where f(vi) = f(vj) should also
be considered. If neither vi or vj is already a minimiser (see Definition 14),
the rule is used that the incidence direction of the connecting edge is always
directed towards the vertex that was generated earliest by the sampling point
sequence. If vi is not connected to another vertex vk then the notation vivk

is left undefined and let ∂ (vivk) = 0. The higher dimensional simplices of
Hk, k = 2, 3, . . . d+ 1 are directed in an arbitrary direction which completes
the construction of the complex h : P → H. It should be noted that the
function f encompasses a wide class of mathematical objects. Of particular
importance is the position vector (as in the introductory example shown in
Figure 3.1 where f is parameterised surface function) that will later be used
to compute curvatures. Other important possible functions are fluid scalar
and vector field values such as pressure and velocity. These can all be mapped
onto the same complex and the homologies of the fields can be computed.

The final definition is useful when computing homologies of a function
associated with a hypersurface, this function includes, for example, the
gradient and the curvature of the surface itself (Endres, Sandrock, and Focke,
2018; Endres, Avila, and Mädler, 2022):

Definition 14. A vertex vi is a minimiser iff every edge connected to vi is directed
away from vi, that is ∂ (vivj) = (vj ̸=i − vi) ∨ 0 ∀vj ̸=i ∈ H0. The minimiser pool
M is the set of all minimisers.

Definition 14 provides a definition of one type of homology, it is worth briefly
reviewing the homology of surfaces from its chain algebras. The chain groups
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Ck(Hk) are related boundary groups Bk of C(∂kH). The k-chain groups all
have known ranks ck = |Ck(H)|. The (Abelian) homology group is:

Hk(K) = ker ∂k

im ∂k+1

The Betti-number is simply the cardinality of the k−groups:

hk = |Hk(K)|

Some special relationships are available for surfaces, let Z0, Z1, Z2 be the
groups of cycles ker ∂2 = Z2 , ker ∂1 = Z1 and im(∂2) = B1, im(∂1) = B0.
By convention Z0 = C0 and B2 = {∅} for surfaces. Let c0, c1, c2, b0, b1, b2 be
the ranks of all these groups, then according to Theorem 4 (Henle, 1979,
p.164):

c2 = z2 + b1

c1 = z1 + b0

Applying Theorem 4 from Henle (1979, p.164):

h0 = z0 − b0

h1 = z1 − b1

h2 = z2 − b2

where b2 = 0 and z0 = c0. Note also that c0 = |V |, c1 = |E|, c2 = |F |.
Additionally the homology groups are related to the Euler characteristic:

χ = h0 − h1 + h2 . . . (−1)k−1hk

for torus χ = 0, 2-connected tori Xi = −2. n-connected tori:

χ = 2− h1

for 1-torus (h0 = 1, h1 = 2, h2 = 1), χ = 2 − 2 = 0, for 2-connected torus
(h0 = 1, h1 = 4, h2 = 1), χ = 2− 4 = −2 and for 3-connected torus (h1 = 6),
χ = 2− 6 = −4. The Euler characteristic for Euler graphs is also known:

V − E = h0 − h1

Which is useful for computing the h1 groups on the domain of the structure
presented here since h0 is easier to compute after cycles are computed with
the boundaries.
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These homology groups, while being cheap to compute, provide two impor-
tant numerical parameters useful in simulation:

1. The homology group can be tracked for each refinement. This means
that Hypothesis H1 is solved by providing a powerful criteria for when
the topology of an interface is fully understood and further refinement
is not needed and/or lower refinements can be used. When an exact
curvature computation is available as per Hypothesis H2 all surface
tension forces in a system can be computed exactly.

2. The homology groups provide information about the structure of the
physical material, such as the number of bubbles (h2) in a fluid, as
well as the percolation paths through a solid material and fluid imbi-
bition network (h1), without additional segmentation steps which are
computationally expensive.

Computational expense and scalability is major topic of research in itself.
It is especially important in fluids where numerical methods should ideally
scale linearly with the number of discrete elements in a mesh. Most efficient
solvers in the field of discrete differential geometry make used of a fixed
incidence array (Meyer et al., 2003; Elcott et al., 2007; Mullen et al., 2009;
Bell and Hirani, 2012), other formulations of single phase CFD using DDG
are built on a fixed mesh (Mohamed, Hirani, and Samtaney, 2016), but these
structures are expensive to recompute for interfaces with changing topologies
due to a required re-meshing step which also requires the construction of a
new incidence array. For this reason a new data structure was needed that
can capture the abstract simplicial complex constructions efficiently in code.
That is the topic of the next section.

3.2.1 Linear growth data structures in Rd

In order to construct a linear data structure of n-vertices embedded in Rd

space, a vertex object for each vertex vi in the set vi ∈ H0 is built. Each
vertex object contains a hash of its geometric position in Rd. A common
cache V contains a cache of all vertex objects. The edges can be described by
eij = vivj ∈ H1, but is not constructed explicitly. Instead it is defined by an
associated (unordered) set Ni ⊂ H0, called the nearest-neighbour set, with
each vertex i referring to the same vi object. The special vertex set can be
empty Ni = ∅ or non-empty Ni = {vj, vk, . . . } and is hashed in code so that
by construction Ni cannot contain its own vertex vi.
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Definition 15. The nearest-neighbour set Ni is a unordered set of vertices
Ni = {vj, vk, . . . } associated with a vertex vi which contains an element vj

for every edge eij = vivj ∈ H1.

These sets represent all the edges (1-simplices) of the simplicial complex.
In total this data structure contains n-vertex objects vi together with n-sets
Ni which fully described the connectivity of the simplicial complex. It is
important to note early that edges eij = vivj themselves are not stored (for
many problems storing the edges is intractable), only an ordered set Ni for
each corresponding vertex vi. In addition, the simplicial complex can be
directed by associating any function f : Rd → R, such as a height function,
sampled at every vertex point. Since the number of vertices that can be
stored in memory are finite, it is always possible to construct such a function
f using sorting algorithms, e.g. for example given n vertices at most the first
nn are needed to which can be assigned to each vertex to direct the edges as
desired.

Note that this structure is sufficient to fully represent the connectivity of a
simplicial complex Hd, however, it is neither a unique representation nor
is the structure described here guaranteed to be a simplicial complex. In
the next section algorithms are presented that allow for conversion of con-
ventional vertex-simplex data structures to the new linear structure and the
conversion from the linear structure back to conventional structures contain-
ing (d − 1)-simplex containers. In the proceeding section the construction
and refinement of a unique simplicial complex in Rd will be demonstrated.
In addition it is shown how, through refinement, (non-)convex subsets of
this space can be triangulated. Finally, the computation of the boundary
operator is shown, which allows for phase interface detection as well as for
for a homology computation.

3.2.2 Triangulation of non-convex, non-continuous domains
in Rd with continuous subdomains of finite size

In order to triangulate an arbitrary non-continuous, bounded domain defined
in full generality by
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Figure 3.4.: Triangulation of hypercube without explicitly constructing simplices. Starting
from an interval on the real line R, take the Cartesian product [l1, u1]×[l2, u2] ∈
R2 and, in addition, connect every lower vertex generated to every higher vertex
to find the triangulation of the 2-dimensional square. Repeating the operations
produces a triangulated cube in R3 and a triangulated 4-dimensional hypercube
in R4.
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{x|x ∈ Ω ⊆ [l,u]n = [l1, u1] × [l2, u2] × . . . × [ln, un] ⊆ Rd,

gi(x) ≥ 0, ∀i = 1, ...,m}, (3.2)

which starts with triangulating a hypercube Ω as a primary building block.
Through the convergence proofs demonstrated in Endres, Sandrock, and
Focke (2018), it is which starts with triangulating a hypercubewhich starts
with triangulating a hypercubeknown that the full domain can which starts
with triangulating a hypercubebe triangulated after sufficient refinement of
the simplicial complex, the only assumption is that there is a finite non-empty
subdomain in Ω that is Lipschitz smooth. Building a triangulation of Ω is
analogous to the Cartesian product of the C2 cyclic group and is demonstrated
visually in Figure 3.4 and an algorithm is provided in Algorithm 1. An
algorithm for analytical surface triangulation is provided in Algorithm 2.

Hypercube triangulation and refinement

Algorithm 1 demonstrates the hypercube triangulation described in Sec-
tion 3.2.2. Figure 3.4 provides a useful visual demonstration of the algorithm.
Note that the notation in the initial domainwhich starts with triangulating a
hypercube

[l,u]n = [l1, u1] × [l2, u2] × . . . × [ln, un] ⊆ Rd,

defines a stretched hyperrectangle, a hypercube is defined by setting li = 0 ∀i
and ui = 1 ∀i. Additionally, the ordered lists Ci

l and Ci
u are introduced to

track the lower and upper vertices of dimension i in analogy to Cartesian
products of cyclic groups. The new vertex indices are assigned as they are
initiated for the first time. Finally, Cul tracks the list of cross edges.

Note that the approach here differs from many state of the art topological data
analysis (TDA) approaches where the sampled points are later triangulated
(Delaunay triangulation, Čech and Vietoris-Rips complexes), although the
1-skeletons of such triangulations can be easily converted to the current data
structure. In this case, however, the connectivity of the simplicial complex
is built into the sampling routine itself, this avoids the need to compute the
triangulation later which saves a lot of computational expense in the presence
of changing topologies due to, for example, moving solids in a simulation.
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Algorithm 1: Triangulate the domain [l, u]n = [l1, u1]× [l2, u2]× . . .× [ln, un] ⊆
Rd.
Result: All vertices vi and their nearest neighbour sets Ni of a triangulated

d-dimensional hypercube ;
Initiate V = ∅ ;
Initiate the sets Ni = ∅ for all 2d + 1 vertices in the complex ;
v0 = (l1, l2, . . . ln) ;
v2d = (u1, u2, . . . un) ;
C0

l = [v0] ;
C0

u = [vd
2 ] ;

Cul = [∅] ;
for i in d + 1 do

for j, (Vl,Vu) in (C0,1,...,i+1
l , C0,1,...,i+1

u ) do
for k, (vl, vu) in (Vl,Vu) do

avl ←vl ;
avu ←vu ;
ai+1

vl ←vi+1
2d ;

ai+1
vu ←vi+1

2d ;
Initiate the new vertices with the a vectors ;
vm ← avl ;
vn ← avu ;
Connect all the new pairs ;
Ni ← Ni ∪ vm ;
Ni ← Ni ∪ vn ;
Nvl
← Nvl

∪ vm ;
Nvu ← Nvu ∪ vn ;
Ci+1

l ← Ci+1
l ∪ vm ;

Ci+1
l ← Ci+1

l ∪ vn ;
Ci+1

u ← Ci+1
u ∪ vm ;

Ci+1
u ← Ci+1

u ∪ vn ;
Cj

u ← Cj
u ∪ vm ;

Cj
u ← Cj

u ∪ vn ;
Cul ← Cul ∪ (vl, vn) ;

end
end

end
Finally complete all the cross triangulations ;
for (vl, vn) in Cul do

vb ←vl ;
va ←vn ;
vi+1

b ←vi+1
2d ;

vi+1
a ←vi+1

2d ;
Initiate the new vertices vb and va and their neighbouring sets Nb and Na ;
Nl ← Nl ∪ va ;
Na ← Na ∪ vb ;
Nb ← Na ∪ va ;
Add new list of cross pairs ;
Cul ← Cul ∪ (vl, va) ;
Cul ← Cul ∪ (vb, va) ;

end
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Algorithm 2: Triangulation of a surface f

Result: Compute a triangulation V of a function f ;
Initiate the set V ;
Triangulate the domain Vplane using Algorithm 1;
for vi in in Vplane do do

Add the mapped vertex position fi = f(vi) to the new complex vertex set: ;
fk ← f(vi) ;
V ← fk ;
for vj in Ni do

Reconstruct the neighbour sets of Vplane in the projected space: ;
fj ← f(vj) ;
Add the new vertex to the nearest neighbour set Nk of fk: ;
Nk ← fj ;

end
end

3.2.3 The boundary operator

The boundary operator is an immediately useful geometric operation (for
example in computing phase interfaces in multi-phase fluid simulations or
finding convex sub-domains in optimisation algorithms) which also links
the geometry of the simplicial complex with the topology. Computing the
boundary of a simplicial complex Hd or a chain C(Hd) and in particular
the linear span of the boundary set is a sufficient operation to compute the
homology groups of a Hd simplicial complex embedded in Rd+1 space which
is related by

Hk(H) = ker ∂k

im ∂k+1
.

However, careful consideration is needed to approximate the span of the
operators from the graph structure which is potentially only possible in well-
defined simplicial complexes. It is also possible to compute a special type of
homology on gradient fields. In Endres, Sandrock, and Focke (2018) it was
demonstrated how to use a function associated with the complex to compute
the homologies of compact spaces. In Algorithm 3 it is demonstrated that
the computation that relies only on simple set operations of cached objects
and does not require any additional constructs in out-of-core memory. This
also provides a major advantage in fast surface interface detection in fluid
dynamics problems in R3 when large data sets are used to represent fluids.
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Algorithm 3: Boundary operator on a chain.

Result: Compute the boundary of a chain C(Hd) ∈ V return the set of vertices
vi ∈ ∂C(H0) ⊂ V of vertices and their nearest-neighbour sets Ni ;

Initiate the set ∂C(H0)← ∅ ;
For every vertex vi check if it’s neighbouring vertices are on the boundary of the
chain ;
for vi in V do

Let Cj,k,... = {Nj ,Nk, . . . } be all (d)-combinations of nearest neighbour sets
of vertices in Ni ;

for Nj ,Nk, . . . in Cj,k,... do
if Nj ∩Nk, . . . \{vi, vj , vk, . . . } ∀l ∈ {j, k, . . . } = ∅ then

∂C(H0)← ∂C(H0) ∪ {vj , vk, . . . } ∀l ∈ {j, k, . . . } ;
else

Continue;
end

end
end
Only boundary vertices should have connections, simply remove all unconnected
vertices from the return nearset-neighbour set ;
for vi in V do

for vj in Ni do
if not vj ∈∂C(H0) then
Ni ← Ni\vj ;

end
end

end
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3.2.4 Algorithms

Conversion of conventional vertex-simplex to linear vertex-vertex structures

Converting from conventional high memory vertex-simplex to vertex-vertex
structures (which are lower memory) when given a set of simplices S is
demonstrated in Algorithm 4.

Algorithm 4: Convert vertex-simplex structures to vertex-vertex structures.

Result: All vertices vi and their nearest neighbour sets Ni ;
Initiate the sets Ni = ∅ for all vertices in the complex ;
Every vertex is connected to every other vertex in a given simplex s ∈ S, simply
connect all vertices ;
for s in S do

for vi in S do
Ni ← Ni ∪ {vj |∀j ∈ S} ;

end
end

The hyperct library can then be used to compute boundaries and homologies.
Converting from vertex-vertex structures back to vertex-simplex structures is
more elaborate as shown in Algorithm 5. The superscript si is used to donate
the entry i in a list or vector simplex container s.

The Algorithm 5 always produces a valid simplicial complex as long as the
sets Ni where constructed from vertex-edge data of a structure that is also
a simplicial complex with all vertices in regular position (i.e. there are no
degenerate faces in the simplicial complex). This can be demonstrated by a
simple proof by contradiction:

Proof. By Definition 6 the only requirement of a simplicial complex is that the
each (k+1)-element subset of vertices in the (d)-simplices inHd is a k-simplex
in Hk. By construction all simplices are (d+ 1)-dimensional subsets Hd and
therefore k ≤ d. Suppose that there is a (k + 1)-subset in Hk containing
(k + 1)-vertices vi, vj . . . vk+1 that is not a simplex. Then the union of sets
Ni ∪ Nj · · · ∪ Nk+1 is the empty set. Since at least one vertex vk /∈ Ni then
such a (k + 1)-simplex cannot be constructed by Algorithm 5 as it contradicts
the first if statement that vk ∈ Ni.
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Algorithm 5: Convert vertex-vertex structures to vertex-simplex structures.

Result: All vertices vi and all (d + 1)-dimensional simplices s ∈ Si ;
Initiate the sets Si = ∅ for all simplices in the complex ;
Initiate a list, tuple or vector s of size d + 1 ;
for vi in V do

All simplices built from vi contain vi;
s0 = vi ;
For every vj ∈ Ni loop through its nearest neighbours in Nj , for every vk ∈ Nj

that is also in Ni it is desired to build simplices connecting to the current v;
for vj in Ni do

The second entry of the current simplex always contains vj;
s1 = vj ;
Let l be the index used to track simplex entries;
l = 1 ;
for vk in Nj do

if vk ∈ Ni then
l += 1;
if l ≤ d + 1 then

sl = vk ;
else

When a simplex is full add it to the set of simplices S and then
start a new simplex s with the first two entries identical to the
previous s ;
S ← S ∪ sl ;
l = 2 ;
sl = vk ;

end
end

end
end

end
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3.3 Comparisons to state of the art

3.3.1 On the need for new scalable data structures and
benchmark comparisons to state of the art

Simplicial complexes are central mathematical objects in many areas of
computational algebraic and combinatorial topology (De Loera, Peterson,
and Edward Su, 2002; Meunier, 2006; Musin, 2015) as well as numerical
methods, which has more recently found applications in the fields of fluid
simulation (Elcott et al., 2007; Mullen et al., 2009; Bell and Hirani, 2012;
Misztal et al., 2013; Mohamed, Hirani, and Samtaney, 2016), global opti-
misation (Paulavičius et al., 2014; Paulavičius and Žilinskas, 2014; Endres,
Sandrock, and Focke, 2018) where simplicial complexes are used, for exam-
ple, as a back-end for finding optimal neural network architectures (Li et al.,
2021). Simplicial complex structures also have many prominent applications
in topological data analysis (TDA) (Edelsbrunner, Letscher, and Zomorodian,
2000) and computational geometry applications such as manifold learning
(Freedman, 2002). Many practical applications of TDA has been found in
machine learning (Carrière et al., 2020; Pun, Xia, and Lee, 2018; Hofer et al.,
2017; Hofer et al., 2019; Hu et al., 2019; Khrulkov and Oseledets, 2018;
Kwitt et al., 2015; Moor et al., 2020; Ramamurthy, Varshney, and Mody,
2019; Rieck et al., 2018; Rieck, Bock, and Borgwardt, 2019; Zhao and Wang,
2019; Royer et al., 2021), materials science and chemistry (Lee et al., 2018;
Townsend et al., 2020), in multiphase computation fluid dynamics (Misztal
et al., 2013), medical applications such as MRI (Rieck et al., 2020; Fadnavis
et al., 2021) and big data analysis in health care (Joshi and Joshi, 2019).
Simplicial complexes are commonly obtained through an operation called a
triangulation which acts on the underlying space which in turn can be either
continuous (through sampling) or discrete (such as point clouds and graph
networks). There are many different types of (abstract) simplicial complexes
that have been defined based on their triangulation methods and homologies,
for example the Delaunay triangulation, Čech complex, the Vietoris-Rips
complex and the Witness complex (Silva and Carlsson, 2004; Edelsbrunner
and Harer, 2010). A more recent work by Boissonnat and Maria (2014)
introduced the Simplex Tree structure which allows for the representation of
abstract simplicial complexes of any dimension. While such data structures
greatly enhance the tractability of higher dimensional simplicial complexes,
any data structure that relies on the explicit construction of simplices remains
a fundamental bottleneck for many potential applications in TDA (Chazal,
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2017) as well as for triangulations of continuous spaces. As an example, in
triangulating the unit cube or hypercube, which is among the simplest and
the most important objects in d-dimensional Euclidean space, it is known
that the best lower bound number of simplices required in any minimum
triangulation grows combinatorially with dimension d as O(d!) (Smith, 2000;
Zong, 2005). The hypercube is particularly useful to triangulate since its
refinement in a bounded domain can be used to triangulate any compact
domain (Endres, Sandrock, and Focke, 2018) which can provide a deeper
understanding of the underlying hypersurface.

In Section 3.2 the simplest possible data structure was demonstrated, which
still stores only the connectivity of the simplicial complex. This both triangu-
lates domains and can represent 1-skeletons of a triangulation without the
need to explicitly construct any simplex containers. In addition, it was shown
that many important geometric and topological operations are available with
this data structure. In particular, the boundary computation operators ∂k

on this structure which connects the set operation of chain algebras (topol-
ogy) with the geometry represented by the simplicial complex (Henle, 1979,
p. 158) in any dimension was shown. An algorithm is presented that can tri-
angulate and refine d-dimensional hypercubes allowing for the triangulation
of arbitrary continuous domains in Rd through stretching and refinement.
Such an operation is useful for triangulating non-continuous embeddings
in Rd which is useful in applications such as three-phase computational
fluid dynamics (CFD) simulations and the out-of-core boundary computation
can be used to find interfaces efficiently on large datasets. A rudimentary
python implementation is made available in the hyperct library1 which also
allows for the conversion to traditional simplicial complex structures such
as the Delaunay triangulation available in the QHull library (Barber, Dobkin,
and Huhdanpaa, 1996) as well as the Alpha and Vietoris-Rips complexes
(Boissonnat and Maria, 2014).

3.3.2 Benchmark comparisons to state-of-the-art

Here a simplicial complexHk embedded in Rd space is considered. The formal
definition of the underlying concepts k-simplices, k-chains and an (abstract)
simplicial complex together with its homology is defined in Section 3.2.
An intuitive description of a simplicial complex is a set of k-simplices as
building blocks shown in Figure 3.3A subject to formal criteria defined in
Section 3.2. A k-chain of k-simplices (Figure 3.3B) is also denoted as Ck(H).

1Released under MIT license, available at: https://github.com/Stefan-Endres/hyperct
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Figure 3.5.: A 1-connected torus (left) and a 3-connected torus (right) embedded in R3.

Such chains can additionally be directed such as demonstrated in Figure 3.3C.
As discussed in Section 3.2, equipping an algebra to these chain groups can
be used to compute homology groups useful for deducing the topological
properties of the underlying data. Note that the dimension k need not be
equal to d and can be both lower k < d than underlying embedded space
d (such as when triangulating a hypersurface embedded in Rd) or higher
than the underlying dimension k > d (for example common when computing
persistent homologies on point clouds). In this work n-dimensional points
represented as vertices vi (or 0−simplices) are considered with the only
requirement that every point vi is embedded in the same dimension. This is
commonly obtained through operations such as sampling (of a hypersurface,
or from physical space and time series measurements), triangulation (of
a continuous or non-contuous space) or labelling of non-numerical data
projected into the same dimension.

In this section the application of the linear simplicial complex structure is
demonstrated with the hyperct library implementation in triangulating the
n-tori embedded in Rd and compare the resulting memory consumption and
number of data containers needed. A n-Torus is a well understood topological
surface containing n holes (cf. Figure 3.5), the minimum 1-Torus allows for a
well defined benchmark to compare the memory consumption of different
simplicial complex triangulations. The comparison was done against the
Alpha complex and Vietoris-Rips complexes implemented in the gudhi library
(Maria et al., 2014), a popular library for topological data analysis (TDA),
the flag complex from the FLAGSER library (Lütgehetmann et al., 2020)
which is based on the RIPSER library by Bauer, 2021, as well as the Delaunay
complex computed using the QHull library (Barber, Dobkin, and Huhdanpaa,
1996).
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3.3.3 Case study: 1-Tori in Rd

A minimum triangulation of the 1-Torus in Rd can be constructed trivially
by building the hypercube Ω in Rd−1, identifying all vertices and finally glu-
ing all geometrically opposing faces. In Figure 3.6 the results are shown
for the number of constructed data containers or simplices required for a
minimum triangulation and in Figure 3.7 the results comparing the total
bytes of memory consumed are shown. A direct memory comparison be-
tween a Python-based HyperCT and C/C++ optimised implementations of
QHull is not feasible due to implementation differences between the two
libraries. Even though a Pythonic API might be available for QHull, the
memory profiling is not possible due to the I/O differences that occur when
interfacing the libraries. Therefore the number of data containers used by
the structure is used as a comparison instead in Figure 3.7 and only QHull is
benchmarked in Figure 3.6. The results demonstrate the large improvement
in the tractability of triangulating surfaces using the linear simplicial complex
data structure. The new data structure requires less computer memory than
the other complexes in the higher dimensions implying greater tractability in
higher dimensional spaces.

3.3.4 Case study: Comparison to flag complex on undirected
graphs

The flag complex is the simplest structure that is comparable to the structure
presented here in the sense that it can be used to represent higher dimen-
sional simplicial complexes as well as compute their homologies. Table 3.1
presents a comparison to the flag complex structure and the difference in
cardinalities required to represent data in a simplicial complex. While the
RIPSER and FLAGSER libraries are highly efficient and mature libraries
capable of very fast computations, the comparison highlights the potential
of hyperct to model a very large amount of data. For example Lütgehet-
mann et al., 2020 studies directed graphs that model brain microcircuitry
reconstructions. As a comparison the C. Elegans (cf. Figure 3.8) dataset (an
undirected graph) is used, as recorded in the associated repository (Appendix
C) hyperct required an estimated 0.227184 MiB compared to 589 MiB for
FLAGSER to represent the complex and compute the boundaries. Comput-
ing homologies in FLAGSER is far faster and more efficient, however, the
potential to develop efficient algorithms on the sparser structure should be
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Figure 3.6.: Comparison of simplex containers (Delauney complex) and data containers
(Linear complex) needed for a minimum triangulation of 1-Tori embedded in
Rd−1. A) It can be observed that the new linear complex data structure requires
far less memory than the Delaunay complex structure in higher dimensions.
B) The semi-log plot of the same data as (A) is shown for greater clarity, in
this plot it can be seen that the Delaunay complex requires less memory in the
lower dimensions which is expected theoretically since a far smaller number of
simplices suffice to triangulate the hypercube in lower dimensions. C) contains
the same data sets as (A) normalised to the number of vertex points and D) is
a semi-log plot of the same normalised data as (C) for clarity.
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Figure 3.7.: Comparison of the computer memory needed for a minimum triangulation of
1-Tori embedded in Rd−1. A) It can be observed that the new linear complex
data structure requires far less data containers than the other data structures in
higher dimensions. B) The semi-log plot of the same data as (A) is shown for
greater clarity, in this plot it can be seen that the Delaunay complex requires
less data containers in the lower dimensions which is expected theoretically
since a far smaller number of simplices needed to triangulate the hypercube
in lower dimensions. C) contains the same data sets as (A) normalised to the
number of vertex points and D) is a semi-log plot of the same normalised data
as (C) for clarity.
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Figure 3.8.: The nervous system in a typical Caenorhabditis elegans hermaphrodite (neural)
network that was used to derive the unconnected graph in the KONECT dataset
(Watts and Strogatz, 1998; Caenorhabditis elegans (neural) network dataset –
KONECT 2018).

highlighted with this result.

3.3.5 Applications for surfaces embedded in R3

Microsctructure analysis in multiphase CFD simulations

In CFD applications where the changing microstructure is important for
modelling materials property and performance changes, simulations present
a data challenge due to the large number of discrete points involved. For
example, Figure 3.9 which contains 73 198 658 discretised fluid elements
representing a boundary compuation on fluid films above 600000 solid-phase
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hyperct Flag complex (FLAGSER)
Structure V = {v1, v2, v3, . . . } V = {v1, v2, v3, . . . }

NN = {Ni,Ni,Ni, . . . } E = {(vi, vj), (vl, v;), . . . }
Cardinality (undirected) 2|V | |V |+ |E|
Cardinality (directed) 3|V | |V |+ |E|

Table 3.1.: Comparison of linear- and flag complex representations.

Figure 3.9.: Fluid elements generated on a particle film discertisation of 600000 solid
nanopartilces.

nanoparticles. An explicit simplicial complex on data structures this large
present a problem both in the memory required to contain all the simplices,
but more importantly a limitation on the in-core computations for algorithms
that requiring traversing the simplex structures of the mesh. The hyperct
library allows for an out-of-core mesh computation which allows for the
fast detection of merging fluid clusters as well as their interface detection
through boundary computation. Comparable solutions such as the half-edge
mesh structure cannot be used to represent both the 3-dimensional simplicial
complex (or bulk fluid) and its boundary (surface interface) on the same
data structure. Computing boundaries on the same mesh can also be used
to detect topological properties that are important for practical applications
such as the number of different percolation networks and their tree structure,
the number of gas bubbles trapped in the film, the number of different
porous networks and diffusion pathways pathways and the birth and death
of merging liquid bridges over time.
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Refinement and boundary computation in R3

(a) (b) (c)

Figure 3.10.: Triangulated cubes with (a) no refinement (b) one generation of refinement
and (c) with two generations of refinement. Simplices are slightly transparent
to show interior triangulation.

(a) (b) (c)

Figure 3.11.: Boundary computation of Triangulated cubes with (a) no refinement (b)
one generation of refinement and (c) with two generations of refinement.
Notice that all vertices in the interior have been removed by the boundary
computation.

In order to demonstrate both the refinement and the boundary operation,
the operations on a 3-connected Tori embedded in R3 is shown visually. The
computations are useful in applications such as manifold learning and in
multi-phase computational fluid dynamics where computing the curvature
on the surface interfaces requires a boundary computation step (Endres,
Ciacchi, and Mädler, 2021). The nearest-neighbourhood containers Ni allow
for a fast local interface detection using only simple set operations which is
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advantageous when large data sets are used and out-of-core local processing
is required.

Refinement involves simply repeating the triangulation at different origin
v0 = (l1, l2, . . . ln) and supremum vectors v2d = (u1, u2, . . . un) or refining
all star domains as described in the library source code. The former is
faster at a higher cost of memory while the latter is slower, but requires no
additional memory containers. Figure 3.10 demonstrates the triangulation
and refinement of a cube embedded in R3.

Surface detection and refinement in R3

Here it is demonstrated that the triangulation and boundary computation of a
3-Torus. The basic principle can be demonstrated by, for example, computing
the boundary ∂(H) of the triangulated cubes H in Figure 3.10 as shown in
Figure 3.11. Note that all vertices in the interior have been removed and only
the boundary vertices remain in Figure 3.11, for an arbitrary (non-)convex
domain (the set defined in Equation 3.2 repeated here for convenience):

{x|x ∈ Ω ⊆ [l,u]n = [l1, u1] × [l2, u2] × . . . × [ln, un] ⊆ Rd,

gi(x) ≥ 0, ∀i = 1, ...,m},

and this domain can be triangulated by refining and removing any vertices
that fall outside the constraint oracle functions gi(x). In this example the
domain [−1, 2]× [−1, 2]× [−0.5, 0.5] was used and

g1 = (x2
1 + x2

2 + x2
3 − (a2 + b2))2 − 4a2(b2 − x2

3)
g2 = ((x1 − 1)2 + x2

2 + x2
3 − (a2 + b2))2 − 4a2(b2 − x2

3)
g3 = (x2

1 + (x2 − 1)2 + x2
3 − (a2 + b2))2 − 4a2(b2 − x2

3),

where a = 0.5 and b = 0.3 are the major and minor radii of of each torus.
Next, simply compact the equations to find the desired set

g(x) = (g1 ≥ 0) ∨ (g2 ≥ 0) ∨ (g3 ≥ 0).

Once the 3-dimensional simplicial complex H has been recovered by triangu-
lating and refining the set within Equation 3.2, the boundary of the entire
complex ∂(H) can be computed. The result is the 2-dimensional surface of a
3-torus embedded in R3 shown in Figure 3.13.
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Figure 3.12.: Boundary computation ∂(H) of a triangulated 3-torus embedded in R3.
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(a) (b)

Figure 3.13.: Boundary computation ∂(H) of a triangulated 3-torus embedded in R3 with
(a) fewer refinements and vertices and (b) more refinements and vertices.
Note that the topology is preserved in (a).

It is also possible to keep refining or to use fewer refinements in this test case
as shown in Figure 3.13. Computing homologies as described in the main
body provides a qualitative indicator that can be computed to help track
the progress of the triangulation in understanding the underlying space in
any dimension. As demonstrated in Figure 3.14 and in the accompanying
notebooks there are no vertices or simpilces remaining in the interior of the
simplical complex after the boundary computation.

Homologies of a 1-connected torus in R3

Figure 3.15 demonstrates the application of the boundary operator to find
closed loops and homology ranks of a simple torus surface f : R2 → R3 where
f(u, v) is the parametric equation of the torus Equation 3.1. Additionally,
supplying the surface with an arbitrary gradient vector field v : R3 → R3 in
this case v(x1, x2, x3) = x1 allows for the constructed simplical complex to be
directed. While this homology represents the computation of gradient field
homology of f it should be noted that there many other types of homologies
that can be computed using the domain structure of H itself.
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Figure 3.14.: Interior of the torus in Figure 3.13. with boundary computation ∂(H) of a
triangulated 3-torus embedded in R3.

Figure 3.15.: A) A mapping of a triangulated plane torus [0, 2π]× [0, 2π] ∈ R2 to a surface
embedded in R3. Supplying (any) gradient field additionally allows for
the structure to be directed. B) Top down view of the edges of the torus
in embedded in R3. The boundary computation on the directed complex
results in two closed paths, the number of paths in this case can be detected
immediately (red dots) due to two local minima in the gradient field resulting
from the boundary computation (right).
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3.4 Derivation of discrete curvatures, contact
angles and accuracy estimates

The machinery is now in place to derive the core results of this dissertation
which will prove the second result outlined in H2. The simplicial complex
representation H of the surface S defined in this chapter (Definition 6 and
Definition 8 respectively) will be used to relate vertices vi ∈ H which have
corresponding position on a surface fi = f(vi) ∈ R3. The vertex cache of H is
called V and the boundary of V and S is denoted by ∂V and ∂S respectively
throughout.

A lot of the results in this section, which proves that the discretised surface
can exactly represent the curvature under conditions of sufficient refinement,
are based on the powerful Gauss-Bonnet and Stokes’ theorems Theorem 1
and Theorem 2. The key insight is that the Gauss-Bonnet Theorem can always
be applied trivially to a locally bounded disk which always has a known Euler
characteristic χ = 1.

Interior mean normal curvature

For reasons outlined in Section 3.2 only a simplicial complex is used in
this section (with the understanding that this applies to all computational
geometric data structures that are manifold). In Figure 3.16, the essential
definitions used in this section are shown. Every simplicial complex has a
dual complex, in this case the circumcentric dual shown in Figure 3.16 in the
darker shade. The notation and proofs used in this section closely follow the
textbook by Crane (2018).

The notation of Figure 3.16 has the following meaning:

• fi - position of surface vertex

• ℓij - length of edge ij

• Aijk - area of triangle ijk

• Cijk - area of the dual of the triangle ijk
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Figure 3.16.: A) The simplicial complex of a triangulation in the plane together with its
circumcentric dual complex. The star domain st(vi) is the set of all simplices
neighbouring a vertex vi or i in simplified notation, st(vi) has a total area
Ai. The circumcentric dual complex produces one (dual) vertex per triangle,
here called a and b. The shaded area is the dual area Ci of the circumcentric
dual cells with the dual vertices a and b associated with each edge eij with
midpoint m, and corresponding interior angles α and β. Every edge eij has a
corresponding unique perpendicular dual edge e⋆

ij. B) The surface function
f maps vertices from the plane in R2 to the corresponding vertices in R3 as
discussed at the start of the Chapter, the star domain st (fi) is the set of all
simplices neighbouring fi. Each edge eij has two normal vectors Na and Nb
associated with its dual.
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• Nijk - unit normal of triangle ijk

• θjk
i - interior angle at vertex vi of triangle ijk

• φij - dihedral angle at oriented edge ij

Finally, it is possible to derive a discrete normal curvature Ĥ. Stokes’ Theo-
rem (Theorem 2) also allows for the definition of the concept of a discrete
differential by integrating a 1 -form α1 along an edge eij formed by a line
bounded by two vertices from fi to fj:

α̂eij =
∫
eij

α1,

this integral can be understood as sampling n points along edge and adding
the sum of projections along the vector eij to

∫
eij

α1 ≈ |e|
(

1
n

N∑
i=1

α1
pi

(e/|e|)
)

However, a key fact about the position vectors fi is that the position on every
point of the edge eij does not need to be known in order to compute the
total integrated change of the one-form df acrosss the edge (through FTC and
Stokes’ itself applied in 1D). Therefore the integrated change in position is
known exactly: ∫

eij

df = fi − fj (3.3)

By integrating the smooth HN in a star domain around the dual area of a
point fi on the surface is found:

ĤNdAi =
∫

C
HNdA =

∫
C
df ∧ dN =

∫
C
dN ∧ df =

∫
C
d(N ∧ df)

=
∫

∂C
N ∧ df =

∑
j

∫
e⋆

ij

N ∧ df

=
∑

j

Na × (m− a) + Nb × (b−m)

(3.4)

where Stokes’ Theorem was used in the fourth step and Equation 3.3 is used
to compute the integral of the dual edges e⋆

ij resulting in (m− a) and (b−m)
crossed with the respective normal vectors. Here the cross product replaced
he wedge product ∧ of the differential forms df and dN which is possible due
to working with 2D simplices embedded R3. This demonstrates one method
that can be used to compute the integrated curvature exactly. Note, however,
that the ratio between the primary and dual length can also be expressed
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through the Cotan formula, therefore taking the ratio as a scalar multiple of

the original edge |e
⋆
ij|

|eij | eij = |e
⋆
ij|

|eij | (fi − fj) results in:

ĤNdAi = 1
2

∑
j∈st(fi)

(cotαij + cot βij) (fi − fj) (3.5)

Thus the length of the original primal edges in Equation 3.5 can be used to
compute the same integral as the dual area in Equation 3.4. The discretised
definition of this integral is the Cotan formula (Pinkall and Polthier, 1993;
Dyer and Schaefer, 2009). It is important to note that ĤNdAi is an inte-
grated quantity, to recover the point-wise curvature at a vertex fi it must be
normalised with its dual area Cijk that was integrated over:

Ĥi = ĤNdAi/Cijk = 1
2

∑
j∈st(fi)

(cotαij + cot βij) (fi − fj) /Cijk (3.6)

As a consequence of Stokes’ Theorem applied to a constant curvature sur-
face, the integrated area is exact in the dual cell of a minimised surface
(Figure 3.16). The integrated quantity H NdAi, termed a discrete one-form,
is integrated over the dual cell rather than the full area, as demonstrated in
Figure 3.16, due to the use of dual cells in the derivation of Equation 3.5.

The cotangent formula presented in Equation 3.5 is extensively documented
in literature for simulations involving curved surfaces, both in physical finite
element method (FEM) simulations (Nguyen, Karčiauskas, and Peters, 2014)
and in modern discontinuous Galerkin (DDG) interpretations (Grinspun et
al., 2006; Ziegler et al., 2008). However, the approximation and physical
interpretation of the geodesic boundary curvature remain less established.
For instance, popular discretisations based on interior angles suffer from the
drawback that, due to intricacies in how the cotangent formulation integrates
over the dual area Ci instead of the total area Ai, the mean normal curvature
on the boundaries is often disregarded in many applications, as exemplified
in Figure 3.17.

The cotan formula has the important property that it retains the correct
value for ĤNdAi under any refinement at the equilibrium geometry. The
point-wise value Ĥi also retains the correct value when provided that the
interface is convex, the simplicial complex is symmetric and the curvature of
the surface is constant. The Gauss-Bonnet Theorem establishes the validity
of these relationships for any surface, with or without a boundary. For a
given refinement on an imperfect surface, the vertex’s local star domain
simply represents a surface with a boundary. In essence, we demand that the

3.4 Derivation of discrete curvatures, contact angles and accuracy estimates 59



physics computed from the curvature be accurately represented, even at the
expense of introducing numerical uncertainty over time. In regions where
the uncertainty is significant, the mesh or triangulation can be refined before
taking a time step in a full simulation.

It is of interest to know if other formulations from the field of DDG also
have such promising rigorous properties. Since they are generally trying
to describe point-wise approximations (cf. Table C.1) as opposed to exact
integrated quantities it turns out, as elaborated on in Appendix C, that
the Cotan formula is currently unique in allowing for exact quantities to
be computed. This means that unfortunately there is currently no exact
discretely integrated Gaussian curvature K known from literature, Gaussian
curvature is essential for relating the discrete mesh to smooth three-phase
contact angles on the boundaries of the surface as discussed in the next part
of this Section.

Boundary gas-liquid-solid interface contact angles

The next step is derive novel notions of discrete geodesic curvature (defined
for the smooth version in Definition 4) and the concept of a discrete contact
angle in relation to the true smooth contact angle. As a first step it should
be noted that the Gauss Theorem in Equation 2.15 applies to any surface,
including piece-wise linear manifolds, which allows for the definition of a
discrete Gauss-Bonnet Theorem by simply summing up the integrals of local
patches of piece-wise linear triangles surrounding every vertex in the cache:

Theorem 4. Discrete Gauss-Bonnet Theorem:

∑
i∈int(V)

K̂i +
∑

i∈∂V
k̂g,i = 2πχ. (3.7)

The discrete quantities of the Gaussian and geodesic curvatures are denoted
by K̂i and k̂g,i, respectively, as will be demonstrated in this section. The
equivalence of the Gauss-Bonnet Theorem in both the smooth and discrete
contexts enables the formulation of an integral expression, in which the
discrete contact angles are defined in a manner that ensures consistency with
the smooth definition of ΘC for any number of sampling points. This approach
permits the utilisation of a significantly reduced number of computational
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 Figure 3.17.: A) A discretised patch of manifold (blue) surrounding a boundary vertex fi,
connected to an interior vertex fj and boundary vertex fk. B) All interior
edges eij have two associated dual triangles (shown here in purple and green
for the interior dual triangles). The boundary edges eik have only one dual
triangle per edge shown in red. This boundary area was not considered in
previous works.

elements in simulations while preserving the properties of the smooth model
equations.

In Figure 3.17 a discretised patch of a surface cutout near the boundary is
shown. It is immediately apparent that the dual area surrounding boundary
is not actually included in the total integral of Equation 3.5 as the dual areas
near the boundary vertex fi is not integrated in any of the interior vertices by
definition. The area in Figure 3.17 depicted in red surrounding figfi is unique
compared to the integral of the mean normal curvature of vertices in the inte-
rior (such as the remaining portion of the shaded dual area shown in purple
and green) due to only have one dual area associated with a boundary edge
such as eik. This is illustrated in Figure 3.17B, there exists only one dual tri-
angle per edge on the boundary edges, unlike the interior which consistently
possesses two associated dual areas. Consequently, Incorporating a term for
the boundary, as depicted in Figure 3.17, the mean normal curvatures on the
boundary vertices are recomputed based on Equation 3.5 when this boundary
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is included. This derivation commences from Equation 3.4 with st (fi) = C,
where ∂S encompasses the entire set of boundary vertices:∫

C
HNdA =

∫
C
df ∧ dN∫

C
df ∧ dN =

∫
C
dN ∧ df∫

C
dN ∧ df =

∫
C
d(N ∧ df)∫

C
d(N ∧ df) =

∫
∂C

N ∧ df∫
∂C

N ∧ df =
∑

j

∫
e⋆

ij

N ∧ df

∑
j

∫
e⋆

ij

N ∧ df =
∑

j∈st(fi)\∂V
Nijl × (m− a) + Nijk × (b−m)

+
∑

k∈st(fi)∩∂V
Nijl × (m− a),

(3.8)

where Stokes’ Theorem was again used in the fourth step. The equality
symbol on the fifth step is again due to Stokes’ theorem (or the fundamental
theorem of calculus Consequently, it is possible to identify an approximation
for tintegrated along an edge). As before in the interior case, the ratio
between the primary and dual length can also be expressed through the
cotan formula resulting in:

ĤNdAi =1
2

∑
j∈st(fi)∂V

(cotαij + cot βij) (fi − fj)

+ 1
2

∑
k∈st(fi)∩∂V

(cotαij) (fi − fk)
(3.9)

where ∂V is the global set of boundary vertices for the equation.

Equation 3.9 enables the definition of a mean normal curvature on bound-
aries, which is exact for locally minimal surfaces through Stokes’ Theorem.
This allows for the provision of an alternative interpretation of the geodesic
curvature. Recognizing that a local patch of the bounded surface at the mani-
fold boundary can be approximated as a convex spherical cap, Figure 3.18
demonstrates the geometric meaning of the quantities. Consequently, it is
possible to identify an approximation for the discrete contract angle on the
boundaries Θ̂ through the abstracted relationship to K̂i, as will be elaborated
on in the subsequent paragraphs.
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Figure 3.18.: A) Demonstration of the discrete approximation of the smooth contact angle
ΘC . For any arbitrary surface S, a local patch defined by its boundary ∂S can
be excised; this is topologically equivalent to a disk (and therefore has an
Euler characteristic χ = 1). B) On a three-phase contact line, a discrete vertex
fi has a maximum of two neighboring boundary vertices fk and fj (because it
is a discretised curve), which defines the unique direction provided later by
Equation (15). Note further that st (fi) is analogous to ∂S and more precisely
it represents an integral approximation of a local neighborhood bounded by
∂S. It can be seen that, in general, the discrete angle θ is not equal to ΘC .
Instead, here the correct angle ΘC can be obtained by computing a discrete
approximation of mean normal and Gaussian curvatures Ĥ and K̂ in the
domain st (fi), where K̂ = K (exactly analytical) and the manifold is convex
for minimal surfaces at equilibrium.
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Instead of defining explicit point-wise angles, the contact angles will be de-
fined implicitly through the local-global equilibrium of the curvature (Gauss-
Bonnet Theorem). The true contact angle ΘC is related to the discrete
principal curvature estimates κ̂1 and κ̂2 (discrete analogies of the integrated
smooth quantities κ1 and κ2). In turn, κ̂1, κ̂2, and K̂i are related to Ĥi from
Equation 2.12 and Equation 2.14. A crucial insight of the Gauss-Bonnet
Theorem is that the global topology of a surface is invariant to local pertur-
bations of the surface. Therefore, the GB relation

∫
∂S kgds = 2πχ −

∫
S KdA

(where χ = 1 for a local interface “disk” and ds is a segment of the boundary
curve ∂S on the three-phase contact line) can be used to relate the integrated
curvatures in a patch of fluid-fluid surface interface S, as demonstrated in
Figure 3.19.

Additionally, when this patch is bounded to a solid-fluid-fluid three-phase
contact line, there exists a (smooth) angle ΘLocal(s) between the solid-phase
tangent (cf. Figure 3.19B) and the fluid interface tangent at every point s on
the contact curve. The “Local” subscript of ΘLocal(s) is used to emphasise the
currently computed angle when the interface is in a non-equilibrium state
(as opposed to the equilibrium contact angle ΘC). Figure 3.19 demonstrates
how an understanding of (integrated) local curvatures can be connected to
an average ΘC on the contact line. In particular, because the sum of

∫
∂S kgds

and
∫

S KdA is fixed, an averaged three-phase contact angle Θ̂Local exists. The
term

∫
S KdA intuitively indicates how much the patch curves away locally at

the boundary.

Through the Gauss-Bonnet theorem, the integrated curvature
∫

S K̂idA of all
the perturbations of the patch of the fluid-fluid interface S can be related
to an equivalent spherical cap and the smooth integrated curvature

∫
S KdA

of an equivalent unperturbed sphere. From this relationship, the integrated
geodesic curvature

∫
∂S kgds can be computed. The precise relation for a

spherical cap is given by kg =
√

1
K

tan Θ̂, where latitude λ = Θ (cf. Figure
3.19B and Figure 3.19C; the latitude is a plane cut-out of the great sphere).
When the surface is perturbed, this equation provides a good approximation
of a contact angle at a point on the three-phase contact line. When the surface
is minimised (at equilibrium or at a saddle point), the integral of the discrete
contact angle is exact due to the integration being constant. This motivates
the development of a discrete Gaussian curvature so that the correct smooth
geometry of a physical system can be recovered under any discrete refinement.
In Section 4, the equilibrium of a capillary rise system is demonstrated, and
it is shown that this formulation of a discretely approximated physical system
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is independent of the refinement of the complex and the number of vertices
or points used in the discretisation.

According to the Gauss-Bonnet theorem, the equilibrium value of κi is inde-
pendent of the problem’s geometry (such as tube radius or the geometry of
the three-phase path). A formulation for principal curvatures at a point is
given by:

κ̂1 = 1
2Ĥ i
−
√

(1
2Ĥi)

2
− κ̂1κ̂2

κ̂2 = 1
2Ĥi +

√
(1
2Ĥi)

2
− κ̂1κ̂2,

(3.10)

where Ĥi is known from Equation 3.10, the two equations can be solved
for the two discrete principal curvatures. It will be demonstrated that,
numerically, the analytical Gaussian curvature computed using Ki = κ̂1κ̂2

is exactly equal (subject to floating-point error) to the analytical solution
Ki = K in the symmetric case, which is already a significant improvement
over the known angle defect notion of K̂i for simulating physical systems.

In summary, Ĥi is explicitly defined in Equation 3.5, Equation 3.6 and Equa-
tion 3.9 through the bounded cotan formula and is computed from the mesh
geometry. This value produces an accurate approximation of Laplacian pres-
sure Equation 2.1 (see results in Section 4) under any refinement when the
boundary vertices are equilibrated into the correct position (or equivalently
when the surface is minimised). The discrete value is exact (by construction)
when the smooth surface is locally minimised. From the definition for κ̂1 and
κ̂2 in Equation 3.10, a discrete geodesic curvature was defined that allows the
boundary vertices to precisely converge to the correct coordinates for a given
three-phase contact angle ΘC through its relation to K̂i, as demonstrated
in Figure 3.19. As a result, it can be expected to retain accurate estimates
of the mean curvature H and therefore Young-Laplacian pressure while the
boundary motion of the three-phase contact line converges to the correct
value when the surface tension is balanced. In idealised cases where the
surface is minimal and the mean curvature H is constant, it can be expected
to find the exact analytical solution under any refinement, as demonstrated
in Section 4).
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Figure 3.19.: Demonstration of the connection between a three-phase contact angle

ΘLocal (s) and the local Gaussian curvature. A) An arbitrary path of fluid
interface in a three phase system that is not in equilibrium. B) At any three-
phase contact point there is a uniquely associated fluid-fluid tangent plane
(blue), solid contact tangent plane (orange) and additionally an osculating
circle (pink) is associated with the approximate plane cut-out circle radius
rapprox at a latitude λ = ΘLocal (s) with great sphere radius Rapprox . C) The
spherical cap of the smooth great sphere defined by the osculating circle is
additionally constrained to a point on the three phase-contact line and there-
fore has a unique cut at λ. D) The discretisation of the local patch of manifold
in (A) has an associate discrete mean normal and Gaussian curvatures from
Equations 3.6 and 3.9. The integrated value

∫
S K̂idA is approximated from

the integration using Stokes’ Theorem in the shaded dual area.
∫

S KdA can
be set to

∫
S K̂idA from which the smooth osculating circle geometry can

be computed. Rapprox is found from
∫

S KdA and rapprox is found from the
integrated geodesic curvature

∫
∂S kgds = 2πχ −

∫
S KdA. Therefore, the

only source of error is the numerical integration error along the edges of the
patch in (D). E) In contrast to the non-equilibrium interface in (A), the fluid
interface here is at equilibrium (zero net forces at all points on the three-phase
contact line), also known as a minimal surface meaning that it has constant
K everywhere and in (G) the latitude λ = ΘC (exactly) and in (H) the inte-
grated value

∫
S K̂idA is exactly equal to the true smooth value

∫
S KdA due

to the fact that Equation 3.9 is integrating over a constant Gaussian curvature.
Figure adapted from Endres, Avila, and Mädler (2022),
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Forces on the three-phase boundary lines

Finally, an explicit force vector can be calculated from the force balance at a
point on the three-phase boundary curve. If the system is not at equilibrium
at an arbitrary contact angle ΘLocal, a non-zero net tension γnet exists:

γnet = γSL + γLGcosΘLocal − γSG,

when the system is at equilibrium:

0 = γSL + γLGcosΘC − γSG.

Subtracting the two equalities:

γnet = γLG(cosΘLocal − cos ΘC),

which has units of N·m-1. By integrating this scalar quantity along a segment
ds, the magnitude of the force acting on the contact line in the segment ds
can be determined:

Fb =
∫
γnet(s)ds =

∫
γLG(s)(cosΘLocal(s)− cos ΘC(s))ds

with units in N. Integrating along a definite segment such as an edge eij

provides a well-defined approximation for the averaged force over the edge:

Fb =
∫

eij

γnet(s)ds =
∫

eij

γLG(s)(cosΘLocal(s)− cos ΘC(s))ds (3.11)

In conclusion, the force vector is restricted to the intersection of the fluid
interface boundary with the solid phase, as the force balances in other
directions are assumed to be zero in the absence of material deformation.
Consequently, the force vector Fb at a point is given by:

Fb = Fb
eij ∧ eik

∥ eij ∧ eik ∥
(3.12)

Assuming that γLG(s) and ΘC(s) are constant parameters over s, the only
remaining task is to compute an approximation of the current (now discrete)
angle Θ̂Local(s).
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Figure 3.20.: An arbitrary patch of surface interface S and the relations between the tangent
vector T on the boundary ∂S, the normal vector N and the cross product
T×N.

Derivation of the Young-Laplacian pressure from curvature

The Young-Laplace Equation 2.1 can be employed to determine the equilib-
rium pressure difference ∆p across a phase interface in equilibrium, based
on the constant mean normal curvature H of the interface. In the preceding
section, an average non-equilibrium net force acting on an arbitrary seg-
ment of the three-phase contact line was derived and linked to the discrete
mean normal curvature Ĥi. The relationship between the non-equilibrium
∆p,H, Ĥi, and the average force Fint acting on an arbitrary patch of surface
S (e.g., Figure 3.20) between two phases in the interface interior is also
significant, for instance, in relating the net forces between two particles due
to capillary liquid bridge formation.

Consider two immiscible phases, denoted 1 and 2, with a pressure difference
∆p = p1 − p2 between them. The net force at the interface can be calculated
using the following equation:

Fint =
∫

S
(p1 − p2) ·NdA+ γ

∫
∂S

T×Nds (3.13)

When Fint = 0 at equilibrium:
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−
∫

S
(p1 − p2) ·NdA = γ

∫
∂S

T×Nds

Applying Stokes’ Theorem:

−
∫

S
(p1 − p2) ·NdA = γ

∫
S
d (N ∧ df)∫

S
(p1 − p2) ·NdA = γ

∫
S
df ∧ dN∫

S
(p1 − p2) ·NdA = γ

∫
C
HNdA

In the limit where S shrinks to a point:

∆p = γ(h)H (3.14)

Equation 3.14 relates the pressure difference ∆p and the net force net force
Fint across a phase interface in equilibrium on an arbitrary patch of surface
interface S with the smooth mean normal curvatureH is zero (Equation 3.14).
In the second step the minus sign appears due to the anti-symmetric operation
on the right-hand side. The discrete mean normal curvature Ĥi can be used
to approximate H, enabling the computation of the pressure difference ∆p
in capillary rise simulations and the integrated net forces between particles
in liquid capillary bridges.

3.5 On the difference between use of point-wise
and integrated DDG formulations

The formulations presented in Section 3.4 involve a subtle approximation
when total integrated quantities such as

∫
S HNdA are divided by the dual

area Ci (similar to a gradient). In Section 3.4, the potential for the exact
total curvature integral tensor to be directly used in numerical methods is
highlighted through a force computation that can be linked to the momentum
balance. Symmetric bridges of equally sized particles allow for analytical so-
lutions (Endres, Avila, and Mädler, 2022) and therefore serve as an ideal test
case for comparing numerical methods. Using an asymmetric discretisation
of such a bridge, the errors in point-wise estimates are demonstrated, along
with a comparison to the total integrals. Later in this work, an analytical
surface function for asymmetric bridges of differently sized particles is also
introduced (Section 4). This method can be employed to compute more ac-
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curate forces in liquid bridges for DEM parameterisation as well as modeling
wetting of agglomerates in direct numerical simulation.

In Endres, Avila, and Mädler (2022) and in this work in Section 4 it is shown
that for some arbitrary patch of interface S, the mean normal curvature
HN can be computed precisely using the explicit closed form solution of the
Stokes integral as derived in Equation 3.9 from which the equality can be
set: ∫

S
HNdA = ĤNdAi

From Equation 3.13 to the force acting on the surface S can also be related
to curvature. For two immiscible phases 1 and 2 with a pressure difference
∆p = p1 − p2 between them, the net force is:

FS =
∫

S
(p1 − p2) ·NdA+ γ

∫
∂S

T ×Nds = γ
∫

S
HNdA

Following through the derivation:

FS = NdA

In the second step the minus sign appears due to the anti-symmetric op-
eration on the right-hand side. Remembering that in the limit where S
shrinks to a point it is possible to retrieve the Young-Laplace Equation
∆p = γH. A fundamental problem when trying to find the approximate
value of

∫
S HNdA = ĤNdAi at a point was elucidated by Wardetzky (2008)

who rigorously proved that the cotan formula fails to converge in the space
of interest. In Endres, Avila, and Mädler (2022) and shown in Section 4 the

approximation
∫

C
HNdA·N

Ci
will be used and it will be demonstrated that this

approximation was sufficiently accurate for symmetric triangulations shown
in several test cases.

In concluding this chapter, a final important relation back to momentum
balances in continuum CFD is the total force acting on the boundary of
a three-phase contact line Sb ⊂ ∂S with contact angle parameter ΘC in a
nonequilibrium state with the three-phase contact line angle Θlocal (s) at each
point s ⊂ ∂S from Equation 3.11. These equations are sufficient to define
the multiverse momentum balance. Starting fundamentally from Newton’s
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Figure 3.21.: A control volume Ω that is intersected by a phase interface S. Note that a
control volume in the bulk fluid can have S = and therefore Equation 6 is
fully general. A three-phase contact line Sb ⊂ ∂S may or may not exist on the
boundary of the interface, however, by construction the contact line cannot
be in the open set area of S and similarly it is only possible for S to be subset
of ∂Ω and is never contained in the open set volume of Ω.

second law Fi = mai, in any component direction i, a Cauchy momentum
balance by considering a control volume Ω ⊂ Rd(d = 2, 3) can be derived:

∫
Ω
ρ
Dui

Dt
dV =

∫
Ω
ρfidV +

∫
Ω
∇jσ

j
i dV +

∫
S

(p1 − p2) ·NidA+ γ
∫

∂S
HNidA+∫

Sb

γ(s) (cos Θlocal (s)− cos ΘC(s)) ds
(3.15)

where the component of the Cauchy stress tensor (a constituent equation
for fluids leading to the NavierStokes ( N− S ) equation) is σ = −pI + τ , τ

is the deviatoric stress tensor, I is the identity matrix). The other terms
include the material derivative of velocity (in vector form Du

Dt
= ∂u

∂dt
+ u.

∇u ) which is equal to the integral of the stress and body forces fi (ex.
gravity) acting on the volume element. Because Equation 3.15 applies to any
arbitrary control volume, the equation holds and the differential form of the
Cauchy momentum equation (and in turn the multiphase N − S equation)
can be obtained. However, in this work the case is considered where a
control volume is bounded by a phase interface S intersecting the control
volume as demonstrated in Figure 3.21. The body forces

∫
Ω ρfidV term

and the acceleration term
∫

Ω ρ
Dui

Dt
dV is invariant to the interface size since

the interface does not have bulk components to act on the mass of the
control volume. While Figure 3.21 is written in differential form, the actual
solution of momentum balance equations is typically computed by solving
the potentials in integro-differential form. Consequently, in most methods
available in software libraries, Figure 3.21 can be directly utilised with an
appropriate coordinate system. Section 4.2 will demonstrate the difference
between these approaches in experimental results simulating particle-particle
liquid bridges.
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4Applications of Discrete
Differential Geometry for Test
Cases with Three-Phase
Equilibrium

Discrete differential geometry in the context of physical multiphase sys-
tems

In this chapter specific applications of the method and libraries developed
in Section 3 are validated in the context of physical multiphase systems. A
particular focus is on validating the method against the fundamental test
cases of capillary rise, for which exact abstract solutions exist. The method’s
validation using experimental sessile microdroplet data is also demonstrated.
Finally, the method is applied to symmetric and asymmetric particle-particle
liquid bridges in order to determine the forces involved in the agglomeration
mechanism.

Section 4.2 focuses on a core result of this work; the precise calculation of
curvature on arbitrarily discretised surfaces, enabling the computation of
surface tension forces with exceptional precision. It is important to distinguish
between the symmetric case (for which well-known solutions exist) and
the asymmetric case (for which exact analytical solutions were previously
lacking). The validation test cases demonstrate the method’s versatility in
a variety of applications and especially with respect to the agglomeration
mechanism in wet particulate systems.

4.1 Test Cases for Analytical Validation

This section showcases applications of DDG curvature computations to the
physical processes of capillary rise, and Sessile droplet formation, along with
the associated errors. These case studies can be applied to any physical
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Figure 4.1.: Examples of increasingly fine discretisations of a capillary rise film in 3 dimen-

sions using n = 20, n = 68 and n = 249 vertices.

surface embedded in three-dimensional space through the Gauss-Bonnet the-
orem. However, a homology computation is necessary to apply the theorem
to a given surface topology (therefore, caution should be exercised in ensur-
ing the correct refinement error to prevent solid phases from intersecting
a local integration domain of fluid-fluid or fluid-gas interfaces). A homol-
ogy computation for this purpose can be carried out in three-dimensional
space with relatively low computational cost as discussed in Section 3. The
accuracy of the DDG curvature computations is demonstrated for the case of
a macroscopic capillary rise process. The second case study showcases the
computation and refinement in non-ideal droplets and compares the results
to the corresponding Surface Evolver software implementation by (Brakke,
1992).

4.1.1 Capillary rise (surfaces with boundary)

The equilibrium solution of a capillary rise (Equation 2.2) exhibits a minimal
surface with a known analytical curvature. Specifically, when the radius
of the tube is sufficiently small, it can be idealised as a minimum sphere.
This serves as a motivating test case for the discrete boundary contact angle
formulation. The aim of this study is to determine discrete approximations of
a capillary surface interface with a known analytical mean normal curvature
H = 2

R
in order to gain insights into both the accuracy of the formulation

and the numerical accuracies achievable when simulating non-ideal systems.
Three parameters are considered: the three-phase contact angle ΘC , the
number of boundary vertices (N), and the tube radius a = 0.5 mm. The
capillary length λc =

√
γ

∆ρg
= 0.00271 m at STP. Figure 4.1 illustrates the

half-cylinder cut-out discretisation of this system.

Here the Young-Laplace pressure is determined for a capillary rise of wa-
ter in a solid tube with a radius of a = 0.5 mm, assuming a three-phase

74 Chapter 4 Applications of Discrete Differential Geometry for Test Cases with Three-Phase

Equilibrium



contact angle of Θc = 45◦. The current formulation enables the accurate
prediction of the Young-Laplace-derived capillary force under any refinement
of the film triangulation (Figure 4.2). The capillary force error is defined
as
(
Fcap − F̂cap

)
/Fcap, where F̂cap represents the force computed using the

numerical method and Fcap represents the analytical force derived from the
Young-Laplace equation. Notably, a very small number of vertices can still
reproduce the correct analytical solution, thereby accurately predicting both
the Young-Laplace pressure and the capillary motion on the boundaries.
The integration error reported in Figure 4.2 is a crucial tool in dynamic
simulations, providing an estimate of the local geometrical precision of the
simulation.

For instance, in intricate geometries such as micropores, it is crucial to adjust
the refinement based on the local variations in pore dimensions to prevent
integration errors over any significant features. Since the integration between
edges was performed using only the boundary vertex values on the edges,
the error in the scalar field values, according to Stokes’ Theorem, is simply
integration using the trapezoidal rule. Figure 4.3 provides a more detailed
illustration of the trapezoidal rule and the error computation. It is important
to note that, due to the fundamental theorem of calculus, integration over an
edge eij is exact when the surface is Lipschitz continuous.

Since the interior height map is continuously captured across a dual domain
through Stokes’ Theorem in Equation 3.4, there is no integration error if
the interior of the domain (fi) is also Lipschitz continuous. It is crucial to
consider the error since, for instance, when the solid geometry intersects the
domain (fi), the surface ceases to exist in a subset of the domain, necessitating
interface refinement to resolve the geometric error in the simulation. The
error when integrating over an edge eij = fj− fi is equivalent to the error of
the trapezoidal rule, which propagates through the Stokes’ integration and
should therefore be controlled during any dynamic simulation of non-ideal
geometries to resolve non-convex areas of the solid phase and maintain high
accuracy while the system evolves over time.

Accuracy of mean normal curvature estimates for different triangulations of a
capillary rise problem.

Next, consider the symmetrical minimum discretisation of a sphere, enabling
the study of the total integral error for different incidences on a three-phase
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Figure 4.2.: Refining the accuracy of the surface interface at a contact angle Θ = 45◦ and

tube radius a = 0.5 mm. It should be noted that the approximations for nor-
malised mean normal curvature (orange) and the discrete Laplacian pressure
∆p̂ are almost precisely on the analytical values of H and ∆p even when the
integration error (orange) is high. The equilibrium films for n=4, n=7 and
n=20 are shown on top. The computed convergence rate from a fitted trendline
is ≈ 1.975 in agreement with the second-order convergence of the trapezoidal
rule.
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Figure 4.3.: A) A triangulation on a smooth liquid-air interface in a tube with a=1.0 mm.

B) The Trapezoidal rule in the x1=0 plane cut-out from A). The error across an

edge eij is known to be equal to ϵ = f
′′

(ε)(b−a)3

12n2 where ε is any number in an

interval [a, b] and therefore the integration error is proportional to
∥∥∥(f j − fi)3

∥∥∥ .

The error can be further reduced by O(n-2) by sampling n vertices on the edge
eij .

boundary vertex. By analyzing the curvature in the vicinity of a vertex, the
mean normal curvatures and numerical accuracies can be determined for
various refinements. Figure 4.4 presents the results for a spherical cap with a
radius a = 0.5 mm (a specific theoretical case where H = κ1 +κ2 = K = κ1κ2

at ΘC = 0; note that for significantly smaller, more realistic a values, H
becomes very large relative to K, and it is challenging to visualise the
comparison on a single graph). Observe that for any value of ΘC , the
dual area normalised mean normal vector curvature Ĥi calculated using
Equation 3.6 provides an almost exact estimate of the curvature H for the
entire range of ΘC .

A remarkable observation from Figure 4.4 is that it enables the demonstration
of a highly accurate estimate for the mean normal curvature in the vicinity
of a vertex. Furthermore, for higher values of ΘC , an equivalent estimate
for the Gaussian curvature can be obtained, which compensates for the lack
of precise concepts of discrete Gaussian curvature available for physical
simulation. This partially motivates the use of the relationship between Ĥi

and K̂i in this formulation. This implies that with the current formulation,
the physical forces can be recovered with near-perfect accuracy, subject to the
integral error over the boundary path edges of the neighborhood. Crucially,
the curvature-driven physical forces remain unchanged under refinement of
the mesh in convex domains. It is essential to resolve the geometry such that
it is convex in the local domain to a specified precision, for which an accuracy
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 Figure 4.4.: The discrete Gaussian curvature K̂i and discrete mean normal curvature ĤN i

are nearly equal to the exact smooth analytical solutions of K and H throughout
the range of hydrophilic three phase contact angles ΘC .

can be calculated around a given vertex neighborhood. In the following
subsection, it is demonstrated how the definitions for boundary curvatures of
Boundary gas-liquid-solid interface contact angles can be employed in the
capillary rise interface energy minimization problem and lead to the correct
hydrostatic equilibrium.

4.1.2 Mean curvature interface energy minimisation of a
capillary rise

This section demonstrates the convergence of the discrete formulation to the
correct equilibrium solution shown in Figure 4.5. The internal energy of the
interface is defined by

U j =
∫

∂S
γjdA. (4.1)

Interface energy minimisation and the algorithmic details involved in are
provided in Section D, in short this is simply the minimisation of Equation 4.1
by moving the discrete representation of the surface interface in the direction
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of the energy gradient, subject to the physical constraints of the system.
In addition to using the same model for water, a gravity field with g =
(0, 0,−9.81) m · s−2 is added, and a contact angle of ΘC = 20◦ is specified.
Starting from a flat reservoir of water, the film rises (as expected due to
the surface tension and under the thermodynamic assumptions stated in
Section D to an equilibrium solution (with the meniscus at the Jurin height)
with the lowest vertex on the meniscus near hJ = 2γ cos ΘC

ρga
with a Young-

Laplacian error of less than 1× 10−10 at equilibrium for all films, including
very sparsely refined films. To achieve equilibrium, the films were perturbed
when the film was stuck in a local minima saddle point during the interface
energy mimisation. Such saddle points are described in more detail in Brakke
(1992).

This finding is crucial as it demonstrates that the sampling density of a fluid
interface can be exceptionally low. As long as the area containing a domain
st (fi) is convex, the fluid geometry can be resolved with high precision. This
implies that in the simulation of larger-scale multiphase systems with far
larger surface areas to track, the formulation can be employed to significantly
reduce computational costs and enhance tractability for many systems of
interest with small Weber numbers (where capillary forces dominate over
inertial forces).

4.1.3 The Sessile Droplet Test Case for Experimental
Validation

Case study: Sessile droplets (non-ideal surfaces) droplets)

In order to illustrate the benefits of the discrete differential geometry bound-
ary formulation over traditional surface interface minimisation techniques,
the case of a Sessile droplet is demonstrated. The Sessile droplet is a non-
ideal surface, closely approximating but not exactly resembling a spherical
cap. The experimental Sessile droplet data from Murray, Fox, and Narayanan
(2020) is used here, which describes an evaporating water droplet in contact
with a gold-coated flat surface with a measured three-phase contact angle
of ΘC = 46.8◦ and an initial mass of 1.20 µg) at a temperature of 26 ◦C. To
model water, the IAPWS equation of state (Wagner and Pruß, 2002) was
utilised to establish the relationship between pressure and density, and the
revised IAPWS model (Petrova and Dooley, 2014) for surface tension. The
geometric data was extracted from Fig. 4 in Murray, Fox, and Narayanan
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 Figure 4.5.: Mean curvature interface energy minimisation for water in a tube with a
radius (a = 0.5) mm and a contact angle of ΘC = 20 degrees, transitioning
from a flat film to an equilibrium meniscus. A) The final capillary height
rise hfinal is close to the expected height from the analytical solution, hJ =
0.00279 m. B) An identical geometric solution to A) is obtained using a much
sparser fluid interface with n = 7 vertices. C) The solution is invariant to the
number of boundary vertices and the edge incidence of the mesh because forces
are integrated over discretised areas. This enables the use of much sparser
simulations to achieve accurate results, as demonstrated in the case of n = 5
shown here. The final global error (calculated as the net force at the vertex
point, which is expected to be zero) at equilibrium is less than 10-10 for all
vertices.
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(2020) using the Canny edge detector available in scikit-image (Walt et al.,
2014) with a Gaussian smoothing of σ = 3.

The curvature interface energy minimization is initiated using an initial
cylinder with the same mass as the Sessile droplet. The energy is minimised,
and the resulting equilibrium droplet is compared to physical data from
a Sessile droplet test, as shown in Figure 4.6. The model error is less
than 0.001% from each vertex to the nearest data point, even using the
minimum (symmetric) triangulation of the cylinder. The results can also be
compared to conventional methods, such as the Quadratic model for surface
energy implemented in the Surface Evolver software (Brakke, 1992). The
Surface Evolver results in Figure 4.7 demonstrate that the droplet data can
only be accurately represented after a large amount of refinement, which
is unnecessarily expensive compared to the DDG boundary formulation.
This implies that for physical simulation, less discrete data is needed to
accurately represent the surface interface, and the mean normal curvature
can be computed more accurately at a lower resolution of discrete points.
This also has general surface applications, where the boundary angles are
fixed constraints, and the DDG boundary formulation can be used to produce
equilibrium surfaces with greater accuracy.

The relative error from these simulations are summarised in Figure 4.8.
Figure 4.8 should be considered an indirect comparison intended solely to
highlight the qualitative trends of the convergence of the respective formula-
tions to the data as the number of vertices in the triangulation is increased.
Notably, the DDG formulation converges even for a sparse triangulation (and
subsequently produces a consistent error with the later increase in error
possibly due to floating-point error accumulation), whereas the conventional
Surface Evolver software requires more vertices. A direct quantitative com-
parison is challenging due to (i) the existence of experimental errors in the
Sessile droplet study, (ii) the parameter dependence of the Canny edge detec-
tor algorithm, and (iii) the use of geometric volume in Surface Evolver, which
produces a higher error bias than the DDG implementation, which is specifi-
cally designed for sparse systems. Nevertheless, the qualitative advantage of
employing the new three-phase angle formulation is clearly demonstrated in
Figure 4.8.
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Figure 4.6.: A) A sparse simplicial complex triangulation of an initial cylinder of water
(blue) with the same mass as the Sessile microdroplet discretised with n = 43
initial vertices. The data extracted from Murray, Fox, & Narayanan (2020)
using the Canny edge detector algorithm is shown in the black bold curve.
The complex is then allowed to move according to the algorithm described in
Section D and converges to

∑
n∈ ∂S ∥ ΘC −ΘCurrent ∥ / n = 2.838 × 10−13

and n = 7 final vertices. As an error estimate compare the norm of the interior
vertices on the y = 0 axis that are the closest the data points on that plane
resulting in

∑
fi∈ S\∂S|y=0 mini,j

∥fi−f ∗
j ∥

f ∗
j

= 2.527× 10−6 where f∗
j denotes a

data point on the y = 0 axis (shown in black) and fi is a vertex in the complex
interior (blue). B) An intermediately sparse initial cylinder with n = 43 initial
vertices are plotted together with the data points. The system converges to∑

fi∈ S\∂S|y=0 mini,j
∥fi−f ∗

j ∥
f ∗
j

= 2.527× 10−6 with n = 19 vertices. C) A higher

sampled triangulation with n = 109 initial vertices. The system converges to
an average error of

∑
fi∈ S\∂S|y=0 mini,j

∥fi−f ∗
j ∥

f ∗
j

= 9.176× 10−6 with n = 61
vertices in the final complex. D) Side profile of simplicial complexes shown in
A, B, C. After reaching equilibrium, the final equilibrium vertices on the y-axis
closely match the data points, with a nearest distance error of less than 0.001%
for each vertex.
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 Figure 4.7.: A) For sparse refinements Surface Evolver cannot accurately represent the
geometry at equilibrium (

∑
fi∈ S\∂S|y=0 mini,j

∥fi−f ∗
j ∥

f ∗
j

= 0.01093 for n = 12
vertices). The half spheres shown are using a symmetric boundary condition.
Note in particular that the boundary formulation assumes that the geomet-
ric angle is equal to the three-phase contact angle (Figure 1B) which results
in the boundary facets not having all vertices near data as well as other de-
fects such as the top vertex not converging to the correct position. B) The
droplet converges to equilibrium only after sufficient refinement (at the min-
imum energy we found

∑
fi∈ S\∂S|y=0 mini,j

∥fi−f ∗
j ∥

f ∗
j

= 3.52 × 10−3 and∑
fi∈ S\∂S|y=0 mini,j

∥fi−f ∗
j ∥

f ∗
j

= 2.27× 10−3 in (C) respectively at the energy

minima using n = 39 and n = 141 vertices). Note that Surface Evolver enforces
the three-phase contact angle on facets (here between the triangles of the
interface triangulation and the ground plane). Therefore, from this half-sphere
cut out, the contact angle on the edge doesn’t necessarily match a tangent line
from the data at the three-phase contact point.
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 Figure 4.8.: Relative errors of the presented DDG formulation were compared to the Sur-
face Evolver model. The relative errors are computed using the formula∑

fi∈ S\∂S|y=0 mini,j
∥fi−f ∗

j ∥
f ∗
j

(the norm of the interior vertices on the y=0 axis

that are the closest the data points on the axis).
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4.2 Agglomeration: Particle-Particle Liquid
Bridges

The agglomeration mechanism in particle-particle liquid bridges

This section compares the accuracy of the DDG formulation developed here
for liquid capillary bridges. Capillary bridges play a crucial role in particle
systems (see Balakin et al. (2013) for a review) in addition to various other
applications in materials and colloidal science. For example, they also hold
significance in biological applications, such as simulations of cell structures
(Pampaloni and Stelzer, 2009) and the study of respiratory diseases (Alencar
et al., 2005).

4.2.1 Symmetric liquid bridges between two particles of the
same size

Case study: Capillary bridges

The resulting capillary force between two particles is determined using the
following equation:

FCap = ∆PAm + 2γUm (4.2)

Where Am and Um are the area of the cross-subsection and the circumference
of the meniscus neck respectively, γ is the surface tension, and the Laplacian
pressure drop is given by Equation 2.1. Analytical solutions to symmetric
capillary bridges in equilibrium have been found by substituting the Laplacian
equation into Equation 2.10 and solving the resulting PDE for a constant mean
curvature H on a given resolved surface embedded by a surface function
f . It was proven by Delaunay (1841) that all equilibrium surfaces that
are a solution to this PDE system have constant mean normal curvature H
everywhere on the surface. As the primary application of DDG is to accurately
simulate dynamic systems, encompassing inertial effects and viscous forces,
validating its effectiveness for non-symmetric, non-equilibrium systems is not
possible due to the absence of known analytical solutions for such systems.
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Therefore, to assess the numerical method’s performance, the equilibrium
surface is discretised and the accuracy of the discrete solution is compared to
the analytical solution, as in the capillary rise test case.

Accuracy of mean normal curvature estimate for different triangulations of an
equilibrium capillary bridge problem

In order to validate the numerical accuracy of the discrete differential geome-
try (DDG) formulation, the exact analytical equation for the Catenoid surface,
which represents the analytical solution for the capillary bridge system, was
employed:

x = q cosh
(
v

q

)
cosu

y = q cosh
(
v

q

)
sin u

z = v.

(4.3)

Where q is a constant, v is any real number in this case within the chosen
interval v ∈ [−1, 1] and u ∈ [0, 2π). Catenoids always have a mean normal
curvature H(u, v) = 0 at every point on the surface. These can take on the
appearance of a discretised liquid bridge as shown in Figure 4.9.

Integrating the solution over the entire simplicial complex eliminates all
signed values, resulting in a zero mean normal curvature. This process
correctly recovers the total forces exerted in both directions across the bridge
(N+z = (0, 0, 1) and N−z = (0, 0, −1)) as shown in Figure 4.10.
However, it is important to note that while the correct integrated solution
can be recovered as expected, since the true integrated value is effectively
computed (this equation is an equality), the point-wise approximation is
found to be less accurate. In other words, the discrete value Ĥi for non-convex
surfaces is less accurate than the convex case of capillary rise systems.

The latter exhibits near-exact accuracy when Ĥi is compared to the analytical
H at a given point on the surface (x, y, z) under any refinement, even using a
minimal number of vertex points. This is demonstrated in Figure 4.10 where
the value of Ĥi is calculated using the the point-wise value for Ĥi computed
as Ĥi = HNdAi · N̂i (fi(u, v)) /Ci based on Equation 3.6. Additionally, for
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Figure 1: A discretised catenoid surface with 𝑞𝑞 = 1 and 𝑣𝑣 ∈ [−1, 1]. 

 

 

 

 

 

 

mparison). 

Figure 4.9.: A discretised Catenoid surface with q = 1 and v ∈ [−1, 1].
as shown in

this case N̂i is estimated as N̂i (fi(u, v)) = fi(u, v)˘ (0, 0, zi) where N̂i is
estimated as N̂i (fi(u, v)) = fi(u, v)−(0, 0, zi) and zi is the height component
of fi(u, v). K̂i is computed from the principal curvatures computed from the
implicit principal curvature relations Equation 3.10. it should be noted that
while the total errors shown in Figure 4.10 are almost negligible, the point-
wise errors as measured by comparing to the analytical solutions at each
vertex are inaccurate as shown in Figure 4.11. Therefore, it is symmetries
in the opposing normal vector directions cancelling out this error thereby
producing a low total error when compared the total bridge force. In the
next subsection the asymmetric forces are closely investigated in order to
develop a better understanding of the point-wise vs. integrated curvature.
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Figure 1: The Capillary force errors of the numerically calculated force when compared to 
the analytical result under increasingly detailed refinements of the surface. Also shown is the 
integration error (calculated using the p-norms over the surface). The computed 
convergence rate from a fitted trendline is ϵ ≈ 1.9048. 
 

Figure 4.10.: The Capillary force errors of the numerically computed force when compared
to the analytical result under increasingly detailed refinements of the surface.
The integration error (calculated using the p-norms over the surface) is also
shown and the computed convergence rate from a fitted trendline is ≈
1.9048.
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Figure 1: A) The difference between the numerical mean curvature 𝐻𝐻�𝑖𝑖 at a point u, v and the 
analytical solution 𝐻𝐻(𝑢𝑢, 𝑣𝑣) = 0 at the point i. We expect every value (orange cross) to be 
close to zero, also subject to the error of the estimated surface normal 𝑵𝑵𝒊𝒊 used to compute 

A) 

B) 

Figure 4.11.: A) The difference between the computed numerical mean curvature Ĥi at a
point u, v and the analytical solution H(u, v) = 0 at the point i. It is expected
that every value (orange cross) should be close to zero, also subject to the
error of the estimated surface normal Ni used to compute Ĥi. B) The greater
refinement of the complex reduces the error compared to (A), which uses a
sparser refinement (only the first few vertices are shown for comparison).
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4.2.2 Asymmetric liquid bridges between two particles of the
different sizes

4.2.2.1 Description of analytical test cases

In order to demonstrate the explosion in errors associated with point-wise
estimates of curvature an asymmetrically triangulated mesh on the Catenoid
surfaces shown in Figure 4.16 is used. The Catenoid surface is a minimal
surface that has curvature H = 0, this presents to most ideal case possible to
compute numerical methods in liquid-bridge like interfaces. The Catenoid
surface has a mapping from the plane to an embedded surface f : R2 → R3:

x(a, b) = q · cosh
(
a

q

)
· cos a

y(a, b) = q · cosh
(
a

q

)
· sin a, a ∈ [0, 2π), b ∈ R

z(a, b) = b.

(4.4)

And a newly derived asymmetric variant is given by:

x(a, b) = q · cosh
(

b
q

)
· cos a+ w · cos a

y(a, b) = q · cosh
(

b
q

)
· sin a+ w · sin a , a ∈ [0, 2π), b ∈ R

z(a, b) = b,

(4.5)

where q and w represent surface constants related to the bridge volume and
particle film height at the bridge boundary. Triangulation of the Catenoid
surface involves sampling points on the surface using algorithm 2. Asym-
metries are introduced by refining the triangles that are incident on only
one of the boundary vertices (Figure 4.13). This results in both asymmetries
in the local areas and asymmetric mesh elements such as "skinny triangles"
with two edge lengths significantly longer than the remaining edge. Finally,
mean normal curvatures are computed using Equation 3.5 and compared to
the analytical solution. For the point-wise error estimates, local dual areas
Ci as well as errors for unnormalised integrated estimates are computed
by subtracting the analytical solution from the vector

∥∥∥∫C HNdA− ĤNdAi

∥∥∥
and then summing the vector components to obtain a scalar value.
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Figure 4.12.: A) A Catenoid surface is a minimal surface (H = 0) at every point together an
analytical expression for the normal vector N at every point on the surface.
B) An asymmetric Catenoid surface for liquid bridges connecting particles of
different diameters.

4.2.2.2 Numerical results

The numerical results are presented in Figure 4.15 and Figure 4.16. It is
immediately evident that point-wise estimates of curvature in the asymmetric
direction (0, 0, 1) become unacceptably large with increasing refinement. In
contrast, the point-wise estimates of curvature for the regular symmetric tri-
angles in the (0, 0,−1) direction exhibit relatively high accuracy. Importantly,
the integrated mean normal vector elements are always exact, subject only to
floating-point errors, even when integrated over asymmetrically discretised
triangulations. This highlights the utility of employing the latter formulation
for arbitrary meshes.
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Figure 4.13.: Asymmetric refinement of the discretised Catenoid surface shown in Fig-
ure 4.12A. Note that refining only around one of the boundary vertices
produces so-called "skinny triangles" which are asymmetric and result in
numerical instabilities when attempting to compute point-wise curvature
estimates. As demonstrated later in this section in Figure 4.15 these produce
incorrect estimates of point-wise curvatures for which the error increases
considerably at greater refinements. The triangulations contain 36, 45, 54, 63,
72 and 81 vertices respectively. The initial triangulation contains 16 vertices
on the right side of the bridge and 4 in the centre. Therefore, the remainder
of vertices generated are the number of asymmetrically generated vertices by
subdividing every edge in every triangle connected to left-centre most vertex.
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Figure 4.14.: Refinement of the discretised Catenoid surface shown in Figure 4.12B. The tri-
angulations contain 36, 136, 528, 2080, 8256 and 32896 vertices respectively.
The vertices are generated by subdividing in the initial plane triangulation
and projecting the new plane triangulation to 3 dimensions.
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Ci

)

Integrated errors (sum of vector components in ĤNdAi )

Figure 4.15.: The errors present in point-wise and unnormalised integrated estimates of the
mean normal curvature of the asymmetrically refined liquid bridges shown in
Figure 4.13. For the first point containing only 36 vertices the errors are all low
because the triangulation is still symmetric (cf. Figure 4.13). For subsequent
refinements the point-wise errors in the (0, 0, 1) direction accumulate rapidly,
at 81 vertices they are several orders large, this is primarily due to the small
area of Ci in the asymmetric regions of refinement, which exacerbates the
incorrect curvature estimates. On the contrary the total integrated point-wise
error in the symmetric (0, 0,−1) direction as well as the total integrated errors
overall are nearly zero around the order of 10−17 largely indicating staggered
floating-point error. The key observation is that the integrated errors ĤNdAi

are always low independent of the chosen direction or quality of triangulation
refinement.

4.2 Agglomeration: Particle-Particle Liquid Bridges 93



102 103 104

n (number of vertices)

10 15

10 12

10 9

10 6

10 3

100

103

106

Er
ro

r (
%

) Point-wise errors in x+ = (0, 0, 1) direction  (ĤNdAi · x+
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Figure 4.16.: The errors present in point-wise and unnormalised integrated estimates of
the mean normal curvature of the symmetrically refined asymmetric liquid
bridges shown in Figure 4.14. Note that similar to the test case in Figure 4.15
the point-wise errors in the (0, 0, 1) direction accumulate rapidly as the area
of Ci decreases. On the contrary the total integrated point-wise error in the
symmetric (0, 0,−1) direction as well as the total integrated errors overall are
nearly zero around the order of 10−15 largely indicating staggered floating-
point error.
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4.3 Conclusions

In concluding this chapter the infeasibility of using point-wise methods in
the numerical approximation of curvatures has been demonstrated. It was
also demonstrated that only using the total integral formulation allows for
the precise values of mean normal curvature to be obtained (subject only to
floating point errors) under any arbitrary mesh refinement including large
mesh asymmetries and asymmetric surfaces providing a numerical validation
the mathematical proof of Hypothesis H2 derived in Section 3. Therefore,
any implementation of DDG and closely related methods for curvature com-
putation in future numerical frameworks simulating multiphase flow should
opt to use the total integral formulation such as Equation 3.5 for computing
surface tension forces acting on interfaces.
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5Outlook

Outlook on future applications of three-phase DDG formulations

The results of this work provides a strong foundation to open many new
avenues of research that can be investigated within the field of multiphase
CFD, particle technology and thermodynamics.

5.1 Hybrid Euler-Lagrangian CFD-DEM methods

As discussed in this dissertation many multiphase CFD frameworks can incor-
porate the formulation discussed here and this has already successfully been
implemented and will continue to be developed in the near future. Surface
detection and computation of curvature was implemented in the Material
Point Method (MPM) for a solver using the taichi library as a back-end of
the gradient computations that can take advantage of powerful mixed preci-
sion TPU units for the triangulation step. This involves using the boundary
computation algorithm described in Section 3.2.3. Once the surface is con-
structed the curvature can be compute using Equation 3.5 and the resulting
forces on the fluids is added directly to momentum balance as discussed in
Section 2.3.2. The parallelisation of the boundary computation and parallel
higher precision curvature computation improved speed performance by 62%
in numerical tests when compared to CPU implementations. This demon-
strates the potential to keep the real time speeds of MPM, but coupled with a
rigorous method for surface tension computation.

In collaboration with the Technical University of Munich (TUM) the DDG
formulation developed here has been implemented in the ALPACA library
which used the level-set method for interface tracking. At the time of writing
validation is being done on this implementation which should allow for
multiphase simulation of a wide range of systems including systems with
pressure shock waves where the DDG formulation has been shown to be
robust even under pressure high gradients.
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5.2 Equilibrium structures from fluid-solid potential
models

While dynamic simulation can provide valuable scientific insight into pro-
cesses, there are many practical engineering applications where it is only
desired to predict the final equilibrium of the system. For example, the
structures of nanoparticulate films which determine the performance of the
material in applications such as batteries, catalysts and sensors where the
percolation and porosity of the micro- and mesoscale structure material de-
termine its macroscopic properties. In this case it is far cheaper to directly
compute the equilibrium structure of the fluid film under different conditions
of humidity. Current research attempts to understand how to incorporate the
wetting of the solid particles into the energy minimisation equation. Cou-
pled with the force models already available for the particles (cf. Section A)
the structural minima of large scale fluid-particle systems can be computed
efficiently.

5.3 Shearing stress models in particle-particle
liquid bridges for DEM simulations

As demonstrated in Section 4.2 the method developed here can be used to
find the equilibrium surface of particle-particle liquid bridges in arbitrary
configuration. Currently the method is being used to investigate models of
surface tension forces in shearing bridges. Course grained models developed
from the solutions of these bridges can be used in the Torsion balance of
large scale DEM simulations as discussed in Section B.
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6Conclusions

Concluding remarks

In this work a new method for computing curvatures and integrated three-
phase contact angles has been developed. The central hypotheses have been
validated and a new practical tool was developed that can be implemented
in a wide array of state-of-the art methods. Firstly, it was shown in Chapter 4
that the rigorous derivation of the curvature of interfaces allows for an accu-
rate, or near-exact computation of curvature for simulation of three-phase
systems. It was additionally shown that the trapezoidal integration error can
be used to provide an estimate of continuity of the interface, which is use-
ful for ensuring dynamic accuracy in three-phase simulations by controlling
the refinement of a numerically captured fluid-fluid interface that is manifold.

Secondly, it was shown that the method for computing curvatures developed
for Hypothesis 1 can be computed exactly for arbitrary fluid-fluid interfaces
that are manifold. The extent to which an interface is manifold can be tracked
by computing the topology of the simplicial complex using the methods
developed for the hyperct library back-end of ddgclib. Because the method
for computing curvatures are near-exact and mesh independent, a very
large tolerance can be used in large scale simulation of complex three-phase
materials. In principle it is only necessary to track that the interface is
continuous. Therefore, the complex can be refined in such a way that the
error matches the desired tracking of non-solid volume due to porosity and
asperities in three-phase systems.

The method has been validated on several important fundamental test
cases:

1. Capillary rise in a tube with comparison to analytical solutions.

2. Sessile microdroplet validation with experiment and comparison to the
state-of-the-art Surface Evolver software.
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3. Symmetric and asymmetric particle-particle liquid bridges.

It has been shown that ddgclib can be used for simulation of energy minimis-
ing systems to find the equilibrium solution of three-phase systems. This
has immediate use for applications such as DEM parameterisation as well
as gaining insights into the equilibria of multiphase systems. The methods
developed in this work has also been shown to be implementable in a wide
range of CFD methods, especially multiphase methods that rely on a sharp
or Lagrangian interpretation of the interface. The near-exact accuracy and
low computational cost presents a core advantage of implementing DDG in a
framework. This further ensures that validation of other features does not
rely on the accuracy of the curvature estimation and this allows engineers
and physicists working in the field to validate other important multiphase
models. Future work will focus on the implementation of these methods
in new hybrid Euler-Lagrange solvers for simulation of multiphase systems
using CFD-DEM methods.
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1.1 A) An overview of this thesis. Mesoporous materials such as
nanoparticle films are built up from a hierarchical assembly
of nanoparticles, the complexity involved in capture the direct
numerical simulation of fluid-fluid-solid interfaces is discussed in
Section 3. In Section 2, the models for numerical simulation and
how they are connected to multi-scale models is discussed. At
the primary particle level the fluid-solid interaction is modeled
at an aggregate level with new models and methods developed
in Section 4. Finally, advances in particle-particle liquid bridges
for differently sized particles are discussed in Section 4.2. B) The
overarching idea in this work is the use of Discrete Differential
Geometry to solve the problem of computing accurate curvatures
on interfaces efficiently. The key constructions and theorems
involved in discrete surfaces and their associated properties are
discussed in Section 3 . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Hierarchical assemblies of nanoparticle films with a thickness on
the order of 1–50 m is formed by agglomerates with typical size
ranges bewteen 200–300 nm which are held together by weaker
forces arising from electrostatics, van der Waals, solvation or
capillary effects. These in turn are made up of chemically bonded
aggregates which typically consist of a distribution of primary
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2.2 Capillary and solvation forces can dominate the interaction at
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particle structures due to local minima in the force-distance
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2.3 The discretisation of liquid-liquid particle bridges is needed in
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cles by integrating the surface tension at the interface. A central
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correct forces for arbitrary configurations and sizes of particles . 10
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2.4 A) The three-phase contact angle ΘC is determined by the bal-
ance of three surface energies: γS − γSL − γL cos ΘC = 0 Surface
tension arises due to the asymmetric cohesive force on the sur-
face of a fluid interface. The energy of the system is minimised
when the local surface area is minimised subject to constraints.
B) Idealised capillary rise geometry with a symmetric discreti-
sation shown as an example. The angle ΘC is the three-phase
contact line, a is the radius of the tube, R is the radius of the
spherical cap or osculating sphere, and hJ = 2γ cos ΘC

ρga
is the Jurin

height. The discretised contact angle θ only approaches the true
smooth contact angle ΘC for very fine discretisations, which are
computationally expensive and exhibit low convergence. . . . . 11

2.5 A smooth mathematical surface can be represented by a mapping
f : R2 → R3 that transforms a 2D plane into a 2D surface
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with a tangent plane TpM , a normal vector N, and a tangent
vector T, which are related through the equation dT(X) = −κN,
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defining a curve embedded in the surface). An example of a 1D
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2.6 The principal curvatures κ1 and κ2 are displayed alongside their
osculating spheres. Notably, the angle θ of a tangent vector T can
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2.7 The geodesic curvature is a measure of how much a curve devi-
ates from being a geodesic on the unit sphere. . . . . . . . . . . 22
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3.19 Demonstration of the connection between a three-phase contact
angle ΘLocal (s) and the local Gaussian curvature. A) An arbitrary
path of fluid interface in a three phase system that is not in
equilibrium. B) At any three-phase contact point there is a
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∫
S K̂idA is

approximated from the integration using Stokes’ Theorem in the
shaded dual area.

∫
S KdA can be set to

∫
S K̂idA from which

the smooth osculating circle geometry can be computed. Rapprox

is found from
∫

S KdA and rapprox is found from the integrated
geodesic curvature

∫
∂S kgds = 2πχ −

∫
S KdA. Therefore, the

only source of error is the numerical integration error along the
edges of the patch in (D). E) In contrast to the non-equilibrium
interface in (A), the fluid interface here is at equilibrium (zero
net forces at all points on the three-phase contact line), also
known as a minimal surface meaning that it has constant K
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the integrated value

∫
S K̂idA is exactly equal to the true smooth

value
∫

S KdA due to the fact that Equation 3.9 is integrating
over a constant Gaussian curvature. Figure adapted from Endres,
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4.1 Examples of increasingly fine discretisations of a capillary rise
film in 3 dimensions using n = 20, n = 68 and n = 249 vertices. 74

4.2 Refining the accuracy of the surface interface at a contact angle
Θ = 45◦ and tube radius a = 0.5 mm. It should be noted that the
approximations for normalised mean normal curvature (orange)
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ϵ = f
′′ (ε)(b−a)3
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∥∥∥(f j − fi)3
∥∥∥ .
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tube with a radius (a = 0.5) mm and a contact angle of ΘC = 20
degrees, transitioning from a flat film to an equilibrium meniscus.
A) The final capillary height rise hfinal is close to the expected
height from the analytical solution, hJ = 0.00279 m. B) An iden-
tical geometric solution to A) is obtained using a much sparser
fluid interface with n = 7 vertices. C) The solution is invariant to
the number of boundary vertices and the edge incidence of the
mesh because forces are integrated over discretised areas. This
enables the use of much sparser simulations to achieve accurate
results, as demonstrated in the case of n = 5 shown here. The
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which is expected to be zero) at equilibrium is less than 10-10 for
all vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
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4.6 A) A sparse simplicial complex triangulation of an initial cylinder
of water (blue) with the same mass as the Sessile microdroplet
discretised with n = 43 initial vertices. The data extracted
from Murray, Fox, & Narayanan (2020) using the Canny edge
detector algorithm is shown in the black bold curve. The com-
plex is then allowed to move according to the algorithm de-
scribed in Section D and converges to

∑
n∈ ∂S ∥ ΘC −ΘCurrent ∥

/ n = 2.838 × 10−13 and n = 7 final vertices. As an error es-
timate compare the norm of the interior vertices on the y =
0 axis that are the closest the data points on that plane re-
sulting in

∑
fi∈ S\∂S|y=0 mini,j

∥fi−f∗
j ∥

f∗
j

= 2.527 × 10−6 where

f∗
j denotes a data point on the y = 0 axis (shown in black)

and fi is a vertex in the complex interior (blue). B) An inter-
mediately sparse initial cylinder with n = 43 initial vertices
are plotted together with the data points. The system con-
verges to

∑
fi∈ S\∂S|y=0 mini,j

∥fi−f∗
j ∥

f∗
j

= 2.527 × 10−6 with n =
19 vertices. C) A higher sampled triangulation with n = 109
initial vertices. The system converges to an average error of∑

fi∈ S\∂S|y=0 mini,j
∥fi−f∗

j ∥
f∗
j

= 9.176 × 10−6 with n = 61 vertices

in the final complex. D) Side profile of simplicial complexes
shown in A, B, C. After reaching equilibrium, the final equilib-
rium vertices on the y-axis closely match the data points, with a
nearest distance error of less than 0.001% for each vertex. . . . 82
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4.7 A) For sparse refinements Surface Evolver cannot accurately rep-
resent the geometry at equilibrium (

∑
fi∈ S\∂S|y=0 mini,j

∥fi−f∗
j ∥

f∗
j

=
0.01093 for n = 12 vertices). The half spheres shown are us-
ing a symmetric boundary condition. Note in particular that
the boundary formulation assumes that the geometric angle is
equal to the three-phase contact angle (Figure 1B) which re-
sults in the boundary facets not having all vertices near data
as well as other defects such as the top vertex not converg-
ing to the correct position. B) The droplet converges to equi-
librium only after sufficient refinement (at the minimum en-
ergy we found

∑
fi∈ S\∂S|y=0 mini,j

∥fi−f∗
j ∥

f∗
j

= 3.52 × 10−3 and∑
fi∈ S\∂S|y=0 mini,j

∥fi−f∗
j ∥

f∗
j

= 2.27 × 10−3 in (C) respectively at

the energy minima using n = 39 and n = 141 vertices). Note that
Surface Evolver enforces the three-phase contact angle on facets
(here between the triangles of the interface triangulation and
the ground plane). Therefore, from this half-sphere cut out, the
contact angle on the edge doesn’t necessarily match a tangent
line from the data at the three-phase contact point. . . . . . . . 83

4.8 Relative errors of the presented DDG formulation were compared
to the Surface Evolver model. The relative errors are computed
using the formula

∑
fi∈ S\∂S|y=0 mini,j

∥fi−f∗
j ∥

f∗
j

(the norm of the

interior vertices on the y=0 axis that are the closest the data
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4.11 A) The difference between the computed numerical mean curva-
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the point i. It is expected that every value (orange cross) should
be close to zero, also subject to the error of the estimated surface
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4.13 Asymmetric refinement of the discretised Catenoid surface shown
in Figure 4.12A. Note that refining only around one of the bound-
ary vertices produces so-called "skinny triangles" which are asym-
metric and result in numerical instabilities when attempting to
compute point-wise curvature estimates. As demonstrated later
in this section in Figure 4.15 these produce incorrect estimates of
point-wise curvatures for which the error increases considerably
at greater refinements. The triangulations contain 36, 45, 54, 63,
72 and 81 vertices respectively. The initial triangulation contains
16 vertices on the right side of the bridge and 4 in the centre.
Therefore, the remainder of vertices generated are the number
of asymmetrically generated vertices by subdividing every edge
in every triangle connected to left-centre most vertex. . . . . . . 91
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4.15 The errors present in point-wise and unnormalised integrated
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ATables of nanoparticle contact
models

In this appendix the tables of particle contact force models which were
reviewed more extensively in Endres, Ciacchi, and Mädler (2021) is shown
in order for this work to be self-contained. These tables are adapted almost
verbatim from the article.
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Table A.1.: Short range particle-particle repulsive forces

Model Description Parameters Applications Citation

Hertzian force model:

Fnr = 4
3E

∗
√
R∗δ

3
2

Classical
Hertzian
force model

E∗ - equivalent Young’s
modulus
R∗ - equivalent particle
radius
δ - particle interaction
parameter

Simulation of silica
aggregates of size
400nm

Model:
(Mindlin & Deresiewicz,
1953; Morrisey, Thakur,
& Ooi, 2014)
Applications:
(Schilde et al., 2012,
2014)

Hertz-Mindlin normal force model:
Fnr = +4E∗

3R∗a
3

Hertz-
Mindlin
(repulsion
component of
J model)

a – contact radius Conventional particle
laden flows in the
laminar regime.

Mindlin and
Deresiewicz (1953)
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Table A.1.: Short range particle-particle repulsive forces

Model Description Parameters Applications Citation

Water adsorbate Hertz-Mindlin force
model:
Fnr = knδ

3
2
n

√
0.5 (R + hn)∗

where
(R + hn)∗ = 2(Ri + hn)(Rj + hn)

Ri + Rj + 2hn

Adaption of
Hertz stress
model to
include pa-
rameterised
from MD
simulations.

kn - Hertzian contact
stiffness
δn- particle-particle
overlap
(R + hn)∗ - the
combined effective
radius
Ri – radius of particle i
Rj – radius of particle j
hn – particle-particle
separation distance at
equilibrium. Related to
the water adsorbate
thickness h that adds up
to each of the nominal
particle radii Riand Rj

Simulation of TiO2

nanoparticle films
subjected to mechanical
stress.

(Laube et al., 2015,
2017, 2018b)
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Table A.1.: Short range particle-particle repulsive forces

Model Description Parameters Applications Citation

Hertz modified for elasticity of
non-adhesive nanopowders:
Fnr = 4

3
E∗

1−v∗2R
1
2
T ip (s0 − s)

3
2

Variant of the
Hertz model
was used to
model
elasticity of
various
non-adhesive
porous
nanopowder
agglomer-
ates.

E∗- Young’s modulus of
the powder
v∗- Poisson’s ration of
the powder
RT ip- Radius of the
glass colloid,
s0 - colloid–sample
contact distance
s - penetration depth.

Used to model elasticity
of various titania (TiO2,
22 nm), alumina (Al2O3,
8 nm), and silica (SiO2,
16 nm) nanopowder
agglomerates.

(Fabre, et al., 2016)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

JKR cohesion model:
Fna = −4

√
πγE∗a3/2

δ = a2

R∗ −
√

4πγa/E∗

The equivalent parameters can be calculated from:
1

E∗ = (1−v2
i )

Ei
+ (1−v2

j )
Ej

1
R∗ = 1

Ri
+ 1

Rj

JKR (Johnson-
Kendall-
Robertson)
model is a
cohesion
contact
model which
accounts for
the influence
of Van der
Waals forces,
many models
present here
have been
adapted from
JKR.

γ - surface energy
E∗ - equivalent
Young’s modulus
R∗ - equivalent
particle radius
δ - particle
interaction
parameter
a – contact radius
vi, vi− Poisson
ratios of interacting
particles i and j.

Used to model
adhesive of
microscopic
agglomerates
(5-200 µm.
Used to study
agglomerate
breakage rates in
Silica agglomerates
50-400 nm range

Model:
(Johnson, et al.,
1971)
Applications:
(DEM Solutions
Ltd, 2014;
Morrisey et al.,
2014; Nguyen et
al., 2014; Schilde
et al., 2014)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

Adhesion pull-off force:
Fna = −3

2ΓπR∗

Where
Γ = γ1 + γ2 − γ12

R∗ = R1×R2
R1+R2

Simple model
of adhesion
pull-off force
based on JKR
(Johnson-
Kendall-
Robertson)
theory

Γ - thermodynamic
work of adhesion.
R∗ - effective
radius between
particles
γ1 , γ2 – surface
energies of particle
i and particle j
Ri, Rj– radii of
particle i and
particle j

Popular model used
in most
non-adhesive
granular systems.
Agglomerates built
up from primary
particles within a
large diameter
range of 9–11 µm.
Applied in dry
powder inhaler
systems in
CFD-DEM
simulations

(Hertz, 1882;
Johnson et al.,
1971; Lian et al.,
1998; Thornton et
al., 1996; Yang et
al., 2013, 2014,
2015a, 2015c,
2013a)

Combined capillary and solvation force model:
Fna = (Fcap + Fsolv) · nij

The capillary and solvation forces can be computed
from different models described here.

Combined
adhesive
forces

nij – The normal
vector between
particles i and j

Simulation of TiO2
nanoparticle films
subjected to
mechanical stress.

(Laube et al.,
2018a)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

Solvation force model:

Fsolv = F 0
solv cos

(
2π(d−Ri−Rj)

σsolv

)
e

d−Ri−Rj
σsolv

Solvation
forces

F 0
solv –

Semi-emperical
parameter fitted to
the oscillatory
force peak
σsolv – decay length
d – particle
distance
Ri – radius of
particle i
Rj – radius of
particle j

Solvation forces
between particles in
the simulation of
TiO2 nanoparticle
films subjected to
mechanical stress.

Model:
(Israelachvili,
2011)
Applications:
(Israelachvili,
2011; Laube et al.,
2015, 2018a)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

Capillary force model:
Fcap = ∆PAm + 2γLUm

∆P = γL

rK

rK = γLVM

RT ln
(

p
P0

)
or
rK =

(
1

rm
− 1

lm

)−1

rm = 2Rl(1−cos(β))+D
2 cos(Θ+β)

lm = R1 sin(β)− rm [1− sin(Θ + β)]

Capillary
force between
spherical
nanoparticles

∆P – Laplacian
pressure difference
between the liquid
phase of the
meniscus and the
surrounding gas
phase
γL - liquid/gas
surface tension
Am- meniscus neck
cross section
Um - meniscus neck
circumference
rk - Kelvin radius
Θ - contact angle
β – filling angle
Rl – Effective
particle radius
= d/2 + h

D – Effective
particle-particle
separation D =
δn + 2h
rm- outer meniscus
radius
lm- inner meniscus
radius

Capillary forces
between particles in
the simulation of
TiO2 nanoparticle
films subjected to
mechanical stress.

(Laube et al.,
2017)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

Approximated capillary force model:
Fcap =
−πγLRl sin(β)

[
2 sin(Θ + β) +Rl sin(β)

(
1

rm
− 1

lm

)]
Approximated
capillary force
between
spherical
nanoparticles

γL - liquid/gas
surface tension
Um - meniscus neck
circumference
rk - Kelvin radius
Θ - contact angle
β – filling angle
Rl – Effective
particle radius
= d/2 + h

D – Effective
particle-particle
separation
D = δn + 2h
rm- outer meniscus
radius
lm- inner meniscus
radius

(Dörmann &
Schmid, 2014;
Laube et al., 2017,
2015; Pakarinen et
al., 2005)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

Capillary force model for identical particles:
Fcap =
−πγR (cos(θ + β) + cos(θ))

(
1− D√

V
0.5πR

+D2

)
Classical
capillary force
approxima-
tion for two
identical
particles

R - particle radius
θ - contact angle,
β - position of the
three-phase contact
line,
γ - surface tension,
V - volume of the
meniscus (assumed
to be constant) D -
interparticle
distance

Simulation of
monodisperse
nanoparticle
agglomerates in the
gas phase

(Butt & Kappl,
2009; Salameh et
al., 2017a)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

Solvation force model for identical particles:
Fsol =
0.5RF 0

solv
1√

1
(2πσsolv)2 + 1

h2
e−D/σsolv cos

(
2πD

h
+ Φ

)
Solvation
force
adapted for
two
spherical
particles

σsolv - decay length
h - layer thickness
Both these values
are assumed to be
equal to the
molecule size.
Φ - phase shift
F 0

solv - amplitude of
the first maximum
(fitting parameter,
can also be
obtained from MD
simulations)

Simulation of
monodisperse
nanoparticle
agglomerates in the
gas phase

(Horn &
Israelachvili, 1981;
Laube et al.,
2018b)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

Electrostatic forces:
Fe = − 1

4πϵ0ϵr

qiqj

d2 nij

Coulomb’s law
for modelling
electrostatic
forces
between
primary
particles

nij - The normal
vector between
particles i and j
ϵ0 - permittivity of
free space
ϵr - relative
permittivity of the
medium
qi,qj − the charges
on the two particles
d - Interparticle
distance

Applications
involving
electrostatically
charged primary
particles such as dry
powder inhalers

(Yang et al.,
2015b)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

Adhesive model in fluidised beds (4 stages):
Fna = −Fa · nij − ηnvij

Approach stage with zero cohesive force:
Fa = 0 d > H0

Loading stage:
Fa = kn,loadδn − Fvdw,0

Unloading stage:
Fa = kn, unload (δn − δp)− Fvdw, 0, FF a ≥ fad, min

(1− x1) (Fvdw. 0 − Fbond, 0) + x1fad, min, Fa < fad, min

Detachment stage:
Fa =

(
1− d

dc

)
(−Fvdw,0 − Fbond,0) +

5
9

(
d
dc

)
(−Fvdw,0 − Fbond,0)

Parameter equations:
ψp = 1− kn,load/kn, unload

δp = (1− kn, load /kn, unload ) δmaxfad,min = (δ0/Di,NP + 1) (−Fvdw,0 − Fbond,0)

The contact
model is a
modification
of Luding’s
model and
can be
parameterised
directly using
Atomic Force
Microscope
(AFM)

nij – The normal
vector between
particles i and j
vij – velocity vector
between particles i
and j
H0 - minimal
separation
distance
d – particle
separation distance
dc – interaction
breakoff distance
Fvdw,0 – van der
Waals force at the
minimal separation
distance
Fbond, 0 – bond force
at minimum
separation distance
δn - normal
deformation
δp- permanent
plastic deformation
kn,load- loading
stiffness
kn,unload- unloading
stiffness

Simulation of TiO2
nanoparticle
agglomerate
fluidization

(Liu et al., 2016b)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

van der Waals attractive force approximation
For (d ≥ z):
Fna, vdW = −AH · Ri

2
12·d2

For (d < z):
Fna, vdW = −AH · Ri

2
12·z2

A model for
the approxi-
mation of van
der Waals
attractive
forces in dry
aggregate
particles

d – particle-particle
contact distance
z – fixed distance
parameter
(¬0.4nm
AH- Hamaker
constant
Ri – primary
particle size

Simulation of Silica
aggregates with
sizes of 50-400 nm
built up from
primary particle.
The van der Waals
force can be either
included as a
separate term (R. Y.
Yang, Yu, Choi,
Coates, & Chan,
2008)

(Schilde et al.,
2012, 2014)
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Table A.2.: Long range particle-particle attractive forces

Model Description Parameters Applications Citation

Modified van der Waals attractive force
approximation:

Fna = −π2

3
(nd3

0)2
ε(Di)6

(r+αd0)3[(r+αd0)2−Di
2]2

A model for
the approxi-
mation of van
der Waals
attractive
forces in dry
aggregate
particles

d0 – size of
intermolecular
interaction
ε - energy
intermolecular
interaction
α - coefficient that
determines the
maximum adhesive
bond force = 0.24
in applications
d0 - equilibrium
distance between
two atoms
d - particle distance
r - distance
between the
particles’ centres
Di – diameter of
particle i

Simulation of
nanoparticle
powder of sizes
10–100 nm in cold
compaction.
Simulation of 10nm
particles in
magnetic pulse
compaction
processes.

Model:
(Boltachev &
Volkov, 2010,
2011; Boltachev,
Volkov, & Nagayev,
2011)
Applications:
(Boltachev et al.,
2011, 2013, 2014,
2015)
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Table A.3.: Friction and tangential models

Model Description Parameters Applications Citation

Hertz-Mindlin:
Ft (δt) = −Stδt

St = 8G∗
√

R∗δn

Hertz-Mindlin tangential
force model

δn - tangential
overlap and
St - tangential
stiffness
G∗ - equivalent
shear modulus
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Table A.3.: Friction and tangential models

Model Description Parameters Applications Citation

Sliding tangential friction force:
Ft = − τSAij

(
δt

λt
−
⌊

δt

λt

⌋)
tij

Alj = π

[
R2

i −
(R2

i −R2
j +d2)2

4d2

]
Rolling friction torque:
Mr = 0.5 (R + hn)∗ τR Aij

Friction:
Stick-slip behaviour model
for the friction behaviour of
surfaces with roughness in
the atomic scale (of the order
of 0.1 nm)
Tangential:
Reduced order slider model

Friction:
τS - Sliding
shear stiffness
τR - Rolling
shear stiffness
Aij - Contact
area between
overlapping
particles
tij -Tangential
direction
between
particles i and j
δt - the relative
displacement of
two particles
along tij
λt -period of
displacement
d - particle
distance
Tangential:
τR - Rolling
shear stiffness
Aij - Contact
area between
overlapping
particles

Simulation
of TiO2

nanoparti-
cle films
subjected to
mechanical
stress.

Friction:
(Laube et al.,
2018a)
Tangential:
(Ai et al.,
2011; Laube
et al.,
2018b)
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Table A.3.: Friction and tangential models

Model Description Parameters Applications Citation

Modified Luding‘s model

Ft =

 −ktδt − ηtvab,t, Fij,t < µf |Fij,n|
−µf |Fij,n|nij, Fij,t ≥ µf |Fij,n|

where the damping coeffient is given by
ηn(t) = 2

√
mabkn(t) ln evis/

√
π2 + ln2 evis

Applicable to agglomerates.
The contact model is a
modification of Luding’s
model and can be
parameterised directly using
Atomic Force Microscope
(AFM)

vij, t - relative
velocity
between
particle i and j
nij – unit vector
be between
particle i and j
ηt- damping
coefficient
along the
tangential
direction
µf - friction
coefficient
ev - coefficient
of restitution
due to the
visco-elastic
nature

Simulation
of TiO2

nanoparti-
cle
agglomerate
fluidization

(Liu et al.,
2016b)
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Table A.3.: Friction and tangential models

Model Description Parameters Applications Citation

Linearized form of Cattaneo-Mindlin law:
Ft = min

{
4Eaδt

(2−v)(1+v) ;µFnr; πa2σb

}
, a =

√
hDi

2
Moment balance using Reissner-Sagoci law:
Mp (θp) = min

{
8Ea3θp

3(1+v) ;µM(a); πa3

2 σb

}
where
M(a) = −2π

∫
σn(r)r2dr

Contact elasticity of flexure:
Mr (θr) = min

{
4
3

Ea3

1−v2 θr; 1
3aFnr

}

Modified Cattaneo-Mindlin
law using Reissner-Sagoci for
the moment balance. Here
Fnr is the “Rod model”
governing repulsion when a
particle i is not sintered to a
particle j.
Mr - rolling moment θr - turn
angle of the
contact area in the direction

Di – Diameter
of particle i
E - Young
modulus of the
particles
v - Poisson’s
Ratio
- friction
constant
σb - critical
transverse
stress (or the
fracture stress),
Mp - surface
moment,
θp - turn angle
of the contact
area

Simulation
of nanopar-
ticle powder
of sizes
10–100 nm
in cold
compaction.
Simulation
of 10nm
particles in
magnetic
pulse
compaction
processes.

Model:
Linearized
form of
Cattaneo-
Mindlin law
(Agnolin &
Roux, 2007;
Yang et al.,
2000)
Reissner-
Sagoci law
(Reisner &
Sagoci,
1944)
Applied
model
(Boltachev
et al., 2013)
Applications:
(Boltachev
et al., 2011,
2013, 2015)
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Table A.4.: Sinter-bridge models

Model Description Parameters Applications Citation

Table A.4.: Sinter-bridge models

Model Description Parameters Applications Citation

Hertz-Mindlin with Bonding
contact model.
Normal and tangential force on
particle:
Fs = Ln EB

L0
AB

FS,t = Lt EB

2L0(1+ υB)AB

Moment on particle:
Mn = δn EB

2L0(1+ υB)J

Mt = δt EB

L0
I

Brittle fracture failure models:
− Fn

AB
+ |Mt|

I
RB ≥ σB

|FS, t|
AB

+ |Mn|
J
RB ≥ τB

The model of
Potyondy and
Cundall (2004) and
adapted for
sinter-bridges in
aggregates (Amin,
Li, Wu, Ding, & Xu,
2010).

Ln - normal
displacement
Lt - tangential
displacement
L0 - rest length
EB - sinter bridge
Young's Modulus
AB− bridge cross
section, computed from
bridge radius AB = π R2

B

υB - Poisson's ratio.
I - moment of inertia
J - polar moment of
inertia
δn − relative tangential
angular displacements
via moment of inertia I
δt - relative tangential
angular displacements
via polar moment of
inertia J.
Brittle fracture failure
models:
σB - normal tensile
strength
τB - shear strength
RB – bridge radius

Simulation of TiO2

nanoparticle films
subjected to mechanical
stress.
Simulation of aggregate
breakups using the
failure models was
applied in multiscale
simulation of the wet
milling process with
aggregates built up from
primary particle sizes of
12 nm and 13 nm
alumina nanoparticles.

Model:
(Amin et al., 2010;
Laube et al., 2018b)
Applications:
(Baric et al., 2019;
Beinert, et al., 2018a,
2018b; Ostanin et al.,
2013)
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Table A.4.: Sinter-bridge models

Model Description Parameters Applications Citation

Rod model:
Fnr

EDi
2 = (h/Di)3/2

3(1−v2)

− (π/4)(1−v)
(1−2v)(1+v)

[
h

Di
+ ln

(
1− h

Di

)]
with
h = d− r

Modified
Hertz law
(so-called
“rod model”)
used for
repulsion
between the
particles up
to that
moment
when a solid
bridge
appears

Di – diameter of particle
i
E - Young modulus of
the particles
v - Poisson’s
ratio

Simulation of
nanoparticle powder of
sizes 10-100 nm in cold
compaction.
Simulation of 10nm
particles in magnetic
pulse compaction
processes.

Model:
(Boltachev & Volkov,
2010; Boltachev &
Volkov, 2011;
Boltachev, Volkov, &
Nagayev, 2011)
Applications:
(Boltachev et al.,
2011, 2013, 2014,
2015)
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BCFD-DEM models

B.1 Mass and momentum conservation equations

The mass and momentum conservation equations are given by

∂αfρf

∂t
+∇ · (αfρfuf ) = 0

∂ (αfρfuf )
∂t

+∇ · (αfρfuf uf ) = −αf∇p−Ksf (uf − us) +∇ · (αfτ) + αfρfg + f
(B.1)

∂

∂t
(εgρg) +∇ . (εgρgug ) = 0 (B.2)

∂

∂t
(εgρgug) +∇ . (εgρgugug ) = −εg∇ρg −∇ . (εgτg) + Sp + εgρg g (B.3)

Drag force model for modelling the fluidisation of aggregate nanoparti-
cles

The following model can be used as the fluid drag component acting on the
particles (Liu et al., 2016b):

Fd = Vafd

(1− εg) (ug − vp) (B.4)

The drag force coefficient is given by

fd = 3
4CD

ρ |ug − vp| (1− εg)
dp

εg
−2.7 (B.5)

The parameters for this model are described in Table 8. The drag force is
an important component in fine grinding and dispersing processes such as
wet milling, which can change the morphology of the aggregate structures.
Morphology can be measured quantitatively by the fractal (or Hausdorff)
dimension Df , which describes how the number of primary particles scales
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with the characteristic radius of the aggregate Rg through the power law
expression Np ∼ Rg

Df . The fractal dimension ranges from Df → 3 for
compact, nearly spherical agglomerates to Df → 1 for chain-like structures
(Friedlander, 2000).

It is well known that the aggregate morphology can change during a wet
milling processes (Jeon, Thajudeen, & Hogan, 2015). Importantly, this
change influences the drag force acting on the particle. In two studies on
multi-scale simulation of fine grinding and dispersing processes (Beinert et
al., 2018a, 2018b) the authors also related the drag coefficient to the fractal
dimension. The aggregates have a final fractal dimension Df, end which can
change due to deagglomeration from shear forces during the simulation and
where a value of Df,end = 3 corresponds to a spherical approximation of the
agglomerate structure:

CD,simulated = 2 · Fd

ρf · v2
f · Aagg

(B.6)

CD,analytical(Stokes) = 24
Re

(B.7)

At lower fractal dimensions the following relations were calculated in the
study:

CD,simulated (Df,end = 1.55) = 544
Re0.34

CD,simulated (Df,end = 2.15) = 491
Re0.32

CD,simulated (Df,end = 2.75) = 238
Re0.48
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Table 8

CFD coupling and drag force coefficients

Model Description Parameters Applications Citation

Mass and momentum conservation
equations of fluid phase
∂
∂t

(εgρg) +∇ . (εgρgug ) = 0
∂
∂t

(εgρgug) +∇ . (εgρgugug ) =
−εg∇ρg −∇ . (εgτg) + Sp + εgρg g
where
εg = 1− ∑Np

n=1
vpn

vcell

Sp =
− 1

Vcell
− ∑Np

n=1
vαCW Y

(1 −εg) (ug − vp) . ξ
Wen & Yu drag coefficient
CW Y = 3

4CD
ρ|ug−vp|(1−εg)

dp
εg − 2.7

CFD-DEM
coupling

εg - bed voidage
ρg- particle or
agglomerate density
ug - fluidizing gas
velocity
ξ – drag force scale factor
βc – drag coefficient

Modelling processes such
as fluidised bed reactor
production of
nanoparticle powders.
Modelling of
deagglomeration in dry
powder inhaler systems.

CFD-DEM model
(Liu et al., 2016)
Wen & Yu drag
coefficient
(van Wachem et al.,
2001)

B
.1

M
ass

and
m

om
entum

conservation
equations
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Model Description Parameters Applications Citation

Felice friction coefficient
fd =
1
2CDiρa

πD2
i

4 ε2 |u− vi| (u − vi) ε−(χ+1)

CDi - the fluid drag
coefficient the fluid drag
coefficient
Di - diameter of
the particle i
ρa – density of the
surrounding fluid
u - velocity of the
surrounding fluid

Applied to dry powder
inhaler systems.

Model:
(Di Felice, 1994)
Applications:
(Pei et al., 2015; Yang
et al., 2015c)
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B.2 CFD-DEM simulation for macroscopic
applications

Two selected popular software framewords are CFDEM and MultiFLow:

CFDEM. The CFDEM coupling of LIGGGHTS and OpenFOAM offers a parallel
resolved software (Goniva, et al., 2012; Hager, et al., 2014). It has been
used to study multiscale models of fine grinding and dispersing processes in
(Beinert, et al., 2018).

MultiFlow. The adhesive CFD-DEM model was implemented by Liu et
al. (2016) in MultiFlow (van Wachem & Denner, 2012) to simulate the
fluidization of nanoparticle agglomerates. The software uses standard CFD-
DEM coupling techniques (Liu, Bu, & Chen, 2013; Mallouppas & van Wachem,
2013; Motlagh, et al., 2014; van Wachem, et al., 2001; Zhu, Zhou, Yang, &
Yu, 2007) with the Wen and Yu drag force model (Wen & Yu, 1966).

B.3 Molecular dynamics

The use of MD software has primarily found applications in parameter estima-
tion and model development, although the numerical simulation techniques
for coarse-grained particles are largely similar to atomistic and molecular
simulations.

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator).
The popular LAMMPS software (Plimpton, 1997) was used by Laube et al.
(2018) to compute e.g. the damping coefficient γn and other parameters of
their DEM model. In the study several MD runs were performed starting
with the particles at a distance larger than their equilibrium separation. In
the simulation the water layers were first relaxed to form a stable meniscus
and then letting the system spontaneously relax to equilibrium at constant
temperature.

The development of models and parameters for capillary forces in TiO2

nanoparticles was also conducted using the LAMMPS software (Laube et al.,
2017, 2015)
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Field- and fluid-particle interaction for CFD-DEM models

B.4 Applications using state of the art CFD(-DEM)
methods

In this section some practical applications of the nanoparticle contact models
is summarised especially with respect to the kind of valuable insights that can be
gained from such simulations. The early examples are taken verbatim from Endres,
Ciacchi, and Mädler, 2021 while the later examples update some newer applications
in the field since the publication.

Practical applications of particle-particle contact models

The models described in Section 2 have already led to insight in a number of practical
applications as well as deepened our knowledge of these materials and the processes
used to manufacture them.

Film compaction processes. In the studies by Baric2019; Laube et al. (2018)
the DEM model was used to study structural changes during compression of TiO2

nanoparticle films synthesised by flame-spray pyrolysis (Schopf, Salameh, and
Mädler, 2013b). The model demonstrated the ability of the sintered TiO2 ag-
gregates to rearrange via mutual detachment, rolling or sliding events dictated by
non-covalent, humidity-dependent interactions, which are known to be crucial to
predict the correct response to compaction. The simulations allow for the dynamic
calculation of sinter bridge breakage rates and aggregate size distribution, which
could be validated with experimental results. It was found that the elastic deforma-
tion of aggregates was crucial to prevent fragmentation of stable sinter bridges at
this size scale of the aggregates even during harsh film handling such as compaction
at pressures of several MPa. The model allows for key insights in predicting the
change in functional film properties such percolation, pore structure, heat transfer
and electric conductivity.

Additive manufacturing. Yoshida et al. (2016) used the DEM with van der
Waals-Hamaker model to predict particle flowability improvements when nanoparti-
cles (20nm) are added to the main particles (400nm) during compressed packing.
An analysis of the effects of adhesive forces and changing degree of rotations of
admixed particles found that rotation of the admixed particles was not the main
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reason for the improvement in flowability. Rather, this peak tendency was dictated
by the Hamaker constant of the admixed particles.

Fluidised beds. Bahramian & Grace (2017) studied the mechanical properties
and interparticle cohesive forces of the TiO2 nanoparticles in different fluidization
regimes. Understanding the agglomeration process of nanoparticles was crucial to
help decrease their adhesion during fluidization. The Young’s modulus and hardness
of the agglomerates were determined by nanoindentation to infer the morphology
of aggregates on the fluidization process (van Ommen et al., 2012).

In (Liu et al., 2016b) the authors developed a CFD-DEM model for the simu-
lation and characterisation of TiO2 nanoparticle agglomerates during fluidization.
The same model led to valuable insights into the fluidization process (Liu et al.,
2016a):

• As the nanoparticle agglomerates move around in the bed, they break and
recombine repeatedly. Gas channelling is observed in case of strong agglomer-
ation.

• A strong correlation is observed between the dispersion coefficient and the
agglomerate breakage rate.

• The evolution of agglomerates could be visualised, and the agglomerate break-
age is compared for different cases.

– Increasing fluidizing gas velocity or reducing particle adhesion can in-
crease agglomerate breakage rate.

– There are different contacts in an agglomerate, i.e. weak contacts, strong
contacts, and sometimes permanent contacts, which result in different
stabilities of agglomerates.

Modelling the mechanical properties of Silica aggregates. In (Schilde
et al., 2014) DEM simulations were performed with the previously determined
micromechanical properties of aggregates or agglomerates, which are the main
products of large-scale production of nanostructured materials. The study used the
standard model of Mindlin with the previously developed contact model (Schilde
& Kwade, 2012) and an attractive van der Waals interaction force. Insight from
the studies determined that calculated radial forces within the aggregates were
significant for the crack formation and propagation. The data could be compared to
the theoretical model of Schönert (2004).
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Modelling agglomeration and deagglomeration in dry powder inhalers. In
dry powder inhaler systems, agglomeration and deagglomeration are important in
two stages. Namely, (i) during the inhalation process drug particles are aggregated
into agglomerates or mixed with large carrier particles; next (ii) the agglomerates
disintegrate into small fractions or the drug particles detach from the carrier particle
for the delivery of drugs to the lungs. The cohesive and adhesive forces need to
be sufficiently strong to aggregate and transport the particles, but weak enough to
be overcome by the removal forces generated during the de-agglomeration process
(de Boer, Chan, & Price, 2012; Stegemann et al., 2013; Yang et al., 2015a; Zhou &
Morton, 2012). According to (Kaialy et al., 2014) it is rather difficult to identify the
influence of a single factor on dry powder inhaler performance due to the complexity
of dry powder inhaler system. This complexity is similar to that found to influence the
forces of aerosol synthesised materials as discussed in Section 2.1.2. In dry powder
inhaler systems it is known from several studies (Yang et al., 2015a) that simulations
should include effects of particle size (Guenette et al., 2009), particle shape (Kaialy
et al., 2011), particle surface roughness (Kaialy, Ticehurst, & Nokhodchi, 2012),
particle concentration (Young et al., 2005), material properties (Steckel & Bolzen,
2004), storage conditions (Jashnani, Byron, & Dalby, 1995), surface energy (Cline &
Dalby, 2002), density and porosity (Kaialy & Nokhodchi, 2012), crystal form (Shur
et al., 2012), flowability (Rabbani & Seville, 2005), the type of ternary additives
(Kaialy & Nokhodchi, 2013).

The inclusion of electrification phenomena (Pei et al., 2013) in CFD-DEM
simulations was demonstrated to have considerable effects on the dry powder
inhaler performance. In (Yang et al., 2013, 2014) it was assumed that van der
Waals forces dominated the agglomeration process in mixing. The adhesion between
particles was considered using the JKR theory (Johnson et al., 1971). In a later study
(Yang et al., 2015b) the effect of electrostatic forces on the mixing performance was
studied. In contrast to the earlier proposed mechanisms for the mixing process, the
latter study indicated that both long-range and short-range adhesive forces resulted
in different mixing behaviours.

Modelling the mechanical properties of aggregates in fine grinding and
dispersing processes. In two studies (Beinert, et al., 2018a, 2018b) of aggregates
built up from primary particle sizes of 12 nm and 13 nm, alumina nanoparticles
were simulated in the wet mill process. In this study the breakage rate in a macro-
scopic PBE was computed by directly simulating a representative volume element to
determine the number of fragments and broken solid bonds given by the micro scale
CFD-DEM simulation. The study allowed the authors to predict the drag coefficient
and the number of broken aggregate bonds that occurred due to stress between the
grinding beads. The authors also concluded that the fractal dimension is insufficient
to describe both the effect of the aggregate structure on the drag coefficient and the
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fracture during mechanical compression between grinding media. These conclusions
emphasise the need for the use of a more fundamental CFD-DEM model in this
process.

Modelling the mechanical properties of aggregates in compaction pro-
cesses. In Boltachev et al. (2013) verification of the model was performed on the
compaction of alumina-based nanopowders and 1% Nd:Y2O3 nanopowders (yttrium
oxide doped by 1% of neodymium). One of the key findings from the study is that
the quantitative analysis of easily aggregating nanopowders, in this case particles
with an adsorbates-free surface, require stronger interparticle bonds of chemical
nature. In Boltachev et al. (2014) the authors performed a purely theoretical study
of magnetic pulse compaction processes with particles smaller than 10nm. It was
found that high pressures are reached that exceed the initial “magnetic pressure”
several times due to the inertial effects under the radial pressing of conductive shells.
A new dimensionless number was derived from the process dynamics which can be
used to optimise the design within the most effective value range established in the
study.

Particle Separation in a Cyclone. Misiulia, Lidén, and Antonyuk (2021)
developed a simulation of the vortex behaviour and pressure losses in small-scale
cyclones with turbulent conditions simulated using the LES method. A follow up
study in Misiulia, Nedumaran, and Antonyuk (2023) simulated a cyclone system
which led to insights that could improve flapper design.
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C
Other DDG formulations from
literature

Discrete curvature estimates of a range of definitions taken from literature

A collection of curvatures known from literature is shown in Table C.1. The results
of plotting the minimum symmetric discretisation on a spherical cap is shown in
Figure C.1. The vector and scalar curvatures are plotted over a range of contact
angles ΘC and compared to the exact Gaussian K and exact Mean H curvatures.
As illustrated in Table C.1, for all curvature estimates, the errors for the discrete
Gaussian K and the discrete Mean H curvatures are expected to be low close to
ΘC = 90◦, where there is no curvature at all, and the errors are expected to be high
as ΘC approaches 0◦ and 180◦. To enhance the symmetry, the sign of the concave
curvatures has been reversed. It can be observed in Table C.1 that, similar to the
droplet test case, the dual normalised mean normal curvature once again provides
the best approximation for the normal curvature, being nearly precisely equal to H
for the entire range of ΘC .

Vector curvatures:
Gaussian normal curvature: KNdA = 1

2
∑

ij∈SSt(i)
φij

ℓij
(fj − fi)

Mean normal curvature: HNdA = 1
2
∑

ij∈St(i) (cot αij + cot βij) (fi − fj)
Surface area gradient: NdA = 1

6
∑

ijk∈St(i) fj × fk
Scalar curvatures:
Gaussian curvature (angle

defect):
Ωi = 2π −

∑
ijk θjk

i

Mean curvature: Hij = 1
2ℓijφij

Table C.1.: Definitions of discrete curvature (from Crane (2018)).
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Figure C.1.: Varying contact angle Θc at a = 1.0, n = 5. Note that the approximations for
normalised mean normal curvature are precisely on the smooth value H. Note
that none of the notions of discrete Gaussian curvature are close to smooth
value at high curvatures (or low contact angles), however, it is possible to get
good point-wise approximations for the Gaussian curvature using the implicitly
defined notions shown in Chapter 4.
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DInterface energy minimisation
definitions and demonstration

The method described in this appendix is taken almost verbatim from Endres, Avila,
and Mädler (2022). It is demonstrated how Equation 3.5 can be used to directly
minimise the energy of multiphase systems under certain assumptions. In such
a model it is assumed that viscous inertial forces are negligible and it is further
assumed that there is no exchange of heat mass between phases (i.e. thermodynamic
equilibrium between phases). This allows us to decouple the effects from numerical
methods in the discretisation of the momentum balance (Navier-Stokes and other
continuum equations) with the formulation presented here, although it should be
noted that assumptions should not be considered an accurate dynamic simulation
due to the absence of the momentum balance. A mixture thermodynamic definition
of surface tension (Elliott, 2020) of an arbitrary phase j is defined as:

γj =
(

∂U j

∂Aj

)
Sj ,Nj

i

, (D.1)

when we integrate this on an isotrope at constant composition we find

U j =
∫

γjdA (D.2)

which relates the (intrinsic) internal energy of a system and the change in (local)
area of the interface, lowering the local surface area lowers in the intrinsic internal
energy of the system. This also has a direct interpretation on the driving force
F = −∇U (i.e. the force due to surface tension is equal to the gradient of the
internal energy surface) or in differential forms F = −dU j = −γjdA. The Young-
Laplace Equation 2.1 is indirectly connected to the idea that surface tension tends
to minimise energy of the system by minimising the local surface area of the gas-
liquid interface under constraints leading to natural phenomena such as droplet
formation. This fundamental idea of minimising local surface area is called "mean
curvature flow", or sometimes called "H2 flow" in the context of discrete differential
geometry and is about computing gradients of the surface energy by the discretising
the differential 2-form dA. From this we can find the force acting on a vertex
point to lower the energy of a simplicial complex by pushing the vertices down the
gradient. Therefore, the term "equilibrium" is used, however,isentropic dynamics
can be derived from the discretisation that is a precise physical relationship only
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under those conditions. We briefly review the concept of mean curvature flow in the
context of discrete differential geometry. Mean curvature energy in the context of
discrete exterior calculus is defined by (Crane, 2018):

E(f) =
∫

M
dA (D.3)

Where the right hand side of Equation 2.10 can be related to Equation D.3 only
under the assumption of constant surface tension between phases γ. In differential
form this can be described as

δE = 2HNdA (D.4)

And the change of vertex positions over some period τ is

d

dτ
f = −2HN (D.5)

We can additionally specify a force vector F a point on the surface to balance the
physical mechanical equilibrium:

d

dτ
f = −2HN + F (D.6)

The discretised differential at a vertex fk
i is given by the explicit update

formula
fk+1
i = fk

i −
τ

2
∑

ij∈SI(i)
(cot αij + cot βij)

(
fk

j − fk
i

)
+ Fi (D.7)

Similarly, we update boundary vertices according to Equation 3.12. Where the τ

parameter becomes a specified constant. A more stable formulation of the energy
minimisation of any surface can be described in terms of its Willmore or H2 flow.
The discrete Willmore energy is defined by:

Ediscrete =
∑
i∈V

(HN)2
i /Ai (D.8)

In terms of the inner product of the Laplacian:

∇EW (f) = 1
4⟨⟨∆f, ∆f⟩⟩ = 1

4
〈〈

∆2f, f
〉〉

ḟ = −∇EW (f) = −1
2∆2f

(D.9)

The period is defined by:
d

dτ
= −∇f E (D.10)

We solve this equation subject to mass conversation constraints by computing the
density from the equation of state and preserving the expected volume at a given
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droplet pressure. Figure D.1 demonstrates a general algorithmic flow diagram of the
computations performed in the case studies in Section 4.

S-1 
 

 

 

Compute 𝐻𝐻�𝑖𝑖, interior forces     
𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄   =  𝛾𝛾𝐻𝐻�𝑖𝑖𝐴𝐴𝑖𝑖 using Equation 11, 
12 and boundary forces 𝑭𝑭𝒃𝒃 using 
Equation 15 at every vertex 𝒇𝒇𝒊𝒊𝒌𝒌. 

 

  Compute new vertex positions 

𝒇𝒇𝒊𝒊𝒌𝒌+𝟏𝟏 = 𝒇𝒇𝒊𝒊𝒌𝒌 −
𝜏𝜏
2

(𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄+𝑭𝑭𝒃𝒃 
+𝑭𝑭𝒈𝒈+𝑭𝑭𝒄𝒄), 
set k=k+1. 
  

Merge all vertices with a specified 
tolerance and connect all edges: 

�𝒇𝒇𝒊𝒊𝒌𝒌  − 𝒇𝒇𝒋𝒋𝒌𝒌�  < 𝜎𝜎 ∀𝑖𝑖, 𝑗𝑗. 

 

  

 

Initiate complex vertices  𝒇𝒇𝒊𝒊𝟎𝟎. 
Set k = 0. 
Set 𝒇𝒇𝒊𝒊𝟎𝟎  =  𝟎𝟎  ∀𝑖𝑖. 

𝜖𝜖 <  10−15 

𝜖𝜖 ≥  10−15 

 

    

𝜖𝜖 = ��𝒇𝒇𝒊𝒊𝒌𝒌  − 𝒇𝒇𝒊𝒊𝒌𝒌−𝟏𝟏�
𝑛𝑛

𝑖𝑖=0

.  

 

  

Output equilibrium 
complex. 

 

Test convergence: 

Figure D.1.: Algorithmic flow diagram of all calculation steps involved in minimizing the
energy of an interface. Note that σ must be set to a value appropriate for the
simulation domain. Fg = ρgh is the gravity force and Fc are compressive
forces acting on the vertex fi.
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